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Fig. 1. An overview of the TaDiff model (short for Treatment-aware Diffusion Probabilistic model). The goal of our method is to generate a set of
synthetic MRIs and tumor progression masks for any given target/future treatment (e.g., TMZ: temozolomide) and time point (e.g., Day: 225) with
source sequential MRIs (e.g., s1, s2, and s3) and treatments (e.g., CRT: chemoradiation at Day 36, TMZ at Days 64 and 127). More details are
presented in Section III.

It is noteworthy that the reverse conditional probability is
tractable when conditioned on x0:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) , (6)

where

µ̃t (xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt , (7)

and
β̃t =

1− ᾱt−1

1− ᾱt
βt . (8)

because of x0 = 1√
ᾱt
(xt −

√
1− ᾱtϵt) (Eq. 2), then

µ̃t =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
. (9)

3) Training: For the reverse diffusion process, a neural
network is trained to approximate the conditional probability
distributions, i.e., train µθ to predict µ̃t. Because xt is
available (Eq. 9) as input in training time, it is common to
predict ϵ from the input xt at time step t, thus

µ̃t ≈ µθ(xt, t) :=
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵ̃θ(xt, t)
)
. (10)

By letting Σθ(xt, t) = β̃tI, and letting the forward variances
βt to be a sequence of linearly increasing constants from β1 =
10−4 to βT = 0.02, and some other simplifications in the
work [26], we can minimize the MSE loss of the noise to
train the neural network.

Et∼[1,T ],x0,ϵ

[
∥ϵ− ϵ̃θ(xt, t)∥2

]
. (11)

4) Inference: A neural network trained in the reverse dif-
fusion process can be used to generate data. This is achieved
by initializing xT ∼ N (0,1) and, in T steps, denoising the
image by using

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵ̃θ (xt, t)

)
+

√
β̃tz . (12)

where z ∼ N (0,1) is new noise added between each denois-
ing step.

III. METHODS

The classical DDPM approach requires only xt for training,
resulting in arbitrary images x0 when sampling from random
noise during inference. However, our goal is not to generate
arbitrary images but to generate realistic MRIs and tumor
growth maps for any target (future) treatment-day point from
a given sequence of source/conditioning images and treatment
information. To this end, we propose the treatment-aware
diffusion (TaDiff) model for multi-parametric MRI generation
and tumor growth prediction on longitudinal data. Our TaDiff
model introduces a treatment-aware mechanism for condition-
ing a diffusion model while also employing a joint learning
strategy to segment the tumor and project its future growth
during diffusion processes. Figure 2 illustrates an overview of
the TaDiff pipeline.

A. Problem Settings

Let tumor binary masks M ∈ RL×H×W×D be longitudinal
3D tumor volumes with temporal length L. The correspond-
ing longitudinal MRI scans X ∈ RL×C×H×W×D with C
channels. In the current study, we consider C = 3 due to
the availability of three inputs: T1-weighted (T1), contrast-
enhanced T1 (T1C), and fluid-attenuated inversion recovery
(FLAIR) images. The corresponding treatment information
is represented as T = {τ1, τ2, . . . , τl, . . . , τL}, indicating
the treatment distribution, with the associated treatment days
defined as D = {d1, d2, . . . , dl, . . . , dL} ∀ d ∈ N0 and
0 ≤ dl−1 < dl. This work considers two treatment types:
chemoradiation (CRT) and temozolomide (TMZ), specified as
τ ∈ {1, 2} ∼ T .

We randomly sample a sorted sequence of three scalar
indices from available longitudinal exams as conditional
sources, i.e. S = {s1, s2, s3}, such that si ∈ [1, . . . , L − 1]
and si ≤ si+1. Then we sample a scalar index of future
(target) sessions from the rest of future exams, that is,
f ∈ [s3 + 1, . . . , L]. The set of conditional MRIs X is
XS ∈ R3×C×H×W×D and the set of future/target MRIs
is Xf ∈ R1×C×H×W×D, correspondingly, we also get the
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