Source code for thermosteam.reaction._reaction

# -*- coding: utf-8 -*-
# BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules
# Copyright (C) 2020, Yoel Cortes-Pena, <yoelcortes@gmail.com>, Yalin Li, <yalinli2@illinois.edu>
# 
# This module is under the UIUC open-source license. See 
# github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt
# for license details.
"""
"""
import thermosteam as tmo
import flexsolve as flx
from . import _parse as prs
from ..utils import chemicals_user
from .._phase import NoPhase
from ..indexer import ChemicalIndexer
from ..exceptions import InfeasibleRegion
import numpy as np

__all__ = ('Reaction', 'ParallelReaction', 'SeriesReaction')

def react_stream_adiabatically(stream, reaction):
    if not isinstance(stream, tmo.Stream):
        raise ValueError(f"stream must be a Stream object, not a '{type(stream).__name__}' object")
    Hnet = stream.Hnet
    reaction(stream)
    stream.H = Hnet - stream.Hf

def check_material_feasibility(material: np.ndarray):
    if (material < 0.).any(): raise InfeasibleRegion('not enough reactants; reaction conversion')

def set_reaction_basis(rxn, basis):
    if basis != rxn._basis:
        if basis == 'wt':
            rxn._stoichiometry *= rxn.MWs
        elif basis == 'mol':
            rxn._stoichiometry /= rxn.MWs
        else:
            raise ValueError("basis must be either by 'wt' or by 'mol'")
        rxn._rescale()
        rxn._basis = basis

def as_material_array(material, basis, chemicals):
    isa = isinstance
    if isa(material, np.ndarray):
        return material
    elif isa(material, tmo.MultiStream):
        raise ValueError('reacting a stream with multiple phases is underdetermined')
    elif isa(material, tmo.Stream):
        assert material.chemicals is chemicals, "reaction and stream chemicals do not match"
        if basis == 'mol':
            return material.mol
        elif basis == 'wt':
            return material.mass
        else:
            raise ValueError("basis must be either 'mol' or 'wt'")
    else:
        raise ValueError('reaction material must be either an array or a stream')

[docs]@chemicals_user class Reaction: """ Create a Reaction object which defines a stoichiometric reaction and conversion. When called, it elements of a material array due to the reaction. Parameters ---------- reaction : dict or str A dictionary of stoichiometric coefficients or a stoichiometric equation written as: i1 R1 + ... + in Rn -> j1 P1 + ... + jm Pm reactant : str ID of reactant compound. X : float Reactant conversion (fraction). chemicals=None : Chemicals, defaults to settings.chemicals. Chemicals corresponing to each entry in the stoichiometry array. basis='mol': {'mol', 'wt'} Basis of reaction. Other Parameters ---------------- check_mass_balance=False: bool Whether to assert that mass is not created or destroyed. correct_mass_balance=False: bool Whether to make sure mass is not created or destroyed by varying the reactant stoichiometric coefficient. check_atomic_balance=False: bool Whether to assert that stoichiometric balance by atoms cancel out. correct_atomic_balance=False: bool Whether to correct the stoichiometry according to the atomic balance. Notes ----- A reaction object can react either a stream or an array. When a stream is passed, it reacts either the mol or mass flow rate according to the basis of the reaction object. When an array is passed, the array elements are reacted regardless of what basis they are associated with. Examples -------- >>> import thermosteam as tmo >>> import thermosteam.reaction as rxn >>> chemicals = tmo.Chemicals(['H2O', 'H2', 'O2']) >>> tmo.settings.set_thermo(chemicals) >>> reaction = rxn.Reaction('2H2O -> 2H2 + O2', reactant='H2O', X=0.7) >>> reaction.show() # Note that the default basis is by 'mol' Reaction (by mol): stoichiometry reactant X[%] H2O -> H2 + 0.5 O2 H2O 70.00 >>> feed = tmo.Stream('feed', H2O=200) >>> reaction(feed) # Call to run reaction on molar flow >>> feed.show() # Notice how 70% of water was converted to product Stream: feed phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): H2O 60 H2 140 O2 70 Alternatively, its also possible to react an array (instead of a stream): >>> import numpy as np >>> array = np.array([200., 0. , 0.]) >>> reaction(array) >>> array array([ 60., 140., 70.]) Let's change to a per 'wt' basis: >>> reaction.basis = 'wt' >>> reaction.show() Reaction (by wt): stoichiometry reactant X[%] H2O -> 0.112 H2 + 0.888 O2 H2O 70.00 Although we changed the basis, the end result is the same if we pass a stream: >>> feed = tmo.Stream('feed', H2O=200) >>> reaction(feed) # Call to run reaction on mass flow >>> feed.show() # Notice how 70% of water was converted to product Stream: feed phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): H2O 60 H2 140 O2 70 If we pass an array, however, the Reaction object assumes the array data is by weight: >>> array = np.array([200., 0. , 0.]) >>> reaction(array) >>> array array([ 60. , 15.666, 124.334]) """ __slots__ = ('_basis', '_chemicals', '_X_index', '_stoichiometry', '_X') def __init__(self, reaction, reactant, X, chemicals=None, basis='mol', *, check_mass_balance=False, check_atomic_balance=False, correct_atomic_balance=False, correct_mass_balance=False): if basis in ('wt', 'mol'): self._basis = basis else: raise ValueError("basis must be either by 'wt' or by 'mol'") self._X = X #: [float] Reactant conversion chemicals = self._load_chemicals(chemicals) if reaction: self._stoichiometry = prs.get_stoichiometric_array(reaction, chemicals) self._X_index = self._chemicals.index(reactant) self._rescale() if correct_atomic_balance: self.correct_atomic_balance() else: if correct_mass_balance: self.correct_mass_balance() elif check_mass_balance: self.check_mass_balance() if check_atomic_balance: self.check_atomic_balance() else: self._stoichiometry = np.zeros(chemicals.size) self._X_index = self._chemicals.index(reactant)
[docs] def copy(self, basis=None): """Return copy of Reaction object.""" copy = self.__new__(self.__class__) copy._basis = self._basis copy._stoichiometry = self._stoichiometry.copy() copy._X_index = self._X_index copy._chemicals = self._chemicals copy._X = self._X if basis: set_reaction_basis(copy, basis) return copy
def has_reaction(self): return bool(self.X and self.stoichiometry.any()) def __radd__(self, rxn): return self + rxn def __add__(self, rxn): if rxn == 0 or not rxn.has_reaction(): return self.copy() assert self._basis == rxn._basis, 'basis must be the same to add reactions' assert self._chemicals is rxn._chemicals, 'working chemicals must be the same to add reactions' assert self._X_index == rxn._X_index, 'reactants must be the same to add reactions' new = self.copy() stoichiometry = self._stoichiometry*self.X + rxn._stoichiometry*rxn.X new._stoichiometry = stoichiometry/-(stoichiometry[new._X_index]) new.X = self.X + rxn.X return new def __iadd__(self, rxn): if rxn == 0 or not rxn.has_reaction(): return self basis = self.basis if basis != rxn._basis: rxn = rxn.copy(basis) assert self._chemicals is rxn._chemicals, 'working chemicals must be the same to add reactions' assert self._X_index == rxn._X_index, 'reactants must be the same to add reactions' stoichiometry = self._stoichiometry*self.X + rxn._stoichiometry*rxn.X self._stoichiometry = stoichiometry/-(stoichiometry[self._X_index]) self.X = self.X + rxn.X return self def __mul__(self, num): new = self.copy() new.X *= float(num) return new def __rmul__(self, num): return self.__mul__(num) def __imul__(self, num): self.X *= num return self def __div__(self, num): self.__mul__(self, 1/num) def __rdiv__(self, num): self.__mul__(self, 1/num) def __idiv__(self, num): return self.__imul__(self, 1/num) def __neg__(self): new = self.copy() new.X *= -1. return new def __sub__(self, rxn): assert self._basis == rxn._basis, 'basis must be the same to substract reactions' assert self._chemicals is rxn._chemicals, 'working chemicals must be the same to substract reactions' assert self._X_index == rxn._X_index, 'reactants must be the same to substract reactions' new = self.copy() stoichiometry = self._stoichiometry*self.X - rxn._stoichiometry*rxn.X new._stoichiometry = stoichiometry/-(stoichiometry[new._X_index]) new.X = self.X - rxn.X return new def __isub__(self, rxn): basis = self.basis if basis != rxn._basis: rxn = rxn.to_basis(basis) assert self._chemicals is rxn._chemicals, 'working chemicals must be the same to substract reactions' assert self._X_index == rxn._X_index, 'reactants must be the same to substract reactions' stoichiometry = self._stoichiometry*self.X + rxn._stoichiometry*rxn.X self._stoichiometry = stoichiometry/-(stoichiometry[self._X_index]) self.X = self.X - rxn.X return def __call__(self, material): material_array = as_material_array(material, self._basis, self._chemicals) self._reaction(material_array) if tmo.reaction.CHECK_FEASIBILITY: check_material_feasibility(material_array)
[docs] def force_reaction(self, material): """React material ignoring feasibility checks.""" material_array = as_material_array(material, self._basis, self._chemicals) self._reaction(material_array)
[docs] def product_yield(self, product, basis=None): """Return yield of product per reactant.""" product_index = self._chemicals.index(product) product_coefficient = self._stoichiometry[product_index] product_yield = product_coefficient * self.X if self.basis != basis: chemicals_tuple = self._chemicals.tuple reactant_index = self._X_index MW_reactant = chemicals_tuple[reactant_index].MW MW_product = chemicals_tuple[product_index].MW if basis == 'wt': product_yield *= MW_reactant / MW_product elif basis == 'mol': product_yield *= MW_product / MW_reactant else: raise ValueError("basis must be either 'wt' or 'mol'; " f"not {repr(basis)}") return product_yield
[docs] def adiabatic_reaction(self, stream): """ React stream material adiabatically, accounting for the change in enthalpy due to the heat of reaction. Examples -------- Note how the stream temperature changed after the reaction due to the heat of reaction: >>> import thermosteam as tmo >>> import thermosteam.reaction as rxn >>> chemicals = tmo.Chemicals(['H2', 'O2', 'H2O']) >>> tmo.settings.set_thermo(chemicals) >>> reaction = rxn.Reaction('2H2 + O2 -> 2H2O', reactant='H2', X=0.7) >>> s1 = tmo.Stream('s1', H2=10, O2=20, H2O=1000) >>> s2 = tmo.Stream('s2') >>> s2.copy_like(s1) # s1 and s2 are the same >>> s1.show() # Before reaction Stream: s1 phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): H2 10 O2 20 H2O 1e+03 >>> reaction.show() Reaction (by mol): stoichiometry reactant X[%] H2 + 0.5 O2 -> H2O H2 70.00 >>> reaction(s1) >>> s1.show() # After non-adiabatic reaction Stream: s1 phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): H2 3 O2 16.5 H2O 1.01e+03 >>> reaction.adiabatic_reaction(s2) >>> s2.show() # After adiabatic reaction Stream: s2 phase: 'l', T: 324.11 K, P: 101325 Pa flow (kmol/hr): H2 3 O2 16.5 H2O 1.01e+03 """ react_stream_adiabatically(stream, self)
def _reaction(self, material_array): material_array += material_array[self._X_index] * self.X * self._stoichiometry @property def dH(self): """ Heat of reaction at given conversion. Units are in either J/mol-reactant or J/g-reactant; depending on basis. """ if self._basis == 'mol': Hfs = self._chemicals.Hf else: Hfs = self._chemicals.Hf / self.MWs return self.X * (Hfs * self._stoichiometry).sum() @property def X(self): """[float] Reaction converion as a fraction.""" return self._X @X.setter def X(self, X): self._X = X @property def stoichiometry(self): """[array] Stoichiometry coefficients.""" return self._stoichiometry @property def istoichiometry(self): """[ChemicalIndexer] Stoichiometry coefficients.""" return tmo.indexer.ChemicalIndexer.from_data(self._stoichiometry, chemicals=self._chemicals, check_data=False) @property def reactant(self): """[str] Reactant associated to conversion.""" return self._chemicals.IDs[self._X_index] @property def MWs(self): """[1d array] Molecular weights of all chemicals [mol/g].""" return self._chemicals.MW @property def basis(self): """{'mol', 'wt'} Basis of reaction""" return self._basis @basis.setter def basis(self, basis): set_reaction_basis(self, basis) def _get_stoichiometry_by_wt(self): """Return stoichiometry by weight.""" if self._basis == 'mol': stoichiometry_by_wt = self._stoichiometry * self.MWs else: stoichiometry_by_wt = self._stoichiometry return stoichiometry_by_wt def _get_stoichiometry_by_mol(self): """Return stoichiometry on a molar basis.""" if self._basis == 'wt': stoichiometry_by_mol = self._stoichiometry / self.MWs else: stoichiometry_by_mol = self._stoichiometry return stoichiometry_by_mol
[docs] def check_mass_balance(self, tol=1e-3): """Assert that stoichiometric mass balance is correct.""" stoichiometry_by_wt = self._get_stoichiometry_by_wt() error = abs(stoichiometry_by_wt.sum()) assert error <= tol, ( f"material stoichiometry is unbalanced by {error} in weight" )
[docs] def check_atomic_balance(self, tol=1e-3): """Assert that stoichiometric atomic balance is correct.""" stoichiometry_by_mol = self._get_stoichiometry_by_mol() formula_array = self.chemicals.formula_array unbalanced_array = formula_array @ stoichiometry_by_mol atoms = tmo.properties.elements.array_to_atoms(unbalanced_array) assert abs(sum(atoms.values())) < tol, ( f"atomic stoichiometry is unbalanced by the following molar stoichiometric coefficients:\n " + "\n ".join([f"{symbol}: {value}" for symbol, value in atoms.items()]) )
[docs] def correct_mass_balance(self, variable=None): """ Make sure mass is not created or destroyed by varying the reactant stoichiometric coefficient. """ if variable: index = self.chemicals.get_index(variable) else: index = self._X_index stoichiometry_by_wt = self._get_stoichiometry_by_wt() def f(x): stoichiometry_by_wt[index] = x return stoichiometry_by_wt.sum() flx.aitken_secant(f, 1) if self._basis == 'mol': self._stoichiometry[:] = stoichiometry_by_wt / self.MWs self._rescale()
[docs] def correct_atomic_balance(self, constants=None): """Correct stoichiometry coffecients to satisfy atomic balance.""" stoichiometry_by_mol = self._get_stoichiometry_by_mol() chemicals = self.chemicals if constants: constant_index = chemicals.indices(constants) else: constant_index = [self._X_index] chemical_index, = np.where(stoichiometry_by_mol != 0.) chemical_index = np.setdiff1d(chemical_index, constant_index) formula_array = chemicals.formula_array b = - (formula_array[:, constant_index] * stoichiometry_by_mol[constant_index]).sum(1, keepdims=True) atomic_index, _ = np.where(b != 0) b = b[atomic_index, :] A = formula_array[atomic_index, :][:, chemical_index] M_atoms, N_chemicals = A.shape if M_atoms != N_chemicals: raise RuntimeError( 'to solve atomic balance, number of atoms ' f'({M_atoms} available) must be equal to the number of ' f'varied chemicals ({N_chemicals} available)' ) x = np.linalg.solve(A, b) stoichiometry_by_mol[chemical_index] = x.flatten() if self._basis == 'wt': self._stoichiometry[:] = stoichiometry_by_mol * self.MWs self._rescale()
def _rescale(self): """Scale stoichiometry to a per reactant basis.""" new_scale = -self._stoichiometry[self._X_index] self._stoichiometry /= new_scale def __repr__(self): stoichiometry = prs.get_stoichiometric_string(self._stoichiometry, self._chemicals) return f"{type(self).__name__}('{stoichiometry}', reactant='{self.reactant}', X={self.X:.3g}, basis={self.basis})" def show(self): info = f"{type(self).__name__} (by {self.basis}):" rxn = prs.get_stoichiometric_string(self._stoichiometry, self._chemicals) cmp = self.reactant lrxn = len(rxn) lcmp = len(cmp) maxrxnlen = max([13, lrxn]) + 2 maxcmplen = max([8, lcmp]) + 2 X = self.X info += "\n stoichiometry" + " "*(maxrxnlen - 13) + "reactant" + " "*(maxcmplen - 8) + ' X[%]' rxn_spaces = " "*(maxrxnlen - lrxn) cmp_spaces = " "*(maxcmplen - lcmp) info += f"\n {rxn}{rxn_spaces}{cmp}{cmp_spaces}{X*100: >6.2f}" print(info) _ipython_display_ = show
class ReactionItem(Reaction): """ Create a ReactionItem object from the a ReactionSet and reaction index. Parameters ---------- rxnset : ReactionSet index : int Index of reaction. """ __slots__ = ('_index') def __init__(self, rxnset, index): self._stoichiometry = rxnset._stoichiometry[index] self._basis = rxnset._basis self._X = rxnset._X self._chemicals = rxnset._chemicals self._X_index = rxnset._X_index[index] self._index = index @property def basis(self): """{'mol', 'wt'} Basis of reaction""" return self._basis @basis.setter def basis(self, basis): raise TypeError('cannot change basis of reaction item') def copy(self, basis=None): """Return copy of Reaction object.""" copy = Reaction.__new__(Reaction) copy._basis = self._basis copy._stoichiometry = self._stoichiometry.copy() copy._X_index = self._X_index copy._chemicals = self._chemicals copy._X = self.X if basis: set_reaction_basis(copy, basis) return copy @property def X(self): """[float] Reaction converion as a fraction.""" return self._X[self._index] @X.setter def X(self, X): self._X[self._index] = X class ReactionSet: """ Create a ReactionSet that contains all reactions and conversions as an array. Parameters ---------- reactions : Iterable[Reaction] """ __slots__ = ('_basis', '_stoichiometry', '_X', '_X_index', '_chemicals') copy = Reaction.copy _get_stoichiometry_by_mol = Reaction._get_stoichiometry_by_mol _get_stoichiometry_by_wt = Reaction._get_stoichiometry_by_wt def __init__(self, reactions): assert reactions, 'no reactions passed' chemicals = {i.chemicals for i in reactions} try: self._chemicals, = chemicals except: raise ValueError('all reactions must have the same chemicals') basis = {i.basis for i in reactions} try: self._basis, = basis except: raise ValueError('all reactions must have the same basis') self._stoichiometry = np.array([i._stoichiometry for i in reactions]) self._X = np.array([i.X for i in reactions]) self._X_index = np.array([i._X_index for i in reactions]) def __getitem__(self, index): stoichiometry = self._stoichiometry[index] if len(stoichiometry.shape) == 1: return ReactionItem(self, index) else: rxnset = self.__new__(self.__class__) rxnset._basis = self._basis rxnset._stoichiometry = stoichiometry rxnset._X = self._X[index] rxnset._X_index = self._X_index[index] rxnset._chemicals = self._chemicals return rxnset @property def basis(self): """{'mol', 'wt'} Basis of reaction""" return self._basis @basis.setter def basis(self, basis): raise TypeError('cannot change basis of reaction set') @property def X(self): """[1d array] Reaction converions.""" return self._X @property def chemicals(self): """[Chemicals] Chemicals corresponing to each entry in the stoichiometry array.""" return self._chemicals @property def stoichiometry(self): """[2d array] Stoichiometry coefficients.""" return self._stoichiometry @property def reactants(self): """tuple[str] Reactants associated to conversion.""" IDs = self._chemicals.IDs return tuple([IDs[i] for i in self._X_index]) @property def MWs(self): """[2d array] Molecular weights of all chemicals.""" return self._chemicals.MW[np.newaxis, :] def _rescale(self): """Scale stoichiometry to a per reactant basis.""" X_index = self._X_index new_scale = -self._stoichiometry[np.arange(X_index.size), X_index, np.newaxis] self._stoichiometry /= new_scale def __repr__(self): return f"{type(self).__name__}([', '.join([repr(i) for i in self])])" def show(self): info = f"{type(self).__name__} (by {self.basis}):" chemicals = self._chemicals rxns = [prs.get_stoichiometric_string(i, chemicals) for i in self._stoichiometry] maxrxnlen = max([13, *[len(i) for i in rxns]]) + 2 cmps = self.reactants maxcmplen = max([8, *[len(i) for i in cmps]]) + 2 Xs = self.X N = len(Xs) maxnumspace = max(len(str(N)) + 1, 5) info += f"\nindex" + " "*(max(2, maxnumspace-3)) + "stoichiometry" + " "*(maxrxnlen - 13) + "reactant" + " "*(maxcmplen - 8) + ' X[%]' for N, rxn, cmp, X in zip(range(N), rxns, cmps, Xs): rxn_spaces = " "*(maxrxnlen - len(rxn)) cmp_spaces = " "*(maxcmplen - len(cmp)) num = str(N) numspace = (maxnumspace - len(num)) * " " info += f"\n[{N}]{numspace}{rxn}{rxn_spaces}{cmp}{cmp_spaces}{X*100: >6.2f}" print(info) _ipython_display_ = show
[docs]class ParallelReaction(ReactionSet): """ Create a ParallelReaction object from Reaction objects. When called, it returns the change in material due to all parallel reactions. Parameters ---------- reactions : Iterable[Reaction] """ __slots__ = () def __call__(self, material): material_array = as_material_array(material, self._basis, self._chemicals) self._reaction(material_array) if tmo.reaction.CHECK_FEASIBILITY: check_material_feasibility(material_array)
[docs] def force_reaction(self, material): """React material ignoring feasibility checks.""" material_array = as_material_array(material, self._basis, self._chemicals) self._reaction(material_array)
[docs] def adiabatic_reaction(self, stream): """ React stream material adiabatically, accounting for the change in enthalpy due to the heat of reaction. Examples -------- Note how the stream temperature changed after the reaction due to the heat of reaction: >>> import thermosteam as tmo >>> import thermosteam.reaction as rxn >>> chemicals = tmo.Chemicals(['H2', 'CH4', 'O2', 'CO2', 'H2O']) >>> tmo.settings.set_thermo(chemicals) >>> reaction = rxn.ParallelReaction([ ... # Reaction definition Reactant Conversion ... rxn.Reaction('2H2 + O2 -> 2H2O', reactant='H2', X=0.7), ... rxn.Reaction('CH4 + O2 -> CO2 + 2H2O', reactant='CH4', X=0.1) ... ]) >>> s1 = tmo.Stream('s1', H2=10, CH4=5, O2=100, H2O=1000) >>> s2 = tmo.Stream('s2') >>> s2.copy_like(s1) # s1 and s2 are the same >>> s1.show() # Before reaction Stream: s1 phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): H2 10 CH4 5 O2 100 H2O 1e+03 >>> reaction.show() ParallelReaction (by mol): index stoichiometry reactant X[%] [0] H2 + 0.5 O2 -> H2O H2 70.00 [1] CH4 + O2 -> CO2 + 2 H2O CH4 10.00 >>> reaction(s1) >>> s1.show() # After non-adiabatic reaction Stream: s1 phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): H2 3 CH4 4.5 O2 96 CO2 0.5 H2O 1.01e+03 >>> reaction.adiabatic_reaction(s2) >>> s2.show() # After adiabatic reaction Stream: s2 phase: 'l', T: 328.96 K, P: 101325 Pa flow (kmol/hr): H2 3 CH4 4.5 O2 96 CO2 0.5 H2O 1.01e+03 """ react_stream_adiabatically(stream, self)
def _reaction(self, material_array): material_array += material_array[self._X_index] * self.X @ self._stoichiometry
[docs] def reduce(self): """ Return a new Parallel reaction object that combines reaction with the same reactant together, reducing the number of reactions. """ rxn_dict = {i: [] for i in set(self._X_index)} for i in self: rxn_dict[i._X_index].append(i) for key, rxns in rxn_dict.items(): rxn, *rxns = rxns rxn = rxn.copy() for i in rxns: rxn += i rxn_dict[key] = rxn return self.__class__(rxn_dict.values())
@property def X_net(self): """[ChemicalIndexer] Net reaction conversion of reactants.""" X_net = {} for i, j in zip(self.reactants, self.X): if i in X_net: X_net[i] += j else: X_net[i] = j chemicals = self.chemicals data = chemicals.kwarray(X_net) return ChemicalIndexer.from_data(data, NoPhase, chemicals, False)
[docs]class SeriesReaction(ReactionSet): """ Create a ParallelReaction object from Reaction objects. When called, it returns the change in material due to all reactions in series. Parameters ---------- reactions : Iterable[Reaction] """ __slots__ = () def __call__(self, material): material_array = as_material_array(material, self._basis, self._chemicals) self._reaction(material_array) if tmo.reaction.CHECK_FEASIBILITY: check_material_feasibility(material_array)
[docs] def force_reaction(self, material): """React material ignoring feasibility checks.""" array = as_material_array(material, self._basis, self._chemicals) self._reaction(array)
[docs] def adiabatic_reaction(self, stream): """ React stream material adiabatically, accounting for the change in enthalpy due to the heat of reaction. Examples -------- Note how the stream temperature changed after the reaction due to the heat of reaction: >>> import thermosteam as tmo >>> import thermosteam.reaction as rxn >>> chemicals = tmo.Chemicals(['CH4', 'CO','O2', 'CO2', 'H2O']) >>> tmo.settings.set_thermo(chemicals) >>> reaction = rxn.SeriesReaction([ ... # Reaction definition Reactant Conversion ... rxn.Reaction('2CH4 + 3O2 -> 2CO + 4H2O', reactant='CH4', X=0.7), ... rxn.Reaction('2CO + O2 -> 2CO2', reactant='CO', X=0.1) ... ]) >>> s1 = tmo.Stream('s1', CH4=5, O2=100, H2O=1000) >>> s2 = tmo.Stream('s2') >>> s2.copy_like(s1) # s1 and s2 are the same >>> s1.show() # Before reaction Stream: s1 phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): CH4 5 O2 100 H2O 1e+03 >>> reaction.show() SeriesReaction (by mol): index stoichiometry reactant X[%] [0] CH4 + 1.5 O2 -> CO + 2 H2O CH4 70.00 [1] CO + 0.5 O2 -> CO2 CO 10.00 >>> reaction(s1) >>> s1.show() # After non-adiabatic reaction Stream: s1 phase: 'l', T: 298.15 K, P: 101325 Pa flow (kmol/hr): CH4 1.5 CO 3.15 O2 94.6 CO2 0.35 H2O 1.01e+03 >>> reaction.adiabatic_reaction(s2) >>> s2.show() # After adiabatic reaction Stream: s2 phase: 'l', T: 326.12 K, P: 101325 Pa flow (kmol/hr): CH4 1.5 CO 3.15 O2 94.6 CO2 0.35 H2O 1.01e+03 """ react_stream_adiabatically(stream, self)
def reduce(self): raise TypeError('cannot reduce a SeriesReation object, only ' 'ParallelReaction objects are reducible') def _reaction(self, material_array): for i, j, k in zip(self._X_index, self.X, self._stoichiometry): material_array += material_array[i] * j * k @property def X_net(self): """[ChemicalIndexer] Net reaction conversion of reactants.""" X_net = {} for i, j in zip(self.reactants, self.X): if i in X_net: X_net[i] += (1 - X_net[i]) * j else: X_net[i] = j chemicals = self.chemicals data = chemicals.kwarray(X_net) return ChemicalIndexer.from_data(data, NoPhase, chemicals, False)
# Short-hand conventions # Rxn = Reaction # RxnI = ReactionItem # RxnS = ReactionSet # PRxn = ParallelReaction # SRxn = SeriesReaction