


containers, are therefore automatically pythonized. Further
pythonizations or reorganization of the presented library, is
done in Python itself, rather than in an intermediate language.
The PyPy JIT will inline such calls, leaving only a limited
run-time cost.

Object/memory ownership is a long-standing problem of
cross-language programming. Especially so in the case of
Python-C++, because the Python programmer relies on refer-
ence counting (in CPython) or garbage collection (in PyPy).
Fortunately, modern Ct+ provides standard templates (such
as unique_ptr and shared_ptr) to express ownership
rules. The Cling interpreter provides automatic template in-
stantiation, leaving both the use of modern interfaces and
memory management transparent to the Python developer.

The dynamic nature of Cling is well matched to the same of
the Python interpreter. It is used to support cross-inheritance
of Python classes from C++ classes, but also the other way
around. It enables important optimizations such as iteration
over STL’s vector, and automatic downcasting of C++ objects
on the Python side.

cppyy brings modern C++ bindings to PyPy, and the
combination of Cling’s dynamic nature with Python’s and the
dynamic optimizations of PyPy’s tracing JIT bring new levels
of performance and functionality.

This paper is organized as follows. Section II lays out
the motivation for this work and provides historical context.
Section III describes the architectural decisions that went into
our module, and Section IV highlights a few of the more
important features. We present micro-benchmark results in
Section V and a discussion in Section VI. Finally, we briefly
contrast our work with other tools and provide an outlook for
future directions in Sections VII and VIII, respectively.

II. MOTIVATION AND BACKGROUND

There are two major developments that have changed what
is possible for Python-C++ cross-language bindings: changes to
the C++ standard, and the availability of important components
for building bindings generators.

The C++ language was standardized in 1998 and, other
than a technical corrigendum in 2003, did not see any sig-
nificant changes until 2011 when a new standard arrived.
The C++ standards committee decided to keep up the pace
of modernizing C++, introducing major revisions in 2014 and
2017, and planning yet another for 2020. Furthermore, there
are enough technical proposals to keep this pace going well
beyond that. The improvements in the language address major
shortcomings in expressing semantic intent in interfaces. For
example, when an Application Programming Interface (API)
function returns a pointer to an object, the programmer has
to resort to the documentation to find out whether the caller
should take ownership or leave that to the callee. Automatic
bindings generators suffer from the same problem, but can not
read documentation. Sometimes, they can rely on convention,
or take a clue from the function name. But more likely
a programmer needs to intervene and mark the rules for
individual functions. Since Ct+11, however, the intent can

be clearly marked by returning either a unique_ptr or
shared_ptr. The former takes ownership, the latter shares.
Similarly, marking a method as const has grown the added
meaning that it is safe to call that method concurrently with
other const methods in a threaded environment. Exposing
these semantics at the interface level, and thus accessible to
the parsers of bindings generators, is hugely beneficial.

That still leaves the need for a parser that is up-to-spec
for the most current C++ standards. Here we are in luck,
due to the emergence of the LLVM project, and in particular
its C++ front-end, Clang. Clang is Open Source, but most
importantly extremely well documented and therefore easy
to use. Even better has been the emergence of Cling, which
is built on top of Clang, adding interactivity and dynamic
execution to C++. This is a great match for a dynamic language
such as Python. Lastly, we now have cffi for C, which
adds fast interfaces to and from Python and C, for both the
CPython and pypy-c interpreters. Although C++ has vastly
more features and expressiveness than C at the language level,
it is little different at the lowest levels for reasons of binary
compatibility. Thus, we can use cffi also as the basis for
C++ bindings to Python.

The work presented in this paper has integrated these exist-
ing, mature, technologies in cppyy. For the PyPy version, this
took a little over 4K lines of RPython? and 2K lines of C++. For
the CPython version, this took about 1K lines of Python and
roughly 18K lines of CG++.> As we will show throughout this
paper, cppyy provides new, unique features. But the amplifier
effect of integrating and reusing powerful tools has been an
important ingredient for success.

There are three main goals that guided this work, and we
consider each of them in detail in this section and the next:

« High performance of the bindings, good scaling, and easy
distribution for large projects.

« Direct support for any and all C++ headers and transparent
use of modern Cr+.

o Enabling new functionality by combining interactive
Python with interactive C+.

A. High Performance

The number of scientific libraries that come with Python
bindings is vast and it has long become possible for prac-
titioners to do all their work in Python. The point where
the performance of Python fails to be good enough is far
out, but it is still hit too often. Common solutions to such
performance problems are to rewrite parts of the Python code
in another language, or to use language extensions. This is
unfortunate, because it means extra work and often an extra
learning curve. Furthermore, we have observed that teams of
developers sometimes reject the use of Python at the outset,
because of the expectation of having to redo work in a different
language for performance reasons. Pushing back the point up

2RPython, or Restricted Python, is the implementation language of PyPy.
It is best to think of it as the equivalent of what C is for the case of CPython,
rather than to think of it as Python.

3A good chunk of C++ code is shared by both implementations.



to where Python performance is “fast enough” thus has a direct
impact on the productivity of developers and the acceptance
of the Python language.

For “Big data”-type analyses, it can be even more acute:
these analyses tend to be largely I/O bound, caring little about
getting the most out of the CPUs. However, with investments
in non-volatile RAM and fast solid state disks, analyses risk
becoming CPU-bound again because of languages like Python.
Giving the Python portions of the analyses a performance
boost can bring them back under threshold.

Finally, energy is fast becoming the main cost driver of
supercomputers and large clusters. Improving the performance
of Python, with full compatibility and without loss of func-
tionality, reduces energy waste and thus cost.

B. Modern Ct+

From a usability perspective, the simplest possible auto-
matic bindings generator is one that is pointed to the public
header files of a C++ project, and figures it out from there.
With modern C++ and semantic intent properly described in
the header files this can be a reality. But this does require
a modern Cr+ parser to go with it, which we get through
the use of Cling. Of course, as new features get added to
the Cr+ standard, they sometimes require explicit support in
the bindings generator first. But more often, changes to the
language have involved simplifications for the C++ developer
(e.g. the keyword auto and vastly improved template support
for generic programming). These changes impose greater
requirements on the parser, but after canonicalization look no
different at the AST level then code that the bindings generator
can already handle, and are thus supported directly.

C. Interactivity

Having a G+ interpreter match up with a Python one, offers
unique opportunities to hide the “Ct+ aspect” of bound code
even more. These include automatic template instantiations,
so that the Python developer need not consider whether APIs
take unique_ptr or direct pointers, and need not “pre-
instantiate” templates when generating the bindings to have the
generated code linked in for use. It also means that templated
code can be tried out and experimented with interactively.

It makes possible to (interactively) derive Python classes
from C++ ones for use in G+ component frameworks, which
work through pre-defined abstract base classes. In fact, we can
even do the opposite: derive C++ classes from Python ones, and
use the result in Python.

In this paper, we focus mostly on performance, but we
consider the improved interactive experience just as important.

D. Historical Context

The current, Cling-based, cppyy project for PyPy orig-
inates from an earlier effort[6] based on gccxml[7] and
Reflex[8]. Cling surpasses Reflex by providing a fully com-
pliant, interactive C++ interpreter. It brings support for modern
Cr+, it greatly improves ease of use, and it allows dynamic
optimizations. The Reflex-based work itself originates from

earlier work for CPython, PyROOT[9], done in the context
of the ROOT[10][11] project. PyROOT did not only provide
Python bindings for ROOT, but also for many core frame-
works, reconstruction, and analysis codes for High Energy
and Nuclear Physics experiments. Many of the design ideas
of cppyy have grown out of almost a decade and a half of
practical experience of Python-C++ bindings for large projects.

III. DESIGN

The design of cppyy originated from a desire to painlessly
introduce Python in an environment dominated by huge,
widely used C++ codes. There was a chicken-and-egg problem
because C++ developers would not spend the effort to make
Python bindings available until users materialized, but users
could not get started until they had bindings to use. Therefore,
the emphasis has always been on fully automated bindings
generators. The architecture of cppyy is fully generic to fulfill
this automated role, with specializations for performance,
specific use cases, and to match low-level features.

Internally, cppyy holds “converters” to turn Python objects
into C++ ones and vice versa. Likewise, it has “executors” for
running functions and producing Python results. Converters
and executors are specialized for all known builtin types and
for some common Ct+ classes (such as string). There are
generic ones to cover user-defined C++ types.

With these as a basis, more complex proxies for CH+
constructs can be build: a single function holds a list of
converters, one for each argument, and a single executor. An
overload holds a list of functions. A class holds a list of
overloads, a list of converters (one for each data member),
and has a set of other classes as bases. A namespace contains
lists of classes, functions, and data members. Selection of the
proper converters and executors is done based on type names,
which are represented as strings and thus language-agnostic,
to keep this build-up mechanism fully generic.

C++ is a language full exceptions, however, and compil-
ers/linkers are allowed to break language rules as long as
there are no visible side effects to Cr+ programs. There are
then a few cases that fall outside the mold described above.
For example, although inline functions are supposed to have
external linkage, linkers tend to remove them if there are no
out-of-line uses. Other examples include redefined operator
new and operator delete, and default arguments of
structs or classes that are passed by value. To cover such cases,
wrapper code with predefined interfaces is written and JITed
(through LLVM) by Cling. Wrapper code includes generic
function wrappers, casting functions for diamond-shaped class
hierarchies, and automatic templates. Because such wrappers
are compiled by a true C++ compiler, these exceptional cases
are automatically taken care of.

A. Scale

Cling was designed with large scale and distribution in
mind: many thousands of C++ classes across multiple projects.
cppyy retains that by utilizing Python’s dynamic nature.



First, virtually all bindings are generated dynamically:
Python-side proxy classes are not constructed until access and
function argument converters not created until called. This
interferes somewhat with the explorative nature of interactive
Python, but that is mostly alleviated with custom __dir_
methods and doc strings, that return lists of strings and
information about arguments, without actually constructing the
corresponding objects.

When Python code accesses a class, or other C++ entity,
through its containing module (either the global or a named
namespace), Cling is requested to load the needed definitions.
These can live in (text) header files, precompiled headers, and
soon also in C++ modules.* The latter is the most memory-
efficient approach, as it allows deserializing only the minimum
necessary subset of the module (headers, as text or precom-
piled, are loaded en-bloc).

Second, the only part that uses the respective Python inter-
preter APIs is in the cppyy module. Given the large differ-
ences between CPython and pypy-—c, there are two versions
of cppyy, but it only takes a recompilation (retranslation) of
that to create a module for different versions of an interpreter.
This means that a C++ project can ship one set of precompiled
headers/modules® and let it up to the Python developer which
interpreter to use.

Third, all C+ classes, functions, variables, etc. are loaded
underneath cppyy.gbl, the global namespace. This means
that if two projects want to use the same C+ class, the Python
developer actually sees the same Python proxy class in both,
allowing inspection such as isinstance and issubclass
to work as designed in all cases. Contrary to CPython’s
approach to extension modules, this does mean that name
clashes are possible. However, the chance of that is rather
remote, because if a clash would occur in this way, it would
already happen when linking in the C++ libraries, meaning that
these could not have been used together in the first place.

B. Presentation

The presentation of all C++ classes in their natural CH+
location has another advantage when making a large C++ code
base available to Python for the first time: documentation for
Cr+ use can readily be applied to Python use as well. In
addition, questions to the original C+ developer are easily
formulated in their C++ use, in case the original developer is
not familiar with Python.

Although automatic pythonizations are available, in all cases
Cr+ constructs work as well. For example, loops over STL
collections can use the normal Python for loop syntax,
or be coded using begin ()/end () calls and use of Cr+
iterators. Developers can register callbacks to further pythonize
their classes. Callbacks are used to retain all benefits of lazy

“Experimental support exists, but modules are due for G++17 at the earliest.

SCaveat: if these contain system headers, they need to match, or the local
system headers need to be preloaded, to override settings in the modules. For
widely used operating systems, we know which they are and do the necessary
preloading automatically.

loading. Alternatively, a new interface can be designed in
Python, directly on top of the bindings.

IV. FEATURES

Both the Python and C++ languages are still evolving, and so
a language binding between them may never be feature com-
plete. Furthermore, some corners of the C++ language cannot
be resolved without programmer intervention (e.g. overloads
between bool and int, or the use of charx in the role of
“byte="). Nevertheless, we believe the implementation to be
very complete and there are ~1200 feature unit tests to back
up that assertion. In general, most features are implemented in
the most natural way. For example, C++ class hierarchies are
fully duplicated on the Python side to allow introspection to
work, namespaces act like modules, data members are directly
addressable, etc. A listing of features going into quite some
detail can be found in [12]. Here we will highlight some of
the more interesting ones.

A. Automatic Templates

The ability to automatically instantiate templates is par-
ticularly useful for handling modern interfaces, for example
to transparently use unique_ptr and shared_ptr, as
already explained above. But it is essential to make class
method templates useful, and greatly helps the use of STL
containers, the utility classes of which (such as pairs and
iterators) are all templated.

As an example, consider this interactive session:

>>>>
>>>>

import cppyy
cppyy . Declare (”””class A {

public:
A(int i=42)
int m_int;

. nun)
s

m_int(42) {}

True
>>>>
>>>>
>>>>
>>>>
42
>>>>

from cppyy.gbl.std import vector
from cppyy.gbl import A
v = vector (A)(10)

print v[5].m_int

Note the interactive creation of the Cr+ class A, and the
instantiation of the STL vector with it, which is subsequently
ready for use.

B. Automatic Downcast and Object Identity

The Python language is strongly typed, but does not have
the concept of casts. To avoid casts, C++ objects on the Python
side are automatically cast down to the most derived known®
type in its class hierarchy. Casts within a single inheritance
hierarchy are simple, as these are fixed offsets (and are most
commonly zero). In the case of inheritance diamonds, caused
by multiple virtual inheritance, Cling generates and JITs a
casting function, which takes a pointer to the instance. This is

6Component libraries typically only expose abstract base classes.



called to get the offset specific to the instance. The casting
function is memoized, and so is the offset specific to the
instance when JITed by PyPy in a trace.

Auto-downcasting serves a second purpose. When objects
are passed through one base class as argument and returned
(not necessarily by the same call) through another, their
identity might be lost. Having multiple Python-side objects
point to the same Cr+ object at different offsets makes memory
management much more difficult. With auto-downcasting,
object hashes can be stored by type with a weak reference,
allowing “recycling” of Python objects and thus preservation
of object identity.

C. Cross-language Inheritance

The dynamic nature of Cling allows injection of C++ classes
into “dynamic scopes.” Thus we can create C++ representations
of Python classes. After inspecting the func_code data
member of functions, methods are filled out with generic
templated arguments, that are specialized where necessary. The
arguments internalize the type on instantiation (i.e. when the
function is called), to create PyOb jects out of them. These
are forwarded to the actual Python function as arguments.
Since the class is a true C++ class, it can serve as a base
class on the C++ side, but of course only dynamically. Such a
derived class can hide the methods in the base by overriding
them and be transferred back to Python. Auto-downcasting
and the method resolution order (mro) of Python make sure
that the overriding works there as well.

The opposite direction is much more useful: after deriving a
Python class from a C++ class, Python instances can participate
in C++ component frameworks. For this to work, a vtable
needs to be created and this is done using an intermediate
Cr+ class, generated by the Python-side meta class. The meta
class inspects the list of methods in the interface and creates
dispatchers for each. Because Ct+ is statically typed, all types
are known from the interface. The Python side class construc-
tor is augmented by the meta class to call the intermediate
class, passing self. Upon call of a dispatcher method, it
finds the necessary method in the dictionary of self. By
doing the lookup each time (as is done in Python), normal
Python dynamic behaviors are retained.’

Note that in both cases of cross-inheritance, we make use of
the CPython API through the cpyext module, which bridges
the C-API with PyPy internals, but is not optimal for this use
case. Multiple inheritance is not yet supported.

D. Pythonization and Pythonization Rules

Generating automatic bindings is fast and easy, but the
result isn’t always pythonic. Developers can pass callbacks
that implement pythonization rules. The callback, written in
Python, searches for patterns and wraps calls that match. For
example, functions that are found to take a naked pointer and
a size (together representing an array) can be wrapped to take
a Python array. Upon call, the wrapper splits the array into two

TWith the exception of replacing __init__ of course, as that would
remove passing self.

arguments, the buffer and its size, and passes them individually
to the actual function.

We implement a few generic rules inside cppyy. For ex-
ample, any class that has STL-like begin () /end () methods
returning iterators, is automatically modified to implement
the Python iterator protocol. There are many specialized
pythonizations for STL, such as slicing of vectors, iteration
over pairs, and conversions between string objects.

We provide a set of flags on methods that fine tune their
behavior with specific ownership rules, threading policy, signal
policy, and exception handling. A Pythonization rule can be
build on the function name if the C+ project follows strict
coding conventions. For example, all functions that are named
CreateXYZ can be assumed to return a new object for which
the caller needs to take ownership.

As explained in the introduction, modern C++ expresses in-
tent more clearly, thus we expect the importance of pythoniza-
tion rules to diminish.

V. BENCHMARK RESULTS

We test our implementation using micro-benchmarks. Since
we are primarily interested in the performance of the bindings,
they are written to spend maximum time in the bindings, not
in processing on the Python or C++ side. Clearly, in actual,
practical use, developers will minimize the time spent in the
bindings, meaning that relative overheads will be smaller than
reported here when measured for end-to-end applications. We
use pytest-benchmark[13] for running the Python micro-
benchmarks. Warmup is enabled, but otherwise we stuck to the
default options.

We do not release the Global Interpreter Lock (GIL) inside
the loop body, because the PyPy JIT determines at run-time
by the presence of threads whether to release or not, thus
not releasing in the other benchmarks either allows for an
apples-to-apples comparison. The default for both cppyy
and SWIG is to not release. The “warm-up time” of the
PyPy JIT and Cling wrapper generation is subtracted by
pytest-benchmark. This is a real cost, but it is a one-
off. Therefore, its relative contribution to the total time can
be made arbitrarily low by simply increasing the duration of
the benchmark, or by reducing the trip count threshold before
JITing starts to zero. In practice, the “warm-up time” depends
on the complexity of the code. However, it is safe to assume
that larger, complex codes also take longer to execute, thus
keeping the relative cost low.

When comparing with CPython, we use primarily the
CPython cppyy module as that is equal in functionality.
Where possible, since it supports only a smaller subset of
the C++ language, we compare with SWIG v3.0.10[14], a well
known and widely used fully automatic bindings generator.
The C++ reference codes are all compiled with g++7.3, opti-
mized using -O2, and reported numbers are averaged over 5
runs. Timings for PyPy are provided both for the FFI and the
wrapper path.

We have chosen the benchmarks to reflect common uses that
form the (performance) basis of more complex functionality.



For example, because of auto-downcasting and the eliding
of offset calculations in the JIT, there is no cost difference
between virtual and non-virtual functions. Similarly, once
instantiated, there is no difference between templated and non-
templated methods. Work remains to be done, however (e.g.
object by-value return is not supported on the fast path), but
the cppyy module is designed to fall back on the wrapper
path when the fast path is not available. The wrapper path is
suboptimal for our purposes, but as we will show, it is still a
lot faster on pypy—c than its equivalent on CPython.

A. Instance Methods

The first base we consider are non-overloaded instance
methods: we create an instance and call a method in a loop.
Here, the method takes an int and returns an int. The
function body adds a data member (also an int) and returns
the sum of it and the argument passed. Calls from C++ into
Cr+ are from a main program into a shared library. This means
that for non-virtual functions, the call will go through the
Procedure Lookup Table (PLT); and through the vtable pointer
for virtual functions. This is slower than direct calls, and does
not allow inlining, but is more representative of actual use of
C++ in large projects.

The results are shown in Figure 1. The handling of the
GIL dominates the pypy-c FFI path. When not releasing
the GIL, the overhead is still about 4x over Ct+: there are
checks (called guards) in the trace, e.g. to see whether the
“this” pointer has changed or whether the integer return has
overflown (to set a Python OverflowError exception if needed).
The wrapper path, which is still optimized by the PyPy JIT, is
considerably slower than the FFI path, but easily beats either of
the CPython approaches. CPython/cppyy outperforms SWIG
by a good margin in this simple case, because SWIG has a
Python intermediate layer that forwards the calls, which adds
a lot of overhead if little time is spent in Cr+.
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Fig. 1: Relative performance (compared to Ct+) of the FFI
and wrapped paths for instance method calls. CPython using
cppyy, SWIG, and pure Python calls are shown for reference.

For reference, we also show the results of pure Python code
on CPython. The same result for pypy—c is equal to Cr+
(we prevented both from inlining the call, to make sure a call

actually occurred: either could optimize the empty body/loop
out of existence).

To find out what this level of overhead means in practice,
we replace the method implementation with a less trivial body:
a call to (math.)atan on the argument is added. The results
are in Figure 2. The relative standing remains similar, but as
can be seen the total relative overhead drops quickly. In fact,
If we remove handling of the GIL, the overhead for the FFI
path disappears in the noise. The pure Python code now has an
external call as well, and slows down considerably. Running
pypy—c with pure Python benefits from knowing the function
specification and runs at 1.8z of Cr+, or almost twice as fast
as the generic FFI path.
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FFI and wrapped paths when calling a non-trivial function.
CPython using cppyy, SWIG, and pure Python calls are shown
for reference.

The next base case uses overloaded instance methods, and
the results are shown in Figure 3. There is no difference
between an overloaded or non-overloaded method in C++ as
the overload resolution is at compile time. In the case of
pypy—c, there is only a very minor slowdown. All Python
codes resolve overloads at run-time. First, functions are sorted
based on the possibility of implicit conversions for their
argument types, with the more restricted types given higher
priority. For example, when overloading a method that takes
an int with a method that takes a double, the former needs
to be tried first, as all integers can be converted to floating
point, but not vice versa. When such an overload is then called
with a float argument, it will fail the first method and then
(correctly) succeed the second. Conversely, calling with an
int will succeed in the first method, never (again correctly)
reaching the second.

In the case of pypy-c, after the JIT collects an execution
trace, the optimizer will remove all paths that are guaranteed
to fail, replacing them by pre-condition checks. Thus, in the
above example, if a floating point argument is used, only
the second call will remain in the trace. Similarly, if an
integer is used, only the first call will remain. Whereas trying
(and failing) a conversion can be expensive, checking a pre-
condition is cheap and its additional overhead tiny. The net
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Fig. 3: Relative performance (compared to C++) of the FFI
and wrapped paths for overloaded instance method calls.
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result is that, after “warm-up,” the performance of overloaded
and non-overloaded methods is the same.

SWIG and CPython/cppyy perform overload resolution in
a similar manner, but the latter also memoizes the selected
overload based on a hash of the argument types and selects
the correct overload if the same types are seen on the next
iteration. Although both have an increased overhead for over-
loaded than non-overloaded functions, memoization clearly
outperforms.

B. Data Member Access

Access to data members is relatively straightforward. It
involves only an offset calculation from the this pointer of
the C++ object. cppyy supports all cases, including static data,
global pointers, and multiple virtual inheritance. What is left,
is the mapping from Python types to C++ types and vice versa.
This, too, is fully supported, including calls to operator=
when assigning by value. We implement a micro-benchmark
that swaps the values of the data members of two instances,
thus testing data member lookups, reads and writes. The results
are plotted in Figure 4.

We do not show separate numbers for the wrapper and
FFI paths, because data access does not involve function calls
(unless an assignment operator is used). pypy—c makes all
accesses directly to memory. It is only 1.7x slower than Cr+
with cppyy and only 4.2x slower for pure Python. The latter
is slower because it retains more guards: in C++ instances, data
members are fixed and at fixed offsets. Thus, only the this
pointer needs guarding, whereas the pure Python case also
needs guarding against changes to the instance.

All CPython cases are considerably slower. SWIG comes
in at such low performance because it implements C++ data
members with properties in Python. While cppyy does the
same, its properties are coded up in Ct+. The pure Python
version uses data members, not properties.
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C. Standard Template Library vector

The STL vector is such a common container that it is
worthwhile to explicitly optimize for it. The Cr+11 standard
guarantees that a vector stores its payload as contiguous
memory, and provides access to it through the data ()
method. The standard also disallows modifying a vector in
a loop (in fact, all outstanding iterators are invalidated after
modification®). Thus, we can create a vector-specific iterator
that calls data () at the start, keeps an index, the element type
size, and a type-specific converter. When iterating, access is
the same as for data members: the base and offset are passed
to the converter, which returns a Python object. The results
are presented in Figure 5.
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Fig. 5: Relative performance (compared to C++) of looping
over an STL vector in pypy—-c and CPython using cppyy.
SWIG not shown: it is ~ 350z slower.

Instead of looping explicitly over the vector, we used
Python’s builtin sum method, so the iteration is on the C-
side and spurious dictionary lookups are avoided. Thus, after
initial setup, which establishes start, end, and step size of the

81t is straightforward to set a flag in all vector modifying methods. Iterators
could then check for modification and raise an exception if needed. We have
not yet implemented this.



vector, the only calls into cppyy remaining are the converter
calls. Although both CPython/cppyy and pypy—-c with the
wrapper path are rather slow compared to C++, which fully
inlines the vector operations, pypy—c comes close at only
2.5z slower. SWIG performs getitem calls during iteration,
with the expected very costly overhead.

D. Basic Analysis Code

Our final micro-benchmark runs a simple “analysis-style”
code: it produces some data (using a random number genera-
tor), does a small bit of arithmetic on them in Python, and
stores the resulting values in C++ objects. During the loop
and at the end of the run, these C++ objects are serialized
and written to disk. The code contains both a loop with a
large trip count that pypy—c can optimize, but also plenty
of prologue (initialization, C+ object creation) and epilogue
code (storing to disk). It is representative of analyses in High
Energy Physics. The results are shown in Figure 6. SWIG is
missing because classes are used that it can not parse.

3.5
basic analysis code (lower is better)
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Fig. 6: Relative performance (compared to C++) of a basic
analysis code in pypy—c. CPython using cppyy is shown for
reference.

The benchmark runs a lot more than just bindings, with
some work done on the Python side, but with enough time
spent in Cr+ that it should dominate. Still, the cost of the
Python-C++ bindings is large enough in the CPython case for
it to be 3.3z slower than Cr+. Most of the time is spent
in the conversion of floating point values, used as function
arguments. Both the wrapper and FFI paths improve the
performance considerably, with the latter running only 10%
slower than C++, or 3z faster than CPython. Even when CPU
time is considered “free,” a difference of a factor of 3 can
affect productivity greatly as turnaround time matters when
prototyping.

VI. DISCUSSION

The cppyy module is able to vastly reduce time spent in
Python-C++ bindings when used from pypy-c, compared to
equivalent codes on CPython. Speed-ups come from the PyPy
JIT, which optimizes and compiles loop bodies that exceed the
(user settable) trip count. Non-JITed code actually runs about
2z slower than CPython and this is also roughly true for code

using cppyy, because the top-most interface is pure Python.
Calling the underlying interface directly is “only” as slow as
CPython/cppyy (there is little difference for JITed code, with
the direct calls being ~15% faster). However, scientific codes
tend to spend most of their time in loops. Thus, although
work should be done to bring pypy—c more in line with
CPython for non-JITed code, this is not a significant limitation
in practice for the targeted audience.

The PyPy JIT is designed to optimize Python code, but
cppyy is written in RPython in order to allow low-level
features, such as pointer arithmetic. Such code is not always
a good fit and we had to make sure that the code paths
seen by the optimizer are as straightforward as possible. For
example, classes in a single inheritance hierarchy are presented
differently than those in a multiple virtual inheritance one.
Doing so reduces the number of necessary run-time checks,
and thus the number of branches in the traces. The optimizer
can then be more aggressive, resulting in better performance.
Note that PyPy provides direct support to test JIT behavior.
This enables unit testing of detailed specializations that are
written for the express benefit of the JIT, to catch performance
regressions early.

The emphasis of the micro-benchmarks was on perfor-
mance. However, even at such small scale it was clear that
parsing header files directly is far more user-friendly than
working with an intermediate language.

VII. RELATED WORK

There are several automated Python-C++ bindings genera-
tor tools available, for example SWIG[14][15] and SIP[16].
SWIG can generate bindings for several dynamic languages,
Python being only one of them. Other libraries, such as e.g.
boost.python[17], ease the integration of C++ features such as
namespaces, overloading, and exception handling by providing
a C++ API for that purpose.

All these tools, including our cppyy module, have in com-
mon that there are no extensions to the Python language used
or restrictions imposed of what Python language constructs
are allowed/supported. All except cppyy use the Python
C-API and require linking with the Python libraries. SIP
and cppyy disambiguate identical classes used by different
projects and keep the structure of C++ namespaces. Both
also support lazy loading/instantiating of Python classes and
methods. SIP and SWIG are automated tools, but require an
intermediate specification as these projects have developed
their own parsers, which do not support the full C++ language.
To alleviate this problem, an external parser, such as Clang,
can be used to generate specification files that are restricted
to the feature sets understood by SWIG or SIP, respectively.
The SWIG specifications are not limited to Python and can be
reused for any of its multiple backends.

Our approach does not use any intermediate specification
or extension, so that no additional language beyond Python
(and some Ct+) needs to be learned to use cppyy. There are
two versions of cppyy: one written in RPython for PyPy
and one written in Cr+ for CPython. Thus only the cppyy



module is specific to any given (version of) Python interpreter,
which greatly simplifies distribution of large codes, as well as
its reuse in other large projects. Loading of namespaces and
classes is automatic and lazy in cppyy, again for reasons
of scale and distribution. We repurpose the Cling parser, thus
future-proofing our work. Having the full AST available also
opens opportunities for dynamic optimizations.

Unique to cppyy is the use of the Cling interpreter to re-
duce the impedance mismatch between static C++ and dynamic
Python, allowing for interactive instantiations of templates,
cross-language inheritance, etc.

VIII. CONCLUSIONS

In this paper, we described cppyy, a new module for
pypy—c that combines Cling, c££i, and PyPy’s toolbox to
deliver Python bindings to modern C++ with high performance.
Modern C++ allows better expression of intent in interfaces,
greatly facilitating automatic bindings generators. For exam-
ple, by clearly indicating ownership and thread-safety. The
cppyy module was designed with scale and distribution in
mind: it constructs bindings lazily and has greatly reduced
dependencies on the Python interpreter. The use of interactive
C++ goes a long way to remove the impedance mismatch be-
tween dynamic Python and otherwise static C++. We were able
to show an order of magnitude improvement in performance
for function calls, and two orders of magnitude for data access.
Overall, this should result in a ~3x speedup end-to-end in
practical use.

Optimizations were made possible by deconstructing high-
level concepts to low-level interfaces. But the PyPy opti-
mizer is designed to deal with higher level constructs, albeit
Python ones. When C++ modules are fully supported, it will
be possible to annotate functions, expressing higher level
information such as the existence and scope of side effects,
whether pointers to arguments are taken, or whether global
data is accessed. Having such information available to the

PyPy JIT would allow it to make less conservative decisions
and optimize at a higher level: e.g. decide whether to release
the GIL, elide a function call, or change a data structure.

We therefore expect, having proven the fundamentals, that
our work can enable a whole new range of Python-C++ cross-
language optimizations.
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