
Pythran Developper Guide
Do not hang around in Pythran code base without your developper guide! It is the compass that will guide
you in the code jungle!

Disclaimer
This document is a never ending work-in-progress draft. Please contribute!

Coding Style
All Python code must be conform to the PEP8, and the pep8 command must not yield any message
when run on our database. Additionnaly, avoid backslashes, and try to make your code as concise as
possible.

C++ code use spaces (no tabs) and a tab width of 4.

File Hierarchy
Listing the top level directory yields the following entries:

setup.py

The files that describels what gets installed, that holds PyPI entries and such.

doc/

If you're reading this document, you know what it's all about! MANUAL is the user documentation and
DEVGUIDE is the developper documentation.

LICENSE

Boring but important stuff.

MANIFEST.in

Describe additionnal stuff to package there.

README

Quick introduction and description of _pythran_. The README.rst file is just a symbolic link that
pleases github and PyPI.

pythran/

The source of all things.

pythran/tests/

The source of all issues.

scripts/

Where python scripts calling the pythran module lies.

Validation
pythran uses the unittest module to manage test cases. The whole validation suite is run through
the command:

$> python setup.py test

If you have py.test <http://pytest.org/latest/> from debian package python-pytest-xdist in your
PYTHONPATH, the test suite will run using all available cores. Otherwise it might run very slowly, almost
half an hour on a decent laptop :'(.

Note that it is still possible to use the unittest module directly, for instance to pass a subset of the test
suite:

$> PYTHONPATH=.:pythran/tests:$PYTHONPATH python -m unittest test_math

runs all the tests found in pythran/tests/test_math.py. The command:

$> PYTHONPATH=. py.test -n 8 pythran/tests/test_list.py

does almost the same with py.test.

There are two kinds of tests in pythran:

1. unit tests that test a specific feature of the implementation. Such tests are listed as method of a class
deriving from test_env.TestEnv and must call the run_test(function_to_translate,
*effective_parameters, **name_to_signature) method 1. It translates
function_to_translate into a native function using the type annotations given in the
name_to_signature dictionnary, runs both the python and the native version with
effective_parameters as arguments and asserts the results are the same.

2. test cases that are just plain python modules to be converted in native module by pythran. It is
used to test complex situations, codes or benchmarks found on the web etc. They are just translated,
not run. These test cases lie in pythran/tests/cases/ and are listed in
pythran/tests/test_cases.py.

C++ runtime
The C++ code generated by pythran relies on a specific backend, pythonic++. It is a set of headers
that mimics python's intrinsic and collections behavior in C++. It lies in pythran/pythonic++/. All
headers are #included in the header pythran/pythonic++/pythonic++.h. Core features lie in
pythran/pythonic++/core/ and extra modules lie in pythran/pythonic++/modules.

Each extra module defines a new namespace, like pythonic::math or pythonic::random. The
PROXY and VPROXY macros are used to convert functions into functors, the difference between the two
being that VPROXY allows its argument to be modified.

Benchmarking and Testing
Stand-alone algorithms are put into pythran/tests/cases. They must be valid pythran input (including
spec annotations). To be taken into account by the validation suite, they must be listed in
pythran/tests/test_cases.py. To be taken into account by the benchmarking suite, they must
have a line starting with the #runas directive. Check pythran/tests/matmul.py for a complete
example.

To run the benchmark suite, one can rely on:

$> python setup.py bench --mode=<mode>

where <mode> is one among:

python

Uses the interpreter used to run setup.py.

pythran

Uses the pythran compiler.

pythran+omp

Uses the pythran compiler in OpenMP mode.

All measurements are made using the timeit module. The number of iterations is customizable through
the --nb-iter switch.

How to
Add support

for a new
module:

1. Provide its C++ implementation in pythran/pythonic++/modules.

pythran/pythonic++/modules/math.h and
pythran/pythonic++/modules/list.h are good example to referer
to.

2. Provide its description in pythran/tables.py. Each function, method

or variable must be listed there with the appropriate description.

3. Provide its test suite in pythran/tests/ under the name

test_my_module.py. One test case per function, method or variable is
great.

Add a new
analysis: 1. Subclass one of ModuleAnalysis, FunctionAnalysis or

NodeAnalysis.

2. List analysis required by yours in the parent constructor, they will be built
automatically and stored in the attribute with the corresponding uncameled
name.

3. Write your analysis as a regular ast.NodeVisitor. The analysis result must
be stored in self.result.

4. Use it either from another pass's constructor, or throught the
passmanager.gather function.

Push changes
into the holy

trunk:

1. Use the github interface and the pull/push requests features

2. Make your dev available on the web and asks for a merge on the IRC

channel #pythran

1 See examples in pythran/tests/test_base.py for more details.

	Disclaimer
	Coding Style
	File Hierarchy
	Validation
	C++ runtime
	Benchmarking and Testing
	How to

