
SimpleITK in R

Richard Beare

June 13, 2018

Abstract

R, also known as “Gnu S” is a widely used, open source, language based environment for statis-
tics and computational modelling. It will be reasonably familiar to users of other interactive,
interpreted environments, like Matlab or python. This article provides an introduction to the
SimpleITK package that has been built using the Swig generated wrapping of the SimpleITK
library. Note that some of the text is written for readers unfamiliar with R and can be skipped
by experienced users.

Contents

1 Introduction 1

2 Very basic R tutorial 2

3 Getting started with SimpleITK 4
3.1 Image anatomy and access methods . 4
3.2 Image operations with Simple ITK classes . 13
3.3 Still to come . 16
3.4 Caveats . 17

4 Building and Installing 17

5 Development 17

1 Introduction

R is an advanced language environment that supports extension via an advanced package mechanism
and object-oriented and generic programming mechanisms. The traditional application domain of
R is in interactive statistical analysis, but the language is general purpose and facilities are available
to support many forms of computational work. There are already a number of packages for medical
imaging and general purpose imaging, but none with the extent of low level operators provided by
SimpleITK. R has quite nice features that makes interfacing to objects like images quite convenient.
This package makes extensive use of external references and language operator overloading facilities.

2

2 Very basic R tutorial

R has extensive online documentation - see the Documentation links on the r-project pages. Here
are some basic concepts to start the project. Skip to the next section if you are already familiar
with R.

• Assignment - traditionally the assignment operator is <-, but = can be used in most places
now:

> a <- 1 # assign a variable

> b = a

• Creating vectors - everything in R is at least a vector, and vectors can contain numbers or
strings:

> a <- c(1,2,34, 20, 10)

> a

[1] 1 2 34 20 10

> b = c('a', 'k', 'hello')
> b

[1] "a" "k" "hello"

> d <- 1:10

> d

[1] 1 2 3 4 5 6 7 8 9 10

c is the concatenate operator and can be used with vectors and lists.

• Displaying objects - as seen above, typing a variable name invokes the generic show method,
which typically provides an informative display of an obje. We’ll see how this comes in handy
later with images.

• Creating arrays

> b<-array(1:20, dim=c(5,4))

> b

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

• Vector and array subsetting - there are a rich set of these operations with capabilities similar
to Matlab. Indexing starts from 1.

3

> a[1:2]

[1] 1 2

> a[3:1]

[1] 34 2 1

> a[-1] # delete first element

[1] 2 34 20 10

> b[1,] # first row of b

[1] 1 6 11 16

> b[1,c(1,4,2)]

[1] 1 16 6

• Lists - can contain different object types

> L1 = list('a', 1, 'hello')
> L1

[[1]]

[1] "a"

[[2]]

[1] 1

[[3]]

[1] "hello"

> is.list(L1)

[1] TRUE

> L1[[2]]

[1] 1

Notice that we are using the double bracket operator to access list elements.

• Naming components - so far we have been illustrating standard, index-based, access. It is
possible to name array, vector and list components which provides options for clear accessing.

> L1 <- list(first=1, second='hello', third=b)

> L1$second

[1] "hello"

4

> L1[["first"]]

[1] 1

> colnames(b) <- c("first", "second", "third", "last")

> b[,"last"]

[1] 16 17 18 19 20

These options provide useful ways of keeping consistency in complex analyses with evolving
data structures.

• Other data structures. The main structure not discussed here is a special list, called a data
frame, that is widely used by the statistical model-fitting procedures. Classes, methods and
other language facilities are also available, but used mainly by package developers.

3 Getting started with SimpleITK

Building and installation instructions are later. Lets jump straight into some examples. In order to
display images you need to install ImageJ with the nifti plugin, and be in your path. The results in
this docment are displayed slightly differently, using internal R plotting routines, for compatability
with the Sweave document processing.

3.1 Image anatomy and access methods

• Load the SimpleITK library. This may require that the R_LIBS environment variable is set.

> library(SimpleITK)

[1] "show"

• Load an image

> im <- ReadImage(system.file("data/cthead1.png", package="SimpleITK"))

• Display

> im

3.1 Image anatomy and access methods 5

• Get some information about the image

> print(im)

Image (0x8481120)

RTTI typeinfo: itk::Image<unsigned char, 2u>

Reference Count: 1

Modified Time: 1889

Debug: Off

Object Name:

Observers:

none

Source: (none)

Source output name: (none)

Release Data: Off

Data Released: False

Global Release Data: Off

PipelineMTime: 1877

UpdateMTime: 1888

RealTimeStamp: 0 seconds

3.1 Image anatomy and access methods 6

LargestPossibleRegion:

Dimension: 2

Index: [0, 0]

Size: [256, 256]

BufferedRegion:

Dimension: 2

Index: [0, 0]

Size: [256, 256]

RequestedRegion:

Dimension: 2

Index: [0, 0]

Size: [256, 256]

Spacing: [0.352778, 0.352778]

Origin: [0, 0]

Direction:

1 0

0 1

IndexToPointMatrix:

0.352778 0

0 0.352778

PointToIndexMatrix:

2.83465 0

0 2.83465

Inverse Direction:

1 0

0 1

PixelContainer:

ImportImageContainer (0x751dc70)

RTTI typeinfo: itk::ImportImageContainer<unsigned long, unsigned char>

Reference Count: 1

Modified Time: 1885

Debug: Off

Object Name:

Observers:

none

Pointer: 0x7d7f250

Container manages memory: true

Size: 65536

Capacity: 65536

> im$GetSpacing()

[1] 0.3527778 0.3527778

> im$GetSize()

3.1 Image anatomy and access methods 7

[1] 256 256

These vector quantities are translated directly to R vectors. The same applies to filters, as
we’ll see later.

• Get one pixel value

> im[100, 120]

[1] 210

• Extract the first 100 columns

> im[1:100,]

• Remove the first 100 rows

> im[,-(1:100)]

3.1 Image anatomy and access methods 8

• Subsample by 2

> im[seq(1,256, by=2), seq(1,256, by=2)]

3.1 Image anatomy and access methods 9

As you can see, we can use array access techniques on images. The results of each of these
operations is an image, not an array. These operations are constrained so that rules about
image spacing and orientation are preserved. For example, errors are raised if directions are
flipped or if spacing is not uniform.

• Lets explore the image class in a little more detail to find out what access methods are
available:

> getMethod('$', class(im))

Method Definition:

function (x, name)

{

accessorFuns = list(Equal = Image_Equal, GetITKBase = Image_GetITKBase,

GetPixelID = Image_GetPixelID, GetPixelIDValue = Image_GetPixelIDValue,

GetDimension = Image_GetDimension, GetNumberOfComponentsPerPixel = Image_GetNumberOfComponentsPerPixel,

GetNumberOfPixels = Image_GetNumberOfPixels, GetOrigin = Image_GetOrigin,

SetOrigin = Image_SetOrigin, GetSpacing = Image_GetSpacing,

SetSpacing = Image_SetSpacing, GetDirection = Image_GetDirection,

SetDirection = Image_SetDirection, TransformIndexToPhysicalPoint = Image_TransformIndexToPhysicalPoint,

3.1 Image anatomy and access methods 10

TransformPhysicalPointToIndex = Image_TransformPhysicalPointToIndex,

TransformPhysicalPointToContinuousIndex = Image_TransformPhysicalPointToContinuousIndex,

TransformContinuousIndexToPhysicalPoint = Image_TransformContinuousIndexToPhysicalPoint,

GetSize = Image_GetSize, GetHeight = Image_GetHeight,

GetWidth = Image_GetWidth, GetDepth = Image_GetDepth,

CopyInformation = Image_CopyInformation, GetMetaDataKeys = Image_GetMetaDataKeys,

HasMetaDataKey = Image_HasMetaDataKey, GetMetaData = Image_GetMetaData,

SetMetaData = Image_SetMetaData, EraseMetaData = Image_EraseMetaData,

GetPixelIDTypeAsString = Image_GetPixelIDTypeAsString,

ToString = Image_ToString, GetPixelAsInt8 = Image_GetPixelAsInt8,

GetPixelAsUInt8 = Image_GetPixelAsUInt8, GetPixelAsInt16 = Image_GetPixelAsInt16,

GetPixelAsUInt16 = Image_GetPixelAsUInt16, GetPixelAsInt32 = Image_GetPixelAsInt32,

GetPixelAsUInt32 = Image_GetPixelAsUInt32, GetPixelAsInt64 = Image_GetPixelAsInt64,

GetPixelAsUInt64 = Image_GetPixelAsUInt64, GetPixelAsFloat = Image_GetPixelAsFloat,

GetPixelAsDouble = Image_GetPixelAsDouble, GetPixelAsVectorInt8 = Image_GetPixelAsVectorInt8,

GetPixelAsVectorUInt8 = Image_GetPixelAsVectorUInt8,

GetPixelAsVectorInt16 = Image_GetPixelAsVectorInt16,

GetPixelAsVectorUInt16 = Image_GetPixelAsVectorUInt16,

GetPixelAsVectorInt32 = Image_GetPixelAsVectorInt32,

GetPixelAsVectorUInt32 = Image_GetPixelAsVectorUInt32,

GetPixelAsVectorInt64 = Image_GetPixelAsVectorInt64,

GetPixelAsVectorUInt64 = Image_GetPixelAsVectorUInt64,

GetPixelAsVectorFloat32 = Image_GetPixelAsVectorFloat32,

GetPixelAsVectorFloat64 = Image_GetPixelAsVectorFloat64,

GetPixelAsComplexFloat32 = Image_GetPixelAsComplexFloat32,

GetPixelAsComplexFloat64 = Image_GetPixelAsComplexFloat64,

SetPixelAsInt8 = Image_SetPixelAsInt8, SetPixelAsUInt8 = Image_SetPixelAsUInt8,

SetPixelAsInt16 = Image_SetPixelAsInt16, SetPixelAsUInt16 = Image_SetPixelAsUInt16,

SetPixelAsInt32 = Image_SetPixelAsInt32, SetPixelAsUInt32 = Image_SetPixelAsUInt32,

SetPixelAsInt64 = Image_SetPixelAsInt64, SetPixelAsUInt64 = Image_SetPixelAsUInt64,

SetPixelAsFloat = Image_SetPixelAsFloat, SetPixelAsDouble = Image_SetPixelAsDouble,

SetPixelAsVectorInt8 = Image_SetPixelAsVectorInt8, SetPixelAsVectorUInt8 = Image_SetPixelAsVectorUInt8,

SetPixelAsVectorInt16 = Image_SetPixelAsVectorInt16,

SetPixelAsVectorUInt16 = Image_SetPixelAsVectorUInt16,

SetPixelAsVectorInt32 = Image_SetPixelAsVectorInt32,

SetPixelAsVectorUInt32 = Image_SetPixelAsVectorUInt32,

SetPixelAsVectorInt64 = Image_SetPixelAsVectorInt64,

SetPixelAsVectorUInt64 = Image_SetPixelAsVectorUInt64,

SetPixelAsVectorFloat32 = Image_SetPixelAsVectorFloat32,

SetPixelAsVectorFloat64 = Image_SetPixelAsVectorFloat64,

SetPixelAsComplexFloat32 = Image_SetPixelAsComplexFloat32,

SetPixelAsComplexFloat64 = Image_SetPixelAsComplexFloat64,

MakeUnique = Image_MakeUnique, SetPixel = Image_SetPixel,

GetPixel = Image_GetPixel)

idx = pmatch(name, names(accessorFuns))

if (is.na(idx))

return(callNextMethod(x, name))

f = accessorFuns[[idx]]

3.1 Image anatomy and access methods 11

function(...) {

f(x, ...)

}

}

<bytecode: 0x79a0108>

<environment: namespace:SimpleITK>

Signatures:

x

target "_p_itk__simple__Image"

defined "_p_itk__simple__Image"

This provides a list of accessor functions that can be used via the $ notation illustrated above.
Most classes create by the swig processing work this way.

• Finally, lets allocate an image

> im2 <- Image(10,10, 20, 'sitkUInt16')
> print(im2)

Image (0x58758d0)

RTTI typeinfo: itk::Image<unsigned short, 3u>

Reference Count: 1

Modified Time: 2033

Debug: Off

Object Name:

Observers:

none

Source: (none)

Source output name: (none)

Release Data: Off

Data Released: False

Global Release Data: Off

PipelineMTime: 0

UpdateMTime: 0

RealTimeStamp: 0 seconds

LargestPossibleRegion:

Dimension: 3

Index: [0, 0, 0]

Size: [10, 10, 20]

BufferedRegion:

Dimension: 3

Index: [0, 0, 0]

Size: [10, 10, 20]

RequestedRegion:

Dimension: 3

Index: [0, 0, 0]

Size: [10, 10, 20]

Spacing: [1, 1, 1]

3.1 Image anatomy and access methods 12

Origin: [0, 0, 0]

Direction:

1 0 0

0 1 0

0 0 1

IndexToPointMatrix:

1 0 0

0 1 0

0 0 1

PointToIndexMatrix:

1 0 0

0 1 0

0 0 1

Inverse Direction:

1 0 0

0 1 0

0 0 1

PixelContainer:

ImportImageContainer (0x48b0190)

RTTI typeinfo: itk::ImportImageContainer<unsigned long, unsigned short>

Reference Count: 1

Modified Time: 2034

Debug: Off

Object Name:

Observers:

none

Pointer: 0x75acd50

Container manages memory: true

Size: 2000

Capacity: 2000

The important points to note here is that the enumerated type describing the pixel type is
represented as a string.

• Translating images to R arrays:

> arr <- as.array(im)

> class(im)

[1] "_p_itk__simple__Image"

attr(,"package")

[1] "SimpleITK"

> class(arr)

3.2 Image operations with Simple ITK classes 13

[1] "matrix"

> # now we can do something crazy

> s <- svd(arr)

• And back again

> nim <- as.image(s$u)

> nim

Points to note here - R only supports integer and double types (logical types are also integers).
Therefore conversion of any image will end up as an array of one of these types. Similarly,
conversion of arrays to images also ends up as one of these types. By default, any R matrix
will be double precision, but can be coerced to integer using the as.integer or storage.mode
functions. Image pixel types can be converted using the Cast filters.

3.2 Image operations with Simple ITK classes

Finally, onto the crux of the matter. Let’s look at doing some image filtering. There are two basic
approaches with SimpleITK - the procedural and the filter approach

3.2 Image operations with Simple ITK classes 14

• Gaussian blurring:

> res <- SmoothingRecursiveGaussian(im, 3)

> res

• or

> filt <- SmoothingRecursiveGaussianImageFilter()

> # check the accessors

> getMethod('$', class(filt))

Method Definition:

function (x, name)

{

accessorFuns = list(SetSigma = SmoothingRecursiveGaussianImageFilter_SetSigma,

GetSigma = SmoothingRecursiveGaussianImageFilter_GetSigma,

SetNormalizeAcrossScale = SmoothingRecursiveGaussianImageFilter_SetNormalizeAcrossScale,

NormalizeAcrossScaleOn = SmoothingRecursiveGaussianImageFilter_NormalizeAcrossScaleOn,

NormalizeAcrossScaleOff = SmoothingRecursiveGaussianImageFilter_NormalizeAcrossScaleOff,

GetNormalizeAcrossScale = SmoothingRecursiveGaussianImageFilter_GetNormalizeAcrossScale,

3.2 Image operations with Simple ITK classes 15

GetName = SmoothingRecursiveGaussianImageFilter_GetName,

ToString = SmoothingRecursiveGaussianImageFilter_ToString,

Execute = SmoothingRecursiveGaussianImageFilter_Execute)

idx = pmatch(name, names(accessorFuns))

if (is.na(idx))

return(callNextMethod(x, name))

f = accessorFuns[[idx]]

function(...) {

f(x, ...)

}

}

<environment: namespace:SimpleITK>

Signatures:

x

target "_p_itk__simple__SmoothingRecursiveGaussianImageFilter"

defined "_p_itk__simple__SmoothingRecursiveGaussianImageFilter"

> filt$SetSigma(5)

> filt$NormalizeAcrossScaleOn()

> res2 <- filt$Execute(im)

> res2

3.3 Still to come 16

Notice that we can explore the accessor functions in the same way as images. Also note
that calling the accessor functions without assigning the result to a variable causes the show
method to display a representation of the object.

• Cryptic error messages - unfortunately it isn’t easy to figure out what arguments are expected
by the procedural interface. For example, if we assumed that the sigma parameter was a
vector, we’d get the following unhelpful response:

> try(res3 <- SmoothingRecursiveGaussian(im, c(3, 3)))

> geterrmessage()

[1] "Error: processing vignette 'SimpleITK_tutorial.Rnw' failed with diagnostics:\n chunk 14 \nError in im[c(1:100, 100:1),] : X spacing is not uniform\n\n"

Note that the try and geterrmessage commands are to allow Sweave to complete. They aren’t
needed in interactive sessions.

3.3 Still to come

Image arithmetic.

Testing.

3.4 Caveats 17

3.4 Caveats

Beware of images from saved workspaces. External references, which is how images are represented,
are not preserved when objects are saved to disk. Thus, attempting to use images from a saved
workspace will result in ungraceful crashes.

4 Building and Installing

Fetch SimpleITK from the git repository. Visit https://www.itk.org/SimpleITKDoxygen/html/
Wrapping.html for the latest instructions on building and installing.

5 Development

https://www.itk.org/SimpleITKDoxygen/html/Wrapping.html
https://www.itk.org/SimpleITKDoxygen/html/Wrapping.html

	Introduction
	Very basic R tutorial
	Getting started with SimpleITK
	Image anatomy and access methods
	Image operations with Simple ITK classes
	Still to come
	Caveats

	Building and Installing
	Development

