
BMGE User Guide

Block Mapping and Gathering using Entropy
[Version 1.1] March 2011

by Alexis Criscuolo & Simonetta Gribaldo

ftp://ftp.pasteur.fr/pub/GenSoft/projects/BMGE/
http://mobyle.pasteur.fr/cgi-bin/portal.py

Criscuolo A, Gribaldo S (2010) BMGE (Block Mapping and Gathering with Entropy):
selection of phylogenetic informative regions from multiple sequence alignments. BMC
Evolutionary Biology 10:210.

BMGE (Block Mapping and Gathering with Entropy) is a program that selects regions in a
multiple sequence alignment that are suited for phylogenetic inference. BMGE selects
characters that are biologically relevant, thanks to the use of standard similarity matrices
such as PAM or BLOSUM. Moreover, BMGE provides other character- or sequence-
removal operations, such stationary-based character trimming (that provides a subset of
compositionally homogeneous characters) or removal of sequences containing a too large
proportion of gaps. Finally, BMGE can simply be used to perform standard conversion
operations among DNA-, codon-, RY- and amino acid-coding sequences.

Installation and Execution

BMGE runs on all operating systems that run Java 1.6 or more. Sun Java is freely available and presents
very good performances. If Sun Java 1.6 (or higher) is not installed on your computer, select the last
update of JDK/JRE-6 (or higher) at the following URL:

http://java.sun.com/products/archive/

and follow the ‘Installation Instructions’ to install the JRE (Java Runtime Environment) on your
computer. This allows BMGE to be run. You can also install the JDK (Java Development Kit) that
allows the BMGE source code to be compiled and run.

On computers with Sun Java 1.6 (or higher) installed, you just have to open a terminal, move to the
directory BMGE/ containing the executable jar file BMGE.jar , and launch it with the following
command-line:

java -jar BMGE.jar [options]

For example, you can get help by using the following command-line:

java -jar BMGE.jar -?

When the multiple sequence alignment to be trimmed is very large, it could happen that the virtual
machine java do not allocate enough memory and stops with an error message starting like

Exception in thread “main” java.lang.OutOfMemoryErr or: Java heap space

In this case, the java option -Xmx can be used to increase the maximum size of the memory allocation
pool in MB; for example, for a maximum size of 500MB:

java -Xmx500M -jar BMGE.jar [options]

It is not impossible (albeit uncommon) that the executable jar file BMGE.jar do not work. In this case,
you must compile the BMGE source code. To do so on Linux System, you must have the Sun JDK 1.6
(or higher) installed (see above); then move to the BMGE/src/ directory, and launch the jar builder:

chmod a+x JarMaker.sh

./JarMaker.sh

to create a new executable jar file BMGE.jar .

Quick Start

All BMGE input files are multiple sequence alignment files (named here msa). To perform an entropy-
based trimming (with default options) on a multiple alignment of amino acid sequences in FASTA
format, use the following command-line:

java -jar BMGE.jar -i msa.faa -t AA -o tmsa.phy

This will create the file tmsa.phy containing the trimmed multiple sequence alignment (tmsa) in
PHYLIP sequential format. You can also use different -o options to request output in alternative
formats; for example, the following command-lines:

java -jar BMGE.jar -i msa.faa -t AA -of tmsa.faa

java -jar BMGE.jar -i msa.faa -t AA -on tmsa.nex

java -jar BMGE.jar -i msa.faa -t AA -oh msa.html

will create the files tmsa.faa in FASTA format, tmsa.nex in NEXUS format and msa.html in
HTML format, respectively. There is no limitation to the number of different -o options; for example:

java -jar BMGE.jar -i msa.faa -t AA -o tmsa.phy -of tmsa.faa -oh msa.html

If you wish to trim a multiple alignment of DNA sequences, you must modify the -t option:

java -jar BMGE.jar -i msa.fna -t DNA -o tmsa.phy

It is also possible to regard nucleotide sequences as codon ones with the -t option:

java -jar BMGE.jar -i msa.fco -t CODON -o tmsa.phy

For more practical command-line, go to the Current Usage section (see below).

File Formats and Sequence Coding

Input File Formats -i infile
BMGE uses FASTA or PHYLIP sequential format for input. These are plain text files from any
operating systems (Unix, Windows, Mac). There is no limit on the length of the alignment. There is also
no limit on the length of the label of a sequence (i.e. its FASTA annotation line), although a too long
label (e.g. more than 100 letters) will be truncated if the output format is PHYLIP sequential.
There is a unique option to set the input file (i.e. -i). By default, BMGE looks at the first character of
the first non-empty line inside the input file. If this character is ‘>’, then BMGE reads the input file as a
FASTA formatted file; otherwise, BMGE reads it as a PHYLIP sequential formatted file.

Input Sequence Coding -t [AA,DNA,CODON]
One must always set the input sequence coding with option -t :

• amino acid sequences -t AA
• nucleotide sequences -t DNA
• codon sequences -t CODON

Both standard single-letter amino acid and nucleotide alphabets are used by BMGE (e.g. IUPAC-IUB
1970, 1972; see Table below). When using amino acid sequences, degenerated character states B and Z
are understood by BMGE; similarly, degenerated nucleotide characters are also understood (see Table
below). The character state X is understood to be any of the 4 or 20 character states when using as input
nucleotide or amino acid sequences, respectively. Dashes (i.e. ‘- ‘) are understood as gaps, whereas dots
(i.e. ‘. ’), as any other single letter that are not inside standard alphabets, are considered as unknown
character state (i.e. ‘?’).
Nucleotide sequences can be set as codon ones. In this case, each successive nucleotide character triplet
is considered as one codon character. This particular -t option allows converting an alignment of codon
sequences into its corresponding amino acid sequence (following the universal genetic code; see below).

Output File Formats -o outfile -c outfile
BMGE can output the (trimmed) multiple sequence alignment into several formats:

• selected characters in PHYLIP sequential format -op
• selected characters in FASTA format -of
• selected characters in NEXUS format -on
• alignment and information in HTML format -oh

If input sequences are in FASTA format with NCBI-formatted annotation lines, e.g.
>field1|field2|field3|field4| field5 [field6]

then options -opp and -onn allow outputting in PHYLIP and NEXUS format, respectively, but with
sequence named by field6 only (which is generally the taxon name). Moreover, the options -oppp
and -onnn allow naming sequences by field6_____field4 ; knowing that field4 is generally
an accession number, these options lead to PHYLIP or NEXUS files where each sequence is labelled as
a taxon name and an accession number. If these output options (i.e. -opp , -oppp , -onn , -onnn) are
selected with non NCBI-formatted sequences, then BMGE uses the whole annotation line as sequence
name (which corresponds to the -op and -on options).
By default (i.e. -o), BMGE uses the output option -oppp .
The HTML output format (-oh) writes the initial alignment with a graphical representation of the
smoothed entropy-like score and the gap rates across characters. HTML output file also contains the

indexes of the selected and removed characters.
The non-selected (i.e. removed) characters can be outputted in a similar way by replacing -o by -c in the previous
options (i.e. -c , -cp , -cpp , -cppp , -cf , -cn , -cnn , -cnnn). The output option -ch is not allowed.
There is no limitation to the number of different output options; for example:

java -jar BMGE.jar -i msa.faa -t AA -of tmsa.faa -c f cmsa.faa -oh msa.html

Output Sequence Recoding -o outfile -c outfile
BMGE is able to perform sequence coding conversions:

• amino acid-coding -oaa
• nucleotide-coding -odna
• codon-coding -oco
• RY-coding (Phillips et al. 2004) -ory

Only two conversions are impossible depending on the initial sequences: from nucleotide (-t DNA) to
amino acid (-oaa) sequences or to codon (-oco) sequences. The other conversions performed by
BMGE (and the corresponding option) are listed in the following table:

amino acid nucleotide codon

-t AA -t DNA -t CODON

amino acid -o / -oaa . -oaa

nucleotide -oco -o / -odna -o / -oco

codon -oco . -o / -oco

RY -ory -ory -ory

input coding

o
u

tp
u

t c
od

in
g

�

Any of the three codon position(s) can be selected with the output option -oco (or -ory when input is
amino acid or codon sequences) by setting the position index(es) just after the options -oco or -ory .
There is 7 different combinations: -oco1 , -oco2 , -oco3 , -oco12 , -oco13 , -oco23 , and -
oco123 (the last -oco123 option is identical to the default -oco option). Same with -ory . For
example, the following command-line:

java -jar BMGE.jar -i msa.fco -t CODON -o tmsa1.phy -ory12 tmsa2.phy

allows the codon-based alignment msa.fco to be trimmed with default options, and leads to two output files:
• tmsa1.phy , the codon characters selected by BMGE;
• tmsa2.phy , the RY-coding of the two first positions (12) of each codon.

All these output coding options are compatibles with the previous output format options (-o and -c);
for example, if one has a file msa.faa containing an alignment of codon sequences in FASTA format,
then the command-line

java -jar BMGE.jar -i msa.fco -t CODON -o tmsa.phy -oaaf tmsa.faa -onnry tmsa.nex

leads to three output files:
• tmsa.phy , the selected codon characters in PHYLIP sequential format (-o);
• tmsa.faa , the selected codon characters converted into amino acids (aa) in FASTA format (f);
• tmsa.nex , the RY-coding (ry) of the selected codon characters in NEXUS format with only

species names as sequence names (nn).

Character state coding used by BMGE

Adenosine

Guanine

Cytosine Alanine A GCX

Thymine Arginine R MGX

Asparagine N AAY

Aspartic acid D GAY

Cysteine C TGY

Methyl A or C Glutamine Q CAR

Purine A or G Glutamic acid E GAR

Weak (3H bonds) A or T Glycine G GGX

Strong (3H bonds) C or G Histidine H CAY

Pyrimidine C or T Isoleucine I ATH

Keto G or T Leucine L YTX

not A Lysine K AAR

not C Methionine M ATG

not G Phenylalanine F TTY

not T Proline P CCX

Any N or X Serine S WSX

Threonine T ACX

Tryptophan W TGG

Thyrosine Y TAY

Aspartate N or D RAY Valine V GTX

Glutamate Q or E SAR

Any XXX

C

T

Amino acid
1-letter
code

Nucleotide
1-letter
symbol

A

G

Meaning

Degenerated
codon

Degenerated
codon

one of the 20

B

Z

X

M

R

W

S

Y

B

D

K

H

1-letter
code

V

Degenerated
nucleotide

Meaning

Degenerated
amino acid

1-letter
code

one of the 4

BMGE Command Line Options

Similarity Matrices -m BLOSUMn -m DNAPAM n: r -m ID
For each character, BMGE computes a score mainly determined by the entropy induced by
the respective proportion of each residue (Criscuolo and Gribaldo 2010). To estimate realistic
scores that take into account biologically relevant substitution processes, BMGE weights the
entropy estimation with substitution matrices.
With amino acid input sequences (-t AA), BMGE uses by default the popular BLOSUM62
matrix (Eddy 2004). However, one can use another BLOSUM matrix with the option -m; for
example:

java -jar BMGE.jar -i msa.faa -t AA -m BLOSUM50 -o tmsa.phy

The option -m can be used with the 15 estimated BLOSUM matrices, i.e. BLOSUM30,
BLOSUM35, BLOSUM40, BLOSUM45, BLOSUM50, BLOSUM55, BLOSUM60, BLOSUM62,
BLOSUM65, BLOSUM70, BLOSUM75, BLOSUM80, BLOSUM85, BLOSUM90, BLOSUM95
(Henikoff and Henikoff 1992). The trimming is progressively more stringent as the BLOSUM
index increases (e.g. BLOSUM95); reciprocally, the trimming is progressively more relaxed as
the BLOSUM index is lower (e.g. BLOSUM30). In practice, it is recommended to use
BLOSUM95 with closely related sequences, and BLOSUM30 with distantly related
sequences.
For nucleotide input sequences (-t DNA), BMGE uses PAM matrices with a fixed
transition/transition ratio (States et al. 1991). BMGE can be used with all possible PAM
matrices, from the most stringent (i.e. -m DNAPAM1) to highly relaxed ones (e.g. -m
DNAPAM500). There is no limitation for the PAM matrices (the PAM indexes must be
positive integers), but incoherent entropy scores are expected with too high PAM indexes (e.g.
-m DNAPAM123456). It is also possible to indicate a transition/transversion ratio to better
define the PAM matrices. For example, if one wishes to estimate entropy-like scores with a
(relaxed) PAM-250 matrix and a transition/transversion ratio of 4, then one uses the following
command-line:

java -jar BMGE.jar -i msa.fna -t DNA -m DNAPAM250:4 -o tmsa.phy

For a (very stringent) PAM-5 matrix with a transition/transversion ratio of 1, the following
command lines are equivalent:

java -jar BMGE.jar -i msa.fna -t DNA -m DNAPAM5:1 - o tmsa.phy

java -jar BMGE.jar -i msa.fna -t DNA -m DNAPAM5 -o tmsa.phy

By default with nucleotide sequences, BMGE uses the PAM-100 matrix with a
transition/transversion ratio of 2 (i.e. -m DNAPAM100:2).
If input sequences are set as codons (-t CODON), BMGE performs a conversion into amino
acid sequences (following the universal genetic code) and uses BLOSUM matrices to estimate
the entropy-like score for each codon character. So, with option -t set as CODON, one can set
the option -m only with BLOSUM matrices. However, it is possible to use PAM matrices by
setting the option -t as DNA, but the trimmed alignment will be no longer a codon one.
Finally, it is also possible to use the identity matrix with option -m ID (or -m PAM0) with
any sequence types (-t AA , DNA or CODON).

Sliding Windows Size -w odd_integer
All entropy-score estimated for each character are smoothed by BMGE by using a sliding
window. The size of the sliding window can be modified with the option -w (which is set as -
w 3 by default). It is not recommended to increase this size (which must be odd). However,
when set to 1, no averaging operations will be performed by BMGE. This can be useful to
select precise characters instead of regions (see below).

Entropy Score Cut-off -h max -h min: max
Following the smoothing operation of the entropy-like score values across characters, BMGE
selects characters associated with a score value below a fixed threshold. This cut-off is set to
0.5 by default, but it can be modified with the option -h . For example, a stringent trimming
on amino acid sequence alignment is performed with the following command line:

java -jar BMGE.jar -i msa.faa -t AA -m BLOSUM90 -h 0.4 -o tmsa.phy

Indeed, with the BLOSUM90 matrix, BMGE estimates stringent entropy-like scores, but it
only selects the characters with a score smaller than 0.4. However, it is strongly recommended
to use the option -m rather than the option -h to obtain biologically-relevant stringent or
relaxed character trimming.
The option -h can also be used to set a min-threshold. For example, to select characters with
a score drawn between 0.2 and 0.4, the following command line can be used:

java -jar BMGE.jar -i msa.faa -t AA -m BLOSUM95 -h 0.2:0.4 -o tmsa.phy

This option can be useful to remove all constant characters from an alignment, with the
following command line:

java -jar BMGE.jar -i msa.faa -t AA -w 1 -h 1E-5:1 -o tmsa.phy

Indeed, knowing that constant characters have an entropy-like score of 0, this allows selecting
all characters with a score greater of equal than 0.00001 (and thus removing all constant
characters).

Gap Rate Cut-off -g col_rate -g row_rate: col_rate
BMGE allows characters containing too many gaps to be removed with the option -g . By
default, BMGE removes all characters with a gap frequency greater than 0.2. For example, to
perform default trimming operations and the removal of all characters with more than 5%
gaps, use the following command line:

java -jar BMGE.jar -i msa.faa -t AA -g 0.05 -o tmsa .phy

The option -g can also be used to remove sequence(s) from the alignment that contain(s)
important proportion of gaps. For example, use the following command line

java -jar BMGE.jar -i msa.faa -t AA -g 0.7:0.3 -o t msa.phy

to (i) perform default trimming operations, (ii) remove all characters with more than 30%
gaps, and (iii) remove sequence(s) with more than 70% gaps. If at least one sequence is
removed, then the whole character-trimming process is re-launched on the initial alignment
without the removed sequence(s).

Minimum Block Size -b integer
By default, BMGE only selects regions of size greater than or equal to 5 characters. Use the
-b option to modify this minimum block size parameter. For example, the following
command line

java -jar BMGE.jar -i msa.fna -t DNA -m DNAPAM1 -b 20 -o tmsa.phy

allows selecting very conserved regions (DNAPAM1) of at least 20 nucleotide-long.

Stationary-based Trimming -s [NO,YES,FAST]
By setting the option -s to YES (NO by default), BMGE performs another character trimming
until the remaining characters are compositionally homogeneous, as assessed by Stuart’s
(1955) test of marginal homogeneity between each pair of sequences. If an HTML file is
created (-oh), then all the Stuart’s (1955) p-values estimated before and after the stationary-
based trimming will be written.
It should be stressed that the stationary-based trimming is biased with short alignments (e.g.
less than 1,000 character length); consequently, it is more efficient on a supermatrix of
characters. Unfortunately, the running time is quite long (e.g. several hours for more than
10,000 amino acid characters). However, by setting the option -s to FAST, BMGE performs
a faster stationary-based character trimming.

Current Usage

Alignment file format conversion
Converting a FASTA format into PHYLIP sequential format:

java -jar BMGE.jar -i msa.faa -t AA -h 1 -g 1 -o ms a.phy

Converting a FASTA or PHYLIP format into NEXUS format:

java -jar BMGE.jar -i msa.faa -t AA -h 1 -g 1 -on m sa.nex

Sequence coding conversion
Converting codon sequences into their amino acid ones in FASTA format:

java -jar BMGE.jar -i msa.fco -t CODON -h 1 -g 1 -o faa msa.faa

Obtaining a RY-coding from DNA sequences:

java -jar BMGE.jar -i msa.fna -t DNA -h 1 -g 1 -ory msa.phy

Gap removing (without entropy-based trimming)
Removing characters with more than 20% gaps:

java -jar BMGE.jar -i msa.faa -t AA -h 1 -w 1 -o tm sa.phy

Removing characters with more than 10% gaps:

java -jar BMGE.jar -i msa.faa -t AA -h 1 -w 1 -g 0. 1 -o tmsa.phy

Removing sequences with more than 60% gaps:

java -jar BMGE.jar -i msa.faa -t AA -h 1 -g 0.6:1 - o tmsa.phy

Alignment trimming
Removing constant DNA characters:

java -jar BMGE.jar -i msa.fna -t DNA -m ID -h 0.000 5:1 -o tmsa.phy

Stringent trimming on amino acid sequence alignments:

java -jar BMGE.jar -i msa.faa -t AA -m BLOSUM95 -h 0.4 -o tmsa.phy

Relaxed trimming on (distantly-related) amino acid sequence alignments:

java -jar BMGE.jar -i msa.faa -t AA -m BLOSUM30 -o tmsa.phy

Stringent trimming on codon-based alignments:

java -jar BMGE.jar -i msa.fco -t CODON -m BLOSUM95 -h 0.4 -o tmsa.phy

Stringent trimming on codon-based alignments considered at the nucleotide level:

java -jar BMGE.jar -i msa.fco -t DNA -m DNAPAM50 -h 0.4 -o tmsa.phy

Stationary-based trimming on DNA sequence alignments:

java -jar BMGE.jar -i msa.fna -t DNA -h 1 -g 1 -s Y ES -o tmsa.phy

Previous Versions & Fixed Bugs

[Version 1.1]
The initial stationary-based character trimming was replaced by two new methods: by setting
the option -s to YES, BMGE removes one character during each iteration; by setting the
option -s to FAST, BMGE removes more than one character during each iteration. The first
option (-s YES) is slow but allows building larger compositionally homogeneous character
subset than the method implemented in Version 1.0. The second option (-s FAST) is slightly
cruder, then fast, but shows quite similar results than the first version (-s YES).
When using option -t CODON , the FASTA output sequences (-of) were truncated to the
length the amino acid sequences would be. This is fixed in Version 1.1.

References

Criscuolo A, Gribaldo S (2010) BMGE (Block Mapping and Gathering with Entropy): selection of
phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210.

Eddy SR (2004) Where did the BLOSUM62 alignment score matrix come from? Nat Biotechnol
22:1035-1036.

Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad
Sci 89:10915-10919.

IUPAC-IUB [International Union of Pure and Applied Chemistery and International Union of Biochemistery]
(1970) Commission on Biochemical Nomenclature: Abbreviations and symbols for nucleic acids,
polynucleotides and their constituents. Biochem J 120:449-454.

IUPAC-IUB [International Union of Pure and Applied Chemistery and International Union of Biochemistery]
(1972) Commission on Biochemical Nomenclature: A one-letter notation for amino acid sequences
(definitive rules). Pure Appl Chem 31:639-645.

Phillips MJ, Delsuc F, Penny D (2004) Genome-scale phylogeny and the detection of systematic biases.
Mol Biol Evol 21:1455-1458.

States DJ, Gish W, Altschul SF (1991) Improved sensitivity of nucleic acid database searches using
application-specific scoring matrices. Methods: A Companion to Methods Enzymol 3:66-70.

Stuart A (1955) A test for homogeneity of the marginal distributions in a two-way classification.
Biometrika 42:412-416.

