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Zusammenfassung

Die Rechenleistung von Programmschleifen ist für numerische Lösungsverfahren auf modernen Compu-
terarchitekturen von besonderer Wichtigkeit. Eine performante serielle Implementierung ist die Grundlage
für die effiziente Nutzung moderner paralleler Architekturen. Um dies zu erreichen müssen Anwendungs-
entwickler größten Wert auf die Modellierung und Analyse der Rechenleistung legen. In dieser Arbeit wird
der quelloffene Kerncraft Werkzeugkasten vorgestellt, welcher Anwendungsentwickler durch automati-
sche Leistungsanalyse und -modellierung mittels statischer Quelltextauswertung und Leistungsprognosen
auf Basis der Execution-Cache-Memory und Roofline Leistungsmodelle unterstützt. Es wird gezeigt, dass
die Vorhersagen bei einer Vielzahl von schleifenbasierten Codes, auf verschiedenen modernen Architek-
turen und in allen Speicherebenen den Messwerten gut entsprechen.

Abstract

The performance of loop kernel codes on modern hardware architectures is becoming ever more impor-
tant, especially in light of the growing demand for simulations by researchers and engineers. This requires
detailed modeling and analysis by the application developer in order to achieve a good single-core perfor-
mance, which is vital for making efficient use of modern parallel architectures. In this work we present the
open source kerncraft toolkit to support application developers by automatically analyzing and modeling
the performance of loop kernel codes using static code analysis and predictions based on the Execution-
Cache-Memory and Roofline performance models. We can show that our predictions match the measured
“real-world” results on a wide variety of loop kernel code (stencil and pure streaming codes) on different
modern processor architectures, both in-cache and in memory.
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1
INTRODUCTION

Over the last decades computers have become more and more powerful, but on this path computer ar-
chitects had to overcome many performance barriers with more complex architectures. Some of these
enhancements are mostly transparent to the application developers (e.g., caches, branch prediction), but
others require understanding and active use by the software developer in order to make use of the advan-
tages (e.g., vector instructions, multiprocessing). This increases the challenge of writing efficient software,
because a deep understanding of the hardware architecture is required. With the growing demand of
high performance numerical simulations for technical and non-technical applications (e.g., weather simu-
lations, big data, games, video encoding), it is vital to support application developers with tools and means
to make efficient use of the underlying hardware architecture. The “hot spots”, where most of the runtime
is spent, need to be tuned to reduce cost in terms of machine occupation and energy consumption. This
tuning requires an in-depth understanding of the targeted architecture and is often a non-trivial task. An
optimizing compiler is a valuable asset to help the programmer obtain more efficient code, but it is still
necessary to know whether there is room for improvement.

Most algorithms in scientific computing are implemented as sequences of loops, which are frequently
called loop kernels. Often such loops are nested within other loops, then the term loop kernel sometimes
refers to the innermost loop body alone. In the simplest case, a loop kernel reads data sequentially from
an array and writes updated values, with no temporal locality. A simple triad streaming example is found
in Listing 1.1, where array a is updated by multiplying c with d and adding to array b. We will call such
kernels pure streaming kernels.

for(i=0; i<N; ++i)
a[i] = b[i] + c[i] * d[i]

Listing 1.1: Basic Triad Streaming Kernel

Stencil codes are another relevant variant of loop kernels. They emerge from, for instance finite-differences
discretizations of differential operators when solving partial differential equations. A stencil applies an up-
date pattern to all elements of an n-dimensional array by referencing neighboring elements, with temporal
locality. Such an update pattern is called stencil and describes how the center element is updated based
on its neighboring elements. A typical example, arising from the heat-equation, is presented in Listing 1.2.

1



CHAPTER 1. INTRODUCTION

The exemplified stencil code is often referred to as “2D-5pt stencil”, since it operates on a two dimensional
data set and each update touches five neighboring points (one center for write and four direct neighbors
for read).

for(j=0; j<N; ++j)
for(i=0; i<N; ++i)

a[j][i] = 0.25 * ( b[j-1][i] +
b[j][i-1] + b[j][i+1] +

b[j+1][i] );

Listing 1.2: Basic 2D-5pt Stencil Code

Neighbors do not necessarily have to be direct neighbors and in that case, such stencils are referred to
as long-range stencils and require more attention with respect to cache usage. Stencil codes are of high
interest in scientific computing because of their wide applicability in numerical solvers. Loop kernel codes
are more generic and allow for patterns which are not restricted to neighborhood relationships, e.g., such
as the ones found in vector summation.

A visual representation of the mentioned examples is given in Figure 1.1. We can see the geometric
relation of accessed cells to the iteration center in the stencil case. This is the defining information of
stencil codes and streaming kernels usually access the data without any offsets.

... ...

iteration center

accessed element

...

...

Streaming Kernel

Stencil Code (2D-5pt)

Figure 1.1.: Visual representation of an array from stream kernel in Listing 1.1 and of array b[][] from stencil code
in Listing 1.2.

Many approaches have been developed to aid performance optimizations by application developers, which
are often domain specialists without a fundamental background in computer science. These aids can be
either theoretical or practical in nature. Theoretical refers to taking a simplified model of the architecture
and comparing it in a pen-and-paper way to the algorithm, e.g., the Roofline Performance Model [1]. The
results of a theoretical analysis can then be used as guidance to manually modify the algorithm towards
a more efficient version, but it does not yield enhancements by itself and a fundamental understanding of
the analysis is required. A practical approach relies on compilers, libraries and tools to make decisions for
the developer. This requires that the code can be understood by a black-box tool and can automatically
be transformed into a more efficient representation of the original algorithm.

The Execution-Cache-Memory (ECM) performance model by Treibig and Hager [2], Hager et al. [3] and
Stengel et al. [4] is another theoretical aid that has recently been developed. It is a refinement of the
Roofline model [1], but it uses more technical information about the underlying hardware to arrive at
a runtime prediction, rather than relying the prognosis on benchmarks. The resulting prediction is not a
single number, but shows the individual contributions to the runtime of a loop kernel from memory hierarchy
levels, as well as arithmetic operations. A detailed description of the Roofline and ECM models will be
given in Chapter 2.
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CHAPTER 1. INTRODUCTION

1.1. Motivation

1.1.1. Performance Modeling

Performance modeling is the process of predicting the performance or runtime of code on a hardware
platform. Since modern hardware architectures are very complex, in theory, a perfect prediction would
require the code to be executed on the same hardware and with the same input. This would eventually not
be a simulation or modeling approach anymore, but a benchmark measurement. To reduce the complexity,
simplifications and abstractions need to be made in such a way that the result of the model will yield a
close to real prediction, without making the model inapplicable because of its complexity. The choice of
simplifications and abstractions lies at the core of any performance model.

In this work we will restrict ourself to analytical modeling of steady-state loop kernels using a white-box
approach in regard to the underlying kernel code and in particular to two performance models: ECM and
Roofline. These models bring already all the simplification and abstractions with them, but application to
a specific code and hardware requires additional work. From here on, we will refer to the application of a
performance model onto a software code and hardware architecture as performance modeling.

Performance modeling is essential for different use cases: to predict the runtime on a larger system, to
asses the expected speedup on a new hardware architecture, to estimate the required hardware to find
a solution within a fixed timeframe, to know if the code is at its optimal performance and many more.
Benchmarks can give some insight, but are non analytical and can not be applied to theoretical changes
in hard- and software. Another problem with benchmarks is the cost of machine usage on a large scale,
which may hinder the developers to run enough to get a good insight.

1.1.2. Automation

Performance modeling can be very tedious, since one has to identify the code section where most of the
runtime is spent and then analyze that section thoroughly, in order to understand exactly the number and
type of arithmetic operations as well as memory access patterns. Nonetheless, this process rewards with
the deep understanding required to optimize the performance. It has been shown that the compiler—as the
most common practice tool—fails to achieve the best possible performance in many and even simple cases
as shown by Gropp [5], thus performance modeling needs to be simplified and made more accessible
without compromising its usefulness by hiding the analysis process. After gathering all the performance
relevant information, it needs to be analyzed with respect to the targeted hardware architecture. This
requires information about the central processing unit (CPU) and underlying memory hierarchy with their
theoretical and benchmarked performance data. In case of non-stencil and non-streaming codes this
analysis can be arbitrarily complex, which is why we apply certain restrictions on the given code.

For someone without experience or background in computer architecture, this can be a tremendous task.
A tool was required to take over the tedious parts and make performance modeling more accessible to a
wider audience. The goal is to automatically analyze a hot section of code, typically a stencil kernel, and
extract the memory access patterns as well as arithmetic operations. This information is then used as
input for the performance model to eventually yield a runtime (or performance) prediction. The hardware
information is a separate input and can be collected semiautomatically. A small collection of common
architectures and kernel codes is part of this work and will be available to potential users.

Automation will not only make performance modeling faster, it will also reduce the amount of knowledge
(hardware specs) that users needed to be able to apply a model to a code. These simplifications do not
mean that less insight is necessary. Because, in order to interpret and make sense of the resulting output,
a good grasp of performance modeling and hardware architectures in general will always be required.

3



1.2. TASK CHAPTER 1. INTRODUCTION

1.2. Task

Our objective is to create a tool which automatically analyzes a stencil code loop nest or streaming kernel,
retrieves all performance relevant information about it and applies the ECM and Roofline model for a given
hardware architecture. Only single core predictions are aimed for, but core saturation is also of interest.
Symmetric multithreading (SMT) and scaling beyond one chip will not to be investigated in this work.

Loop kernels are given in C-code, but certain restrictions are imposed:

• all access to arrays is done using multidimensional notation (e.g., a[i][j])

• the code may only use for-loops with constant initial value and known iteration length and step size
(e.g., for(int i=1; i<23; ++i))

• all arithmetic operations need to take place in the innermost loop

• no other statements (e.g., function calls) are allowed

A more detailed set of applying restrictions is given in Chapter 3. The tool has to work with a wide variety
of stencil and streaming codes, of which a representative collection will be assembled and used for testing
purposes in this work. These codes, as well as the tool itself will be available for download1.

The targeted hardware platforms are architectures with inclusive and write-back caches and need to be
supported by the Intel Automatic Code Analyzer (IACA). The hardware description is compiled from bench-
marks and data sheets. Some of it can be gathered automatically and a tool to do so is provided, as well
as a set of machine description files for future reference.

Finally, the implementation of the ECM model needs to be validated on several hardware architectures and
the performance predictions compared to actual measurements. The toolkit needs to be released under
an open source license to allow other researchers to make use of it.

1.3. Related Work

In their paper “Reuse Distance Analysis”, Ding and Zhong [6] developed an efficient method for gathering
cache access patterns from live running codes using statistical sampling. This allowed them to have
arbitrary code run at almost native speed, while collecting this vital performance information. Similar work
was done in “Pinpointing data locality bottlenecks with low overhead” by Liu and Mellor-Crummey [7].
In contrast, the tool developed in this work never actually executes the code under investigation (except
for validating predictions), which has the natural performance advantage and the additional benefit of
providing more insight into the origin and relation between data accesses. On the other hand, our analysis
can only be applied to code fulfilling the restrictions mentioned in Section 1.2.

Lo et al. [8] published in “Roofline Model Toolkit: A Practical Tool for Architectural and Program Analysis” an
approach which automatically collects benchmark results by sweeping over the whole memory hierarchy
with different working set sizes. In this respect, their approach resembles the method used in this work
for collecting machine-specific input data. As before, the results presented are based on benchmark runs,
but here, the authors go further and also look at GPUs and many core processors.

In “Generating Performance Bounds from Source Code” Narayanan et al. [9] analyze simple kernel codes
directly from the source code and similar information is extracted by executing the code without any com-
putation while intercepting data accesses. However, they are missing the above mentioned reuse distance
or data access pattern, which are vital to predict latency variations arising from cache vs main memory
access.

1https://github.com/cod3monk/kerncraft
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CHAPTER 1. INTRODUCTION

1.4. Results

We present the Kerncraft toolkit, which combines a parameter file describing the hardware architecture
and information gathered from the kernel code to a suitable performance prediction. We can show that
the predictions through the ECM model are very accurate for most test-cases on the latest three microar-
chitectures by Intel: Sandy Bridge, Ivy Bridge and Haswell. The twelve test-cases include four typical
streaming benchmarks (DAXPY, add, scale and triad), two reduction algorithms (scalar product, vector
sum) and six stencil codes. The prediction of main memory access is more difficult with the later two
microarchitectures and correction factors had to be employed to produce acceptable results. All predic-
tions have been validated by benchmarks, which were generated from the same kernel code as used for
predicting the behavior.

1.5. Outline

The underlying ECM model and an example analysis of the computer architecture will be presented in
Chapter 2. In the subsequent Chapter 3, the general design and algorithmic details of the developed tool
are explained. The evaluation in Chapter 4 compares predictions based on the ECM model with obtained
measurements on three different hardware architectures. In the final Chapter 5, possible enhancements
and their usefulness to application developers are discussed.

1.6. Acknowledgments

I would like thank my advisors Georg and Jan for their support and help, especially Georg for his meticulous
attention to detail and helpful comments to the last minute, and Jan for great practical suggestions and
for providing the LIKWID toolkit. I am also grateful to Daniela and Balthasar for helping me iron out my
awkward formulations and typographical mistakes, and also suggestions on my visualizations, so that
this work is more pleasant to read. The Fachfachtsinitiative Computational Engineering supported me by
giving me a space to work in and always something2 to distract myself with, if it was necessary to clear
my head.

2everything from geeky discussions to cold beer
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2
BACKGROUND

In this Chapter we give a general overview of the theory and technology on which this work is based and
go into detail about the specific computer architectures, performance models, applications and libraries
used.

2.1. Computer Architecture

Modern mainstream computer architectures are still exclusively based on the von Neumann architecture
[10]. Many additions have been made, but the main components that we need to consider are: the
arithmetic logic unit (ALU) responsible for calculations, the control unit (CU) taking care of control flow
of the program and the memory supplying the CU and ALU with input data and storing output data.
Figure 2.1 provides an overview of the common components. In this Section we will take a look at the
execution side, in von Neumann’s terms: ALU and CU, and the memory side in modern Intel x86 multi-
core processors. We will specifically target the Sandy Bridge microarchitecture and mention differences
to newer Intel microarchitectures relevant to this work in Section 2.2.

We will beginn with an an overview of single-core and single-thread features of modern computer archi-
tectures. Further on we will take a look at multicore features.

2.1.1. Execution

The time for code execution (i.e., not counting the data transfers from the memory hierarchy) is governed
by the processor’s clock speed: the higher the frequency the faster the execution. Consequently, the CPU
vendors tried to increases the clock speed with every new model over several decades, but due to energy
and thermal constraints this performance screw became less attractive and the increase subsided in the
mid 2000s. In many cases newer processors even decreased the clock speed compared to older models
in the last decade, to increase energy efficiency. Other means had to be found to guarantee a steadily

7
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Physical Core

Virtual
Core 2

Main Memory

L3
Memory Controller

L1
L2

Main Memory
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L2

Core n
T1 T2

L3
Memory Controller

L1
L2

Core 1
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T1 T2
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L1
L2
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T1 T2

Figure 2.1.: Overview of a modern computer architecture with two threads per core, three cache levels (two private
and one shared) and an interconnect between chips (or sockets).

rising application performance across CPU generations. We will have a look at the specific architectural
enhancements that improve performance at constant clock speed—for numerical applications—present in
current processor architectures.

Micro Operations

x86 is a Complex Instruction Set Computing (CISC) architecture, which means that instructions and
operands can vary in encoding length and execution time. Internally it is implemented in a Reduced
Instruction Set Computing (RISC) way, which is why micro operations (µops) were introduced. CISC op-
erations (macro-ops) need to be decoded and split into RISC µops on the fly, in hardware. The translation
to µops allows the efficient implementation of a pipeline concept without breaking support for the x86 in-
struction set, which was meant to simplify the work of low-level assembly programmers and reduce code
size.

Decoding is done depending on the instruction and most instructions can be translated to single µops, but
more complex instructions need to be translated to up to four µops [11]. This is done in multiple decoders
in parallel which can queue several µops per cycle, see Figure 2.2.

Pipeline

Pipelining is done by splitting operations that need more than one cycle to execute into separate stages.
The slowest stage will dictate the overall speed at which instructions can proceed within the pipeline.
Each stage is used by a different instruction, and after an instruction is processed by all stages, its result
becomes available. The advantage is that more instructions can be handled in parallel, but only if the
pipeline can be filled with suitable instructions.

Due to the pipeline concept in modern CPUs—in particular in all current Intel CPUs—there are two different
types of cost associated with all instructions: latency and throughput. Latency is the number of cycles it
takes to execute a single instruction until its result becomes available for further processing. This is the
length of the pipeline. Instruction throughput is the number of cycles before the same instruction can be

8



CHAPTER 2. BACKGROUND

issued again1 and it is the time it takes an instruction to move from one stage to the next in the pipeline.
Henceforth, we will refer to instruction throughput as throughput. Throughput can only be used as a valid
metric if a sufficient number of operations can be dispatched. This is usually the case with loops that have
many iterations, such as stencil codes that update a large number of grid points.

Out-of-order Execution

To efficiently fill the pipeline, the core supports out-of-order scheduling of µops through reordering and
utilizing several execution ports. Execution ports are responsible for certain functionality and their number
and function depends on the specific microarchitecture and varies across processor generations. For
instance, the Sandy Bridge architecture has six ports: 0, 1 and 5 are responsible for arithmetic operations,
2 and 3 for data loads and 4 takes care of data stores. An overview of the functional units behind the
execution ports on Sandy Bridge can be found in Figure 2.2. At each cycle the scheduler may dispatch
one µop to each available port, so the µop throughput limit in this part of the architecture is six µops per
cycle.

Control �ow

L1
instruction

cache

L1 Dcache

STORELOADLOAD

ADD AGUAGU

ALUALUALU

Port 0 Port 5Port 4Port 3Port 2Port 1

Scheduler

Reorder buffer / Register renaming

DIV

Memory control

MULT

Register
�le

MOV/MASK

JMP

Pot. bottleneck

Data �ow

Execution
Units

Decoder Decoder Decoder Decoder

Figure 2.2.: Execution Pipeline and Ports of a single Intel Sandy Bridge Microarchitecture core (based on illustration
by Georg Hager)

1The definition of throughput and latency is taken from the “Intel 64 and IA-32 Architectures Optimization Reference Manual”
[11]. Throughput can also be defined as operations per cycle, which is inverse to our definition and can therefore easily be
distinguished.
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2.1. COMPUTER ARCHITECTURE 2.1. COMPUTER ARCHITECTURE

Reordering of µops is made possible by the renamer, reorder and scheduler components (see Figure 2.2).
The renamer prepares µops by renaming data sources and destinations, allocating resources like buffers
and assigning them to an execution port. It can understand and utilize the independence of subsequent
instructions referencing the same memory locations (i.e., if data is overwritten, the original content may
be ignored). The scheduler queues µops and dispatches them to the assigned execution port once all
source dependencies have been fulfilled and required resources are available. Retirement takes care of
the resulting data and possible exceptions. All instructions are retied in program order, as not to alter the
programs behavior by this process.

Arithmetic Operations

On Sandy Bridge and Ivy Bridge CPUs, double precision floating point addition (multiplication) operations
can be dispatched to ports 0 and 1 with a latency of 3 cycles (5 cycles) and a throughput of 1 cycle. This
means that in every cycle a floating point multiplication can be executed, but it will take 5 cycles before the
result becomes available. Divisions, on the other hand, have a latency of 27-35 cycles on Ivy Bridge and
33-45 cycles on Sandy Bridge and throughput of 28 cycles on Ivy Bridge and 44 cycles on Sandy Bridge,
and so almost no pipelining is done here. Square root instructions latencies are also high due to their
iterative nature of computation: a latency of 21-45 cycles on Sandy Bridge and 19-35 cycles on Ivy Bridge
occurs and it takes of 20-42 cycles on Sandy Bridge and 28 cycles on Ivy Bridge before another instruction
can be issued. This means that division and square root operations should usually be avoided, even if it
means to introduce many more multiplication instructions into the algorithm, unless the devision can be
executed in parallel without delaying other computations.

Single-Instruction-Multiple-Data (SIMD)

Another way to improve parallelism and performance is to use single-instruction-multiple-data (SIMD) [12]
features. SIMD instructions allow the execution of an single operation on multiple elements in a special
purpose vector storage. Different implementations pursuing this principle have been around for decades,
but here we will focus on the Advanced Vector Extension (AVX), an instruction set first introduced by Intel
in the Sandy Bridge architecture in 2011, extending the Streaming SIMD Extension (SSE), which was
already available since 1999.

The usage of this vectorized floating point arithmetic instruction set is essential for numerical codes to
achieve good performance on modern processors. It allows the processing of 256-bit long data stream
containing four double precision or eight single precision floating point numbers with single arithmetic
instructions.

Loops and Jumps

We have learned that the pipeline concept requires a continuous stream of instructions to perform well,
but what happens if a conditional branch (or jump) is part of the instruction stream? Loop constructs
are ubiquitous in numerical codes and result in an conditional branch at its end. Performance-aware
programmers will try to avoid all braches in the innermost-loop, to allow efficient use of CPU pipelines, but
the end-of-loop conditional branch is impossible to circumvent. Processor vendors have approached this
problem by including branch prediction logic in the hardware.

Branch predictors have been an essential component of processors for some time, but are still being
refined and tweaked, for a simple reason: they keep the pipeline filled and if the branch target is predicted
incorrectly, work and power is wasted and already computed outputs need to be ignored. However a
misprediction is usually as bad as no prediction at all, thus even always predicting that a branch is going
to be taken can yields quite good results.

In typical loop based codes it can be assumed that the end-of-loop branch is taken most of the time, since
iteration lengths are expected to be large. Thus a positive prediction rate of almost 100% can be expected,
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unless other branches are taken within the loop (e.g., branches taken based on the calculated data). For
this reason, the end-of-loop branch can be ignored in loop-kernel performance analysis.

Multi-Core and Multi-Threading

To increase the performance and power-efficiency of modern processors vendors have introduced multi-
core CPUs. This means that multiple computing cores are combined on one chip. Some resources
are shared between the cores, e.g., the memory and PCI-express interfaces, but other resources are
dedicated, such as executions units and pipelines. A chips performance and power consumption increases
linearly with the number of cores, as long as the frequency is constant. This is a vast improvement in
efficiency over a single-core CPU where the frequency is increased to achieve the same performance,
since the CPU voltage needs to be increased which leads to a much higher power consumption and
thermal output.

Multi-threading on the other hand is a way to increase the utilization of out-of-order execution features. It
simulates two or more threads (or virtual cores) per physical core. The operating system will then make
use of all threads using independent processes, which makes it easier for the hardware to fill all execution
unites with independent instructions and hide latencies due to memory accesses.

2.1.2. Memory

Not only arithmetic operations, in the sense of floating point operations (FLOP), are relevant, because the
data needs to come from somewhere and the results must eventually be written to somewhere. In this
Section we will have a look at the LOAD and STORE instructions and the underlying memory hierarchy
from main memory through shared and private caches up to CPU registers, as well as the logic associated
with it. A schematic view on the complete memory hierarchy of a Sandy Bridge CPU can be seen in
Figure 2.3.

Main Memory

L3

L1

Registers

L1

Registers

L1

Registers

L1

Registers
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Registers
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L2 L2 L2 L2 L2 L2 L2 L2

L1

Registers

16B/cy sustained bandwidth

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

4cy latency

0cy latency

12cy latency

~30cy latency

~150cy latency

~36GB/s

64B/2cy

64B/2cy
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Figure 2.3.: Memory Hierarchy on Single-Socket Intel Xeon Sandy Bridge E5-2680 CPU with 2.7 GHz

CPU Registers

Registers are the storage locations that instructions operate on, both for source and destination data.
They are the fastest, smallest and lowest latency storage units available in computers. To get any data
into registers from main memory LOAD instructions are used. Vice-versa, STORE instructions write data
from registers to main memory.
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Figure 2.4.: Registers available for floating-point arithmetics on Sandy Bridge CPUs. YMM0-15 are 256-bit vector
registers and can only be used in combination with AVX instructions, their lower 128-bit are also address-
able via XMM0-15 for use with SSE and SSE2 instructions. The 64-bit general-purpose registers (GPR)
are available on all x86 64-bit processors and can be used with all x86 instructions, but the first four (RSP,
RBP, RSI and RDI) are usually reserved for special functionality related to memory managment.

Sandy Bridge CPUs have sixteen 64-bit general-purpose registers and sixteen 265-bit vector registers for
use with floating-point arithmetic. An overview of all registers related to floating-point arithmetics is shown
in Figure 2.4. Due to constraints in number and size, it is usually impossible to load all data into registers
and write back the final result after all computations have finished. Thus new data needs to be loaded
and results written back to memory all the time. All source data needs to pass through LOAD instructions
and destination data through STORE instructions. On Sandy Bridge the load/store throughput is limited
by two bottlenecks: number of ports and adresse generation units (AGU). There are two AGUs, thus only
two accesses can happen in the same cycle, because only two memory addresses can be calculated,
and there are two load ports (2 and 3) and one store port (4) available for instruction scheduling. Thus
one 256-bit AVX-load instructions and one 128-bit AVX-store can be scheduled on every cycle or two
256-bit AVX-loads and so on. The overall latency will vary with the location of the data within the memory
hierarchy (with main memory having the highest latency and being the furthest away). If data is present
in the first level cache (L1), the latency is 5 cycles for LOADs to SIMD and floating-point registers and
4 cycles in all other cases.

Main Memory

The main memory—often just memory—is several orders of magnitude larger than the registers, usually
from 8 GB on current notebooks up to 256 GB and more on servers. It is connected to the CPU via a
memory controller, located within the CPU packaging on modern processors. On systems with multiple
CPUs or sockets, multiple such memory controllers are present, but all memory is logically arranged
in a single address space. The data stored in memory associated with other CPUs can be accessed
transparently through a CPU-interconnect, although a latency and bandwidth penalty will apply in this
case. This concept and resulting effect is called non-uniform memory access (NUMA). It is important to
restrict accesses to a processor’s own memory whenever possible, by applying the “first touch” rule [13].

Caches

Since the main memory needs to be large and affordable, it is not fast enough to supply the CPU registers
with data to fully utilize the arithmetic capabilities. Several layers of caches are present to uncouple fast
registers from slow main memory, without compromising on the overall available storage capacity. Caches
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are several times faster than the main memory and can handle much more data than registers. They are
usually located directly on the CPU chip, yielding good latencies. Depending on the cache-level, the size
varies from tens of kilobytes to tens of megabytes. An overview of the cache characteristics of recent Intel
architecture generations can be found in Table 2.1. In this case it must be noted that the sizes mentioned
in the table are not specific to the microarchitecture, but depend on the exact model. In Table 2.1, the
bandwidth is given inverse with cycles per cache-line (cy/CL), since caches do not operate on individual
bits or bytes, but in a cache-line granularity and we are interested in the number of cycles it takes to
process a cache-line. A cache-line has the size of 64 Byte on current Intel processors and is synonymous
to memory blocks on which main memory operates.

Caches operate transparently from the programmer’s point of view and can only be detected by perfor-
mance measurements. There are no special instructions to change their behavior (exceptions are ex-
plained in the following section). The fundamental functionality of a cache is rather simple: on a LOAD,
data is requested from the first level cache (L1), but if it is not found there the request is forwarded to the
second level cache L2 and so on, until the cache-line which contains the requested data is retrieved from
the main memory into the last level cache. The result is that each cache-level is then retaining a local copy
of the cache-line for faster subsequent accesses. This method, used by Intel, is called inclusive caching,
because all data present in L1 is also located in L2 and L3.

Due to the nature of caches, they are always fully occupied. The location where a new cache line is to
be placed in cache is decided by the cache replacement policy. We need to know that cache-lines can
not be placed at arbitrary positions in a cache. They are restricted to certain cells, as this makes locating
them fast and efficient. The number of cells available to one memory location is called associativity and
depends on the placement-algorithm implemented in the CPU’s hardware.

A typical replacement policy is the least-recently-used (LRU) approach, where the cache-line within the
set of possible storage location is replaced that has not been accessed for the longest period. Many
other policies have been studied and are in use on other architectures, ranging from random-replacement
(RR) to first-in-first-out (FIFO) [14]. All of them have their advantages and disadvantages, depending for
example on the effort to implement in hardware and the software application that is using the cache. Intel
describes their cache-replacement strategy as pseudo LRU (PLRU), but does not go into detail about the
exact algorithm used [15].

After data has been modified in the cache it needs to be written back to memory, this is known as evict. It
usually happens when a cache-line is replaced to make space for other data. Evicts have to pass through
all cache-levels from the CPU to the main memory and are done in cache-line granularity, just like when
data is loaded into a cache.

Since individual elements in a cache-line can be modified, but only complete cache-lines may be evicted,
it is necessary to load the complete cache-line into L1 before any modifications can be made. This pro-
cedure is called write-allocate and leads to additional traffic between caches and memory. It is possible
to circumvent this behavior by utilizing special non-temporal store instructions, but this is only useful if
complete cache-lines are modified independent of their previous content. Non-temporal stores are usually
not used by compilers automatically and thus require the programmer to actively make use of that feature.

Cache-Coherency

If caches contain a subset of the information located in main memory and a cache can be private to cores,
how can it be acceptable that other cores cache the same information. In case of LOAD—or read—access
this pose a problem, since caches can have simultaneous copies of the same cache-line to speed up local
read access, but if the data was modified in another cache and not yet evicted, the memory contains the
wrong data. That is when the cache-coherency comes into play, making certain that all cores operate on
the same coherent data set, by invalidating or evicting other cached copies. Also, if a cache-line is located
in multiple caches and it is modified by one of the cores, this information needs to be passed on to all other
cores that have a copy of the cache-line, to invalidate or update their copy. This can lead to significant
performance degradation if multiple cores access and write to the same cache-line frequently.
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microarchitecture Sandy Bridge (SNB) Ivy Bridge (IVB) Haswell (HSW)

year of release 2011 2012 2013
model name E5-2680 E5-2690 v2 E5-2695 v3

base clock speeda 2.7 GHz 3.0 GHz 2.3 GHz
cores 8 10 14

cacheline size 64 B 64 B 64 B

L1 cache
size 32 kB 32 kB 32 kB

shared no no no
inverse bandwidth to L2 2 cy/CL 2 cy/CL 2 cy/CLb

L2 cache
size 256 kB 256 kB 256 kB

shared no no no
inverse bandwidth to L3 2 cy/CL 2 cy/CL 2.8 cy/CLc

L3 cache
size 20 MB 25 MB 35 MB

shared yes, by all cores yes, by all cores yes, by all cores
inverse bandwidth to mem. up to 40 GB/s up to 48 GB/s up to 54 GB/s

execution ports 6 6 8

aThe actual frequency can be higher than the base clock speed with turbo mode, which was disabled for all measurements.
bAccording to official documentation one cache-line can be loaded per cycle, but Hofmann [16] has shown that in practice only 32 B

can be loaded per cycle.
cThis inverse bandwidth is only valid in the single-core case, due to uncore frequency scaling (frequency increases and inverse

bandwidth decrease with single-core). With two ore more cores in use, this inverse bandwidth decreases to 2 cy/CL [16].

Table 2.1.: Intel Xeon Models used for Validation

Prefetching

Prefetching is a way to bring data into the cache that is to be accessed in the near future. This leads to
lower latencies of LOAD and STORE instructions. Prefetching can be initiated by hardware, transparent
to the programmer, or by software, explicitly by the programmer or compiler. Hardware prefetchers are
based on algorithms monitoring access patterns and, predicting future access, this can be as simple as
always loading adjacent cache-lines or as complicated as tracking accesses and deducing stride lengths
from that. The implementation of hardware prefetchers in current micro processors is usually not revealed
by vendors. To make use of hardware prefetching, a good approach is to access sequential elements
in a stream-wise fashion. If hardware prefetching fails, it is possible to make use of special prefetch
instructions.

2.2. Testbed Hardware

In Table 2.1 we have put together an overview of the main metrics describing the three most recent
microarchitectures from Intel: Sandy Bridge, Ivy Bridge and Haswell. Some of the information depends on
the specific model and not solely on the microarchitecture.

The changes between Sandy and Ivy Bridge are small, since Ivy Bridge was developed in the Tick cycle of
the Tick-Tock development model followed by Intel since 2007. Tick means that a new (smaller) fabrication
process is introduced, but CPU features are not considerably enhanced. This is what was done during the
transition from Sandy Bridge to Ivy Bridge. During Tock cycles, the fabrication process is kept the same,
but substantial changes are made in the microarchitecture. The transition from Ivy Bridge to Haswell was
such a Tock cycle. As the name of the development model implies, the two cycles always alternate on a
yearly basis. Thus Haswell has the most differences in microarchitecture. We will have a look at three
differences: uncore frequency, execution ports and AVX2 with fused-multiply-add (FMA) support.

The Haswell microarchitecture offers additional execution ports, allowing more parallelism and out-of-
order execution. An additional integer arithmetic unit and address generation unit are associated with
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the new ports, others were moved to reduce dependencies. Another improvement—according to Intel’s
documentation [11]—is the doubled bandwidth between L1 and L2. Unfortunately were we unable to
reproduce one cycle per cache-line or 64 Byte per cycle of L1-L2 bandwidth [16]. Therefore, we assume
an inverse bandwidth of two cycles per cache-line, as seen in previous architecture generations, for all
cache-to-cache transfers except L2-L3 on Haswell.

The Haswell architecture offers another architectural change for the ECM model, making predictions more
difficult: the uncore frequency, which is the basis for all off-core and inter-core communication. It can
differ from the actual clock speed of the CPU. Since the last level cache (L3) is shared among all cores,
it is subject to the uncore frequency. The uncore frequency is automatically scaled with the number of
active cores and starts off at 2.14 GHz with only one core in use and increases to a peak of 2.98 GHz with
three cores. In Table 2.1 we have defined the L2-L3 inverse bandwidth as 2.8 cycles per cache-line in the
single-core usecase, which corresponds to 2 cycles per cache-line at a uncore frequency of 2.14 GHz [16].

The Advanced Vector Extensions 2.0 (AVX2) instruction set introduced—among other things—three-
operand fused-multiply-add (FMA3) support. FMA3 allows the execution of one of the following opera-
tions with a single instruction: a = a × b + c, b = a × b + c or c = a × b + c. The throughput is at
0.5 cycles, since execution ports 0 and 1 each have their own FMA3 execution units. This practically dou-
bles the floating-point peak performance of Haswell CPUs, compared to Ivy Bridge CPUs with the same
clock speed. FMA also gives higher precision results [11], since no rounding is done on intermediate
results. Although Haswell supports two multiplication or two FMAs, it can only handle one addition per
cycle, because only Port 1 supports pure floating-point addition.

2.3. Intel Architecture Code Analyzer

The complexity of understanding scheduling and pipelining of micro-operations is increased by incomplete
or vague documentation of these features, but Intel offers a software package called “Intel Architecture
Code Analyzer” (IACA) [17], which can predict scheduling and pipelining behavior of modern Intel proces-
sors. It does static analysis on a stream of assembly instructions and predicts the maximum throughput of
a loop body and the minimum latency of a set of instructions, under the assumption that all data is present
in the first level cache. Throughput is useful to examine inner loop bodies, since the code will be run hun-
dreds of times and thus latencies will not matter if sufficient instruction-level-parallelism is available. For
codes that do not make good use of the pipeline, latency is the metric of interest. Throughput and latency
thus provide best- and worst-case predictions of the execution time, under the assumption that no other
bottlenecks apply (such as data transfer latencies from cache misses, NUMA penalties, etc.). All values
are returned in cycles.

IACA does not only report the number of cycles but also informs the user of the predicted scheduling
including the µops that instructions get split into and the ports they are scheduled to. Micro- and macro-
fusion are CPU features to reduce the number of instructions that need to be executed and are also
predicted by IACA. An example IACA analysis output can be seen in Appendix A on page 53.

As the name implies, IACA only supports Intel microarchitectures, specifically: from Nehalem to Haswell.
Since it operates on binary files and internally disassembles them, there are special marker sequences
that need to be inserted into the assembly code around the region of interest before compilation. It is
possible to use inline assembly, intrinsics or C macros to mark sections in high-level code, but we have
observed that the compiler produces very different code in this case (e.g., without vectorization). Thus it
is better and more predictable to manually insert assembly markers.

2.4. LIKWID (Like I Knew What I Am Doing)

The LIKWID toolkit [18] allows the measurement of performance counters during execution of programs,
with little to no performance degradation. It takes care of pinning threads to fixed cores, which is especially
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useful with OpenMP or other multithreading codes. LIKWID works without any modification of the original
code and binary, but it may be used in combination with a marker API, allowing control over the code
section to be measured.

The toolkit consists of ten different command line tools. The ones used by our tool are the following:

• likwid-topology – show the thread and cache topology
The relation of hardware threads (individually addressable cores) to physical cores (containing the
actual hardware logic) and sockets is reported. This is very helpful for the selection of threads to run
on, and it also reports a detailed overview of all cache-levels: giving sizes, associativity, and how
many threads share one cache instance. NUMA domains are also reported and give information
about the placement of main memory in relation to the hardware threads.

• likwid-perfctr – measure hardware performance counters
This light weight utility gives access to hardware-based performance counters on a wide range of
Intel and AMD CPUs and requires no modification of the Linux kernel. A marker API allows selection
of a measurement region from within the code, but is not required if the whole execution is to be
measured. Pinning must be used, either through likwid-perfctr or manually from within the
program, because the performance counters relate to specific hardware threads, and measurements
can not be mapped to process or operating-system threads. If a measurement is performed on
thread 0 and the program is not pinned to thread 0, nothing useful will be measured.

A number of performance groups are provided, combining the output of several performance coun-
ters, because not all counters can be measured at the same time. Also, not all groups are available
on all CPU models, either due to restrictions in the performance counter hardware or because of
missing documentation.

• likwid-bench – benchmarking framework
Microbenchmarks are vital in assessing the capabilities of modern architectures, due to their com-
plexity deriving from the memory system and instruction level parallelism. This command line tool
and framework comes with a dozen ready-to-use assembly benchmarks for streaming kernels.
likwid-bench takes care of thread spawning, pinning, placement, measurement and reporting
in different metrics. The user can chose the desired data set sizes and threads.

The LIKWID toolset is open source software, under the General Public License Version 3, actively devel-
oped by Jan Eitzinger and Thomas Röhl at the University of Erlangen. The open source toolset is freely
available at [18].

2.5. Performance Modeling

Performance modeling is necessary to understand and to predict performance behavior of code opti-
mizations. The process of modeling is done by reducing the analysis to the most performance relevant
hardware and software features. The choice depends on the usecase, i.e., some applications are net-
work bound and others are memory bound or the bottleneck is not the throughput but the latency, which
might even depend on mechanical hardware (e.g., backup systems with tape storage). If one could design
the perfect performance model for all types of applications, it would be necessary to essentially build or
simulate a complete computer system and then end up measuring and not modeling. Thus performance
modeling is always a balance between complexity versus accuracy. It is thus driven by an intelligent choice
of simplifications.

In the following Sections we will have a look at two models which predict the single-core and chip-level
performance of memory, cache and arithmetic bound codes.
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Figure 2.5.: Basic Roofline model for single-core Sandy Bridge Intel Xeon E5-2690 with 10.8 GFLOP/s peak perfor-
mance and 18.9 GB/s sustained memory bandwidth.

2.5.1. Roofline Model

The Roofline model, published in [19, 20, 21, 22] and named by Williams et al. [1], considers a single
metric for the code in question: operational intensity, which represents the number of operations per byte
of main memory traffic. It is also possible to extend the definition by considering the traffic through all
levels in the memory hierarchy, which will give predictions for cache-bound codes. This metric—although
simple at first glance—contains a lot of information about the code and its derivation is very often not
trivial. Counting the number of operations is usually a simple task, for example by adding up the number
of additions and multiplications found in the code section, but main memory traffic means that all traffic
solely going to caches is to be ignored when counting, which may be an oversimplification in many cases.
Furthermore, calculating the traffic requires a detailed analysis and knowledge of the code and cache
architecture. Once the arithmetic intensity is known, metrics about the targeted hardware need to be
collected: peak memory bandwidth in bytes per second and peak floating-point performance in FLOPs
per second. These represent the upper bounds for memory and performance bound codes. An illustration
of the visual representation can be seen in Figure 2.5.

Peak performance and peak memory bandwidth may depend on the CPU features used by the program-
mer: if not all capabilities are utilized, the upper bound is significantly lower. This can be represented by
additional lines, marking areas which are only reachable if certain features are exploited.

To apply this model to a given code, the arithmetic intensity must be computed in order to depict the region
of achievable performance in the graphical representation of the Roofline model. If the actual performance
can be measured, it is very easy to see if further optimization requires changing the arithmetic intensity
(in case of memory bound codes) or make better use of available CPU features, or both. It is also very
helpful to get an impression of the absolute theoretically possible performance. Although the graphical
representation is usually only used in textbooks and real-world performance engineering is based on the
equation introduced shortly.
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In mathematical terms, maximum performance P of a code with arithmetic intensity I is defined by the
minimum of the CPUs peak performance Ppeak and the arithmetic intensity times the measured peak
bandwidth bS, yielding the relevant bottleneck:

P(I) = min(Ppeak, bS × I)

This clearly shows the fundamental assumption of the Roofline model: data transfer and computation
overlap perfectly.

Peak performance can either be theoretically calculated using the CPU specs or be trimmed towards
the code at hand. For example, a Sandy Bridge processor can perform four double precision floating
point additions and four multiplications per cycle using the AVX instruction set, with a clock speed of
2.7 GHz., resulting in a theoretical maximum of 21.6 GFLOP/s on a single core. If a code would require
only multiplications, peak performance is two times above the actual achievable peak performance. We
will call this second definition application peak performance.

The peak memory bandwidth is obtained from a stream benchmark, ideally mimicking the access pattern
of the modeled application. A typical number for a single core of the processor at hand would be 19 GB/s.

Example

The arithmetic intensity of the 2D-5pt stencil code presented in Listing 1.2 needs to be calculated. First,
we need to count the number of floating-point operations (FLOP) required for a single iteration: one
multiplication and three additions, thus a total of four FLOP. We can see that one array element is written
to (a[j][i] or “center”) and four are read from (b[j-1][i] or “north”, b[j][i-1] or “west”, b[j][i+1]
or “east”, b[j+1][i] or “south”), adding up to 40 Byte with double precision floating-point numbers of
128 bit. We add another 8 Bytes to account for write-allocate transfers due to the store misses on a[]. We
have a total of 48 Bytes that need to be transported between the CPU register and the first level cache (L1)
for each iteration. The constant (0.25) is assumed to be present in a CPU register and can be ignored,
since it does not need loading.

With 48 Bytes to start from, this number can reduce throughout the cache-levels, since some data is read
multiple times. In this example the “east” neighbor is used again two iterations later as “west” neighbor.
This can be expected to be always the case since a cache does not need to be able to hold a lot of
information to cache a few Bytes for two iterations. It gets more tricky with the northern and southern
neighbors, since the number of elements that need to be cached depend on the length of the rows or
inner dimension. A rule of thumb—for the problem at hand—is the layer-condition [4], which is an easy to
evaluate condition:

n · Ni · s <
Ck

2
with n as the number of rows that the stencil spans, Ni as the inner dimension length, element size s and
the cache size Ck of cache-level k .

The layer-condition requires that the number of rows used by the stencil completely fits into half the cache
size. Half the cache size might be considered pessimistic, but we can not expect that the array in question
is the only data residing in the cache. E.g., in the 2D-5pt stencil there are two arrays sharing the cache:
a[][] and b[][]. The given stencil spans three rows (n = 3) and is based on 8 Byte elements (s = 8 B).
We assume an inner dimension Ni of 107 elements. The L1 cache has 32 kB, thus we get:

3 · 107 · 8 ≮
32 kB

2

for L2 we get the following layer-condition:

3 · 107 · 8 ≮
256 kB

2
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and L3 needs to fulfill:

3 · 107 · 8 <
20 MB

2
The layer-condition therefore postulates that between the main memory and the last level cache only one
element of a[][] needs to be transferred per stencil update. The write-allocation and updated value of
b[][] always need to be transferred, since they are not reused. This reduces the total main memory
traffic per iteration to 24 Byte. The arithmetic intensity is therefore:

I =
4 FLOP
24 Byte

=
1 FLOP
6 Byte

= 0.167
FLOP
Byte

Using the equation for maximum performance of the Roofline model and taking the single-core data on
a Sandy Bridge processor (21.6 GFLOP/s theoretical peak performance, 18.9 GB/s sustained memory
bandwidth) we get:

P(0.167) = min(21.6 GFLOP/s, 0.167 FLOP/B · 18.9 GB/s) = 3.16 GFLOP/s

The application peak performance of this code, with one multiplication and four additions, is at 13.5 GFLOP/s.
This would not change the predicted result: the code is therefore memory bound, its performance can not
increase beyond that point without increasing the arithmetic intensity.

2.5.2. Execution-Cache-Memory Model

The Execution-Cache-Memory (ECM) model is based on the same bottleneck principle as the Roofline
model, but it gives the cache hierarchy more importance and introduces a new—more precise—metric
than floating-point operations per second (FLOP/s): cycles per cache-line (cy/CL). Cache-lines refers to
the smallest transferable amount of data between main memory and cache-levels (64 Bytes on current
Intel processors), and it can also be seen as a workload size. A cache-line workload is work required to
update a whole cache-line, varying with the datatype size. For example, a 64 Byte cache-line will result
in 8 double precision floating-point numbers and thus in 8 update iterations of the inner kernel loop if the
arrays are accessed with stride one.

We will now have a look at the contributions that ECM is taking into account: in-core execution and data
transfer time.

In-Core Execution Time (TnOL and TOL)

The in-core execution time consists of two parts: one is the time needed to load data from L1 cache
into registers and defined as TnOL, and the other is the time for all remaining operations, aggregated into
TOL. In both cases, we are only interested in the throughput cycles, due to the nature of loop kernels.
The seperation of the in-core execution time into two components has the following reason: research by
Stengel et al. [4] has shown that a cycle where a LOAD instruction is retired cannot overlap with any data
transfers in the memory hierarchy. This pessimistic assumption is the foundation of the ECM model and the
essential distinction from the Roofline model. Thus OL stands for overlapping and nOL for non-overlapping
components of the in-core execution time.

Both cycle counts can be gained through an automatic IACA throughput analysis, or by manual assembly
code inspection, with respect to the targeted hardware architecture. If a manual inspection is done, the
mapping of instructions to µops and pipeline stages, stage delays and port assignment of the hardware
need to be known.

Data Transfer Time (Tdata = TL1L2 + TL2L3 + TL3MEM)

The data transfer time is split up into inter cache-level transfers and the memory to last cache-level contri-
butions. The first level cache (L1, closest to the registers) has to receive from and transmit to the second
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level cache, quantified by the transfer time TL1L2. For stencil codes this is continued down to the low-
est level cache, typically L3, where transfers between main memory and this cache-level are covered,
e.g., TL3MEM. Transfers between the highest cache-level and registers are covered by TnOL, as mentioned
above.

To derive the data transfer times, it is necessary to accurately predict the amount of data transferred be-
tween all levels of the memory hierarchy. This can be done using the layer-condition analysis, explained in
Section 2.5.1. For pure streaming kernels where there is no temporal locality in data access, the analysis
reduces to checking which array resides in which memory hierarchy level. Once the data amounts are
known, transfer times between the first level and the last level cache can be calculated based on infor-
mation found in CPU documentation. For current Intel Xeon CPUs (Sandy Bridge and Ivy Bridge), the
inverse bandwidth is given as two cycle per 64 Bytes—one cache-line. The interface between the last
level cache and memory is very complex and theoretical bandwidths given in technical documentation do
not match up with what is achievable. So, bandwidth measurements need to be used to predict cycles
counts at this level (TL3MEM). For most cases simple streaming benchmarks are sufficient, but benchmarks
with a matching ratio of load/store streams to main memory may yield more accurate results, because
the achievable bandwidth of the memory interface is often influenced by this ratio. An overview of the
information required to predict all levels from registers to memory, both in automatic and manual fashion,
is presented in Figure 2.6. However, our research has shown that bandwidth measurement based predic-
tions do not yield very accurate predictions on Ivy Bridge and Haswell CPUs. To counteract this effect, we
introduced the option to impose penalty cycles onto load streams going to memory. The details of how to
derive the penalties are given in Section 4. This work-around is not a long term solution, especially since
the required penalties seem to grow larger with newer architectures. Eventually, we will need to find an ex-
planation for the behavior and create a suitable model for the inverse memory bandwidth. Recent studies
have shown, that it is possible to significantly reduce the penalties by activating the “cluster-on-die” mode
and deactivate the downclocking of the uncore frequency in single-core use in the BIOS settings and Intel
seems to have approached and mostly eliminated the memory access penalty in the Haswell successor
architecture “Broadwell” [23]. Since this information became available very recent and after the evaluation
was completed, all Haswell runs presented in Chapter 4 were done with uncore scaling and cluster-on-die
disabled.

Manual Automated
Registers

L1

L2

L3

MEM

Code inspection
and/or IACA

Traffic analysis w/
layer conditions

HW limits: micro-
benchmarking

& docs

IACA or
direct analysis

Reuse distance
analysis, cache
simulation

HW limits: 
likwid-bench
& docs

Figure 2.6.: Overview of the information needed for the ECM model cache analysis and their origin in automated and
manual analysis. (image: [24])
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Single-Core Prediction and Interpretation

To combine all the cycle counts into a single prediction, a general notation has been suggested:

{TOL ||TnOL |TL1L2 |TL2L3 |TL3MEM }

This can be interpreted in the following way: TOL, to the left of ||, makes up the in-core execution time
and overlaps with the data transfers, to the right of ||. The data transfers to the right are in the order of
increasing distance and latency from the CPU registers. Thus the overall predicted inverse bandwidth is
defined as

TECM = max(TOL, TnOL + Tdata)

Even if a layer-condition is fulfilled at any cache-level, the transfer times still weigh into the total and must
be taken into account for an accurate prediction, due to the sequential behavior of data transfers.

There is another notation to present the results which makes predictions of bottlenecks and possible
improvements easy to see. By combining the per cache-level predictions

TL1
ECM = max(TOL, TnOL)

TL2
ECM = max(TOL, TnOL + TL1L2)

TL3
ECM = max(TOL, TnOL + TL1L2 + TL2L3)

and
TMEM

ECM = max(TOL, TnOL + TL1L2 + TL2L3 + TL3MEM)

into one term: {
TL1

ECM eTL2
ECM eTL3

ECM eTMEM
ECM

}
This prediction includes all contributions at each level, e.g., the first numer is applicable if all data is present
in the L1 cache and the last number is the prediction if the data does not even fit into the L3 cache. In
case of an ASCII representation the backslash (\) symbol is used instead of the \rceil (e).

Performance is defined by work over time, usually with floating-point-operations or lattice site updates
per seconds. To derive performance numbers from the prediction we need to divide the theoretical peak
performance, workload (W ) times frequency (f ), by the predicted cycles counts:

P =
W · f{

TL1
ECM eTL2

ECM eTL3
ECM eTMEM

ECM

} cy =
{

PL1
ECMePL2

ECMePL3
ECMePMEM

ECM

}
This can also be done for each cache-level, using the “e-notation” (or prediction notation) presented above.

Example: 2D-5pt Jacobi Kernel on Sandy Bridge

The two-dimensional 5-point Jacobi kernel we have seen before has the following access pattern in the
innermost loop: b[j][i] = (a[j][i-1] + a[j][i+1] + a[j-1][i] + a[j+1][i]). If we assume 64 bit double
precision floating point numbers and 64 Byte cache-line length, we get 8 elements and 8 iterations to
update one complete cache-line. The arrays a[][] and b[][] both have the same dimensions, but
only the inner (second) dimension is relevant here (since the layer-condition is independent of the outer
dimension). We choose it to be 5000 elements long.

First we need to estimate the cycles required to load data from L1 (TnOL). This could be done by IACA
(see Appendix A), but can also be done by hand, since we know that we can load two times 128 bit per
cycle (see Table 2.1). For each update of four doubles with AVX, we need to load four times 256 bit (four
north, south east and west elements). This adds up to 16 · 64 bit per half cache-line and four cycles. This
results in a total of 8 cycles for one cache-line worth of work:

TnOL = 8 cy
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For the same workload, 24 individual adds and 8 multiplies are necessary, which can be reduced using
the AVX instruction set to 6 add and 2 multiply instructions. Multiply and add can be scheduled in parallel
and have a throughput of 1 cycle each. This leads to an overlapping time of six cycles:

TOL = 6 cy

The in-core execution times are dominated by the LOAD pipeline and a more exact and detailed analysis
can be gained using IACA (see Appendix A). Next comes the data transfer analysis, which can be done
manually by employing the layer-condition. In case of the Sandy Bridge processor Intel Xeon E5-2680
(see Table 2.1), there are three cache-levels with 32 kB (per-core) L1, 256 kB (per-core) L2 and 20 MB
(shared) L3 cache.

In case of 5000 elements per row (inner dimension), the layer-condition is met in the L2 cache:

3 · 5000 · 8 B <
256 kB

2

Thus only 64 bit (one double) need to be loaded from L3 and main memory (plus 64 bit from b[][], be-
cause of write allocate) in addition to 64 bit for storing b[][] per cache-line, since L2 is caching everything
else. Between L1 and L2, three (plus two) floats need to be loaded, since the second float accessed on
the center line is already present in the cache. A visual representation of the cache usage can be found
in Figure 3.2c on page 31. We want to predict the number of cycles, so we need to combine the transfer
rates with the amount between L1 and L3:

TL1L2 = 8
iteration

cache-line
·

 3
double

iteration︸ ︷︷ ︸
load from a[][]

+ 1
double

iteration︸ ︷︷ ︸
load from b[][]

+ 1
double

iteration︸ ︷︷ ︸
store to b[][]

 · 8 Byte
double

·
2 cycle

iteration

64 Byte
= 10

cycle
cache-line

TL2L3 = 8
iteration

cache-line
·

 1
double

iteration︸ ︷︷ ︸
load from a[][]

+ 1
double

iteration︸ ︷︷ ︸
load from b[][]

+ 1
double

iteration︸ ︷︷ ︸
store to b[][]

 · 8 Byte
double

·
2 cycle

iteration

64 Byte
= 6

cycle
cache-line

TL3MEM = 8
iteration

cache-line
·

 1
double

iteration︸ ︷︷ ︸
load from a[][]

+ 1
double

iteration︸ ︷︷ ︸
load from b[][]

+ 1
double

iteration︸ ︷︷ ︸
store to b[][]

 · 8 Byte
double

·
2.7 Gcycle

second

40 GByte
second

≈ 13
cycle

cache-line

Although these calculations seem complicated, it is easy to reproduce if all metrics are based on cache-
lines. Combining the prediction with the fulfilled layer-condition in L2, we get:

{ 6 || 8 | 10 | 6 | 13 } cycles

Figure 2.7 shows the individual time contributions to the total prediction and how they relate to one another
(overlapping or non-overlapping).

To give a better representation of the total cycles required if data is contained in a certain cache-level, we
use the prediction-notation:

{ 8 e 18 e 24 e 37 } cycles

and can be represented in a performance metric, e.g., giga FLOPs per second:

{ 2.7 e 1.2 e 0.9 e 0.6 } GFLOP/s
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Figure 2.7.: The ECM Prediction for 2D-5pt Jacobi Kernel on Sandy Bridge E5-2680, abovet are the data transfer
contributions and bellow the overlapping portion from in-core latencies.

Multi-Core Prediction

An assumption of the ECM model is, that the single-core predictions can be used to predict the multi-
core behavior by scaling up until a bottleneck is hit. The bottleneck will typically be the transfers between
the last level cache and main memory, since that is the only non-scaling bandwidth on the architectures
examined here2. The performance scaling over n cores is described as

P(n) = min
(
nPMEM

ECM , bS · I
)

with the memory bandwidth bs , code intensity I and their product being Roofline’s upper memory-bound
performance. Thus, to get the number of cores a code scales to we can use the following saturation
formula from [4]:

ns =
⌈

bs · I
PMEM

ECM

⌉
=
⌈

Tmem
ECM

TL3MEM

⌉
with

Tmem
ECM = TnOL + TL1L2 + TL2L3 + TL3MEM

which is the number of cycles per cache-line if all data resides in memory.

In addition to the bandwidth, the cache size of the L3 cache does not scale either, since it is shared
among all cores. This can have the effect that the L3 cache-size per core is reduced, unless the same
data regions are accessed by multiple cores at the same time. We will ignore this for now and explain our
simplified resolution of this case in Section 3.

2On the Intel Westmere CPU, the L3 cache was a bandwidth bottleneck since it could only deliver 32 Bytes/cy in total, not scaling
with the number of cores. In cases where the L3 cache traffic is much larger than the memory traffic (e.g., if many layers need to
be “caught” at L3), the L3 cache on Westmere may be the relevant bottleneck.
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3
IMPLEMENTATION

The developed toolkit is called kerncraft. The source code and example inputs can be found on github1

and are licensed under the GNU Affero General Public License version 3 (AGPLv3) [25]. kerncraft is also
available as a python package, listed on the Python Package Index (pypi) [26].

The command kerncraft allows access to the analysis with all implemented performance models. For
any analysis a model (e.g., ECM), a machine description file and kernel code, as well as possible constants
(e.g., N=64) need to be provided. After completion, the computed performance bounds are reported to
the user through standard out. An example run can be seen in Listing 3.1. Information that was gathered
during the static analysis can also be reported using the verbose flag -v. The usage and the most common
command line arguments are explained in Section 3.4.

$ kerncraft -m phinally.yaml 2d-5pt.c -p ECM -D N 5000 -D M 500
================================================================================

kernels /2d-5pt.c
================================================================================
{ 9.0 || 8.0 | 10 | 6 | 12.7433628319 } = 36.74 cy/CL
{ 9.0 \ 18.00 \ 24.00 \ 36.74 } cy/CL
saturating at 3 cores
$

Listing 3.1: Example run of kerncraft with ECM model and 2D-5pt Jacobi kernel on a 5000 by 500 element matrix.

3.1. Structure

Internally kerncraft consists of the following components: the command line interface (CLI), the kernel code
analysis, the performance models and the machine model. The CLI is provided by the kerncraft.py file,
the main entry point for users. All kernel codes go through the analysis by the module found in kernel.py,
collecting all static information that needs to be extracted. Each performance model is a submodule found

1https://github.com/cod3monk/kerncraft
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in the models directory, which currently are: ECM, ECMData, ECMCPU, Roofline, RooflineIACA and
Benchmark. The machine model is found in machinemodel.py and parses machine description files.

Additional helper scripts exist to collect and manage data that is generated: iaca_marker.py helps
adding IACA markers to the assembly code, likwid_bench_auto.py collects all possible and necessary
information on the hardware architecture using likwid-bench and likwid-topology. picklemerge.py
allows to merge gathered results from kerncraft for later batch analysis.

A general overview of the internal workings behind kerncraft is depicted in Figure 3.1.

data pattern
 name |  offsets   ...
------+------------...
    a | ('rel', 'j', 0), ('rel', 'i', -1)
      | ('rel', 'j', 0), ('rel', 'i', 1)
      | ('rel', 'j', -1), ('rel', 'i', 0)
      | ('rel', 'j', 1), ('rel', 'i', 0)
    s | ('dir',)

user-input
kernel code constants

binary
marked for IACA

abstract syntax tree

IACA throughput
analysis

cache simulation
reuse distance analysis

data transfers

T_OL, T_nOL

T_L1L2, T_L2L3, T_L3MEM

ECM/Roofline
model

in-core

AST
pycparser

compiler

#define N 1000
#define M 2000

for(j=1; j < N-1; ++j)
for(i=1; i < M-1; ++i)
b[j][i] = (a[ j ][i-1] + a[ j ][i+1]

+ a[j-1][ i ] + a[j+1][ i ] ) * s;

vmovsd (%rsi,%rbx,8), %xmm1
vaddsd 16(%rsi,%rbx,8), %xmm1, %xmm2
vaddsd 8(%rdx,%rbx,8), %xmm2, %xmm3
vaddsd 8(%rcx,%rbx,8), %xmm3, %xmm4
vaddsd 8(%r8,%rbx,8), %xmm4, %xmm5
vaddsd 8(%r9,%rbx,8), %xmm5, %xmm6
vmulsd %xmm6, %xmm0, %xmm7

likwid-bench

documentation

machine file
clock: 2.7 GHz
cacheline size: 64 B
memory hierarchy:
- {cores per group: 1, cycles per cacheline: 2,
   level: L1, size per group: 32 kB}
- {cores per group: 1, cycles per cacheline: 2,
   level: L2, size per group: 256 kB}
- {cores per group: 8, bandwidth: 40 GB/s,
   level: L3, size per group: 20 MB}
[...]

Input

Intermediate
Output

Figure 3.1.: Overview of the kerncraft toolkit analysis

3.2. Kernel Code Analysis

All information that can be gathered from the source and its compiled binary is handled in the kernel
module. It can be split in two areas: the static source code analysis and the IACA based analysis. Support
functions to parse, generate, assemble and compile the code are also part of this module. In the following
sections we will have a detailed look at an example analysis of a 2D, 5 point Jacobi stencil code, explain
the analysis and what information is gathered and how it is extracted.

3.2.1. Kernel Code

The basis for the kernel code syntax is the ISO C Standard 1999 [27] (C99), but some restrictions are nec-
essary to make analysis feasible. From now on, constant will refer to a value passed to the kernel from the
command line and it is used to define array dimensions. An example kernel code can be seen in Listing 3.2.
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double a[M][N];
double b[M][N];
double s;

for(int j=1; j<M-1; ++j)
for(int i=1; i<N-1; ++i)

b[j][i] = ( a[j][i-1] + a[j][i+1]
+ a[j-1][i] + a[j+1][i]) * s;

}}}

Listing 3.2: 2D-5pt Jacobi kernel code

All kernel codes must fulfill the following restrictions:

• Statements need to be multidimensional arrays or scalar declarations

• Only datatypes double and int are supported, due to their relevance in scientific codes. Support
for other constant sized datatypes, such as float, can be added easily.

• Array declarations may use fixed sizes or constants, with an optional addition or subtraction of an
integer (e.g., double u1[M+3][N-2][23], but not double u[M*N]).

• The declaration statements must be followed by exactly one for-loop. This loop may either contain
further for-loops or multiple assignment statements.

• It is not allowed to mix loops and assignment statements within a loop body. Only the innermost
loop may contain assignment statements.

• Assignment statements in the innermost for-loop must comply with the following: valid operands are
scalars, integer, float or double values and array references.

• Array references must either use index variables from for-loops, with optional addition or subtraction,
constant or fixed values.

• All for-loops must use a declaration as initial statement and an increment or a decrement assignment
operation as the next statement (e.g., i++, i -= 2). The condition statement must compare the
same index variable used in the initial and next statements with a fixed integer value or a constant
with an optional addition or subtraction of an integer using the less-than operator (e.g., i < N+2).

• Function calls and the use of pointers is not allowed anywhere in the kernel code.

• Write access to any data is assumed to use “normal” STORE instructions (e.g., not non-temporal
stores).

These restrictions might seem very limiting, but all stencil codes and many other loop based kernels can
be represented easily in such a manner, especially if the original code is based on C or C++. Some of
these restrictions are even taught as good practice in basic high performance computing classes [28]. For
example: by keeping if statements out of the loop constructs—especially the inner loops—performance
gains will often be significant.

3.2.2. Code Parsing and Static Analysis

We use the pycparser [29] python library for parsing of kernel codes, which supports the C99 standard.
The resulting abstract syntax tree (AST) is then checked for the restrictions mentioned Section 3.2.1. From
the static analysis we need to learn about three different things:

• for-loop stack

• data sources and destinations

• floating point operations used
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The loop stack contains information about all for-loops present in the code: their order, index variable
name, start value, end value and step size. This gives us the number of loop iterations that will be
performed and allows us to figure out the order of accesses to arrays. See Table 3.1a for the gathered
information from Listing 3.2.

Data sources and destinations are retrieved from statements in the inner for-loop. Any data access can
be either direct (e.g., to a scalar or an array with constant or fixed index) or relative with an optional offset.
Multidimensional arrays have relative or direct access on each dimension, for instance xy[0][j][i+1]
is a direct access on the first dimension, than a relative access on the second dimension and another
relative relative access on the third dimension with an offset of +1. See Table 3.1b and 3.1c for the data
access analysis of the kernel code found in Listing 3.2.

Floating point operation (FLOP) counts are simply the number of operations found in the inner statements,
possible compiler optimizations such as common subexpression elimination or compile-time evaluation
are being ignored here. The gathered counts are only used by the Roofline model and not for the ECM
prediction. The counts for Listing 3.2 are found in Table 3.1d.

index variable start end step size

j 1 499 +1
i 1 4999 +1

(a) Loop stack

variable 1st dimension 2nd dimension

a relative j relative i − 1
relative j relative i + 1
relative j − 1 relative i
relative j + 1 relative i

s direct

(b) Data sources

variable 1st dimension 2nd dimension

b relative j relative i

(c) Data destinations

operation count

+ 3
* 1

(d) Floating point operations

Table 3.1.: Information gathered from 2D-5pt Jacobi kernel in Listing 3.2 with constants N=5000 and M=500

3.2.3. IACA Analysis

The Intel Architecture Code Analyzer (IACA) is a static code analysis tool used to predict throughput and
latency of code sections on Intel microarchitectures. More information on the software can be found in
Section 2.3 and at [17]. We use IACA to analyze the in-core performance of the kernel code, because
this tool is freely available and contains information which is not easily extractable from Intel’s public
documentation. The drawback is that older CPU microarchitectures and architectures by other vendors
are not supported.

For IACA, the code needs to be transformed into a compilable version and the relevant section marked
using special assembly instructions. To do so, the kernel code is transformed by first inserting it into a
main function. For each constant, code is inserted to take an argument from the command line and saved
as a constant integer variable. Afterwards, all array declarations are replaced by pointer declarations with
memory allocation using _mm_malloc, in order to produce 32 byte aligned and arbitrary sized arrays. It
is necessary to do so, because otherwise, the allocation would take place in the stack section of memory
which is typically limited to 8 MB. The loop stack is left untouched, but the inner statements are changed
if they contain multidimensional array references. The multi-dimensional indexes need to be replaced by
single-dimension index arithmetic to map all values to a continuos one dimensional array. In the end an
external dummy function call is inserted and is passed a reference to the arrays. This will make sure that
the compiler cannot over-optimize the code and partially or completely remove statements.

The throughput analysis of the whole binary is not relevant, because we are only interested in the through-
put of the innermost loop. To restrict the analyzed section, IACA needs to find special assembly instruc-

28



CHAPTER 3. IMPLEMENTATION

tions that can either be inserted via intrinsics in the C code or by manually modifying the assembly pro-
duced by the compiler. Intrinsics have the disadvantage that they can throw the compiler off track, keeping
it from vectorizing the loop code. Since we are interested in compiler optimized code, this approach is
not suitable. Finding the correct block in the assembly code is not too difficult and is done by selecting
the block with the most vector instructions. In case this fails, the user can always overwrite the automatic
behavior using the --asm-block command line argument.

The unrolling factor is extracted from the marked section by analyzing the loop counter increments used
at the end of the block. This is needed to allow interpretation of the throughput analysis results from IACA.
For example, if a loop is 4-times unrolled and IACA predicts a throughput of 32 cycles, then one single loop
iteration and update step takes 8 cycles. This analysis is valid for scalar and vectorized loops, regardless
of the processor features used.

3.3. Performance Models

We have implemented three performance models, which are based on the previously mentioned code
analyses: Execution Cache Memory (ECM), Roofline and Benchmark. All models can operate on all
supported codes. Both the ECM and Roofline analysis can be executed on any machine and their output
does not depend on the hardware it is run on, since the code is never actually run. The Benchmark
model is special, since it actually executes the compiled kernel code using likwid-perfctr to measure
the performance, rather than predicting it. All models are python classes that need to be implemented
according to a kerncraft specific interface: Each model class must offer a constructor accepting the kernel
object, a machine description object, the command line arguments and the command line parser object.
After creation, two member functions are called without any arguments: analyze(), which is expected
to do all the analysis work and store the results in an instance variable by the name of results, and
report(), which is supposed to print an analysis report to stdout based on the information found in the
results variable.

The central part of kerncraft, and one crucial ingredient in analytical performance modeling, is the cache
reuse analysis in ECMData and Roofline. This is required to predict the origin of data during accesses.
There are certain assumptions towards the hardware and software side that allow the generic analysis
algorithm to produce useful results:

• Perfect least-recently-used (LRU) cache replacement strategy on all cache levels
Although Intel CPUs formerly used a pseudo LRU (PLRU) strategy as seen in [15], and most likely
still do, they try to mimic LRU and thus this assumption is acceptable.

• Small warm-up effects
When a loop runs for the first time, the cache is not filled with the relevant data as assumed by the
prediction model. This will be negligible, as long as the loops are iterated often enough.

• Proportionally short peel and remainder loops
Compilers have to create special loops in the code to handle remaining loop iterations from unrolling
(remainder loops) and from establishing alignment constraints (peeled iterations). As long as the
total number of iterations is high, remainder and peel loops can be ignored in the prediction.

• Perfect prefetching
The ECM and Roofline models expect prefetching to hide all latencies in the memory hierarchy, so
that the transfer time for any amount of data across a specific data path is just the ratio of data
volume and asymptotic bandwidth. Here we will rely on hardware prefetching of the Intel Xeon
processors.

• No resource sharing due to multiprocessing
We assume that all available resources are solely dedicated to the execution of the loop kernel.
This means that cache sizes, bandwidths and cycles are not shared, which is never true, because
the operating system and other background daemons will take their share, but it is a good approx-
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imation on single-user, dedicated compute nodes. In case of multi-core prediction, it is possible to
specifically share L3 cache-size and memory bandwidth.

• Scalar variables are kept in registers
All scalar variables used in kernel codes are ignored in the data access, since they are assumed to
be present in registers during loop iterations.

• Fully associative caches
Since real memory locations are unknown during static analysis, exact prediction of collisions is not
possible.

• Fully inclusive cache hierarchy
We expect that all caches keep a copy of the information passed onto the next (smaller) cache level.
This is the case with the investigated processors.

Some of these restrictions or simplifications towards the cache implementation in the CPU may be lifted
by combining kerncraft with a more complex cache simulation, as planned for future work.

3.3.1. Cache Prediction Algorithm

Each cache level is inspected independently, although only misses in lower levels (closer to registers) are
passed to the next higher level. The analysis yields the same result if all caches are hit with all requests,
simplifying the implementation. We start off with all data requests from the loop iteration i, j in the 2D-
5pt Jacobi kernel code from Listing 3.2 shown in Table 3.1b, respectively 3.1c: a[j-1][i], a[j][i-1],
b[j][i], a[j][i+1], a[j+1][i]. A visual representation can be seen in Figure 3.2a. The grid lines
depict the underlying matrix cells. Unfortunately, this notation does not offer any information about the
actual location of the values in memory, so we change to a 1D-notation: a[(j-1)*N+i], a[j*N+i-1],
b[j*N+i], a[j*N+i+1], a[(j+1)*N+i]. The mapping from 2D to 1D emphasizes the streaming nature
of the data accesses, but without N, i and j, it is still not sufficient. For N we will need to choose a number,
for this example we will use N = 40. i and j we will keep abstract and say that the loop center is at a
relative offset of 0. If we plug this back into the 1D offsets, it leaves us with the following relative offsets:
−40, −1, 0, +1, +40.

Since in the modeling works with cycles per cache-line, we need to look at the data needed for a workload
of one cache-line. To do so, we take the loop center and move it as many iterations back as elements fit
into one cache-line, which is 8 doubles, thus 8 iterations. In this case it is easy, since the step size of the
inner loop is +1, the cache-line expansion can be seen graphically in Figure 3.2b. This gives us all data
accesses needed to take into consideration for one cache-line worth of workload. We can already see that
accesses on the center line are overlapping and will be cache hits. They can be removed, since it can be
assumed that everything for one cache-line will easily fit into the lowest cache level (32 kB on current Intel
Xeon processors). In this pattern, all offsets are treated as misses, since they need to be loaded to fulfill
the cacheline sized workload. Cells marked black are store accesses to b[] and cells marked blue are
load accesses from a[].

We now start adding iterations in the same fashion as we have seen, until the cache size is exceeded.
After each addition of new offsets, they are checked for overlaps with the original set of accesses. If there
is an overlap this means a cache hit. Once the cache is full, it is easy to see that all offsets from the
original set which were not turned into hits, must be misses and thus contribute to inter-cache-level or
memory traffic. See Figure 3.2c. for a complete illustration of all three cache levels. Note that, if there are
many hits in the first level cache (L1), they are also hits in the second and last level, but since only misses
lead to utilization of bandwidth, they are the information we seek. We can find one miss going all the way
to memory, because the complete dataset does not fit into memory, it is located bellow the loop center and
has the relative offset of −40. Also, there are two misses on L1 to the right of the loop center and above
it, at offsets −1 and +40, but they are hits on L2. Overall we can say that the layer-condition is fulfilled in
the L2 cache level.
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Figure 3.2.: Cache Prediction Algorithm
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The actual communication between caches and memory is done in memory blocks or cache-lines (syn-
onyms), the number of cache-lines therefore needs to be calculated from the offsets. We do not know any
real memory address, so we arbitrarily decided that the first cache-line starts at offset 0 inclusively.

In order to take care of write-allocates, all writes offsets are also treated like reads. It is currently not
possible to handle write-through, because it was not needed with the investigated codes. All write offsets
are added to an evict list and no caching is tracked on this, meaning that all writes are immediately evicted
as long as they go to offsets in arrays.

3.3.2. ECM

The ECM model is split into two submodels, one being the data access and cache analysis, also known
as ECMData, and the other being the in-core analysis performed by IACA, called ECMCPU. The model ECM
combines both submodels and gives an overall prediction. The reson for the splitting is that the IACA tool
may not be available on all systems, and it does certainly not support microarchitectures other than Intel’s.
In such cases one may still use the ECMData model to get the data traffic analysis.

Multi-Core Prediction

Based on the bottleneck analysis mentioned in Section 2.5.2, kerncraft always reports the number
of cores needed for saturation (ns). By default, the only shared resource considered is the memory
bandwidth. To take the shared L3 cache size into account, it is necessary to use the command-line
argument --cores and pass it the number of cores to scale to. This will effectively reduce the available
L3 size for the cache usage prediction. Since all architectures mentioned in Table 2.1 have a shared L3
cache, only that cache size is considered.

3.3.3. Roofline

The Roofline analysis uses the same algorithm as the ECM analysis to extract data access patterns be-
tween the first level cache and all other levels in the memory hierarchy. The interpretation of the data
differs in the following way. For each cache level, the arithmetic intensity is calculated by dividing the
floating point operations by the number of bytes transferred to and from that cache level. The arithmetic
intensity is then used in combination with benchmark results in the machine description to predict a maxi-
mum performance that can be expected at the given level. The machine description contains results from
multiple bandwidth benchmark kernels (e.g., load, copy, triad), and here we selected the one matching
the observed data pattern best, in terms of read vs. write streams. Each memory or cache level and the
CPU itself are considered a potential bottleneck. After upper bounds on all levels have been computed,
the slowest one is chosen and returned as the Roofline prediction.

The CPU bottleneck can be calculated in two ways: either using IACA (RooflineIACA model) or by taking
the theoretical peak performance of the CPU (Roofline model). If the theoretical total peak is considered,
the first level cache bandwidth to CPU register performance needs to be viewed as another cache level.
The peak performance is usually an over estimation, because it assumes the perfect mix of operations for
the given CPU and a more suitable model will replace this in future work. On the other hand, the maximum
arithmetic CPU performance and first level cache to register performance can be obtained more accurately
by an IACA throughput analysis, as described in Section 2.3.

3.3.4. Benchmark

Unlike the previous models, using the command line argument --pmodel Benchmark does not predict
performance, but measures it. Therefore this model must also be executed on the same machine as
described in the machine file. Although most information from the machine file will not be necessary, it is
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used to determine the appropriate compiler flags, cache-line size and clock speed. For the measurement
results to be generated correctly, the user must set the CPU frequency to the clock speed defined in the
machine file.

In order to allow execution of the kernel code, it needs to be transformed in a similar manner as described
in Section 3.2.3. Here, we insert one extra for-loop wrapping all kernel loops to prolong the execution
time to at least half a second, and calls to the LIKWID marker application programming interface (API) are
inserted before and after the outer for-loop, for precise measurements.

After successful transformation and compilation, the binary is executed with likwid-perfctr, LIKWID’s
performance counter and pinning command. Pinning to the first core is therefore ensured and runtime can
be measured alongside memory bandwidth and data volume, cycles per instruction and other metrics.
The runtime is used to calculate the number of cycles per work unit.

3.4. Usage

Kerncraft consists of multiple command line tools, the main one being the kerncraft command. Other
commands are iaca_marker, a tool to mark assembly code blocks for later IACA analysis without compro-
mising on compiler optimizations and likwid_bench_auto, which allows the user to collect information
about the machine and generate a machine description file. picklemerge merges two or more Python
pickled dictionaries recursively, specifically the results files created by kerncraft for later analysis. In this
Section on we will have a look at kerncraft’s command line interface and how to use it.

To use kerncraft one has to provide two files: one machine description and a kernel code file. The ma-
chine description files are in the Yet Another Markup Language (YAML) format [30] and can be generated
using the likwid_bench_auto command. The generated file contains only partial information about the
machine, since some data (e.g., cycles per cache-line transfer) can not be extracted, but need to be man-
ually extracted from developer manuals and documentation published by vendors. All missing values are
marked by the placeholder string REQUIRED_INFORMATION and need to be filled in before the file can be
used with kerncraft. The kernel code syntax and requirements are described in detail in Section 3.2.1.
Example machine description files can be found in the kerncraft repository for the compute nodes at the
RRZE HPC center described in Table 2.1, as well as the kernel codes described in Sections 4.1 and 4.2.
The generation, interpretation and format of the machine description is explained in Appendix B.

The command line interface (CLI) accepts the following format:

kerncraft --machine MACHINE --pmodel PMODEL [-D KEY VALUE] [--verbose] [--asm -block
BLOCK] KERNELFILE [KERNELFILE ...]

We will have a look at the most commonly used options, but more information about the arguments can
be found by calling kerncraft --help.

• MACHINE needs to be replaced with the location of the machine file and

• KERNELFILE with the location of the kernel code, where as multiple can be passed for batch pro-
cessing.

• Depending on the kernel code, constants must be passed via -D KEY VALUE (e.g., -D N 100 will
set constant N to 100) and multiple constants can be passed by repeating the -D KEY VALUE argu-
ment.

• The --asm-block BLOCK parameter influences only models that are based on an IACA analysis:
it can either be the index of an assembly block to mark for IACA or manual if the selection should
be done interactively. If the parameter is not given, it defaults to an automatic selection based on
statistics reported with manual. See Appendix C for information on usage and default behavior.

• PMODEL must be one of {ECM,ECMData,ECMCPU,Roofline,RooflineIACA,Benchmark}. Infor-
mation about the different performance models can be found in the preceding Sections.
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• During investigation of a kernel code, it is very helpful to make use of the --verbose flag (short
-v), which can be passed one or more times to increase verbosity of the output reporting.

An example run can be seen in Listing 3.1. The used kernel file (2d-5pt.c) contains exactly the code
in Listing 3.2 and this specific machine description file (phinally.yaml) is presented and explained in
Appendix B.
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We will have a look at ECM predictions from kerncraft versus performance measurements on three mi-
croarchitectures with six stencil and six stream kernel codes. The system and microarchitecture specifi-
cations used can be found in Table 2.1. In the following sections, we will present the kernel codes used
for evaluation, followed by the comparison of prediction and measurement results. The software stack
used on the three architectures consists of a Linux operating system with the following software packages
directly used for evaluation: Intel Automatic Code Analyzer (IACA), Intel Compiler (ICC), LIKWID, Python
and of course the kerncraft toolkit. An overview of the versions used on each system is given in Table 4.1.

Software package Version on phinally Version on ivyep1 Version on hasep1
(Sandy Bridge) (Ivy Bridge) (Haswell)

Intel Automatic Code Analyzer (IACA) 2.1 (32 bit) 2.1 (32 bit) 2.1 (32 bit)
Intel Compiler (ICC) 13.1.3 20130607 13.1.3 20130607 13.1.3 20130607

kerncraft 284979 (git) 284979 (git) 284979 (git)
LIKWID 3.1 3.1 4.0
Python 2.7.3 2.7.3 2.7.6

Table 4.1.: Utilized Software Stack

As explained in Section 2.5.2, we had to find a penalty factor for Ivy Bridge and Haswell L3-Memory
access. To do so, we compared the predicted cycles to the measured cycles per cacheline in the worst-
case, where no layer-condition is fulfilled and all L1 cache misses are forwarded to main memory. Ta-
ble 4.2 shows the deviations of all predictions to benchmarks and how they relates to the number of read
streams. We can see that phinally (Sandy Bridge) has little differences, ivyep1 (Ivy Bridge) has some and
hasep1 (Haswell) has most. From the data, we selected the penalty for Ivy Bridge to be 3 cycles per read
stream going to memory and 4 cycles for Haswell, which is part of the machine description described in
Appendix B. All following results already contain the penalty in the TL3MEM component.

35



System Kernel read/write prediction benchmark difference deviationa diff. per
streams [cy/CL] [cy/CL] [cy/CL] [%] read str.

phinally

2d-5pt 4/1 49.9 52.9 3.0 6.0 0.7
3D long range 11/1 185.6 199.2 13.6 7.3 1.2

3D-7pt 4/1 57.9 58.7 0.8 1.4 0.2
triad 4/1 47.9 55.5 7.5 15.9 1.9

scale 2/1 26.7 29.9 3.2 12.0 1.6
add 3/1 37.0 42.9 5.9 15.9 2.0

scalar product 2/0 19.8 24.8 5.0 25.3 2.5
3D-27pt 4/1 116.4 113.1 -3.3 -2.8 -0.8

vector sum 1/0 9.9 14.2 4.3 43.4 4.3
DAXPY 2/1 28.7 31.1 2.3 8.4 1.2

uxx stencil 9/1 132.4 135.1 2.7 2.0 0.3
1D-3pt 2/1 30.7 42.6 11.8 38.8 5.9

ivyep1

2D-5pt 4/1 48.0 58.4 10.4 21.7 2.6
3D long range 11/1 181.0 205.9 24.9 13.8 2.3

3D-7pt 4/1 56.0 60.3 4.3 7.7 1.1
triad 4/1 46.0 64.8 18.8 40.9 4.7

scale 2/1 26.0 31.3 5.3 20.4 2.7
add 3/1 36.0 46.0 10.0 27.8 3.3

scalar product 2/0 20.0 23.8 3.8 19.0 1.9
3D-27pt 4/1 114.5 97.3 -17.2 -15.0 -4.3

vector sum 1/0 10.0 12.9 2.9 29.0 2.9
DAXPY 2/1 28.0 32.8 4.8 17.1 2.4
1D-3pt 2/1 30.0 40.5 10.5 35.0 5.2

uxx stencil 9/1 128.5 147.7 19.2 14.9 2.1

hasep1

3D long range 11/1 175.6 218.9 43.3 24.7 3.9
2D-5pt 4/1 45.5 55.7 10.2 22.4 2.5
3D-7pt 4/1 53.5 61.3 7.8 14.6 1.9

triad 4/1 40.5 57.5 17.0 42.0 4.3
scale 2/1 23.5 32.7 9.2 39.1 4.6

add 3/1 32.0 45.0 13.1 40.6 4.4
scalar product 2/0 17.0 26.4 9.5 55.3 4.7

3D-27pt 4/1 114.1 92.5 -21.6 -18.9 -5.4
vector sum 1/0 8.5 16.4 7.9 92.9 7.9

DAXPY 2/1 24.5 33.3 8.9 35.9 4.4
1D-3pt 2/1 26.5 47.4 20.9 78.9 10.5

uxx stencil 9/1 121.5 151.3 29.8 24.5 3.3

Table 4.2.: Memory access penalty calculation per microarchitecture from: (bench.− prediction)/no. of read streams

adeviation = (benchmark − prediction)/prediction
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4.1. Streaming Kernels

The following streaming kernels are typical examples used to benchmark the performance of memory
systems. Their arithmetic intensity is small and they depend highly on the memory bandwidth and do not
profit from caching, unless the data set is small enough to completely fit into a cache level. The data is
therefore continuously streamed from memory to the CPU and back, hence the name.

DAXPY

double a[N], b[N];
double s;

for(int i=0; i<N; ++i)
a[i] = a[i] + s * b[i];

The DAXPY kernel accumulates a scaled vector to another double precision vector, creating a linear
combination of two vectors. It is often used in numerical codes and is therefore part of linear algebra
libraries like BLAS [31].

ADD

double a[N], b[N], c[N];

for(int i=0; i<N; ++i)
a[i] = b[i] + c[i];

This kernel is part of the STREAM benchmark collection [32], a standard memory bandwidth benchmark.
It adds two double precision vectors and stores the result in a third. The write miss associated with the
access to a will lead to an additional read stream due to write-allocate.

Scalar Product

double a[N], b[N];
double s;

for(int i=0; i<N; ++i)
s += a[i] * b[i];

The scalar product is a common numerical operation (e.g., used to calculate the angle between two
vectors), where the element-wise product of two vectors are summed up. It is also known as dot product
or inner product. The (intermediate) result s is always kept in registers, so no write stream exists. It is also
part of the BLAS library under the name of “DDOT”.

Scale

double a[N], b[N];
double s;

for(int i=0; i<N; ++i)
a[i] = s * b[i];

This kernel scales one vector by a scalar floating point number and stores the result into another vector. It
is also part of the STREAM benchmark collection. There are two read streams (one from b and one from
write-allocate of a) and one write stream. s is expected to be kept in a register throughout all iterations.

Triad

double a[N], b[N], c[N], d[N];
double s;

for(int i=0; i<N; ++i)
a[i] = b[i] + c[i] * d[i];
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The Schönauer Vector Triad kernel is similar to the STREAM benchmark Triad, but with an additional read
stream for d instead of a constant. It has the most unbalanced streaming kernel used in this evaluation,
with four read streams (one due to write-allocate) and only one write stream.

Vector Sum

double a[N];
double s;

for(int i=0; i<N; ++i)
s += a[i];

Vector sum is a simple reduction kernel, adding up all components of a vector to a single scalar. As with
the scalar product reduction, there is no write stream going back to memory, because the result is kept in
a register.

4.2. Stencil Codes

Stencil codes show peculiar access pattern into arrays, which arises from their relative off sets in multiple
dimensions (see Chapter 1). They can benefit highly from caching, even if the complete dataset does not
fit into any cache level. They are of special intrest, because many numerical solvers are based on these
types of data accesses.

1D-3pt

double a[N], b[N], c;

for(int i=1; i<N-1; ++i)
b[i] = c * (a[i-1] - 2.0*a[i] + a[i+1]);

This kernel is special in the sense that it fulfills the definition of both stencil and streaming kernels. Due to
caching, only a single read stream will hit anything beyond the first cache level and in the results we will
see the typical streaming pattern.

To get results from all cache levels, predictions and measurements are done in the range of N from 101 to
108 elements. This gives a total data size of 160 Byte to 1.5 GB (a and b combined) in memory.

2D-5pt

double a[M][N];
double b[M][N];
double s;

for(int j=1; j<M-1; ++j)
for(int i=1; i<N-1; ++i)

b[j][i] = ( a[j][i-1] + a[j][i+1]
+ a[j-1][i] + a[j+1][i]) * s;

Because of the row major storage format, only the constant N influences the caching behavior, as can be
seen in the layer-condition:

3 · N · 8 Byte <
Ck

2
with cache size Ck .

M is scaled to use at least a total of 1 GB of data and 16 rows. It is important that loops have a minimum
number of iterations, otherwise the prediction assumptions would not be correct. The size of at least 1 GB
is also important to fulfill the assumption that all data is residing in main memory. Hence, we choose:

M = max
(

10243 B
8 B · N

, 16
)
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For this kernel we let N range from 101 to 107, in order to to get a complete overview of different cache
and memory usages.

3D-7pt

double a[M][N][N];
double b[M][N][N];
double s;

for(int k=1; k<M-1; ++k)
for(int j=1; j<N-1; ++j)

for(int i=1; i<N-1; ++i)
b[k][j][i] = ( a[k][j][i-1] + a[k][j][i+1]

+ a[k][j-1][i] + a[k][j+1][i]
+ a[k-1][j][i] + a[k+1][j][i]) * s;

We use the same basic principle as in the 2D-5pt case to calculate M, but needed to adapt the rule for the
3D case:

M = max
(

10243 B
8 B · N2 , 16

)
For all following 3D kernels we used the same calculation of M based on N and made predictions and
measurements from N = 101 to 104, in order to stay within the main memory limit while making use of all
cache levels.

This adaptation is also reflected in the layer-condition:

3 · N2 · 8 Byte <
Ck

2

In addition to the 3D layer-condition, this also yields a 2D layer-condition or simply row-condition (explained
in Section 4.3.2):

3 · N · 8 Byte <
Ck

2

3D-27pt

double a[M][N][N];
double b[M][N][N];
double s;

for(int k=1; k<M-1; ++k)
for(int j=1; j<N-1; ++j)

for(int i=1; i<N-1; ++i)
b[k][j][i] = ( a[k][j][i]

+ a[k][j][i-1] + a[k][j][i+1]
+ a[k][j-1][i] + a[k][j+1][i]
+ a[k-1][j][i] + a[k+1][j][i]
+ a[k][j-1][i-1] + a[k][j-1][i+1]
+ a[k][j+1][i-1] + a[k][j+1][i+1]
+ a[k-1][j][i-1] + a[k-1][j][i+1]
+ a[k+1][j][i-1] + a[k+1][j][i+1]
+ a[k-1][j-1][i] + a[k-1][j+1][i]
+ a[k+1][j-1][i] + a[k+1][j+1][i]
+ a[k-1][j-1][i-1] + a[k-1][j-1][i+1]
+ a[k-1][j+1][i-1] + a[k-1][j+1][i+1]
+ a[k+1][j-1][i-1] + a[k+1][j-1][i+1]
+ a[k-1][j+1][i-1] + a[k-1][j+1][i+1]
) * s;

This kernel is a higher demanding version of the 3D-7pt kernel, since there are nine instead of five streams
coming from the L1 cache. The 3D layer-condition is the same as in the 3D-7pt case, but the 2D layer-
condition changes a little:

3 · 3 · N · 8 Byte <
Ck

2
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3D Long Range

double U[M][N][N];
double V[M][N][N];
double ROC[M][N][N];
double c0, c1, c2 , c3 , c4 , lap;

for(int k=4; k < M-4; k++) {
for(int j=4; j < N-4; j++) {

for(int i=4; i < N-4; i++) {
lap = c0 * V[k][j][i]

+ c1 * ( V[ k ][ j ][i+1] + V[ k ][ j ][i-1])
+ c1 * ( V[ k ][j+1][ i ] + V[ k ][j-1][ i ])
+ c1 * ( V[k+1][ j ][ i ] + V[k-1][ j ][ i ])
+ c2 * ( V[ k ][ j ][i+2] + V[ k ][ j ][i-2])
+ c2 * ( V[ k ][j+2][ i ] + V[ k ][j-2][ i ])
+ c2 * ( V[k+2][ j ][ i ] + V[k-2][ j ][ i ])
+ c3 * ( V[ k ][ j ][i+3] + V[ k ][ j ][i-3])
+ c3 * ( V[ k ][j+3][ i ] + V[ k ][j-3][ i ])
+ c3 * ( V[k+3][ j ][ i ] + V[k-3][ j ][ i ])
+ c4 * ( V[ k ][ j ][i+4] + V[ k ][ j ][i-4])
+ c4 * ( V[ k ][j+4][ i ] + V[ k ][j-4][ i ])
+ c4 * ( V[k+4][ j ][ i ] + V[k-4][ j ][ i ]);

U[k][j][i] = 2.f * V[k][j][i] - U[k][j][i]
+ ROC[k][j][i] * lap;

}}}

The 3D long range stencil has a radius of four in each of the six coordinate directions. The far off-center
accesses in k direction lead to an extremely high demand for cache size, since the 3D layer-condition can
only be satisfied, if 9 · N2 elements fit into the cache. A depiction of the different layer-conditions that can
be fulfilled by this kernel is shown in Figure 4.2. The 2D layer-condition is described by

9 · N · 8 Byte <
Ck

2

This stencil was originally used by Malas et al. [33] at KAUST and for performance analysis by Stengel
et al. [4].

UXX

double u1[M][N][N];
double d1[M][N][N];
double xx[M][N][N];
double xy[M][N][N];
double xz[M][N][N];
double c1, c2, d, dth;

for(int k=2; k<M-2; k++) {
for(int j=2; j<N-2; j++) {

for(int i=2; i<N-2; i++) {
d = 0.25*( d1[ k ][j][i] + d1[ k ][j-1][i]

+ d1[k-1][j][i] + d1[k-1][j-1][i]);
u1[k][j][i] = u1[k][j][i] + (dth/d)
* ( c1*(xx[ k ][ j ][ i ] - xx[ k ][ j ][i-1])

+ c2*(xx[ k ][ j ][i+1] - xx[ k ][ j ][i-2])
+ c1*(xy[ k ][j+1][ i ] - xy[ k ][j-1][ i ])
+ c2*(xy[ k ][j+1][ i ] - xy[ k ][j-2][ i ])
+ c1*(xz[ k ][ j ][ i ] - xz[k-1][ j ][ i ])
+ c2*(xz[k+1][ j ][ i ] - xz[k-2][ j ][ i ]));

}}}

This stencil is part of a simulation code for dynamic rupture and earthquake wave propagation [34]. It is
special because of the unsymmetric access pattern in all three dimensions, and because of the “expen-
sive” divide operation in the loop body. See [4] for a detailed analysis. The 3D layer-condition is described
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by the following inequation:

4 · N2 · 8 Byte <
Ck

2
and the 2D layer-condition consequently by:

4 · N · 8 Byte <
Ck

2

4.3. Results

In Figures 4.3 and 4.4, we present the results of kerncraft predictions and measurements side-by-side on
three different microarchitectures. “phinally” refers to the system described in Table 2.1 as “Sandy Bridge”,
“ivyep1” is the “Ivy Bridge” system and “hasep1” is the described “Haswell” system. All shown kernels have
been described and their underlying code presented in Sections 4.1 and 4.2. The vertical axis in the plots
represents cycles per cache-line, the usual metric for ECM predictions. The horizontal axis represents
number of elements on the inner dimension N. Thus “higher” numbers (on the vertical axis) are slower,
since more cycles need to be executed per cache-line of work. For better comparison, the scale of the
axes is the same on each row.

The background coloring represents the stacked contributions from the ECM prediction, from blue (bottom)
to orange (top): TnOL, TL1L2, TL2L3 and TL3MEM. The red line is the TOL contribution from the in-core analysis.

Measurements are represented by black crosses, which are evenly distributed throughout the plot range.
Some datapoints towards the beginning are missing, because the measured results lie above the plot’s up-
per limit. This was done intentionally in order to focus on the relevant data range, since L1 measurements
are often dominated by other effects, mostly due to short loop lengths.

4.3.1. Streaming Kernels

The plots for streaming kernels in Figure 4.3 (and for the 1D-3pt stencil from Figure 4.4) show the behavior
of the kernels if the complete data set can fit into different memory hierarchy levels. The ECM model in
kerncraft is based on the assumption that the dataset does not completely fit into any cache level and
therefore resides in memory for the most part. Since this assumption is not necessarily true for streaming
kernels, we interpret the results slightly differently than with stencil codes. One prediction already contains
all results needed to anticipate the performance at all levels, by adding up the relevant contributions and
ignoring the rest of the memory hierarchy. For this reason a perfect result would be that each step of
the measurement results (black crosses) corresponds to a prediction level (colored background), which
can be seen easily in the graphical representation. Each step is located at the maximum size of a cache
level, although not always a perfectly straight edge can be seen due details in cache associativities and
replacement strategies.

Measurements with very few elements in the L1 cache yield bad results, since loop overheads are more
dominant. Especially interesting is the straight “line” of measurement points present in all plots between
N = 10 ... 30. This is due to loop unrolling and vectorization, which leads to significant overhead if the
input data is not a multiple of the CPU’s supported vector length and the compiler’s chosen loop unrolling
length. In these cases, a “fallback” or “remainder” loop needs to be used, which is usually much slower
because of missing vectorization and unrolling. With increasing number of elements, the remainder loop
needs to be iterated more often and performance decreases, until the number is a multiple again where
performance is at a “sweet spot”.

In Figure 4.3, we can see that the accuracy of TnOL and TOL is very good. L2 (TL1L2) and L3 (TL2L3)
predictions are also quite accurate, but vary with the underlying kernel code. For example: ADD and
TRIAD on phinally and ivyep1 are almost perfect matches of prediction and measurement from N = 102

to 106. hasep1 does not match as well, but is still within a couple of cycles of the prediction. The good
prediction of TL3MEM on ivyep1 and hasep1 comes from the correcting penalty cycles, which are tailored
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Figure 4.1.: Detailed plot of the ECM prediction for the 3D Long Range Stencil on phinally, with comparison to fulfilled
layer-conditions on each cache level.

to the results we have at hand, as was explained in the beginning of this chapter. The memory prediction
on phinally, was not corrected and is purely based on measurements with stream-like benchmarks. In
general, we can say that for codes with balanced write and load streams, the prediction is quite accurate,
but pure load based codes (vector sum and scalar product) seem to be influenced by effects that we do
not model.

4.3.2. Stencil Codes

The predictions of stencil codes in Figure 4.4 show steps, which reflect the different layer-conditions being
violated in different caches in turn. It is assumed that the complete dataset is held in the main memory and
caches can only hold a subset of that. If we ignore the 1D-3pt stencil, which behaves more like a streaming
kernel, we can see that the ECM predications are quite accurate. The ideal measurement/prediction result
would be that all black crosses (measurement results) are residing right on the top edge of the colored
background (prediction). This can be written as Texpected measurement = TnOL + TL1L2 + TL2L3 + TL3MEM. On
the far left side, we see the prediction for the smallest data set (N = 10), which corresponds to the
layer-condition met on the first level cache (L1). The measurements are nowhere near the predictions
in all cases, because such short loops generate a large overhead in relation to the actual work. When
looking further to the right, increasing N, we see steps in the predictions when layer-conditions are not
met anymore. The L1 layer-condition is not fulfilled by increasing N just slightly, for example at N = 103

with the 2D-5pt stencil. On the far right, no layer-condition is fulfilled anymore and most data needs to
come from memory. With each step between the far left and far right, another layer-condition is not met
anymore. On the more complex kernels, like UXX, there are more steps than cache levels, because the
three dimensional nature of the stencil leads to three layer-conditions which can be fulfilled in each cache
level. The far left and far right still correspond to L1 layer-condition and no layer-condition, but due to the
cache simulation, intermediate steps are also predicted and lead to a more fine-grained prediction.

Figure 4.1 depicts the origin of the steps in the ECM prediction using the example of the 3D Long Range
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Stencil on phinally. Bellow the prediction plot are the conditions that are fulfilled on each cache level. “3D”
means that the full layer-condition in all three dimensions is fulfilled and requires at least 9 · N2 · 8 Byte of
cache size for V. The 2D layer-condition only requires the elements lying in one plane to be stored and
like with 2D stencils, this condition calls for 9 · N · 8 Byte cache size. The one dimensional condition is
always fulfilled, since nine consecutive elements can always be stored in the cache. Figure 4.2 illustrates
the three different layer-conditions, which can be found in any three dimensional stencil.

k i

j

k i

j

1D layer-condition:

3D layer-condition:

k i

j

2D layer-condition:

stencil center-point

stream head (uncached)

cached element

Figure 4.2.: 3D layer-conditions inherent to all three dimensional stencil codes. i refers to the inner loop, and k to the
outer loop. The depicted stencil is the 3D long-range-stencil from Section 4.2.

Coming back to the 1D-3pt stencil, we can see that the predictions do not match the measurements
very well. Even the IACA prediction does not match up with the measurement in L1, which is striking
because this is very accurate for all other streaming kernels. If we add the offset between IACA prediction
and measurement in L1 (roughly 5 cycles) to all other predictions we get the following: L2 should be
around 17 cy/CL and we measure 19, which is not perfect but acceptable. L3 would be at 23 cy/CL, but
we get 28 cy/CL and the memory measurement is also off by another 5 cycles per cache-line. We were
unfortunately unable to understand the discrepancies, which involve all tested architectures. We have tried
to see if it only happens in load bound versions of the code, but even with SSE2 instructions measurements
and predictions do not match up.

Overall, predictions and measurements in Figure 4.4 match up quite well on the Sandy Bridge architecture.
On Ivy Bridge and Haswell, penalty cycles were used to correct for discrepancies of the TL3MEM latency. In
some cases this lead to an over correction, e.g., on 3D-27pt and 3D-7pt on ivyep1 and hasep1, as well as
2D-5pt on hasep1.
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Figure 4.3.: Comparison of ECM model predictions by kerncraft and measurements for the streaming kernels (Sec-
tion 4.1) across all levels of the memory hierarchy. The different color bands visualize contributions to
the prediction from L1 (at bottom), L2 and L3 cache levels and main memory (at top). The red line is the
overlapping time TOL. Measurements are marked by black plus-signs.
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Figure 4.4.: Comparison of ECM model predictions by kerncraft and measurements for the stencil kernels (Sec-
tion 4.2) with all data originating from main memory, but layer-conditions fulfilled at different cache levels.
The different color bands visualize contributions to the prediction from L1 (at bottom), L2 and L3 cache
levels and main memory (at top). The red line is the overlapping time TOL. Measurements are marked by
black plus-signs.
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5
CONCLUSION AND FUTURE WORK

We have shown that an automatic analysis of streaming and stencil loop kernels using analytical models
is possible and allows a detailed view on performance in relation to a given hardware architecture. Our
“kerncraft” tools will be especially helpful to simulation developers, performance engineers and computer
scientists interested in understanding performance behavior of loop kernel based codes. We provide a
toolkit that will accurately predict the single-core performance of loop kernels, relying for the most part on
static analysis and documented hardware specifications, and requires no execution and measurements
beyond the inputs for the underlying Execution-Cache-Memory (ECM) and Roofline models. This allows
quick and easy evaluation of prototype code on a variety of hardware architectures and a detailed analysis
of performance gains to be expected of algorithmic and hardware changes.

Although the kerncraft tool is able to construct both the ECM and Roofline model, our analysis focused
on the ECM model and its accuracy when applied to different streaming and stencil kernels. In load
dominated test-cases predictions were not perfectly accurate, due to under estimation of last level cache to
main memory transfers, since the ECM model currently lacks a precise model for memory throughput. It is
therefore based on measurements rather than well-founded architecture analysis. For this reason, penalty
cycles have been introduced and yield acceptable results. This area is currently under investigation,
especially since the discrepancies (and penalty cycles) grew larger with more recent microarchitecture
generations. Preliminary results have been published [23].

Development on kerncraft will continue along with the advancement of the ECM model. Especially the
interoperability, usability and presentation of results are key challenges for future work. Currently, we
only support Intel processors with Nehalem microarchitecture or newer, due to dependency on the Intel
Automatic Code Analyzer (IACA) and the Intel Compiler (ICC). To lift that restriction, an in-core execution
simulation needs to be developed as a replacement for IACA. The dependency on ICC will be changed and
replaced by a generic compiler interface allowing the use of any available compiler. Support for many-core
based architectures, like GPUs or Intel Xeon Phis, is tricky, since it depends foremost on the adaptation of
the ECM model to such architectures. The Roofline part of kerncraft will be less problematic.

Some work will be done on better presentation of results, since this will make the output more complete
and easier to interpret. One discussed strategy is to always compile a full report on all data set sizes
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of interest (all different layer-condition fulfilled), as well as a multi-core scaling analysis. A more detailed
plotting scheme for data set size sweeps is planned, where each “step” in the plot comes with a detailed
explanation of the cache hits and misses on each level. The report could also give blocking suggestions
to the programmer, including suggested block sizes and their predicted speed ups.

The cache simulator is currently very rudimentary and could be extended to simulate aliasing effects due
to cache associativity, and different cache replacement policies.

Another approach to gather the cache reuse information is the interception of memory accesses while
running the code. There are several papers on this technique, which can be an addition to the kernel code
static analysis, to validate results and predict behavior of more complex codes embedded within large
projects.

To make the toolkit more widely accessable, we plan to offer a hosted version, where no local installation
is necessary and the automatic code analysis is offered as a service for interested parties via an online
web service.
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A
FROM IACA TO TOL AND TNOL

In order to explain the interpretation of IACA results, we will use the 2D-5pt Jacobi kernel (with code seen
in Listing 1.2) on the Sandy Bridge architecture (as described in Table 2.1). This method uses the same
procedure used in kerncraft to derive TOL and TnOL for the ECM and RooflineIACA models to derive the
CPU bottleneck performance.

As explained in Section 3.2.3, before the analysis can take place, the code needs to be compiled using
the appropriate flags, found in the machine description (see Appendix B), in order to produce an optimized
assembly code. Also, the relevant loop block needs to be marked using in the assembly code, e.g., with the
help of iaca_marker.py described in Appendix C. The assembly is then compiled to an non-working—
due to the marker sequences—executable.

With an appropriately prepared executable, we can run IACA and will receive the output seen in Listing A.1.
From here on, we need to figure out three things: the loop unroll size (how many iterations of the high-level
code are folded into one iteration in the assembly), total throughput cycles attributed to LOAD instructions
and total throughput cycles attributed to non-load instructions.

1 I n t e l (R) A r c h i t e c t u r e Code Analyzer Version − 2.1
2 Analyzed F i l e − kerne ls /2d−5pt . iaca_marked
3 Binary Format − 64 B i t
4 A r c h i t e c t u r e − SNB
5 Ana lys is Type − Throughput
6
7 Throughput Ana lys is Report
8 −−−−−−−−−−−−−−−−−−−−−−−−−−
9 Block Throughput : 18.90 Cycles Throughput Bot t leneck : FrontEnd , PORT2_AGU, PORT3_AGU

10
11 Por t Binding In Cycles Per I t e r a t i o n :
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 | Por t | 0 − DV | 1 | 2 − D | 3 − D | 4 | 5 |
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 | Cycles | 10.1 0.0 | 12.0 | 18.0 16.0 | 18.0 16.0 | 8.0 | 11.9 |
16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17
18 N− po r t number or number o f cyc les resource c o n f l i c t caused delay , DV− Div i de r pipe ( on po r t 0)
19 D− Data fe t ch pipe ( on por t s 2 and 3) , CP− on a c r i t i c a l path
20 F − Macro Fusion wi th the prev ious i n s t r u c t i o n occurred
21 ∗− i n s t r u c t i o n micro−ops not bound to a po r t
22 ^ − Micro Fusion happened
23 # − ESP Tracking sync uop was issued
24 @− SSE i n s t r u c t i o n fo l lowed an AVX256 i n s t r u c t i o n , dozens of cyc les pena l ty i s expected
25 ! − i n s t r u c t i o n not supported , was not accounted i n Ana lys is
26
27 | Num Of | Por ts pressure i n cyc les | |
28 | Uops | 0 − DV | 1 | 2 − D | 3 − D | 4 | 5 | |
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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30 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm2, xmmword p t r [ rbx+ r d i ∗8]
31 | 1 | | | | 1.0 1.0 | | | CP | vmovupd xmm3, xmmword p t r [ rbx+ r d i∗8+0x10 ]
32 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm14, xmmword p t r [ rbx+ r d i∗8+0x20 ]
33 | 1 | | | | 1.0 1.0 | | | CP | vmovupd xmm15, xmmword p t r [ rbx+ r d i∗8+0x30 ]
34 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm6, xmmword p t r [ r15+ r d i∗8+0x8 ]
35 | 1 | | | | 1.0 1.0 | | | CP | vmovupd xmm9, xmmword p t r [ r14+ r d i∗8+0x8 ]
36 | 2 | 0.2 | | 1.0 1.0 | | | 0.9 | CP | v i n s e r t f 1 2 8 ymm4, ymm2, xmmword p t r [ rbx+ r d i∗8+0x10 ] , 0x1
37 | 2 | 0.2 | | | 1.0 1.0 | | 0.8 | CP | v i n s e r t f 1 2 8 ymm5, ymm3, xmmword p t r [ rbx+ r d i∗8+0x20 ] , 0x1
38 | 1 | | 1.0 | | | | | | vaddpd ymm7, ymm4, ymm5
39 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm4, xmmword p t r [ r15+ r d i∗8+0x28 ]
40 | 2 | 0.2 | | | 1.0 1.0 | | 0.8 | CP | v i n s e r t f 1 2 8 ymm2, ymm14, xmmword p t r [ rbx+ r d i∗8+0x30 ] , 0x1
41 | 2 | 0.6 | | 1.0 1.0 | | | 0.3 | CP | v i n s e r t f 1 2 8 ymm3, ymm15, xmmword p t r [ rbx+ r d i∗8+0x40 ] , 0x1
42 | 1 | | 1.0 | | | | | | vaddpd ymm5, ymm2, ymm3
43 | 1 | | | | 1.0 1.0 | | | CP | vmovupd xmm3, xmmword p t r [ r15+ r d i∗8+0x48 ]
44 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm15, xmmword p t r [ r15+ r d i∗8+0x68 ]
45 | 2 | 0.3 | | | 1.0 1.0 | | 0.6 | CP | v i n s e r t f 1 2 8 ymm8, ymm6, xmmword p t r [ r15+ r d i∗8+0x18 ] , 0x1
46 | 1 | | 1.0 | | | | | | vaddpd ymm10, ymm7, ymm8
47 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm7, xmmword p t r [ r14+ r d i∗8+0x28 ]
48 | 2 | 0.4 | | | 1.0 1.0 | | 0.6 | CP | v i n s e r t f 1 2 8 ymm6, ymm4, xmmword p t r [ r15+ r d i∗8+0x38 ] , 0x1
49 | 1 | | 1.0 | | | | | | vaddpd ymm8, ymm5, ymm6
50 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm6, xmmword p t r [ r14+ r d i∗8+0x48 ]
51 | 2 | 0.8 | | | 1.0 1.0 | | 0.2 | CP | v i n s e r t f 1 2 8 ymm11, ymm9, xmmword p t r [ r14+ r d i∗8+0x18 ] , 0x1
52 | 1 | | 1.0 | | | | | | vaddpd ymm12, ymm10, ymm11
53 | 1 | 1.0 | | | | | | | vmulpd ymm13, ymm0, ymm12
54 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm12, xmmword p t r [ rbx+ r d i∗8+0x40 ]
55 | 2 | | | | 1.0 | 2.0 | | CP | vmovupd ymmword p t r [ r9+ r d i∗8+0x8 ] , ymm13
56 | 1 | | | | 1.0 1.0 | | | CP | vmovupd xmm13, xmmword p t r [ rbx+ r d i∗8+0x50 ]
57 | 2 | 0.2 | | 1.0 1.0 | | | 0.8 | CP | v i n s e r t f 1 2 8 ymm9, ymm7, xmmword p t r [ r14+ r d i∗8+0x38 ] , 0x1
58 | 1 | | 1.0 | | | | | | vaddpd ymm10, ymm8, ymm9
59 | 1 | 1.0 | | | | | | | vmulpd ymm11, ymm0, ymm10
60 | 2 | | | 1.0 | | 2.0 | | CP | vmovupd ymmword p t r [ r9+ r d i∗8+0x28 ] , ymm11
61 | 1 | | | | 1.0 1.0 | | | CP | vmovupd xmm11, xmmword p t r [ rbx+ r d i∗8+0x60 ]
62 | 2 | 0.1 | | 1.0 1.0 | | | 0.9 | CP | v i n s e r t f 1 2 8 ymm14, ymm12, xmmword p t r [ rbx+ r d i∗8+0x50 ] , 0x1
63 | 1 | | | | 1.0 1.0 | | | CP | vmovupd xmm12, xmmword p t r [ rbx+ r d i∗8+0x70 ]
64 | 2 | 0.2 | | 1.0 1.0 | | | 0.8 | CP | v i n s e r t f 1 2 8 ymm2, ymm13, xmmword p t r [ rbx+ r d i∗8+0x60 ] , 0x1
65 | 1 | | 1.0 | | | | | | vaddpd ymm4, ymm14, ymm2
66 | 2 | 0.4 | | | 1.0 1.0 | | 0.6 | CP | v i n s e r t f 1 2 8 ymm13, ymm11, xmmword p t r [ rbx+ r d i∗8+0x70 ] , 0x1
67 | 2 | 0.2 | | 1.0 1.0 | | | 0.8 | CP | v i n s e r t f 1 2 8 ymm14, ymm12, xmmword p t r [ rbx+ r d i∗8+0x80 ] , 0x1
68 | 1 | | 1.0 | | | | | | vaddpd ymm2, ymm13, ymm14
69 | 2 | 0.6 | | | 1.0 1.0 | | 0.4 | CP | v i n s e r t f 1 2 8 ymm5, ymm3, xmmword p t r [ r15+ r d i∗8+0x58 ] , 0x1
70 | 1 | | 1.0 | | | | | | vaddpd ymm7, ymm4, ymm5
71 | 0∗ | | | | | | | | nop
72 | 1 | | | 1.0 1.0 | | | | CP | vmovupd xmm4, xmmword p t r [ r14+ r d i∗8+0x68 ]
73 | 2 | 0.6 | | | 1.0 1.0 | | 0.4 | CP | v i n s e r t f 1 2 8 ymm3, ymm15, xmmword p t r [ r15+ r d i∗8+0x78 ] , 0x1
74 | 1 | | 1.0 | | | | | | vaddpd ymm5, ymm2, ymm3
75 | 2 | 0.5 | | 1.0 1.0 | | | 0.5 | CP | v i n s e r t f 1 2 8 ymm8, ymm6, xmmword p t r [ r14+ r d i∗8+0x58 ] , 0x1
76 | 1 | | 1.0 | | | | | | vaddpd ymm9, ymm7, ymm8
77 | 1 | 1.0 | | | | | | | vmulpd ymm10, ymm0, ymm9
78 | 2 | | | | 1.0 | 2.0 | | CP | vmovupd ymmword p t r [ r9+ r d i∗8+0x48 ] , ymm10
79 | 2 | 0.2 | | | 1.0 1.0 | | 0.8 | CP | v i n s e r t f 1 2 8 ymm6, ymm4, xmmword p t r [ r14+ r d i∗8+0x78 ] , 0x1
80 | 1 | | 1.0 | | | | | | vaddpd ymm7, ymm5, ymm6
81 | 1 | 1.0 | | | | | | | vmulpd ymm8, ymm0, ymm7
82 | 2 | | | 1.0 | | 2.0 | | CP | vmovupd ymmword p t r [ r9+ r d i∗8+0x68 ] , ymm8
83 | 1 | 0.2 | | | | | 0.8 | | add rd i , 0x10
84 | 1 | | | | | | 1.0 | | cmp rd i , r8
85 | 0F | | | | | | | | j b 0 x f f f f f f f f f f f f f e a a
86 To ta l Num Of Uops : 74

Listing A.1: IACA output for 2D-5pt Jacobi kernel

The loop unroll size is extracted by analyzing the end of the loop code, line 83 in the listing. Here, we
see that the loop counter rdi is increased by 0x10 or 16. Thus, one iteration in the assembly code is
equivalent to 16 iterations in the high-level code and handles the workload equivalent of two cache-lines.
Therefore, we will need to divide all cycle counts by two, to normalize them to a “per cache-line” prediction.

To get the throughput cycle count, we will look at the port summary towards the top of the output (lines 11
to 16). From the Sandy Bridge architecture description in Section 2.1, we know that ports 1 and 2 handle
LOAD instructions. In IACA they are split into a data pipe (“D”) and non-data pipe (“2” and “3”) part. We
are interested only in the data pipe part for the non-overlapping contribution, therefore we have 16 cycles
for two cache-lines and TnOL = 8 cy per cache-line.

By taking the worst (maximum) value over all other ports (including “2” and “3”), we get 18 cycles for
arithmetic and overlapping operations. Thus, we get TOL = 9 cy per cache-line.
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B
MACHINE DESCRIPTION IN KERNCRAFT

To pass the information about the hardware specifications and supported features kerncraft, a machine
description file is required. To help the users with creating one, likwid_auto_bench.py will gather
information using LIKWID tools. Since not everything can be extracted or benchmarked, it is necessary to
provide additional information by hand from vendor documentation.

We will go through the steps of creating a machine description file for the Sandy Bridge system described
in Table 2.1, also known as phinally.

B.1. File Format and Required Information

The machine description file is formatted according to the YAML [30] specifications. It contains description
of the hardware as well as benchmark data generated with likwid-bench.

The basic description (excluding the benchmarks section) is presented in Listing B.1. In addition to the
YAML specifications, it is possible to have a unit associated with the values (e.g., 2.7 GHz on line 1), and
this will automatically translate the value to the corresponding numerical value (e.g., 2700000000 Hz).
Supported are the SI-prefixes kilo (k), Mega (M), Giga (G), Terra (T), Exa (E), Zetta (Z) and Yotta (Y).

1 clock: 2.7 GHz
2 cores per socket: 8
3 model type: Intel Core SandyBridge EP processor
4 model name: Intel(R) Xeon(R) CPU E5 -2680 0 @ 2.70 GHz
5 sockets: 2
6 threads per core: 2
7 cacheline size: 64 B
8 icc architecture flags: [-xAVX]
9 micro -architecture: SNB

10 FLOPs per cycle:
11 SP: {total: 8, ADD: 4, MUL: 4}
12 DP: {total: 4, ADD: 2, MUL: 2}
13 overlapping ports: ["0", "0DV", "1", "2", "3", "4", "5"]
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14 non -overlapping ports: ["2D", "3D"]
15 memory hierarchy:
16 - {cores per group: 1, cycles per cacheline transfer: 2,
17 groups: 16, level: L1 , bandwidth: null , size per group: 32.00
18 kB, threads per group: 2}
19 - {cores per group: 1, cycles per cacheline transfer: 2,
20 groups: 16, level: L2 , bandwidth: null , size per group: 256.00
21 kB, threads per group: 2}
22 - {cores per group: 8, cycles per cacheline transfer: null ,
23 groups: 2, level: L3, bandwidth: 40 GB/s, size per group: 20.00
24 MB, threads per group: 16}
25 - {cores per group: 8, cycles per cacheline transfer: null ,
26 level: MEM , bandwidth: null , size per group: null , threads per group: 16}

Listing B.1: Machine description file (except for benchmark section) for Intel Sandy Bridge based CPU.

Most entries are self-explanatory and we will only go into detail about the more unintuitive ones:

• clock is the CPU baseclock during execution. This should not be the maximum clock available
through turbo mode, because it can not be assumed to be always available and would not neces-
sarily yield reproducible results.

• model type (line 3) and model name (line 3) are purely for textual output purposes.

• icc architecture flags (line 8) is a list of command line arguments passed to the ICC compiler,
e.g., if only the analysis of SSE based optimizations are of interest, replace -xAVX with the -xSSE.
Multiple arguments can be used when separated by comma.

• micro-architecture (line 9) is the abbreviation used by IACA to describe the underlying micro-
architecture. Supported are NHM for Nehalem, WSM for Westmere, SNB for Sandy Bridge, IVB Ivy
Bridge and HSW for Haswell micro-architectures.

• FLOPs per cycle (line 10-12) contains a dictionary of the number of FLOPs that can be executed
per cycle (in a throughput sense). It is divided into single-precision (SP), double-precision (DP) and
differentiates between addition (ADD), multiplication (MUL) and fused-multiply-add (FMA). The total
is required, because sometimes only one or the other can be used at the same time (e.g., on the
Haswell architecture). If FMA is not given, it is assumed unsupported.

• overlapping ports (line 13) are the port names, as returned by IACA, contributing to the TOL in
the ECM model, representing arithmetic and store operations. Some ports are subdivided in IACA
and need separate mentioning (e.g., 0 and 0DV, compare to raw IACA output line 13 in Listing A.1).

• non-overlapping ports (line 14) these are the remaining ports or subports, not listed under
overlapping ports, responsible for LOAD instructions and contributing to TnOL.

• memory hierarchy (line 15-26) contains the information about the sizes and theoretical band-
widths of the cache-levels and main memory. Each entry is one memory level, appearing in de-
creasing order from first level cache to main memory. The bandwidth information given at each
level refers to the data paths between itself and the lower level, the main memory entry containing
therefore no such information. Subentries within each memory hierarchy entries are the following:

– level is an abbreviatory name used for textual output

– core per group and threads per group are the number of physical cores and virtual
threads sharing one physical cache

– groups are the total number of physically distinct instances of the cache per socket.

– size per group is the size of each physical instance of the cache. The memory size is not
of interest and can be left at null.

– cycles per cacheline transfer is the number of cycles it takes to transfer one cache-line
in the throughput or streaming case (ignoring latencies). It can be understood as an inverse
asymptotic bandwidth. In the last level cache, this entry can be used to impose an additional
penalty per read stream between the last level cache and main memory, where otherwise only
the memory bandwidth is considered.
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APPENDIX B. MACHINE DESCRIPTION IN KERNCRAFT

In addition to the described white-paper information about the CPU, benchmarked information is consid-
ered for the memory interface to last level cache bandwidths. Descriptions of the benchmarked kernels
and results for single- and multi-core, as well as different threads per core counts, are collected and stored
in the benchmark section. This part is automatically generaded and it is not meant to be changed manu-
ally. The collected results are used for finding a closely matching read and write stream pattern and better
predict the memory interface behaviour.

B.2. Automatic Gathering

To compile the machine description information, it is recommended to use likwid_auto_bench.py. This
tool will use likwid-topology to gather the model name, model type, sockets, cores per socket
and threads per core, as well as level, size per group, group, cores per group and threads
per group for each memory hierarchy level.

The collection of benchmark information is especially tedious to compile, thus it is also automated in
likwid_auto_bench.py, which in turn makes use of likwid-bench in order to take care of some of the
involved quirks. likwid_auto_bench.py will run five typical streaming benchmarks (load, copy, update,
triad and daxpy) on all memory levels, as well as with all possible core and thread counts. The results are
collected in the benchmarks dictionary, alongside with information about the benchmark kernels (number
of read and write streams, amount of data read and written per iteration and number of FLOPs required
per iteration). likwid_auto_bench.py also takes traffic originating from write-allocation into account in
the resulting bandwidths.

B.3. Manual Gathering

The user is left with a few specs to gather from the documentation, namely: clock, FLOPs per cycle,
micro-architecture, icc architecture flags, cacheline size, overlapping ports and non
-overlapping ports, as well as cycles per cacheline transfer and bandwidth for each cache-
level.
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C
ASM BLOCK MARKING FOR IACA

In order to make use of IACA, it is necessary to mark the inner-loop block and not the remainder or peeled
loop versions. kerncraft does this by compiling the source to its assembly representation and then
using the iaca_marker.py tool (also part of kerncraft) to identify and mark the inner-loop block. There
are multiple options available for the user to influence this behaviour: automatic selection (default), manual
selection (--asm-block=manual) or selection by block index (--asm-block=<block index>).

Blocks are identified by searching for conditional jump instructions referencing the last label in the assem-
bly. The region of interest is reduced by kerncraft, by including nop instructions just before and after the
kernel loops, in order to exclude initialization loops from the search.

The default and automatic selection is based on the assumption that the inner-loop block will contain
the most packed (or vectorized) instructions, because no other loop is allowed to contain any arithmetic
statements (see Section 3.2.1) and the remainder and peel loops are meant to prepare the data for the
optimized loop.

If this were to fail, e.g., if scalar code is used, the user can use the manual mode to interactively select the
correct block. kerncraft will present the collected statistics for each block (total number of instructions,
packed instructions, AVX instructions, number of used registers, grouped by class, and the loop counter
increment found at the end of the loop block) and allow the user to decide which block to mark. See
Listing C.1 for a typical report from a 2D-5pt kernel, compiled with AVX.

Blocks found in assembly file:
block | OPs | pck. | AVX || Registers | YMM | XMM | GP || l.inc |

-----------+-----+------+-----++-----------+---------+---------+---------++-------|
0 L_B1 .36 | 9 | 0 | 0 || 24 ( 12) | 0 ( 0) | 11 ( 6) | 13 ( 6) || 1 |
1 L_B1 .39 | 55 | 16 | 16 || 175 ( 32) | 84 (15) | 16 (11) | 75 ( 6) || 16 |
2 L_B1 .43 | 9 | 0 | 0 || 24 ( 12) | 0 ( 0) | 11 ( 6) | 13 ( 6) || 1 |

Choose block to be marked [1]:

Listing C.1: Manual ASM block selection statistics and interface

In case of batch processing, it is useful to select the same block automatically, without interaction. This is
accomplished by passing --asm-block the index reported in the left most column of the statistics table.
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