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Summary
The tone hole geometry of a clarinet is optimized numerically. The instrument is modeled as a network of one di-
mensional transmission line elements. For each (non-fork) fingering, we first calculate the resonance frequencies
of the input impedance peaks, and compare them with the frequencies of a mathematically even chromatic scale
(equal temperament). A least square algorithm is then used to minimize the differences and to derive the geome-
try of the instrument. Various situations are studied, with and without dedicated register hole and/or enlargement
of the bore. With a dedicated register hole, the differences can remain less than 10 musical cents throughout the
whole usual range of a clarinet. The positions, diameters and lengths of the chimneys vary regularly over the
whole length of the instrument, in contrast with usual clarinets. Nevertheless, we recover one usual feature of
instruments, namely that gradually larger tone holes occur when the distance to the reed increases. A fully chro-
matic prototype instrument has been built to check these calculations, and tested experimentally with an artificial
blowing machine, providing good agreement with the numerical predictions.

PACS no. 43.75.Pq, 43.20.Mv

1. Introduction

Woodwind instruments of the orchestra have often attained
their geometrical shapes through a slow gradual process,
which in many cases has taken centuries. Guided by trial
and error, skilled craftsmen have managed to develop the
instruments as we know them today. In this article we
study the clarinet. Most of its evolutionary process (addi-
tion of new holes and keys, etc.) was made of the succes-
sion of many small steps, each implying a limited depar-
ture from a previous configuration – for clarinets the only
radical change was the introduction of the “Boehm sys-
tem” of French instruments by Klosé in the middle of the
19th century. A typical wind instrument has a large num-
ber of design parameters (positions and size of the holes
and the chimneys, bore, etc.), while many of them con-
tribute at the same time to the production of each note.
Indeed, changing one of them in order to correct a certain
note may have an unexpected, and often adverse, effect on
other notes in terms of pitch, tone quality, stability, etc. In
a posthumous paper, Benade [1] attempted to analyze the
evolutionary path since the 18th century.

Trying new configurations by the traditional method re-
quires a large amount of work. It therefore seems likely
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that the modifications tested by the instrument makers
have been limited to relatively small changes, affecting
only a few parameters at the same time. In other words, in
terms of optimization, existing instrument designs proba-
bly represent local extrema of some optimization function,
in the sense that a small change in the set of tone hole po-
sitions, radii etc. inevitably worsens the instrument. Nev-
ertheless there might exist better geometrical shapes that
are more distant in the parameter space, and therefore not
accessible through small improvements of an existing de-
sign. An additional reason to believe in this scenario is
given by the observation of the rather irregular tone hole
pattern of many woodwinds, with alternating small and
large holes, short and long chimneys, closed holes (opened
for one note only) etc. It seems that no particular physical
principle could explain why such an irregularity is desir-
able; there are actually reasons to believe that it is not, in
particular if homogeneity of the production of sound over
the different notes is required.

Nowadays, with mathematical models of the instrument
and computer optimization algorithms, it is possible to test
a number of configurations that would be inaccessible by
the traditional method. It is therefore interesting to explore
which results can be obtained by automatic optimization,
to compare them with existing instruments, and to inves-
tigate if a strong irregularity spontaneously emerges from
the optimization. The idea is not necessarily to create some
completely new or exotic instrument, even if this possibil-
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ity is not excluded in the long run. It is rather to investigate
whether allowing large “leaps” from usual designs leads
to a completely different geometry of the instruments, to
try and reach more “logical” configuration of the acous-
tical resonator, and eventually test them acoustically. In
particular, an open question (not answered in this work)
is whether or not the use of fork fingering, often used in
clarinets, is an acoustical necessity, or just the result of the
complicated past history of the instrument.

The purpose of this work is therefore to develop algo-
rithms for designing, and possibly improving, woodwind
instruments, in the case of the clarinet. It is to see if it is
possible to conceive a “logical clarinet”, with a perfectly
regular fingering chart, and where the relations between
the acoustical functions of the resonator and its geometry
are more easy to grasp than in the traditional instrument.
Of course, the instrument should produce correct pitch for
all notes. Fortunately this problem is not too complicated
to address in terms of calculated acoustical impedances:
for simplicity it can be assumed that playing frequencies
can be derived from resonance frequencies with a simple
length correction in order to account for reed flow and dy-
namics [2]. A more difficult issue is to design an instru-
ment with balanced timbre over its entire range. While the
precise relation between tone quality and cutoff frequency
of the tone hole lattice [3] is still not perfectly understood,
experience seems to show that a regular cutoff frequency
is useful (see [4], page 485). Here, we study the possibility
of designing an instrument with a much more regular tone
hole lattice in terms of tone hole diameters and positions,
able to produce a complete chromatic scale over the full
range of the traditional instrument.

Of course, whether such instruments will prove to be
musically useful is not obvious a priori. Nevertheless, if
this is the case, it is clear that interesting perspectives for
making simpler and cheaper instruments could be envis-
aged. Our study is limited to the purely acoustical aspects
of instrument design; we have not studied the problem of
mechanical keys that are necessary for an instrumentalist
to really play the instrument. This is indeed an important
question, but this task is beyond the scope of the present
work.

Numerous authors have discussed possible improve-
ments of clarinets, in particular Benade [5], but without
using numerical optimization. Brass instruments have in-
deed been studied by optimization [6, 7, 8], but in this case
the free parameters relate to the bore of the instrument and
not to the geometry of lateral holes.

This article is organized as follows. Section 2 provides
the basic mathematical model used to characterize the
acoustical properties of the instrument – mostly a calcula-
tion of the resonance frequencies of the resonator. Section
3 describes the optimization procedure and the minimiza-
tion algorithm. Section 4 briefly discusses the computer
implementation. Section 5 presents various numerical re-
sults obtained by retaining various optimization criteria;
five different “clarinets” are obtained and their properties
are compared. These results are used in section 6 to design
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Figure 1. Elementary cell with tone hole.

an experimental prototype, and to measure its sound pro-
duction with the help of an automatic blowing machine.
Finally, section 7 draws a few conclusions.

2. Mathematical model

2.1. Transmission line model

The instrument is modeled with a classical one-dimen-
sional transmission line model for planar waves [9], tak-
ing visco-thermal losses into account throughout the main
bore, as well as in the tone holes. It is assumed that the
distance between tone holes is sufficiently large to make
higher mode interactions negligible. This assumption is
valid if the distance is at least larger than the bore diame-
ter (see e.g. [10]). Accordingly, the instrument is modeled
as a succession of transfer matrices representing either a
cylindrical piece of tubing, or a tone hole; each tone hole
is formally represented by a lumped element.

The transfer matrix of a cylindrical piece of tubing of
length L and characteristic impedance Zc is given by

H =
cosh(ΓL) Zc sinh(ΓL)

(1/Zc) sinh(ΓL) cosh(ΓL)
, (1)

where Γ is the complex propagation constant. The model
is rather accurate for the characteristic wavelengths prop-
agating inside a typical wind instrument. The first higher
order mode is usually far below cutoff; for a cylinder of
15mm diameter it is a helical mode with a cutoff fre-
quency of 13.5 kHz.

2.2. Visco-thermal boundary layer effects

The following expressions for the characteristic impe-
dance Zc and the wave number Γ are used (see e.g. [11])

Zc = Z0 1 +
0.369

rv
− j

0.369
rv

+
1.149

r2v
,

Γ = k
1.045

rv
+

1.080

r2v
+ j 1 +

1.045
rv

. (2)

In this equation, Z0 is equal to

Z0 =
ρc

πa2
, (3)
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where ρ is the mass density of the gas, c the speed of sound
and a the radius of the tube. k denotes the wavenumber
ω/c, where ω is the angular frequency. The dimensionless
number rv is defined as the ratio between the tube radius
and the thickness of the boundary layer

rv = a ρω/η, (4)

where η is the coefficient of viscosity.

2.3. Tone holes

Each tone hole is modeled as a T-junction (Figure 2).
The transfer matrix corresponding to this electrical

equivalent circuit is the following, if Ys = 1/(Zs + Zh):

1
1 − YsZa/4

1 + YsZa/4 Za

Ys 1 + YsZa/4
. (5)

The series impedances Za/2 are purely inertial, but the
total shunt impedance Zst also has a resistive part due to
visco-thermal damping and radiation losses. For the acous-
tic masses ma and ms, we use expressions obtained from
[12, 13],

ma = ρta/(πa2),

ms = ρts/(πb2), (6)

where

ts = b(0.82 − 0.193δ − 1.09δ2 + 1.27δ3 − 0.71δ4),

ta = b(−0.37 + 0.087δ)δ2, (7)

δ = b/a.

The input impedance Zh of a tone hole of cross section
area Sh = πb2 depends on whether it is open or closed. For
an open tone hole, Zh is calculated by considering the tone
hole as a transmission line terminated by a radiation impe-
dance zL. A simple expression for the radiation impedance
of a hole in the side of a cylinder [14] is not known but,
since ka is small, it seems reasonable to assume that the
tone hole acts as an infinitely flanged pipe; a more detailed
model for flanged termination is probably unnecessary for
our purposes. At low frequencies (ka � 1), this leads to
the simple formula

zL =
ρc

Sh

1
2
(ka)2 + j0.82ka . (8)

Accordingly, a tone hole of length h, terminated by an im-
pedance zL, is represented by the input impedance

Zh =
ρc

Sh

zL + j ρc
Sh

tan(kh)
ρc
Sh

+ jzL tan(kh)
. (9)

Exterior hole interaction [15] is not taken into account;
assuming that this effect remains negligible is reasonable,
especially at low frequencies. The input impedance of a
closed tone hole is calculated in the same way, but with
zL → ∞. In the limit kh � 1, which is an acceptable
approximation of the impedance for short chimneys, the
closed hole input impedance expression reduces to a shunt
stiffness ρc2/(jωShh).

Za/2 Za/2

Zst

Zst = Zs − Za/4 + Zh

Za = jωma

Zs = jωms

Zh : Input impedance
of tone hole.
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Figure 3. Instead of a bell, the main tubing is extended and fit-
ted with two vent-holes. For 2a = 14.75mm, A = 12.5mm, b
= 4.0mm, and d = 18.2mm the cutoff frequency is to be fc =
1.420 kHz.

2.4. Termination of the instrument

An ordinary clarinet is terminated by a bell. The main pur-
pose of the bell is to equilibrate the timbre of the lowest
notes of the instrument with that of the other notes. In this
project, we replace the bell by a continuation of the cylin-
drical main bore with two vent-holes, as shown in Figure 3.
The length of the extension and the diameters of the vent-
holes are chosen in order to obtain a theoretical lattice cut-
off frequency of 1.420 kHz, approximately equal to the
average cutoff frequency of a clarinet [3].

2.5. Calculation of playing frequencies

The frequency of a blown note depends on the input im-
pedance spectrum, the reed dynamics (in contact with the
lips) and the blowing pressure. In practice, since the play-
ing frequency is much smaller than the resonance fre-
quency of the reed, the dominant factor is the input im-
pedance.

We use a simplified description where the mouthpiece
and the reed are replaced (for a given stiffness, blowing
pressure, air flow correction, etc.) by an effective volume
correction added to the instrument.

The effects of a temperature gradient along the air col-
umn on the pitch can be ignored in a first approximation.
References [16] and [17] indicate that a satisfactory ap-
proximation of the frequency shifts is obtained by taking
into account the average along the instrument of the tem-
perature only; our calculations should then remain valid,
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