
Pyxer 0.6.0

Yet another Python Framework

(C)opyright by Dirk Holtwick, Germany

dirk.holtwick@gmail.com

http://www.pyxer.net

mailto:dirk.holtwick@gmail.com
http://www.pyxer.net/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Table of Contents

Pyxer Python Framework 4

Introduction 5

Technical background 5

Installation 6

Quick tutorial 7

Create a new project 7

Start the server 7

"Hello World" 7

Controllers 7

@expose 8

default() 8

Templates 8

JSON 9

Sessions 9

Deployment 9

Routing 11

Default behaviour 11

Custom routes 11

Relative URL 12

Templating 13

Variables and expressions 13

Commands 13

Comments 13

Layout templates 13

Databases 15

Advanced 16

Python virtual environment 16

Development of Pyxer under GAE 16

Writing test cases 16

Use within Eclipse 17

Use Google App Engine Launcher on Mac OS 17

Pyxer on Apache 17

Configuration 17

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Engines 18

WSGI 18

Paster 18

Google Appengine 18

Appendix 19

Reserved names 19

Links 19

Pyxer 0.6.0

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Pyxer Python Framework

Contents

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Introduction

The Pyxer Server is a very simple Python Web Framework that aims to makes starting a new

project as easy as it can be. It still works respecting the MVC concept but the files can be mixed

in one directory. For a high end solution you should maybe better consider using Pylons,

Django, TurboGears and similar.

This work is inspired by http://pythonpaste.org/webob/do-it-yourself.html.

Technical background

The Google App Engine (GAE) in version 1.1 offers a very restricted Python environment and

the developer as to ship arround a lot of problems. Pyxer helps on this point by also providing

solutions that work with the great WSGI Framework Paster by Ian Bicking. So you get the best

from both sides: GAE and Paster. To achieve this some other great third party tools are used

like WebOb and VirtualEnv (also by Ian Bicking) and for templating the html5lib is used.

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://pythonpaste.org/webob/do-it-yourself.html

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Installation

Install Pyxer using easy_install:

$easy_installpyxer

All required packages (webob, html5lib, beaker) should be installed automatically if needed.

If you want to use Google AppEngine install it separately too.

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Quick tutorial

Create a new project

At first set up a new Pyxer project using the Pyxer command line tool like this:

$pyxerinitmyexample

In the newly created directory "myexample" you will find a directory structure like this one (under

Windows "bin" will be called "Scripts"):

bin/

public/

lib/

Place your files in the "public" directory.

Start the server

To start the server you may choose between the Paster-Engine:

$xpasterserve

or the GAE-Engine:

$xgaeserve

Or use Pyxer command line tool again to use the default engine (which is WSGI from Python

standard lib):

$pyxerserve

But you may also use Pyxer without using the command line tools e.g. like this:

$pasterservedevelopment.ini

"Hello World"

For a simple "Hello World" just put an "index.html" file into the "public" directory with the

following content:

HelloWorld

This works just like a static server. To use a controller put a file "__init__.py" into that directory

with the following content:

@controller

defindex():

return"HelloWorld"

Controllers

Controller, templates and static files are placed in the same directory (usually "public"). First

Pyxer looks for a matching controller. A controller is defined in the "__init__.py" file and

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

decorated by using @controller which is defined in pyxer.base.

frompyxer.baseimport*

@controller

defindex():

return"HelloWorld"

@expose

This controller adds the GET and POST parameters as arguments to the function call (like in

CherryPy):

frompyxer.baseimport*

@expose

defindex(name="unknown"):

return"Yournameis"+name

default()

If the matching controller can not be found the one called "default" will be called:

frompyxer.baseimport*

@controller

defdefault():

return"Thisispath:"+request.path

Templates

This example can be called like / or /index. To use a Pyxer template with this file you may use

the render() function or just return None (that is the same as not returning anything) and the

matching template will be used, in this case index.html. The available object in the template are

the same as used by Pylons: c = context, g = globals and h = helpers.

frompyxer.baseimport*

@controller

defindex():

c.title="HelloWorld"

By default the Kid templating language is used and output is specified as "xhtml-strict". You may

want to change that for certain documents e.g. to render a plain text:

frompyxer.baseimport*

@controller(output="plain")

defindex():

c.title="HelloWorld"

Or use another template:

frompyxer.baseimport*

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

@controller(template="test.html",output="html")

defindex():

c.title="HelloWorld"

Or use your own renderer:

frompyxer.baseimport*

defmyrender():

result=request.result

return"Theresultis:"+repr(result)

@controller(render=myrender)

defindex():

return9+9

JSON

To return data as JSON just return a dict or list object from your controller:

frompyxer.baseimport*

@controller

defindex():

returndict(success=True,msg="Everythingok")

Sessions

Session are realized using the Beaker package. You may use the variable session to set and

get values. To store the session data use session.save(). Here is a simple example of a

counter:

frompyxer.baseimport*

@controller

defindex():

c.ctr=session.get("ctr",0)

session["ctr"]=c.ctr+1

session.save()

??? XXX

1. #Looks for a controller (foo.bar:bar)

1. If the controller returns a dictionary this will be applied to template (step 2)

2. Looks for the template (foo/bar.html)

Deployment

To publish your project to GAE you may also use the Pyxer command line tool. First check if

your "app.yaml" file contains the right informations like the project name and version infos. Then

just do like this:

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

$xgaeupload

Be aware that Pyxer first needs to fix the paths to be relative instead of absolute to make them

work on the GAE environment. If you choose not to use Pyxer for uploading you have to do this

fix up explicitly before you upload your applikation, like this:

$xgaefix

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Routing

The routing in Pyxer is based on some conventions by default but may be extended in a very

flexible and easy way. By default all public project data are expected in the folder public. If you

just put static content there it will behave like you expect it from a normal webserver.

To add controllers to it, start with creating an __init__.py file. This makes the folder a Python

package and Pyxer routing will first evaluate this before looking for static content.

Default behaviour

The easiest controller looks like this:

@controller

defindex():

return"HelloWorld"

This will be called with the following URLs:

• http://<domain>/

• http://<domain>/index

• http://<domain>/index.html

• http://<domain>/index.htm

If the controller has another name as index, these corresponding URLs will match:

• http://<domain>/<controller>

• http://<domain>/<controller>.html

• http://<domain>/<controller>.htm

There is one other special controller name default. If this one exists all non matching request

will be passed to this controller.

If you have sub packages in your public folder like foo and foo.bar, these will be matched by

the corresponding path and in this package the rules described before will apply:

• http://<domain>/foo/bar/...

Everything that does not match will be considered static content. Pyxer tries to match the path

relatively to the last matched package.

If you are just beginning to use Pyxer and you do not like reading manual - like I do - you

may skip the next sub sections and continue with the next main section.

Custom routes

If you need more sophisticated routing or want to include external packages that are not placed

under the public folder you may add your own routing. This is as simple as adding this line to

your global space of your module:

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

router=Router()

Important! The name of this object has to be router by convention!

To add your own ...

router.add("content-{name}","content")

This matches all URL starting with content- while the rest will be saved in req.urlvars as name.

For example the URL /content-myentry will result in a call of the controller index where

req.urlvars["name"]=="myentry".

For more complicated routes you may also use the add_re method, which offers more flexibility.

Here is an example that matches the rest of the path after "content/" and passes the value to

the controller via req.urlvars["path"]:

router.add_re("^content/(?P<path>.*?)$",

controller="index",name="_content")

Relative URL

In your templates you should try to often use the h.url() helper. It calculates a URL relative to

the matched routes base. For example if we take a look at the add_re routing example we can

see that the path component is under the content component. Let's say we have a controller

called edit we like to call from the page created by index, then we can not write it like this:

<ahref="edit?path=$c.path">Edit

That does not always work because this page could have been called via "index?path=xyz" or

via "content/xyz". To make sure we are get the URL corresponding to our modules controller we

could write it like this:

<ahref="${h.url('edit?path='+c.path)}>Edit

Or even better using the feature of h.url that lets you append GET parameters as named

arguments of the helper function:

<ahref="${h.url('edit',path=c.path)}>Edit

If you use redirect it will call the url helper too so that relative parts will be translated to

absolute ones.

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Templating

Pyxer offers yet another templating language that is very close to Genshi and Kid. As the

former did not work with Google AppEngine at the moment of birth of Pyxer the new templating

tools had been implemented.

Variables and expressions

The default templating works similar to most known other templating languages. Variables and

expressions are realized like $<varname> (where <varname> may contain dots!) and

${<expression>}:

Hello${name.capitalize()},youwon$price.

$item.amounttimes$item.name.

Commands

These are also known form templating languages like Genshi and Kid. They are used like this:

<divpy:if=”name.startswith('tom')”>Welcome$name</div>

Or this:

<divpy:for=”nameinsorted(c.listOfNames)”>Welcome$name</div>

These are the available commands. They behave like the Genshi equivalents:

• py:if ... py:else ... py:elif

• py:for ... py:else

• py:def

• py:match

• py:layout / py:extends

• py:with

• py:content

• py:replace

• py:strip

• py:attrs

Comments

If HTML comments start with "!" they are ignored form the output:

<!--!Invisible--><!--Visibleinbrowsers-->

Layout templates

The implementation of layout templates is quite easy. Place the py:layout command in the

<html> tag and pass a Template object. For loading you may use the convenience function

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

load().

<htmlpy:layout="load('layout.html')">

...

</html>

In the template file you may then access the original template stream with the global variable

top. Use CSS selection or XPATH to access elements. Example:

<html>

<titlepy:content="top.css('title')"></title>

<body>

<h1><ahref="/">Home

/${top.select('//title/text()')}</h1>

<divclass="content">

${top.css('body*')}

</div>

</body>

</html>

XPath

XPath is supported like it is in Genshi.

CSS Selectors

CSS Selectors ending with " *" return just the inner texts and elements of the matched pattern.

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Databases

You are free to use any database model you like. For GAE you have not much choice but for

other engines I recommend using Elixir. You should try to separate your controller stuff from

your database stuff by creating a Python module called "model.py". For a GAE project this may

look like this:

fromgoogle.appengine.extimportdb

fromgoogle.appengine.apiimportusers

classGuestBook(db.Model):

name=db.StringProperty()

date=db.DateTimeProperty(auto_now_add=True)

While using Elixir you may do like this:

xxx

XXX See the GuestBook example for a complete demo.

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Advanced

Python virtual environment

To make deployment of GAE projects easy a virtual environment (VM) is created. If you start

GAE via xgae or paster via xpaster these virtual environments will automatically be used. Pyxer

determines the root of the VM by looking for the app.yaml file. If you have to enter the VM for

installing packages or for other reasons you may to it like this:

$pyxervm

(vm)$easy_installhtml5lib

(vm)$exit

You may also use the usual functions as described in virtualenv by Ian Bicking

http://pypi.python.org/pypi/virtualenv/.

$Scripts\activate.bat

$easy_installSomePackageName

$deactivate

And for other Unix like system like this:

$sourcebin/activate

$easy_installSomePackageName

$deactivate

Development of Pyxer under GAE

If you decide to develop Pyxer you may run into the following problem: each project comes with

an own virtual machine (VM)and its own installation of Pyxer in it. So if you change the

development version it will have no effect on your installation. Therefore a command "pyxer" is

added that synchronizes the Pyxer installation in the VM with the development version:

$pyxerpyxer

BTW: To install the development version using SetupTools do like this:

$cd<Path_to_development_version_of_Pyxer>

$pythonsetup.pydevelop

You will have to repeat this each time the version of Pyxer changes, because otherwise the

command line tools do not work.

Writing test cases

Since a Pyxer project is based in Paster writing test cases is quite the same. The most simple

test looks like this. (We asume that the test file to be placed in the root of the project. For normal

testing you have do add root to sys.path and modify the loadapp argument.):

frompaste.deployimportloadapp

frompaste.fixtureimportTestApp

importos.path

app=TestApp(loadapp('config:%s'%os.path.abspath('development.ini')))

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://pypi.python.org/pypi/virtualenv/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

res=app.get("/")

assert('<body'inres)

For more informations look here http://pythonpaste.org/testing-applications.html.

Use within Eclipse

xxx

Use Google App Engine Launcher on Mac OS

xxx

Pyxer on Apache

If you have installed mod_python the deployment of your project is as simple as the following

five lines. Just copy them to your sites configuration and adjust the absolute path to the

"development.ini":

<Location"/">

SetHandlerpython-program

PythonHandlerpaste.modpython

PythonOptionpaste.ini/<absolute_path_to_ini_file>/development.ini

</Location>

Configuration

Pyxer configuration is placed in the configuration file used by Paster or GAE respectively

development.ini or gae.ini. If both are not available Pyxer looks into pyxer.ini. Example:

[pyxer]

session=beaker

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://pythonpaste.org/testing-applications.html

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Engines

XXX

Pyxer uses support different so called "engines" to publish a project. Most of them need own

configurations and a well prepare environment to work fine. These are very specific to each of

these engines and Pyxer tries to make the setup as easy as possible

Common options:

• --host=HOST (default: 127.0.0.1)

• --port=PORT (default: 8080)

WSGI

$pyxerserve

Paster

Options:

• --reload XXX

With the virtual machine:

$xpasterserve--reload

Without the virtual machine:

$pasterservedevelopment.ini

Google Appengine

$xgaeserve

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Visit the Pyxer open source project at http://code.google.com/p/pyxer/Generated using the Pisa HTML2PDF Converter

Appendix

Reserved names

• index: Name of the root controller

• default: Name of the collecting controller

• router: Name of the routing object

• session: Session

• req, request

• resp, response
• cache

• c

• g

• h

• config

Links

1. http://code.google.com/p/pyxer/ [Pyxer Project Homepage]

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://code.google.com/p/pyxer/

	Pyxer Python Framework
	Introduction
	Technical background
	Technical background

	Installation
	Quick tutorial
	Create a new project
	Create a new project
	Start the server
	"Hello World"

	Controllers
	@expose
	default()

	Templates
	JSON
	Sessions
	Deployment

	Routing
	Default behaviour
	Custom routes
	Relative URL

	Templating
	Variables and expressions
	Commands
	Comments
	Layout templates

	Databases
	Advanced
	Python virtual environment
	Python virtual environment
	Development of Pyxer under GAE
	Writing test cases
	Use within Eclipse
	Use Google App Engine Launcher on Mac OS
	Pyxer on Apache
	Configuration

	Engines
	WSGI
	Paster
	Google Appengine

	Appendix
	Reserved names
	Links

