
phyles Documentation
Release 0.2.0b4

James C. Stroud

February 20, 2013

CONTENTS

1 Introduction to Phyles 3

2 Tutorial 5
2.1 The Calculation . 5
2.2 The Config Format . 6
2.3 Conversion . 7
2.4 The Schema Specification . 8
2.5 The Schema . 11
2.6 The Configuration . 12
2.7 Example Utility . 14

3 Phyles API 21
3.1 API Overview . 21
3.2 Classes for Configurations and Schemata . 21
3.3 Functions for Configurations and Schemata . 21
3.4 Functions for Files and Directories . 21
3.5 Functions for User Interaction . 22
3.6 Functions for a One-Size-Fits-All Runtime . 22
3.7 API Details . 22

4 Indices and tables 33

Python Module Index 35

Index 37

i

ii

phyles Documentation, Release 0.2.0b4

Phyles is a set of somewhat eclectic functions that makes the implementation of utilities (little programs that can be
controlled by config files) easier. It started as a mass of boilerplate that I would copy into almost every utility I wrote.
I finally decided to consolidate this code into a package and add some schema-based validation of config files and to
document it fully.

Phyles provides support for YAML-based config files as well as a means for validating the config files. Phyles also
provides several facilities for making utilities more user friendly, including automatically generated banners, automat-
ically documented configuration templates, and graceful recovery from configuration errors.

The accompanying tutorial shows how phyles assists in turning one-off python scripts into robust packages worthy of
distribution, or at least worthy of a permanent place in one’s work-flow.

Phyles can be obtained at https://pypi.python.org/pypi/phyles/.

CONTENTS 1

http://www.yaml.org
https://pypi.python.org/pypi/phyles/

phyles Documentation, Release 0.2.0b4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO PHYLES

About 90% of the convenience that phyles offers can be summarized by a few lines of code. From the example utility
in the tutorial:

1 spec = phyles.package_spec(phyles.Undefined, "barbecue",
2 "schema", "barbecue-time.yml")
3 converters = {’celsius to farenheit’:
4 barbecue.celsius_to_farenheit}
5 setup = phyles.set_up(__program__, __version__,
6 spec, converters)
7 phyles.run_main(main, setup[’config’],
8 catchall=barbecue.BarbecueError)

These few lines find a schema specification from the package contents (line 1), parses command line arguments (line
5), validates a config file (lines 3 & 5), overrides configuration settings therein (line 5), and runs the main function of
the utility in a try-except block that ensures graceful exit in the event that an anticipated exception is raised (line 5).

Schema are specified in YAML, terse, and hopefully intuitive. Following is the example from the tutorial:

!!omap
- dish :

- - vegetable kabobs
- smoked salmon
- brisket

- smoked salmon
- Dish to cook

- doneness :
- rare : 200
medium : 350
well-done : 500

- medium
- How much to cook the dish

- temperature :
- celsius to farenheit
- 105
- Cooking temperature in °C
- 105

- width :
- int
- 70
- width of report
- 70

Phyles will automatically generate a documented sample config files for users if they run the utility with the
--template (or -t) command line option.

3

http://www.yaml.org

phyles Documentation, Release 0.2.0b4

As one final example, a valid config file for this schema is:

dish : smoked salmon
doneness : medium
temperature : 107
width : 70

4 Chapter 1. Introduction to Phyles

CHAPTER

TWO

TUTORIAL

For the sake of a tutorial, lets assume that we need to calculate cooking times for our barbecue. For this daunting task,
we decide we want a utility: a program that we can run from the command line whenever we get the urge for a taste
of smokey goodness.

2.1 The Calculation

Note: This section isn’t as much about using phyles as it is about framing the purpose of the example utility quanti-
tatively (i.e. into numbers) and in a way that can be formulated as a python function. Hopefully the example is not too
complicated. However, I have tried to make it just complicated enough to warrant a full-fledged utility.

Let’s assume that we have three dishes we usually barbecue:

Dish Difficulty
vegetable kabobs 1 dc
smoked salmon 2 dc
brisket 3 dc

The numbers to the right of each dish gives the difficulty of cooking (which we’ll abbreviate as “dc” to express its
units).

As an example of difficulty, cooking a typical batch of vegetable kabobs for 1 hour at some some temperature (say
200 °F) is equivalent to cooking a typical brisket for 3 hours at that temperature. Or stated another way, brisket cooks
about three times as slow as vegetable kabobs.

For the sake of this tutorial, cooking difficulty applies to temperature as well. For instance, cooking a typical batch of
vegetable kabobs at 200 °F for 2 hours is equivalent to cooking a typical brisket at 600 °F for 2 hours:

200 ◦F× 2 hr
1 dc

=
600 ◦F× 2 hr

3 dc

Note how we divided both sides of the equation by the difficulty of cooking for the respective dish (1 dc for vegetable
kabobs; 3 dc for brisket). This calculation shows that we can quantify how much we cook something by calculating
what we’ll call the “doneness”. Taking this example for brisket:

400 doneness =
600 ◦F× 2 hr

3 dc

Or, as a mathematical formula:

doneness =
temperature× time

difficulty

5

phyles Documentation, Release 0.2.0b4

Using algebra 1, we can rearrange this equation to calculate cooking times:

time =
doneness× difficulty

temperature

In other words, if we know the amount we need to cook a dish (doneness), how difficult the dish is to cook (difficulty),
and the temperature that we can achieve with our grill, then we can calculate the cooking time.

So, how much do we want to cook an dish? This table quantifies doneness for several common cooking terms:

Term Doneness
Rare 200
Medium 350
Well-Done 500

Let’s try a calculation for smoked salmon (difficulty of 2) cooked medium (doneness of 350) at 225 °F (which is about
107 °C):

time =
350 doneness× 2 dc

225 ◦F
≈ 3.11 hr

Thus it takes about 3.11 hr to cook a smoked salmon to medium at 225 °F.

As a python function, this calculation might take the form:

def cooking_time(doneness, difficulty, temperature):
"""
Return then cooking time given the desired ‘doneness‘
cooking, the ‘difficulty‘ of cooking,
and the ‘temperature‘.

Args:
- ‘doneness‘: desired doneness (hr•°F/dc)
- ‘difficulty‘: difficulty of cooking for the dish (dc)
- ‘temperature‘: cooking temperature (°F)

Returns: cooking time in hours (‘‘float‘‘)

Raises: ‘‘ValueError‘‘ if the ‘temperature‘ is <= 0 °F

>>> round(cooking_time(350, 2, 225), 2)
3.11
"""
if T <= 120:
msg = "%s °F is too cold to cook!" % T
raise ValueError(msg)

return float(doneness * difficulty) / T

2.2 The Config Format

Assuming that we have a utility that calulates cooking times based on a config file, the file for this example might take
the following form:

dish : smoked salmon
doneness : medium
temperature : 225

1 The rule of algebra used here can be stated like this: if a quantity is on top of the fraction on one side of the equals sign, then it can be moved
to the bottom of the fraction on the other side of the equals sign, and vice versa.

6 Chapter 2. Tutorial

phyles Documentation, Release 0.2.0b4

This config format is convenient for a user who doesn’t care that smoked salmon has a difficulty of 1 dc or that medium
corresponds to a doneness of 350. However, it places a burden on the programmer to read the file, ensure that “smoked
salmon” and “medium” are spelled correctly, and convert these string values into numbers.

That’s where phyles comes in!

2.3 Conversion

2.3.1 Dictionary-Based Conversion

We’ll tackle these tasks in steps, first finding a way to convert specific strings into numbers. Python provides a
convenient way to do this conversion using its dict class:

doneness_dict = {’rare’: 200,
’medium’: 350,
’well-done’: 500}

Getting a value from a dictionary using a key is called “item-getting”. Python item-getting raises a KeyError when
it fails:

>>> doneness_dict[’raw’]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: ’raw’

As we’ll see, phyles allows for the creation of a converter dictionary directly in the schema specification.

2.3.2 Type-Based Conversion

When a YAML config file is parsed by a YAML parser, literals like 225 evaluate to integers. However, a cooking
temperature may often be more useful as a float, as when it serves in the denominator of a fraction, for example. In
cases where a YAML literal evaluates to a python type (e.g. int, float, str) that is different from the type desired,
the desired python type can be used to to perform the conversion:

>>> float(225)
225.0

Like the dict item-getting, python types provide error checking, raising exceptions upon failure:

>>> float([2, 2, 5])
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: float() argument must be a string or a number

>>> float("twotwentyfive")
Traceback (most recent call last):
File "<stdin>", line 1, in ?

ValueError: could not convert string to float: twotwentyfive

2.3.3 Conversion by User-Defined Functions

There is nothing particularly special about dict.__getitem__() or python types. They are simply functions (or
more preciesly, “callables”) that take a single value as a parameter and return possibly different values. In cases where
they fail, dict.__getitem__() and python types raise three kinds of exceptions:

2.3. Conversion 7

http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict

phyles Documentation, Release 0.2.0b4

Exception Raised By
KeyError :class‘dict‘ item-getting
TypeError python types
ValueError python types

Thus, any python function that takes one and only one parameter and raises either a KeyError, TypeError, or
ValueError upon failure, can serve as a converter.

For example, say we want to release a European version of our barbecue utility, we could write a function to convert
temperature in °C into temperature in °F:

1 def celsius_to_farenheit(c):
2 """
3 Returns the temperature in Farenheit given temperature
4 in Celsius.
5

6 Args:
7 - c: temperature in Celsius
8

9 Returns: temperature in Farenheit (float)
10

11 >>> celsius_to_farenheit(107.222)
12 224.9996
13 """
14 c = float(c)
15 if c < -273.15:
16 raise ValueError("Impossibly cold (%s °C)!" % c)
17 else:
18 return (1.8 * c) + 32

Notice that on line 16, clesius_to_farenheit() raises a ValueError if the temperature supplied to the
function is lower than the thermodynamic legal limit of -273.15 °C.

2.3.4 Choices

In some cases, no conversion is required but it is desirable to check an option value against a list of choices. As shown
below, phyles allows the creation of lists of choices within the schema specification. If choices are given in this way,
phyles creates a sensible error message if the value for the option is not within the list of choices.

2.4 The Schema Specification

A schema in phyles (encapsulated by the phyles.Schema class), contains information to validate a configuration
as well as produce a sample configuration, complete with documentation in comments. A schema is specified by a
“schema specification”.

The schema specification (often shortened to “spec”) can take several forms, as fully explained in the documentation
to the phyles.load_schema() function.

2.4.1 Example Schema Specification

For our barbecue example, we’ll use a schema specification written as a YAML omap:

1 !!omap
2 - dish :
3 - - vegetable kabobs

8 Chapter 2. Tutorial

http://yaml.org/type/omap.html

phyles Documentation, Release 0.2.0b4

4 - smoked salmon
5 - brisket
6 - smoked salmon
7 - Dish to cook
8 - doneness :
9 - rare : 200

10 medium : 350
11 well-done : 500
12 - medium
13 - How much to cook the dish
14 - temperature :
15 - celsius to farenheit
16 - 105
17 - Cooking temperature in °C
18 - 105

2.4.2 Required Elements of a Specification

The sequence value for each parameter (e.g. dish, doneness, and temperature) in the schema specification has
three required elements (and a fourth optional element, described below in the section titled Optional Default Values):

1. converter as either

(a) a YAML string object of the name of the converter function as keyed in the converters argument to
phyles.Schema.load_schema() (as with temperature above, and discussed in the section
titled Dictionary of Converter Functions)

(b) a YAML sequence object with a list of acceptable choices (as with dish above)

(c) or a YAML mapping object that maps choices to converted values (as with doneness above)

2. an example value (for sample config files)

3. documentation (which can be set to null for no documentation; see YAML null)

For temperature, these elements are

1. converter: celsius to farenheit

2. example: 105

3. documentation: Cooking temperature in °C

2.4.3 Dictionary of Converter Functions

One question is how a name that evaluates to a python str (e.g. doneness) translates into a converter, which must
be a function. As explained more thoroughly in the discussion of schema below, this translation is achieved using a
dict. For this barbecue example, we construct this dict in the following way:

converters = {’celsius to farenheit’: celsius_to_farenheit}

We’ll see exactly how to use the converters dict in the example utility.

Note: The celsius_to_farenheit() function is defined in the section titled Conversion by User-Defined
Functions

2.4. The Schema Specification 9

http://yaml.org/type/null.html
http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict

phyles Documentation, Release 0.2.0b4

2.4.4 Phyles Standard Converters

There are several python types for which it is not necessary to add entries to the converters dict. The reason is
that phyles provides a set of built-in converters. For example, if a float converter were needed, then the following
would be implicit and not required from the programmer:

converters = {’float’: float} # <-- NOT necessary!!

These built-in converters provided by phyles are:

• map: dict

• dict: dict (encoded as a YAML dict)

• omap: collections.OrderedDict

• odict: collections.OrderedDict (alias for “omap”)

• pairs: list of 2-tuples

• set: set

• seq: list

• list: list (encoded as a sequence, see list())

• tuple: tuple (encoded as a sequence, see tuple())

• bool: bool

• float: float

• int: int

• long: long (encoded as a YAML int)

• complex: complex (encoded as a sequence of 0 to 2, or as a string representation, e.g. ’3+2j’; see
complex())

• str: str

• unicode: unicode

• timestamp: datetime.datetime (encoded as a YAML timestamp)

• slice: slice (encoded as a sequence of 1 to 3, see slice())

Note: Except where indicated, these types are encoded according to the YAML types specification in a YAML
representation of a config.

2.4.5 Optional Default Values

Additional to the three required elements of a specification parameter, an optional default value may be specified as a
fourth element. In the example schema specification the default for the temperature parameter is 105. If a default
value is missing, as in dish and doneness, then the parameter is required in the config file.

For example, the following config will fail vailidation by a schema from the example schema specification because the
specification requires a value for doneness (by virtue of the specification’s missing a default value for doneness):

dish : smoked salmon
temperature : 107

10 Chapter 2. Tutorial

http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict
http://yaml.org/type/dict.html
http://docs.python.org/2/library/collections.html#collections.OrderedDict
http://docs.python.org/2/library/collections.html#collections.OrderedDict
http://docs.python.org/2/library/stdtypes.html#set
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#tuple
http://yaml.org/type/int.html
http://docs.python.org/2/library/functions.html#complex
http://docs.python.org/2/library/datetime.html#datetime.datetime
http://yaml.org/type/timestamp.html
http://docs.python.org/2/library/functions.html#slice
http://yaml.org/type/

phyles Documentation, Release 0.2.0b4

2.5 The Schema

2.5.1 Loading Schema

To validate a config file, the information in the schema specification must be converted into a functional schema, a
conversion accomplished by the phyles.load_schema() function.

2.5.2 Validating Configs

Although the phyles.set_up() function automates these steps, it is useful to see how a schema is con-
structed from a specification and further how the schema validates a config. Using the running example (i.e. with
converters defined in the section titled Dictionary of Converter Functions):

import phyles
import yaml
spec = """

!!omap
- dish :

- - vegetable kabobs
- smoked salmon
- brisket

- smoked salmon
- Dish to cook

- doneness :
- rare : 200
medium : 350
well-done : 500

- medium
- How much to cook the dish

- temperature :
- celsius to farenheit
- 105
- Cooking temperature in °C
- 105

"""

cfg = yaml.load("""
dish : smoked salmon
doneness : medium
temperature : 107
""")

schema = phyles.load_schema(spec, converters)
config = schema.validate_config(cfg)

The behavior of the resulting config, which is an instance of phyles.Configuration, will be discussed in
more detail in the section titled The Configuration.

Note: The cfg could have just as easily been created directly as a dict:

cfg = {"dish": "smoked salmon",
"doneness": "medium",
"temperature": 107}

However, YAML is used here for consistency with earlier parts of this example and to emphasize the point that the
files wherein configurations are stored are YAML files. Phyles facilitates using YAML files for configurations. For

2.5. The Schema 11

http://docs.python.org/2/library/stdtypes.html#dict

phyles Documentation, Release 0.2.0b4

example the opening, reading, and validating of whiche are automated by the phyles.Schema.read_config()
function.

2.5.3 Creating a Config Sample

An instance of phyles.Schema is capable of producing a sample config file using the
phyles.Schema.sample_config(). For example given the schema we just created:

>>> print schema.sample_config()
%YAML 1.2

Dish to cook
One of: vegetable kabobs, smoked salmon, brisket
dish : smoked salmon

How much to cook the dish
One of: well-done, medium, rare
doneness : medium

Cooking temperature in °C
temperature : 105

2.6 The Configuration

Instances of phyles.Configuration are simply ordered mappings. By virture of their original attribute,
phyles.Configuration objects also retain memory of the configuration before conversion (as with the temper-
ature, which was converted from Celsius to Farenheit):

>>> for i in config.items():
... print i
(’dish’, ’smoked salmon’)
(’doneness’, 350)
(’temperature’, 107.0)
>>> config[’temperature’]
225.0
>>> config.original[’temperature’]
107

Instances of phyles.Configuration are useful inside a utility, potentially being the sole parameter that needs
to be passed to functions. The following example assumes that the function cooking_time() is defined as in the
section titled The Calculation:

1 difficulties = {’vegetable kabobs’: 1,
2 ’smoked salmon’: 2,
3 ’brisket’: 3}
4

5 def report_cooking(config):
6 t = cooking_time(config[’doneness’], config[’difficulty’],
7 config[’temperature’])
8 message = "Cooking time is %5.2f hr." % t
9 message = message.center(70)

10 config[’outlet’](message)
11

12 Chapter 2. Tutorial

phyles Documentation, Release 0.2.0b4

12 def main(config):
13 ...
14 config[’difficulty’] = difficulties[config[’dish’]]
15 config[’outlet’] = lambda s: sys.stdout.write(s + "\n")
16 report_cooking(config)

While bundling arguments within a Configuration may seem a little combersome at first, it facilitates the adding
of new configuration-based behaviors deep within a utility and without the need to modify functions to accommodate
additional parameters.

Note: Not all functions of the utility need to take a Configuration object as an argument. Here
cooking_time() still takes three distinct arguments, but the “higher-level” report_cooking() function takes
config. Such design considerations are left to the programmer.

As an example of the utility of a Configuration object, notice that the message width above is hard-coded to 70
in line 9 above. In principle, this width could be user-configurable:

spec = """
!!omap
- dish :

- - vegetable kabobs
- smoked salmon
- brisket

- smoked salmon
- Dish to cook

- doneness :
- rare : 200
medium : 350
well-done : 500

- medium
- How much to cook the dish

- temperature :
- celsius to farenheit
- 105
- Cooking temperature in °C
- 105

- width :
- int
- 70
- width of messages
- 70

"""

cfg = yaml.load("""
dish : smoked salmon
doneness : medium
temperature : 107
""")

schema = phyles.load_schema(spec, converters)
config = schema.validate_config(cfg)

Now, the message width needs not be hard-coded, which is a bane of maintenance:

def report_cooking(config):
t = cooking_time(config[’doneness’], config[’difficulty’],

config[’temperature’])

2.6. The Configuration 13

phyles Documentation, Release 0.2.0b4

message = "Cooking time is %s hr." % t
message = message.center(config[’width’])
config[’outlet’](message)

This enhanced functionality is essentially transparent to the user because a default value (70) is provided for the width
option, rendering width optional in the config file.

2.7 Example Utility

We now have all of the pieces we need to make a utility package, complete with its own library module and scripts
(also called “executable programs”, or just “programs). As part of the phyles source, an example called “barbecue” is
included in the directory called “examples”.

2.7.1 Running the Example

Assuming phyles and its dependencies are installed, the barbecue example is fully functioning in-place. For example,
try one of the following commands (depending on your shell) from the examples/barbecue directory:

bash-type shell:

PYTHONPATH=".:${PYTHONPATH}" bin/barbecue-time -t

csh/tcsh shell:

env PYTHONPATH=".:${PYTHONPATH}" bin/barbecue-time -t

Note: The part of the command that modifies $PYTHONPATH allows for running the barbecue-time exe-
cutable in-place. Were the barbecue package installed as with python setup.py install this modificaiton of
$PYTHONPATH would not be necessary.

These commands should produce the following output:

%YAML 1.2

Dish to cook
One of: vegetable kabobs, smoked salmon, brisket
dish : smoked salmon

How much to cook the dish
One of: well-done, medium, rare
doneness : medium

Cooking temperature in °C
temperature : 105

width of report
width : 70

Note: The example barbecue package can even be installed with python setup.py install, althought it isn’t
necessary.

14 Chapter 2. Tutorial

phyles Documentation, Release 0.2.0b4

Within the examples/barbecue/test-data directory is also a config file called time-config.yml. This
config file can be used without installing the barbecue package:

bash-type shell:

PYTHONPATH=".:${PYTHONPATH}" \
bin/barbecue-time -c test-data/time-config.yml

csh/tcsh shell:

env PYTHONPATH=".:${PYTHONPATH}" \
bin/barbecue-time -c test-data/time-config.yml

These commands should produce the following output:

==
barbecue-time v.0.1b1

==
Cooking time is 3.12 hr.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Done with smoked salmon!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is possible to override configuration settings on the command line with the --override (or -o) argument:

bash-type shell:

PYTHONPATH=".:${PYTHONPATH}" \
bin/barbecue-time -c test-data/time-config.yml \

-o ’temperature : 120’

csh/tcsh shell:

env PYTHONPATH=".:${PYTHONPATH}" \
bin/barbecue-time -c test-data/time-config.yml \

-o ’temperature : 120’

Here, the command line temperature of 120 °C (248 °F) overrides the temperature in the config (107 °C), reducing the
cooking time. These commands should produce the following output:

==
barbecue-time v.0.1b1

==
Cooking time is 2.82 hr.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Done with smoked salmon!

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Before looking deeper into the barbecue example, let’s see how phyles gracefully handles an error that can not be
found at the time when the config is validated because it potentially depends on the state of the system while the
program is running:

bash-type shell:

PYTHONPATH=".:${PYTHONPATH}" \
bin/barbecue-time -c test-data/time-config.yml \

-o ’width : 10000’

csh/tcsh shell:

env PYTHONPATH=".:${PYTHONPATH}" \
bin/barbecue-time -c test-data/time-config.yml \

-o ’width : 10000’

2.7. Example Utility 15

phyles Documentation, Release 0.2.0b4

Here, the a message width of 10000 overrides the config file width of 70. This width is much too large to be displayed
on any normal terminal. The barbecue-time script uses the phyles.get_terminal_size() function to catch
the problem and raise an exception that is itself caught, resulting in a sensible error message being sent to the user
with a graceful exit from the program:

==
barbecue-time v.0.1b1

==

############################# ERROR ##############################
Formatting ’width’ (10000) bigger than window (78)

##

Inspection of the contents of the barbecue utility will reveal how these features of phyles can be used with a small
amount of code.

2.7.2 Barbecue Example Directory Structure

The barbecue example is structured as a typical python package, serving as a template for most needs:

• barbecue/ – top-level directory for package

– CHANGES.txt contains version-by-version information about the evolution of the package 2

– LICENSE.txt contains the text of the license 2

– MANIFEST.in tells the setup script which extra files to include in a distribution 2

– README.rst contains broad information about the package 2

– barbecue/ – package directory, holding the library code

* __init__.py init module for the package

* _barbecue.py module holding the library code

* schema/ – directory holding schema for configs

· barbecue-time.yml the schema for the barbecue-time program

– bin/ – a directory holding executable programs

* barbecue-time an example program that calculates cooking times

– setup.py a script for distribution and installation

– test-data/ – directory that holds test-data

* time-config.yml a test configuration file for the barbecue-time program

Let’s look at some of the key files in the hierarchy and examine salient features of each, starting first with the barbecue-
time program because it shows most directly how to use phyles.

2.7.3 barbecue-time

1 import sys
2 import phyles
3 import barbecue
4

5 __program__ = "barbecue-time"

2 http://guide.python-distribute.org/creation.html

16 Chapter 2. Tutorial

http://guide.python-distribute.org/creation.html

phyles Documentation, Release 0.2.0b4

6 __version__ = "0.1b1"
7

8 def output_message(message, config):
9 console_width = phyles.get_terminal_size()[0]

10 if config[’width’] > console_width:
11 tplt = "Formatting ’width’ (%s) bigger than window (%s)"
12 message = tplt % (config[’width’], console_width)
13 raise barbecue.FormatError(message)
14

15 message = message.center(config[’width’])
16 config[’outlet’](message)
17

18 def report_cooking(config):
19 t = barbecue.cooking_time(config[’doneness’],
20 config[’difficulty’],
21 config[’temperature’])
22

23 message = "Cooking time is %5.2f hr." % t
24 output_message(message, config)
25

26 def finish_up(config):
27 hline = "~" * (config[’width’] - 4)
28 output_message(hline, config)
29 message = "Done with %s!" % config[’dish’]
30 output_message(message, config)
31 output_message(hline, config)
32

33 def main(config):
34 config[’difficulty’] = barbecue.difficulties[config[’dish’]]
35 config[’outlet’] = lambda s: sys.stdout.write(s + "\n")
36 report_cooking(config)
37 finish_up(config)
38

39 if __name__ == "__main__":
40 spec = phyles.package_spec(phyles.Undefined, "barbecue",
41 "schema", "barbecue-time.yml")
42 converters = {’celsius to farenheit’:
43 barbecue.celsius_to_farenheit}
44 setup = phyles.set_up(__program__, __version__, spec, converters)
45 phyles.run_main(main, setup[’config’],
46 catchall=barbecue.BarbecueError)

In terms of interacting with phyles, the most critical part of barbecue-time is in lines 40-46:

• Lines 40-41 The phyles.package_spec() function is used to retrieve the schema from the package.

• Lines 42-43 The converters dict is created as in the section title Dictionary of Converter Functions.

• Line 44 The phyles.set_up() function is used to parse command line arguments, load the schema from
the spec, validate the config, and override any config setting from the command line option --override
(-o).

• Lines 45-46 The phyles.run_main() function is used to run the main function inside a try-except block
that catches any exceptions assigned by the catchall keyword argument, and exits gracefully if such
exceptions arise.

Note: These few lines (40-46), along with specifying a schema, are all that is truely needed to interface with phyles
and take advantage of the mose useful parts of its functionality.

2.7. Example Utility 17

http://docs.python.org/2/library/stdtypes.html#dict

phyles Documentation, Release 0.2.0b4

Like any good program, barbecue-time has a main() function:

• Lines 34-35 The config is used as a global state, defining new items called ’difficulty’ and
’outlet’, that will be used in other parts of the program. Such use of a phyles.Configuration
object is convenient, but left to the discretion of the programmer.

Using a phyles.Configuration object allows for abstraction of functionality that depends on the configuration.

• Line 9 The phyles.get_terminal_size() function is used to determine the width of the console.

• Lines 10-13 The message width from the config file (keyed by ’width’) is checked against the console width.
If the message width is to large, then a FormatError exception is raised. As we’ll see upon inspection of
the file _barbecue.py, FormatError is a subclass of BarbecueError, which is the catchall exception
for graceful exit (see line 45).

• Lines 26-31 The finish_up() function further demonstrates the utility of Configuration objects and
the abstraction they allow. Note that the output_message() function does not care how the message is
displayed–except that it is unfortunately tied to the console width. Even this dependencey can be remedied
by further abstraction. For example, config could have the item:

config[’canvas_width’] = lambda: get_terminal_size()[0]

And then output_message() could be changed accordingly:

def output_message(message, config):
max_width = config[’get_canvas_width’]()
if config[’width’] > max_width:
tplt = "Formatting ’width’ (%s) bigger than window (%s)"
message = tplt % (config[’width’], max_width)
raise barbecue.FormatError(message)

message = message.center(config[’width’])
config[’outlet’](message)

Now, since config[’get_canvas_width’] can be any function (or “callable”), the backend to
which the message is sent can be anything, including a console or gui element like a Tkinter.Label.

2.7.4 _barbecue.py

The _barbecue.py file holds the main library code for the barbecue package.

1 #! /usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 difficulties = {’vegetable kabobs’: 1,
5 ’smoked salmon’: 2,
6 ’brisket’: 3}
7

8 class BarbecueError(Exception):
9 pass

10

11 class FormatError(BarbecueError):
12 pass
13

14 class TemperatureError(BarbecueError):
15 pass
16

17 def cooking_time(doneness, difficulty, T):
18 """

18 Chapter 2. Tutorial

phyles Documentation, Release 0.2.0b4

19 Return then cooking time given the desired doneness
20 cooking, the difficulty of cooking, and the temperature.
21

22 Args:
23 - doneness: desired doneness (hr•°F/dc)
24 - difficulty: difficulty of cooking for the dish (dc)
25 - T: cooking temperature (°F)
26

27 Returns: cooking time in hours (float)
28

29 >>> round(cooking_time(350, 2, 225), 2)
30 3.11
31 """
32 if T <= 120:
33 msg = "%s °F is too cold to cook!" % T
34 raise TemperatureError(msg)
35 return float(doneness * difficulty) / T
36

37 def celsius_to_farenheit(c):
38 """
39 Returns the temperature in Farenheit given temperature
40 in Celsius.
41

42 Args:
43 - c: temperature in Celsius
44

45 Returns: temperature in Farenheit (float)
46

47 >>> celsius_to_farenheit(107.222)
48 224.9996
49 """
50 c = float(c)
51 if c < -273.15:
52 raise ValueError("Impossibly cold (%s °C)!" % c)
53 else:
54 return (1.8 * c) + 32

Most of _barbecue.py documents its functionality. However, it does have some key parts:

• Line 2 This line designates the optional encoding for the file (see http://www.python.org/dev/peps/pep-0263/).
The UTF-8 encoding allows for display of the ubiquitous units “°C” and “°F” in the docstrings and error
messages.

• Lines 6-8 Some data is kept in the module, namely the conversions from dish to cooking difficulty. If larger
amounts of data are needed, then it is better to include these as so-called “package data” and use the
pkg_resources.resource_string() function from the distribute package or, failing that, the
phyles.get_data_path() function, which tries to find package data with every trick in the book.

Note: With proper utilization of python eggs, a programmer should find that use of the
pkg_resources.resource_string() function is failsafe.

• Lines 10-17 As seen in the barbecue-time file (lines 45-46), the BarbecueError is used as a catchall for
anticipated errors, allowing the program to exit gracefully if any are raised while executing the main()
function.

Created here are the BarbecueError and a couple of decendants, corresponding to problems
with formatting and nonsensical cooking temperatures (lines 34-36). Since these exceptions are
BarbecueError or inherit from it, then they fall under the catchall and trigger graceful exit.

2.7. Example Utility 19

http://www.python.org/dev/peps/pep-0263/
http://pypi.python.org/pypi/distribute
http://goo.gl/9dQEK

phyles Documentation, Release 0.2.0b4

2.7.5 setup.py

The setup.py script directs the distribution and installation of python packages. See http://guide.python-
distribute.org/creation.html for a complete discussion.

Below is a partial (acutally, almost complete) listing of setup.py mainly to (1) show the minimal required keyword
arguments and (2) show how to use the following keyword arguments of the setup() function:

• packages

• include_package_data

• package_data

• scripts

1 import os
2 import glob
3

4 from setuptools import setup, find_packages
5

6 setup(name=’barbecue’,
7 version=’0.1b1’,
8 author=’James C. Stroud’,
9 author_email=’jstroud@mbi.ucla.edu’,

10 description=’Utilities for cooking barbecue.’,
11 url=’http://phyles.bravais.net/barbecue’,
12 classifiers =[
13 ’Programming Language :: Python :: 2’,
14],
15 install_requires=["distribute", "phyles >= 0.2.0"],
16 license=’LICENSE.txt’,
17 long_description=open(’README.rst’).read(),
18 packages=find_packages(),
19 include_package_data=True,
20 package_data={’’: [’*.yml’]},
21 scripts=glob.glob(os.path.join(’bin’, ’*’)))

• packages – line 18 It is notable that the keyword argument package_dir is not required, nor is
it necessary to specify the package manually names because they are found automatically by
distribute.find_packages() imported on line 4. Here, find_packages() evaluates to
[’barbecue’].

• include_package_data – line 19 This keyword argument ensures that the files found by the
package_data keyword argument will be included upon installation (not just packaging for distri-
bution).

• package_data – line 20 The empty string (”) means to include files that match the correspond-
ing patterns ([’*yml’]) for all packages listed for the packages keyword argument. Here,
these packages are found automatically. In this barbecue example {”: [’*yml’]} matches
barbecue/schema/barbecue-time.yml.

• scripts – line 21 The value to scripts says to include all files (’*’) in the bin directory, us-
ing the glob.glob() function from the python standard library, imported on line 2. Here,
glob.glob(os.path.join(’bin’, ’*’)) evaluates to [barbecue-time].

20 Chapter 2. Tutorial

http://guide.python-distribute.org/creation.html
http://guide.python-distribute.org/creation.html
http://docs.python.org/2/library/glob.html#glob.glob

CHAPTER

THREE

PHYLES API

3.1 API Overview

The phyles API has several functions and classes to facilitate the construction of medium-sized utilites. These func-
tions and classes are divided into four categories:

• Classes for Configurations and Schemata

• Functions for Configurations and Schemata

• Functions for Files and Directories

• Functions for User Interaction

• Functions for a One-Size-Fits-All Runtime

3.2 Classes for Configurations and Schemata

• phyles.Schema encapsulates a schema and wraps phyles.sample_config, phyles.validate_config, and
phyles.read_config for convenience

• phyles.Configuration encapsulates a configuration, remembering values before any conversion

3.3 Functions for Configurations and Schemata

• phyles.read_schema makes a schema from a specification in a YAML file

• phyles.load_schema makes a schema a specification in YAML text, a mapping, or a list of 2-tuples with
unique keys

• phyles.sample_config produces a sample config from a schema

• phyles.validate_config validates a config file with a schema

• phyles.read_config reads a yaml config file and validates the config with a schema

3.4 Functions for Files and Directories

• phyles.last_made returns the most recently created file in a directory

• phyles.get_home_dir returns the users home directory in a representation native to the host OS

21

phyles Documentation, Release 0.2.0b4

• phyles.get_data_path returns the absolute path to a data directory within a package

• phyles.package_spec reads and returns the contents a schema specification somewhere in a package as YAML
text

• phyles.prune recursively deletes files matching specified unix sytle patterns

3.5 Functions for User Interaction

• phyles.wait_exec waits for a command to execute via a system call and returns the output from stdout; slightly
more convenient than popen2.Popen3

• phyles.doyn queries user for yes/no input from raw_input() and can execute an optional command with
phyles.wait_exec

• phyles.banner prints a banner for the program to stdout

• phyles.usage uses optparse.OptionParser to print usage and can print an optional error message, if
provided.

• phyles.default_argparser returns a default argparse.ArgumentParser with mutually exclusive tem-
plate, config, and override arguments added

• phyles.get_terminal_size returns the terminal size as a (width, height) tuple (works with Linux, OS X,
Windows, Cygwin)

3.6 Functions for a One-Size-Fits-All Runtime

• phyles.set_up sets up the runtime with an argparse.ArgParser, loads a schema and validates a config
with config override, and prepares state for graceful recovery from user error

• phyles.run_main trivial try-except block for graceful recovery from anticipated types of user error

3.7 API Details

phyles: A package to simplify authoring utilites. Copyright (C) 2013 James C. Stroud All rights reserved.

class phyles.Schema(*args, **kwds)
An OrderedDict subclass that provides identity for schemata.

A Schema has an implicit structure and is created by the load_schema() or read_schema() functions.
See the documentation in load_schema() for a detailed explanation.

Warning: Creating instances of Schema through its class constructor (i.e. ’__init__’) is not yet
advised or supported and may break forward compatibility.

read_config(*args, **kwargs)
This is a wrapper for read_config() (see documentation therein).

Comparison of usage with read_config():

phyles.read_config(schema, config)
schema.read_config(config)

22 Chapter 3. Phyles API

http://docs.python.org/2/library/popen2.html#popen2.Popen3
http://docs.python.org/2/library/functions.html#raw_input
http://docs.python.org/2/library/optparse.html#optparse.OptionParser
http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser

phyles Documentation, Release 0.2.0b4

sample_config(*args, **kwargs)
This is a wrapper for sample_config() (see documentation therein).

Comparison of usage with sample_config():

phyles.sample_config(schema)
schema.sample_config()

validate_config(*args, **kwargs)
This is a wrapper for validate_config() (see documentation therein).

Comparison of usage with validate_config():

phyles.validate_config(schema, config)
schema.validate_config(config)

class phyles.Configuration(config=None)
An OrderedDict subclass that encapsulates configurations and also remembers the original input.

A Configuration has a specific structure and is creatd by validate_config() or read_config()
functions, usually by the latter. The Configuration class is exposed in the API purely for purposes of
documentation.

Attributes:

original: the original config as an OrderedDict, allowing the remembering of user input while also
allowing conversion

>>> colors = {’red’: ’ff0000’,
... ’green’: ’00ff00’,
... ’blue’: ’0000ff’}
>>> c = Configuration({’color’: ’blue’})
>>> c[’color’] = colors[c[’color’]]
>>> c[’color’]
>>> ’0000ff’
>>> c.original[’color’]
’blue’

Warning: Creating instances of Configuration through its class constructor (i.e. with
phyles.Configuration()) is not yet advised or supported and may break forward compatibility.

phyles.read_schema(yaml_file, converters=None)
Loads the schema specified in the file named in yaml_file. This function simply opens and reads the yaml_file
before sending its contents to load_schema() to produce the Schema.

Args: yaml_file: name of a yaml file holding the specification

converters: a dict of converters keyed by config entry names, as described in load_schema()

Returns: a Schema as described in load_schema()

phyles.load_schema(spec, converters=None)
Creates a Schema from the specification, spec.

Note: If the schema specification is in a YAML file, then use phyles.read_schema(), which is a conve-
nience wrapper around load_schema().

Args:

3.7. API Details 23

http://docs.python.org/2/library/stdtypes.html#dict

phyles Documentation, Release 0.2.0b4

spec: Can either be YAML text, a list of 2-tuples with unique first elements, or a mapping
object (e.g. dict). If the schema is in a YAML file, then use phyles.read_schema().
The values of the items of spec are:

1. converter

2. example value

3. help string

4. default value (optional)

Example YAML specification as a complete YAML file:

%YAML 1.2

!!omap
- ’pdb model’ : [str, my_model.pdb, null]
- ’reset b-facs’ :

- float
- -1
- "New B factor (-1 for no reset)"
- -1

- ’cell dimensions’ : [get_cell, [200, 200, 200], null]

The same example as a python specification via a list of 2-tupleswith unique first elements:

[(’pdb model’,
[’str’, ’my_model.pdb’, None]),
(’reset b-facs’,
[’float’, -1, ’New B factor (-1 for no reset)’, -1]),
(’cell dimensions’,
[get_cell, [200, 200, 200], None])]

For completeness, the same example as a dict:

{’pdb model’: [’str’, ’my_model.pdb’, None],
’reset b-facs’:
[’float’, -1, ’New B factor (-1 for no reset)’, -1],

’cell dimensions’: [get_cell, [200, 200, 200], None]}

Note: The python structure (list of 2-tuples) of this example specification is simply the
result of parsing the YAML with the PyYAML parser. Because of isomorphism between a list
of 2-tuples with unique first elements, OrderedDicts, dicts, and other mapping types,
the specification may take any of these forms.

The following YAML representation of a config conforms to the preceding schema specification:

pdb model : model.pdb
reset b-facs : 20
cell dimensions : [59, 95, 159]

converters: A dict of callables keyed by converter name (which must match the converter names
in spec), The callables convert values from the actual config.

Converters that correspond to several native python types and YAML types do not need to be
explicitly specified. The names that these converters take in a schema specification and the
corresponding python types produced by these converters are:

24 Chapter 3. Phyles API

http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict
http://pyyaml.org/
http://docs.python.org/2/library/stdtypes.html#dict
http://en.wikibooks.org/wiki/Python_Programming/
http://docs.python.org/2/library/types.html
http://yaml.org/type/

phyles Documentation, Release 0.2.0b4

• map: dict

• dict: dict (encoded as a YAML dict)

• omap: collections.OrderedDict

• odict: collections.OrderedDict (alias for “omap”)

• pairs: list of 2-tuples

• set: set

• seq: list

• list: list (encoded as a sequence, see list())

• tuple: tuple (encoded as a sequence, see tuple())

• bool: bool

• float: float

• int: int

• long: long (encoded as a YAML int)

• complex: complex (encoded as a sequence of 0 to 2, or as a string representation, e.g.
’3+2j’; see complex())

• str: str

• unicode: unicode

• timestamp: datetime.datetime (encoded as a YAML timestamp)

• slice: slice (encoded as a sequence of 1 to 3, see slice())

Note: Except where noted, these types are encoded according to the YAML types specification
in a YAML representation of a config.

Returns: A fully constructed schema in the form of a Schema. Most notably, the strings specifying the
converters in the spec are replaced by the converters themselves.

>>> import phyles
>>> import textwrap
>>> def get_cell(cell):

return [float(f) for f in cell]
>>> converters = {’get_cell’ : get_cell}
>>> y = ’’’

%YAML 1.2

!!omap
- ’pdb model’ : [str, my_model.pdb, null]
- ’reset b-facs’ :

- float
- -1
- "New B factor (-1 for no reset)"
- -1

- ’cell dimensions’ : [get_cell, [200, 200, 200], null]
’’’

>>> phyles.load_schema(textwrap.dedent(y), converters=converters)
Schema([(’pdb model’,

[<type ’str’>, ’my_model.pdb’, None]),

3.7. API Details 25

http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict
http://yaml.org/type/dict.html
http://docs.python.org/2/library/collections.html#collections.OrderedDict
http://docs.python.org/2/library/collections.html#collections.OrderedDict
http://docs.python.org/2/library/stdtypes.html#set
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#tuple
http://yaml.org/type/int.html
http://docs.python.org/2/library/functions.html#complex
http://docs.python.org/2/library/datetime.html#datetime.datetime
http://yaml.org/type/timestamp.html
http://docs.python.org/2/library/functions.html#slice
http://yaml.org/type/

phyles Documentation, Release 0.2.0b4

(’reset b-facs’,
[<type ’float’>, -1,
’New B factor (-1 for no reset)’, -1]),

(’cell dimensions’,
[<function get_cell at 0x101d7cf50>,
[200, 200, 200], None])])

phyles.sample_config(schema)
Creates a sample config specification (returned as a str) from the schema, as described in read_schema().

Args: schema: a Schema

Returns: A str that is useful as a template config specification. Example values from the schema will be used.
Additionally, the help strings will be inserted as reasonably formatted YAML comments.

>>> import phyles
>>> import textwrap
>>> def get_cell(cell):

return [float(f) for f in cell]
>>> converters = {’get_cell’ : get_cell}
>>> y = ’’’

!!omap
- ’pdb model’ : [str, my_model.pdb, null]
- ’reset b-facs’ :

- float
- -1
- "New B factor (-1 for no reset)"
- -1

- ’cell dimensions’ : [get_cell, [200, 200, 200], null]
’’’

>>> schema = phyles.load_schema(textwrap.dedent(y),
converters=converters)

>>> print phyles.sample_config(schema)
%YAML 1.2

pdb model : my_model.pdb

New B factor (-1 for no reset)
reset b-facs : -1

cell dimensions : [200, 200, 200]

phyles.validate_config(schema, config)
Takes a YAML specification for a configuration, config, and uses the schema (as described in
load_schema()) for validation, which:

1.checks for required config entries, raising a ConfigError if any are missing

2.ensures that no unrecognized config entries are present, raising a ConfigError in any such entries are
present

3.ensures, through the use of converters, that the values given in the config specification are of the appropriate
types and within accepted limits (if applicable), raising a ConfigError if any fail to convert

4.uses the converters to turn values given in the configuration into values of the appropriate types (e.g.
the YAML str ’1+4j’ is converted into the python complex number (1+4j) if the converter is
’complex’)

26 Chapter 3. Phyles API

http://yaml.org/type/str.html

phyles Documentation, Release 0.2.0b4

Note: Why is conversion a part of validation? Conversion facilitates the end-user’s working with a
minimal subset of the YAML vocabulary. In the complex number example above, the end-user only
needs to know how complex numbers are usually represented (e.g. ’1+4j’) and not what gibbersh like
’!!python/object:__main__.SomeComplexClass’ means, where to put it, how to specify its at-
tributes, etc.

Args:

config: a mapping (e.g. OrderedDict or dict) of configuration entries

schema: a Schema as described in load_schema()

Returns: The converted config as a Configuration.

Raises: ConfigError

>>> import phyles
>>> import textwrap
>>> import yaml
>>> def get_cell(cell):

return [float(f) for f in cell]
>>> converters = {’get_cell’ : get_cell}
>>> y = ’’’

%YAML 1.2

!!omap
- ’pdb model’ : [str, my_model.pdb, null]
- ’reset b-facs’ :

- float
- -1
- "New B factor (-1 for no reset)"
- -1

- ’cell dimensions’ : [get_cell, [200, 200, 200], null]
’’’

>>> schema = phyles.load_schema(textwrap.dedent(y),
converters=converters)

>>> y = ’’’
pdb model : model.pdb
reset b-facs : 20
cell dimensions : [59, 95, 159]
’’’

>>> cfg = yaml.load(textwrap.dedent(y))
>>> cfg
{’cell dimensions’: [59, 95, 159],
’pdb model’: ’model.pdb’,
’reset b-facs’: 20}
>>> phyles.validate_config(schema, cfg)
Configuration([(’pdb model’, ’model.pdb’),

(’reset b-facs’, 20.0),
(’cell dimensions’, [59.0, 95.0, 159.0])])

phyles.read_config(schema, config_file)
Reads a YAML config file from the the file named config_file and returns the config validated by schema.

Args:

config_file: YAML file holding the config, for example:

3.7. API Details 27

http://pyyaml.org/wiki/PyYAMLDocumentation#LoadingYAML
http://docs.python.org/2/library/stdtypes.html#dict

phyles Documentation, Release 0.2.0b4

pdb model : model.pdb
reset b-facs : 20
cell dimensions : [59, 95, 159]

schema: a Schema as described in load_schema()

Returns: a Configuration

phyles.last_made(dirpath=’.’, suffix=None)
Returns the most recently created file in dirpath If provided, the news of the files with the given suffix or suffices
is returned.

The suffix parameter is either a single suffix (e.g. ’.txt’) or a sequence of suffices (e.g. [’.txt’,
’.text’]).

phyles.wait_exec(cmd, instr=None)
Waits for cmd to execute and returns the output from stdout. The cmd follows the same rules as for python’s
popen2.Popen3. If instr is provided, this string is passed to the standard input of the child process.

Except for the convenience of passing instr, this funciton is somewhat redundant with pyhon’s
subprocess.call().

phyles.doyn(msg, cmd=None, exc=<built-in function system>, outfile=None)
Uses the raw_input() builtin to query the user a yes or no question. If cmd is provided, then the function
specified by exc (default os.system()) will be called with the argument cmd.

If a file name for outfile is provided, then stdout will be directed to a file of that name.

phyles.banner(program, version, width=70)
Uses the program and version to print a banner to stderr. The banner will be printed at width (default 70).

Args: program: str

version: str

width: int

phyles.usage(parser, msg=None, width=70, pad=4)
Uses the parser (argparse.ArgumentParser) to print the usage. If msg (which can be an Exception,
str, etc.) is supplied then it will be printed as an error message, hopefully in a way that catches the user’s
eye. The usage message will be formatted at width (default 70). The pad is used to add some extra space to the
beginning of the error lines to make them stand out (default 4).

phyles.graceful(msg=None, width=70, pad=4)
Gracefully exits the program with an error message.

The msg, width and pad arguments are the same as for usage().

phyles.get_home_dir()
Returns the home directory of the account under which the python program is executed. The home directory
is represented in a manner that is comprehensible by the host operating system (e.g. C:\something\ for
Windows, etc.).

Adapted directly from K. S. Sreeram’s approach, message 393819 on c.l.python (7/18/2006). I treat this code as
public domain.

phyles.get_data_path(env_var, package_name, data_dir)
Returns the path to the data directory. First it looks for the directory specified in the env_var environment
variable and if that directory does not exists, finds data_dir in one of the following places (in this order):

1.The package directory (i.e. where the __init.py__ is for the package named by the package_name
parameter)

28 Chapter 3. Phyles API

http://docs.python.org/2/library/popen2.html#popen2.Popen3
http://docs.python.org/2/library/subprocess.html#subprocess.call
http://docs.python.org/2/library/functions.html#raw_input
http://docs.python.org/2/library/os.html#os.system
http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser

phyles Documentation, Release 0.2.0b4

2.If the package is a file, the directory holding the package file

3.If frozen, the directory holding the frozen executable

4.If frozen, the parent directory of the directory holding the frozen executable

5.If frozen, the first element of sys.path

Thus, if the package were at /path/to/my_package, (i.e. with
/path/to/my_package/__init__.py), then a very reasonable place for the data directory would
be /path/to/my_package/package-data/.

The anticipated use of this function is within the package with which the data files are associated. For this use,
the package name can be found with the global variable __package__, which for this example would have the
value ’my_package’. E.g.:

pth = get_data_path(’MYPACKAGEDATA’, __package__, ’package-data’)

This code is adapted from _get_data_path() from matplotlib __init__.py. Some parts of this code are most
likely subject to the matplotlib license.

Note: The env_var argument can be ignored using phyles.Undefined because it’s guaranteed not to be in
os.environ:

pth = get_data_path(Undefined, __package__, ’package-data’)

Warning: The use of ’__package__’ for package_name will fail in certain circumstances. For example,
if the value of __name__ is ’__main__’, then __package__ is usually None. In such cases, it is
necessary to pass the package name explicitly.

pth = get_data_path(Undefined, ’my_package’, ’package-data’)

phyles.prune(patterns, doit=False)
Recursively deletes files matching the specified unix style patterns. The doit parameter must be explicitly set to
True for the files to actually get deleted, otherwise, it just logs with logging.info() what would happen.
Raises a SystemExit if deletion of any file is unsuccessful (only when doit is True).

Example:

prune([’*~’, ’*.pyc’], doit=True)

Args:

• patterns: list of unix style pathname patterns

• doit: bool

Returns: None

Raises: SystemExit

phyles.default_argparser()
Returns a default argparse.ArgumentParser with mutually exclusive template (-t, --template) and
config (-c, --config) arguments added. It also has the override (-o, --override) option added, to over-
ride configuration items on the command line.

The argument to --override should be a valid YAML map (with the single exception that the outermost
curly braces are optional for YAML flow style). Because YAML relies on syntactically meaningful whitespace,
single quotes should surround the argument to --override.

3.7. API Details 29

http://www.python.org/dev/peps/pep-0366/
http://matplotlib.sourceforge.net/users/license.html
http://docs.python.org/2/library/logging.html#logging.info
http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser
http://yaml.org/type/map.html
http://yaml.org/spec/current.html#id2544175

phyles Documentation, Release 0.2.0b4

The following examples execute a program called program, overriding opt1 and opt2 of the config in the
file config.yml with foo and bar, respctively:

program -c config.yml -o ’opt1 : foo, opt2 : bar’

program -c config.yml -o ’{opt1 : foo, opt2 : bar}’

program -c config.yml -o ’opt1 : foo\nopt2 : bar’

Note: The latter example illustrates how YAML block style can be used with --override: a single forward
slash (\) escapes an n, which evaluates to a so-called “newline”. In other words, the YAML that corresponds to
this latter example is:

opt1 : foo
opt2 : bar

Similarly, other escape sequences can also be used with --override. For example, the following overrides
an option called sep, setting its value to the tab character:

program -c config.yml -o ’sep : "\t"’

Returns: argparse.ArgumentParser

phyles.package_spec(env_var, package_name, data_dir, specfile_name)
Reads and returns the contents a schema specification somewhere in a package as YAML text (described in
load_schema()).

This function pulls out all the stops to find the specification. It is best to try to give all of env_var, package_name,
and data_dir if they are available to have the best chance of finding the path to the specification file. See
get_data_path() for a full description.

Args: The arguments env_var, package_name, and data_dir are identical to those required in
get_data_path().

specfile_name: name of the schema specification file found within the package contents.

Returns: A YAML string specifying the schema.

phyles.set_up(program, version, spec, converters=None)
Given the name of the program (program), the version string, the specification for the schema (spec; described
in load_schema()), and converters for the schema (also described in load_schema()), this function:

1.sets up the default argparser (see default_argparser())

2.prints the template or banner as appropriate (see template() and banner())

3.creates a schema and uses it to validate the config (see load_config() and validate_config())

4.overrides items in the config according to the command line option --override or -o (see
default_argparser() for a description of --override)

5.exits gracefully with usage() if any problems are found in the command line arguments of config

6.returns a dict of the argparse.ArgumentParser, the parsed command line arguments, the
Schema, and the Configuration with keys ’argparser’, ’args’, ’schema’, ’config’,
respectively

Args: program: the program name as a str

version: the program version as a str

30 Chapter 3. Phyles API

http://yaml.org/spec/current.html#id2545757
http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser
http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser

phyles Documentation, Release 0.2.0b4

spec: a schema specification as described in load_schema()

coverters: a dict of converters as described in load_schema()

Returns: a dict with the keys:

1.’argparser’: argparse.ArgumentParser

2.’args’: the parsed command lines arguments as a argparse.Namespace

3.’schema’: schema for the configuration as a Schema

4.’config’: the configuration as a Configuration

phyles.run_main(main, config, catchall=<class ‘phyles._phyles.DummyException’>)
Trivial convenience function that runs a main function within a try-except block. The main function should
take as its sole argument the config, which is a mapping object that holds the configuration (usually a
Configuration object). The catchall is an Exception or a tuple of Exceptions, which if caught
will result in a graceful exit of the program (see graceful()).

Args: main: a function, equivalent to the main function of a program

config: a mapping object, usually a Configuration which is generally produced by
validate_config() or read_config()

catchall: an Exception or a tuple of Exceptions

phyles.get_terminal_size()
return width and height of console; works on linux, os x,windows,cygwin(windows)

based on https://gist.github.com/jtriley/1108174 (originally retrieved from: http://goo.gl/CcPZh)

Returns: 2-tuple of int

3.7. API Details 31

http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser
http://docs.python.org/2/library/argparse.html#argparse.Namespace
https://gist.github.com/jtriley/1108174
http://goo.gl/CcPZh

phyles Documentation, Release 0.2.0b4

32 Chapter 3. Phyles API

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

33

phyles Documentation, Release 0.2.0b4

34 Chapter 4. Indices and tables

PYTHON MODULE INDEX

p
phyles, 22

35

phyles Documentation, Release 0.2.0b4

36 Python Module Index

INDEX

B
banner() (in module phyles), 28

C
Configuration (class in phyles), 23

D
default_argparser() (in module phyles), 29
doyn() (in module phyles), 28

G
get_data_path() (in module phyles), 28
get_home_dir() (in module phyles), 28
get_terminal_size() (in module phyles), 31
graceful() (in module phyles), 28

L
last_made() (in module phyles), 28
load_schema() (in module phyles), 23

P
package_spec() (in module phyles), 30
phyles (module), 22
prune() (in module phyles), 29

R
read_config() (in module phyles), 27
read_config() (phyles.Schema method), 22
read_schema() (in module phyles), 23
run_main() (in module phyles), 31

S
sample_config() (in module phyles), 26
sample_config() (phyles.Schema method), 22
Schema (class in phyles), 22
set_up() (in module phyles), 30

U
usage() (in module phyles), 28

V
validate_config() (in module phyles), 26
validate_config() (phyles.Schema method), 23

W
wait_exec() (in module phyles), 28

37

	Introduction to Phyles
	Tutorial
	The Calculation
	The Config Format
	Conversion
	The Schema Specification
	The Schema
	The Configuration
	Example Utility

	Phyles API
	API Overview
	Classes for Configurations and Schemata
	Functions for Configurations and Schemata
	Functions for Files and Directories
	Functions for User Interaction
	Functions for a One-Size-Fits-All Runtime
	API Details

	Indices and tables
	Python Module Index
	Index

