Pyxer 0.6.0

Yet another Python Framework

(C)opyright by Dirk Holtwick, Germany
dirk.holtwick@gmail.com
http://www.pyxer.net

mailto:dirk.holtwick@gmail.com
http://www.pyxer.net/

Table of Contents

Pyxer Python Framework
Introduction
Technical background
Installation
Quick tutorial
Create a new project
Start the server
"Hello World"
Controllers
@expose
default()
Templates
JSON
Sessions
Deployment
Routing
Default behaviour
Custom routes
Relative URL

Templating

Variables and expressions

Commands

Comments

Layout templates
Databases

Advanced

Python virtual environment

Development of Pyxer under GAE

Writing test cases

Use within Eclipse

Use Google App Engine Launcher on Mac OS

Pyxer on Apache

Configuration

© © O 00 00 0 N N N N N o o o0 b

R N e = e S N S S S S =
N N N o o 0 oo 0 W ow ww w N R R R

17

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Engines 18

WSGI 18

Paster 18

Google Appengine 18
Appendix 19

Reserved names 19

Links 19
Pyxer 0.6.0

Generated using the Pisa Nl ltiR® BiFx€poperiesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Pyxer Python Framework

Contents

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Introduction

The Pyxer Server is a very simple Python Web Framework that aims to makes starting a new
project as easy as it can be. It still works respecting the MVC concept but the files can be mixed
in one directory. For a high end solution you should maybe better consider using Pylons,
Django, TurboGears and similar.

This work is inspired by http://pythonpaste.org/webob/do-it-yourself.html.
Technical background

The Google App Engine (GAE) in version 1.1 offers a very restricted Python environment and
the developer as to ship arround a lot of problems. Pyxer helps on this point by also providing
solutions that work with the great WSGI Framework Paster by lan Bicking. So you get the best
from both sides: GAE and Paster. To achieve this some other great third party tools are used
like WebOb and VirtualEnv (also by lan Bicking) and for templating the html5lib is used.

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://pythonpaste.org/webob/do-it-yourself.html

Installation

Install Pyxer using easy_install:

$easy_i nstal | pyxer

All required packages (webob, htmi5lib, beaker) should be installed automatically if needed.

If you want to use Google AppEngine install it separately too.

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Quick tutorial

Create a new project

At first set up a new Pyxer project using the Pyxer command line tool like this:
$pyxerini t myexanpl e

In the newly created directory "myexample” you will find a directory structure like this one (under
Windows "bin" will be called "Scripts"):

bi n/

publ i c/

l'i b/

Place your files in the "public" directory.

Start the server

To start the server you may choose between the Paster-Engine:
$xpast er serve

or the GAE-Engine:

$xgaeserve

Or use Pyxer command line tool again to use the default engine (which is WSGI from Python
standard lib):

$pyxer serve
But you may also use Pyxer without using the command line tools e.g. like this:
$past er ser vedevel opnent . i ni

"Hello World"

For a simple "Hello World" just put an "index.html" file into the "public" directory with the
following content:

Hel | oWorl d

This works just like a static server. To use a controller put a file "__init__.py" into that directory
with the following content:

@ontroller
defindex():
return"Hel | oWor | d"

Controllers

Controller, templates and static files are placed in the same directory (usually "public"). First
Pyxer looks for a matching controller. A controller is defined in the "__init__.py" file and

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

decorated by using @ontrol I er which is defined in pyxer . base.
fronmpyxer. basei nport*

@ontroller

defindex():

return"Hel | oWorl d"

@expose

This controller adds the GET and POST parameters as arguments to the function call (like in
CherryPy):

frompyxer . basei nport*

@xpose
def i ndex(name="unknown") :
ret urn" Your nanei s" +name

default()

If the matching controller can not be found the one called "default” will be called:
frompyxer . basei nport*
@ontroller

def defaul t():
return"Thisispath:"+request. path

Templates

This example can be called like / or /i ndex. To use a Pyxer template with this file you may use
the render () function or just return None (that is the same as not returning anything) and the
matching template will be used, in this case i ndex. ht ni . The available object in the template are
the same as used by Pylons: ¢ = context, g = globals and h = helpers.

f ronmpyxer . basei nport*
@ontroller
def i ndex():

c.title="Hell owrld"

By default the Kid templating language is used and output is specified as "xhtml-strict". You may
want to change that for certain documents e.g. to render a plain text:

fronmpyxer . basei nport*
@ontrol | er(output="plain")
defindex():

c.title="Hell owrld"

Or use another template:

f ronmpyxer . basei nport*

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

@ontroller(tenplate="test.htm ", output="htm ")
defindex():

c.title="HelloWrld"

Or use your own renderer:

f ronmpyxer . basei nport*

def nyrender ():

resul t =request.result
return"Theresultis:"+repr(result)
@ontroller(render=nyrender)

def i ndex():
return9+9

JSON

To return data as JSON just return a dict or list object from your controller:
fronmpyxer . basei nport *
@ontroller

def i ndex():
returndi ct (success=True, nsg="Ever yt hi ngok")

Sessions

Session are realized using the Beaker package. You may use the variable sessi on to set and
get values. To store the session data use sessi on. save() . Here is a simple example of a
counter:

f ronmpyxer . basei nport*
@ontroller
def i ndex():
c.ctr=session.get("ctr",0)
session["ctr"]=c.ctr+1
sessi on. save()
?2?? XXX
1. #Looks for a controller (foo.bar:bar)

1. If the controller returns a dictionary this will be applied to template (step 2)

2. Looks for the template (foo/bar.html)

Deployment

To publish your project to GAE you may also use the Pyxer command line tool. First check if
your "app.yaml" file contains the right informations like the project name and version infos. Then
just do like this:

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

$xgaeupl oad

Be aware that Pyxer first needs to fix the paths to be relative instead of absolute to make them
work on the GAE environment. If you choose not to use Pyxer for uploading you have to do this
fix up explicitly before you upload your applikation, like this:

$xgaefi x

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Routing

The routing in Pyxer is based on some conventions by default but may be extended in a very
flexible and easy way. By default all public project data are expected in the folder publ i c. If you
just put static content there it will behave like you expect it from a normal webserver.

To add controllers to it, start with creating an __i ni t__. py file. This makes the folder a Python
package and Pyxer routing will first evaluate this before looking for static content.

Default behaviour

The easiest controller looks like this:
@ontroller

defindex():
return”Hel | oWorl d"

This will be called with the following URLS:

* http://<domai n>/
* http://<domai n>/i ndex
* http://<domai n>/index. htm

® http://<domai n>/index. htm

If the controller has another name as i ndex, these corresponding URLs will match:

* http://<domai n>/ <controller>
® http://<domai n>/ <controller>. htmn

* http://<domai n>/ <controller>. htm

There is one other special controller name def aul t . If this one exists all non matching request
will be passed to this controller.

If you have sub packages in your publ i ¢ folder like f oo and f oo. bar, these will be matched by
the corresponding path and in this package the rules described before will apply:

* http://<domai n>/fool/bar/...

Everything that does not match will be considered static content. Pyxer tries to match the path
relatively to the last matched package.

If you are just beginning to use Pyxer and you do not like reading manual - like I do - you
may skip the next sub sections and continue with the next main section.

Custom routes
If you need more sophisticated routing or want to include external packages that are not placed

under the publ i ¢ folder you may add your own routing. This is as simple as adding this line to
your global space of your module:

Generated using the Pisa Nl ltiR® BiFx€poperiesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

rout er =Rout er ()
Important! The name of this object has to be router by convention!

To add your own ...

rout er.add("content-{nane}", "content")

This matches all URL starting with cont ent - while the rest will be saved in req. url vars as nane.
For example the URL / cont ent - nyent ry will result in a call of the controller i ndex where

reg. urlvars["nanme"]=="nyentry".

For more complicated routes you may also use the add_r e method, which offers more flexibility.
Here is an example that matches the rest of the path after "content/" and passes the value to
the controller via req. url vars["path"]:

router.add_re(""content/(?P<path>.*?)$",
control |l er="i ndex", name="_content")

Relative URL

In your templates you should try to often use the h. ur1 () helper. It calculates a URL relative to
the matched routes base. For example if we take a look at the add_r e routing example we can
see that the pat h component is under the content component. Let's say we have a controller
called edi t we like to call from the page created by i ndex, then we can not write it like this:

<ahr ef =" edi t ?pat h=$c. pat h" >Edi t </ a>

That does not always work because this page could have been called via "index?path=xyz" or
via "content/xyz". To make sure we are get the URL corresponding to our modules controller we
could write it like this:

<ahref ="${h.url (' edi t ?pat h=" +c. pat h) } >Edi t </ a>

Or even better using the feature of h. url that lets you append GET parameters as named
arguments of the helper function:

<ahref="${h.url ('edit', path=c. path)}>Edit

If you use redi rect it will call the ur1 helper too so that relative parts will be translated to
absolute ones.

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Templating

Pyxer offers yet another templating language that is very close to Genshi and Kid. As the
former did not work with Google AppEngine at the moment of birth of Pyxer the new templating
tools had been implemented.

Variables and expressions

The default templating works similar to most known other templating languages. Variables and
expressions are realized like $<var nane> (where <var nane> may contain dots!) and

${ <expressi on>}:

Hel | o${ nane. capitalize()}, youwon$pri ce.
$i t em amount ti mes$i t em nane.

Commands

These are also known form templating languages like Genshi and Kid. They are used like this:
<di vpy:if="nanme.startsw th('tom)”>Wel cone$nane</di v>

Or this:

<di vpy: f or =" nanei nsorted(c. | i st Of Nanes) " >\l cone$nane</ di v>

These are the available commands. They behave like the Genshi equivalents:

o py:if —pyelse—pyelit

o py:for —pyselse

e py:def

e py:match

e py:layout-+pyextends

* py:content
e py:replace

e py:strip
* py:attrs
Comments

If HTML comments start with "!I" they are ignored form the output:

<l --!lnvisible--><!--Visibl ei nbrowsers-->

Layout templates

The implementation of layout templates is quite easy. Place the py: | ayout command in the
<ht ml > tag and pass a Template object. For loading you may use the convenience function

Generated using the Pisa Nl ltiR® BiFx€poperiesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

| oad() .

<ht m py: | ayout ="l oad(' | ayout. htm ')">

;}Btn1>

In the template file you may then access the original template stream with the global variable
top. Use CSS selection or XPATH to access elements. Example:

<htm >
<titlepy:content="top.css('title')"></title>
<body>

<hl><ahref ="/">Honme</ a>
/${top.select('//title/text()")}</hl>

<di vcl ass="content ">

${top. css(' body*')}

</ di v>

</ body>

</htm >

XPath
XPath is supported like it is in Genshi.
CSS Selectors

CSS Selectors ending with " *" return just the inner texts and elements of the matched pattern.

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Databases

You are free to use any database model you like. For GAE you have not much choice but for
other engines | recommend using Elixir. You should try to separate your controller stuff from
your database stuff by creating a Python module called "model.py". For a GAE project this may
look like this:

fronmgoogl e. appengi ne. exti nport db
frongoogl e. appengi ne. api i nport users

cl assGuest Book(db. Model) :

nane=db. St ri ngProperty()

dat e=db. Dat eTi mePr operty(auto_now add=Tr ue)
While using Elixir you may do like this:

XXX

XXX See the GuestBook example for a complete demo.

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Advanced

Python virtual environment

To make deployment of GAE projects easy a virtual environment (VM) is created. If you start
GAE via xgae or paster via xpast er these virtual environments will automatically be used. Pyxer
determines the root of the VM by looking for the app. yani file. If you have to enter the VM for
installing packages or for other reasons you may to it like this:

$pyxervm
(vm $easy_installhtm 5lib
(vm $exi t

You may also use the usual functions as described in virtualenv by lan Bicking
http://pypi.python.org/pypi/virtualenv/.

$Scripts\activate. bat

$easy_i nst al | SomePackageNane
$deact i vate

And for other Unix like system like this:
$sour cebi n/ acti vate

$easy_i nst al | SomePackageNane
$deactivate

Development of Pyxer under GAE

If you decide to develop Pyxer you may run into the following problem: each project comes with
an own virtual machine (VM)and its own installation of Pyxer in it. So if you change the
development version it will have no effect on your installation. Therefore a command "pyxer" is
added that synchronizes the Pyxer installation in the VM with the development version:

$pyxer pyxer
BTW: To install the development version using SetupTools do like this:

$cd<Pat h_t o_devel opnent _ver si on_of _Pyxer >
$pyt honset up. pydevel op

You will have to repeat this each time the version of Pyxer changes, because otherwise the
command line tools do not work.

Writing test cases

Since a Pyxer project is based in Paster writing test cases is quite the same. The most simple
test looks like this. (We asume that the test file to be placed in the root of the project. For normal
testing you have do add root to sys. pat h and modify the | ocadapp argument.):
fronpast e. depl oyi nport | oadapp

fronmpaste. fixturei nport Test App

i mportos. path

app=Test App(| oadapp(' confi g: %' %@s. pat h. abspat h(' devel opnent.ini')))

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://pypi.python.org/pypi/virtualenv/

res=app.get("/")
assert (' <body'i nres)

For more informations look here http://pythonpaste.org/testing-applications.html.
Use within Eclipse

XXX

Use Google App Engine Launcher on Mac OS

XXX

Pyxer on Apache

If you have installed mod_python the deployment of your project is as simple as the following
five lines. Just copy them to your sites configuration and adjust the absolute path to the
"development.ini":

<Location"/">

Set Handl er pyt hon- pr ogr am

Pyt honHandl er past e. nbdpyt hon

Pyt honOpt i onpast e. i ni / <absol ute_path_to_ini _fil e>/devel opnent.in
</ Locati on>

Configuration

Pyxer configuration is placed in the configuration file used by Paster or GAE respectively
devel opnent . i ni Or gae. i ni . If both are not available Pyxer looks into pyxer . i ni . Example:

[pyxer]
sessi on=beaker

Generated using the Pisa Nl tR€ BixEpopertesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://pythonpaste.org/testing-applications.html

Engines

XXX

Pyxer uses support different so called "engines" to publish a project. Most of them need own
configurations and a well prepare environment to work fine. These are very specific to each of
these engines and Pyxer tries to make the setup as easy as possible

Common options:

e --host=HOST (default: 127.0.0.1)
e --port=PORT (default: 8080)

WSGI

$pyxerserve

Paster

Options:

e --reload XXX

With the virtual machine:
$xpast erserve- -rel oad
Without the virtual machine:
$past er ser vedevel opnent . i ni
Google Appengine

$xgaeserve

Generated using the Pisa Nl ltiR® BiFx€poperiesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/

Appendix

Reserved names

e index: Name of the root controller

« defaul t: Name of the collecting controller
* router: Name of the routing object

* session: Session

* req, request

* resp, response

e cache
* cC

9

* h

e config
Links

1. http://code.gooagle.com/p/pyxer/ [Pyxer Project Homepage]

Generated using the Pisa Nl ltiR® BiFx€poperiesource project at http://code.google.com/p/pyxer/

http://code.google.com/p/pyxer/
http://www.htmltopdf.org/
http://code.google.com/p/pyxer/

	Pyxer Python Framework
	Introduction
	Technical background
	Technical background

	Installation
	Quick tutorial
	Create a new project
	Create a new project
	Start the server
	"Hello World"

	Controllers
	@expose
	default()

	Templates
	JSON
	Sessions
	Deployment

	Routing
	Default behaviour
	Custom routes
	Relative URL

	Templating
	Variables and expressions
	Commands
	Comments
	Layout templates

	Databases
	Advanced
	Python virtual environment
	Python virtual environment
	Development of Pyxer under GAE
	Writing test cases
	Use within Eclipse
	Use Google App Engine Launcher on Mac OS
	Pyxer on Apache
	Configuration

	Engines
	WSGI
	Paster
	Google Appengine

	Appendix
	Reserved names
	Links

