
How to Create a Search Engine
An Introduction to Information Retrieval Systems

Introduction
Data is often referred to as the new oil, and just like oil, it’s rather useless without processing
and refinement. Information Retrieval (IR) systems are crucial in this context, and act as a
gateway to knowledge and empowering individuals.

You would be familiar with these systems:
● Google
● ChatGPT
● Document finder
● Keyword search in favorite application

In this article, I will introduce how various IR systems function and demonstrate two possible
implementations.

Problem
As a research-aholic, I spend more time than I’d like sifting through useless information.

In the beginning of my Tangible AI internship I came across a corpus of books and transcribed
lectures from a particular health niche. Due to the sheer volume, I sought guidance online to
help distill the important parts.

Fortunately, I found several communities and individuals willing to share their domain expertise.
I was exposed to a myriad of efforts attempting to solve the same problem I faced. These
solutions consisted of basic keyword searches.

This sparked an idea for my final internship project – to create a semantic search engine.



Search Models
Before jumping to technicalities, it’s important to understand the how’s and what’s of IR
systems.

Models mostly fit into one of these 3 categories:
● Set theoretic (boolean)
● Algebraic (vector space)
● Probabilistic

My project will explore algebraic models.

Set Theoretic (Boolean)
Boolean models are the most basic form of search – often found in keyword search engines.

These models represent documents and queries as mathematical sets of terms or phrases. On
these sets, boolean logic (AND, OR, NOT) is used to either include or exclude certain terms
from documents.

We can imagine an ‘AND’ search example where we want our results to include BOTH
“machine learning” and “healthcare” in the retrieved documents.

Each model has its tradeoffs:

Pros:
● Simple and effective
● Efficient on large databases
● High precision and recall when exact terms are used

Cons:
● No ranking by relevance
● Sensitive to misspellings and incapable of handling synonyms
● Incapable of understanding context

Algebraic (VSM)
Vector space models are a step up in complexity and capability – a staple in modern search.

These models represent documents and queries as vectors in multi-dimensional space. We
calculate the cosine similarity between document and query vectors to rank them accordingly.
Vectors with a higher cosine similarity are likely to be semantically or contextually related.



I experimented with two types of vector models:
● Term Frequency - Inverse Document Frequency
● Embeddings generated with BERT

Pros
● Contextual relevance
● Ranking capability
● Flexibility in handling misspellings and synonyms

Cons
● Computationally more expensive
● Issues with term-weighting and semantic understanding in TF-IDF models

Probabilistic
Probabilistic models offer a more statistically grounded approach – focusing on the likelihood of
relevance between document and query.



There are several types of probabilistic models:
● Binary Independence Model
● Probabilistic relevance model
● Language models
● Latent Dirichlet allocation

In simpler models, documents and queries are represented as statistical profiles. While similar
to TF-IDF, they capture more complex inter-term relationships.

Human feedback can play an important role in some probabilistic models. As users engage with
search results, their interactions can subtly update the model, further improving accuracy and
relevance.

Pros
● Adaptability and personalisation
● Capable of delivering highly relevant results (precision)

Cons
● Complexity

TF-IDF
With a basic understanding of IR systems, let’s dive into TF-IDF and embedding models.

With the goal of improving the existing keyword searches – I planned my project in two stages.
First, to build and evaluate a TF-IDF model and then compare a more sophisticated BERT
embedding implementation.

Explanation
In the early stages of development, I chose to define documents as individual sentences. The
goal was to provide a similar user experience to the existing keyword searches. By selecting
sentences as the unit of search, I’d ensure specific enough results.

Term Frequency - Inverse Document Frequency (TF-IDF) is a statistical measure used to
convert documents into a numeric representation. It evaluates how relevant a term is to a
document and corpus.

This approach generates sparse high-dimensional vectors to represent each document. The
vectors have a positional index for each unique term in the corpus’ vocabulary. The vector
dimensionality mirrors the size of our vocabulary.



These vectors are sparse because a document is unlikely to capture a large proportion of the
vocabulary. For the positions that have terms, we calculate a TF-IDF score.

The math of this model breaks down into the product of two components:

Term Frequency:
The ratio between the frequency of any term “t” and the total terms in the given document
(sentence).

Inverse Document Frequency:
A constant that represents the number of documents in a corpus that include the term “t”. Terms
that are common across the corpus have a lower IDF value. This emphasizes the corpus
specific words.

It’s easiest to understand this concept in the form of an example:

With the following corpus

We take each vector and find the Term Frequencies

Then we create a vocabulary and count the occurrence of each term across the corpus



We then plug these values into our equation and create a vector for d_1. This process is
repeated for all documents in the corpus.

Pipeline
Now that we understand the model, let's implement it with code.

The pipeline comprises of 3 general steps:
● Data processing
● Document vectorisation
● Cosine similarity search

Processing
After obtaining our text files, we can write a small function to open, read and process the
corpus.

After instantiating the spaCy “en_core_web_sm” language model, we process the files contents
and use list comprehension to separate the content into individual sentences.

Lastly, we iterate over these sentences and append them to a Pandas DataFrame for efficient
computation.

DATA_DIR = Path.cwd() / "data"



data = []

for filename in os.listdir(DATA_DIR):

if filename.endswith(".txt"):

print(filename)

# Create the file path

file_path = DATA_DIR / filename

with open(file_path, "r", encoding="utf-8") as file:

content = file.read()

# Use spaCy to tokenize the content into sentences

doc = nlp(content)

sentences = [sent.text.strip() for sent in doc.sents]

# Append each sentence to your data list, along with the

filename

for sentence in sentences:

data.append({"filename": filename, "sentence":

sentence})

df = pd.DataFrame(data)

Vectorising
Our next step is to convert the DataFrame of documents into a matrix of TF-IDF vectors.

Sklearn’s “TfidfVectorizer” class provides an efficient method for doing this.

The class is instantiated with the following hyper-parameters:
● max_df, min_df: Ignore corpus specific words above or below a specific proportion
● ngram_range: the range of n-grams extracted from the documents
● tokenizer: override the default string tokenization step

Selecting all sentences from the DataFrame, we apply the “fit_transform” function. This will
perform the following steps:

● Tokenization
● Vocabulary building – tokens that don’t meet the min/max_df criteria are excluded
● Calculate term frequencies of each document
● Compute and apply inverse document frequency
● Generate the TF-IDF matrix



from sklearn.feature_extraction.text import TfidfVectorizer

max_df = 0.85

min_df = 0.0

ngram_range = (2, 3)

def custom_tokenizer(text):

doc = nlp(text)

return [token.lemma_ for token in doc]

# Initializing the vectorizer with hyperparameters

vectorizer = TfidfVectorizer(tokenizer=custom_tokenizer, max_df=max_df,

min_df=min_df, ngram_range=ngram_range)

# Applying the vectorizer to the dataset

tfidf_matrix = vectorizer.fit_transform(df['sentence'])

Search
The search function follows this procedure:

● Vectorize user’s search query
● Calculate cosine similarity
● Return list of top-k results

The “transform” method performs a subset of the operations “fit_transform” completes, notably
omitting the vocabulary building step.

We then pass our tfidf_matrix and query_vector to Sklearn’s “cosine_similarity” function. This
calculates the angle between our query and dataset vectors.

from sklearn.metrics.pairwise import cosine_similarity

def search(query, vectorizer, tfidf_matrix, df):

# Creating a vector representation of our search query

query_vector = vectorizer.transform([query])

# Using sklearn package to perform cosine_similarity search

similarities = cosine_similarity(query_vector, tfidf_matrix)

top_indices = similarities.argsort()[0][-20:]

# Retrieve the corresponding rows from the DataFrame

top_docs = df.iloc[top_indices]

return top_docs



Evaluation explanation
A rigorous evaluation process is arguably the most important piece in any Data Science
pipeline. Without it, adjusting hyper-parameters won’t yield any actionable insight.

There are several metrics available to use when evaluating an IR system. My goal was to find
relevant documents, and so recall is what I optimized for.

Recall
Recall measures how many relevant documents your search engine is able to find. For
example, if there are 10 relevant documents in your dataset for a specific query, a 50% recall
returns 5 of those.

To perform this test we need to compile a dataset mapping queries to relevant sentences.

First, I chose 5 queries to broadly represent corpus data. An example from my project being, “Is
salt healthy?”.

With the query in mind, I used a keyword search to find representative targets. Due to the size
of the dataset, selecting 5-10 examples for each query took considerably longer than I
expected.

The pipeline for testing my model follows this procedure:
● Search the dataset using one of the queries
● Tally the results that intersect with the manually selected targets

The hyper-parameters and recall metrics are saved to a table.

Results

max_df,
min_df,
ngram_range

0.85,
0,
(1,1)

0.5,
0.1,
(1,1)

0.85,
0,
(1,2)

0.85,
0,
(1,3)

0.85,
0,
(2,3)

Recall 8 0 4 5 5

We can see that increasing n-gram range and restricting the vocabulary had deleterious effects
on recall. I found these results suffice, but It would be interesting to expand the results with
alternative document frequency (df) ranges.



Embedding
With a strong baseline established, we now shift our focus to evaluating a more modern
transformer-based architecture.

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained language
model that revolutionized NLP after its 2018 debut. It surpassed its predecessors in various
benchmarks, crowning itself as the state-of-the-art for its time.

Explanation
The features generated by NN models are far more sophisticated than TF-IDF. In a fashion
analogous to the brain, BERT was trained on massive amounts of text data, learning patterns
and contextual relationships between words.

When encoding our documents with BERT, it uses the learned knowledge to generate dense
vectors, with each dimension carrying rich information.

Pipeline
While most of our TF-IDF pipeline remains unchanged, we need to swap the TF-IDF feature
generation with BERT.

Using the SentenceTransformer framework, we instantiate a distilled BERT model optimized for
sentence embeddings.

From our DataFrame we extract the “sentence” column and convert it to a list of individual
sentence strings. The “encode” method is called with this list, generating a 384 dimension
vector for each document.

model = SentenceTransformer("all-MiniLM-L6-v2")

def generate_embeddings(df):

embeddings = model.encode(df["sentence"].tolist(),

show_progress_bar=True)

return embeddings

Results
Without any pre-processing, we see an 88% improvement in recall from 8 – to 15 with BERT
embeddings. Quite impressive.



Conclusion
I had a lot of fun developing this project and I’m extremely grateful to Hobson for his mentorship.
I encourage everyone to read Natural Language Processing in Action.

You can find my code at https://github.com/earcherc/vector-search

https://github.com/earcherc/vector-search

