

pypdfium2-3.4.0/.reuse/dep5

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: pypdfium2
Upstream-Contact: geisserml <geisserml@gmail.com>
Source: https://github.com/pypdfium2-team/pypdfium2

Sample paragraph, commented out:
#
Files: src/*
Copyright: $YEAR $NAME <$CONTACT>
License: ...

Files: pdfium
 pdfium.dll
 pdfium.dylib
 docs/devel/.about_wheel_license.md
Copyright: 2022 PDFium developers
License: (Apache-2.0 OR BSD-3-Clause) AND LicenseRef-PdfiumThirdParty
Comment:
 `.about_wheel_license.md` is a description file which exists only to state that
 `LicenseRef-PdfiumThirdParty` is used.

Files: autorelease/*
Copyright: 2022 geisserml
License: CC-BY-4.0
Comment:
 Directory for autorelease control files.

Files: tests/resources/toc.pdf
Copyright: 2020 Matthias Erll
License: LicenseRef-FairUse
Comment:
 Obtained from: https://github.com/pikepdf/pikepdf/blob/master/tests/resources/outlines.pdf
 No individual license stated for this data file. Project license is MPL-2.0.
 (https://github.com/pikepdf/pikepdf/blob/master/debian/copyright says "License assumed from LICENSE.txt in project root.")

Files: tests/resources/toc_circular.pdf
 tests/resources/toc_viewmodes.pdf
 tests/resources/toc_maxdepth.pdf
 tests/resources/form_listbox.pdf
 tests/resources/mona_lisa.jpg
Copyright: 2022 PDFium Developers
License: BSD-3-Clause OR Apache-2.0
Comment:
 Obtained from:
 https://pdfium.googlesource.com/pdfium/+/refs/heads/main/testing/resources/bookmarks_circular.pdf
 https://pdfium.googlesource.com/pdfium_tests/+/refs/heads/main/fx/other/8.2_outline.pdf
 https://pdfium.googlesource.com/pdfium_tests/+/refs/heads/main/fx/FRC_8.2.2_part1/FRC_51_8.2.2_T_8.4__Count_edit_count_100.pdf
 https://pdfium.googlesource.com/pdfium/+/refs/heads/main/testing/resources/listbox_form.pdf
 https://pdfium.googlesource.com/pdfium/+/refs/heads/main/testing/resources/mona_lisa.jpg

Files: tests/resources/box_fallback.in
 tests/resources/box_fallback.pdf
Copyright: 2022 PDFium Developers
 2022 geisserml <geisserml@gmail.com>
License: BSD-3-Clause OR Apache-2.0

Files: tests/resources/images.pdf
Copyright: 2022 geisserml <geisserml@gmail.com>
 2022 Johannes Schauer Marin Rodrigues <josch@mister-muffin.de>
License: LicenseRef-FairUse
Comments:
 Contains `mono.png` from the img2pdf test suite.

Files: tests/resources/render.pdf
 tests/resources/multipage.pdf
 tests/resources/encrypted.pdf
 tests/resources/text.pdf
 tests/resources/empty.pdf
Copyright: 2022 geisserml <geisserml@gmail.com>
License: CC-BY-4.0

Files: tests/resources/NotoSans-Regular.ttf
Copyright: 2022 Google Inc.
License: OFL-1.1
Comment:
 Obtained from: https://fonts.google.com/noto/specimen/Noto+Sans

Files: sourcebuild/patches/public_headers.patch
 sourcebuild/patches/shared_library.patch
 sourcebuild/patches/win/build.patch
 sourcebuild/patches/win/pdfium.patch
 sourcebuild/patches/win/resources.rc
Copyright: 2022 Benoît Blanchon
License: LicenseRef-FairUse
Comment:
 Obtained from: https://github.com/bblanchon/pdfium-binaries/tree/master/patches
 For reuse, see https://github.com/bblanchon/pdfium-binaries/issues/55

pypdfium2-3.4.0/LICENSES/Apache-2.0.txt

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

pypdfium2-3.4.0/LICENSES/BSD-3-Clause.txt

Copyright (c) <year> <owner>.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

pypdfium2-3.4.0/LICENSES/CC-BY-4.0.txt

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the
Licensed Material available under these terms and conditions.

Section 1 -- Definitions.

 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.

 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.

 c. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.

 d. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.

 e. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.

 f. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.

 g. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.

 h. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.

 i. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.

 j. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.

 k. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

 a. License grant.

 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:

 a. reproduce and Share the Licensed Material, in whole or
 in part; and

 b. produce, reproduce, and Share Adapted Material.

 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.

 3. Term. The term of this Public License is specified in Section
 6(a).

 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.

 5. Downstream recipients.

 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.

 b. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.

 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).

 b. Other rights.

 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.

 2. Patent and trademark rights are not licensed under this
 Public License.

 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

 a. Attribution.

 1. If You Share the Licensed Material (including in modified
 form), You must:

 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:

 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);

 ii. a copyright notice;

 iii. a notice that refers to this Public License;

 iv. a notice that refers to the disclaimer of
 warranties;

 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;

 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and

 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.

 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.

 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.

 4. If You Share Adapted Material You produce, the Adapter's
 License You apply must not prevent recipients of the Adapted
 Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;

 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material; and

 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.

Section 6 -- Term and Termination.

 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.

 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:

 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or

 2. upon express reinstatement by the Licensor.

 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.

 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.

 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.

Section 7 -- Other Terms and Conditions.

 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.

 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.

 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.

 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.

 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

pypdfium2-3.4.0/LICENSES/LicenseRef-PdfiumThirdParty.txt

BEGIN libpng license

PNG Reference Library License version 2

 * Copyright (c) 1995-2019 The PNG Reference Library Authors.
 * Copyright (c) 2018-2019 Cosmin Truta.
 * Copyright (c) 2000-2002, 2004, 2006-2018 Glenn Randers-Pehrson.
 * Copyright (c) 1996-1997 Andreas Dilger.
 * Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.

The software is supplied "as is", without warranty of any kind,
express or implied, including, without limitation, the warranties
of merchantability, fitness for a particular purpose, title, and
non-infringement. In no event shall the Copyright owners, or
anyone distributing the software, be liable for any damages or
other liability, whether in contract, tort or otherwise, arising
from, out of, or in connection with the software, or the use or
other dealings in the software, even if advised of the possibility
of such damage.

Permission is hereby granted to use, copy, modify, and distribute
this software, or portions hereof, for any purpose, without fee,
subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you
 must not claim that you wrote the original software. If you
 use this software in a product, an acknowledgment in the product
 documentation would be appreciated, but is not required.

 2. Altered source versions must be plainly marked as such, and must
 not be misrepresented as being the original software.

 3. This Copyright notice may not be removed or altered from any
 source or altered source distribution.

END libpng license

BEGIN LibTIFF License

Copyright © 1988-1997 Sam Leffler\
Copyright © 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and
its documentation for any purpose is hereby granted without fee, provided
that (i) the above copyright notices and this permission notice appear in
all copies of the software and related documentation, and (ii) the names of
Sam Leffler and Silicon Graphics may not be used in any advertising or
publicity relating to the software without the specific, prior written
permission of Sam Leffler and Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

END LibTIFF License

BEGIN agg23 (Anti-Grain Geometry 2.3) license note

//--
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//--
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//---

END agg23 (Anti-Grain Geometry 2.3) license note

BEGIN FreeType license

 The FreeType Project LICENSE

 2006-Jan-27

 Copyright 1996-2002, 2006 by
 David Turner, Robert Wilhelm, and Werner Lemberg

Introduction
============

 The FreeType Project is distributed in several archive packages;
 some of them may contain, in addition to the FreeType font engine,
 various tools and contributions which rely on, or relate to, the
 FreeType Project.

 This license applies to all files found in such packages, and
 which do not fall under their own explicit license. The license
 affects thus the FreeType font engine, the test programs,
 documentation and makefiles, at the very least.

 This license was inspired by the BSD, Artistic, and IJG
 (Independent JPEG Group) licenses, which all encourage inclusion
 and use of free software in commercial and freeware products
 alike. As a consequence, its main points are that:

 o We don't promise that this software works. However, we will be
 interested in any kind of bug reports. (`as is' distribution)

 o You can use this software for whatever you want, in parts or
 full form, without having to pay us. (`royalty-free' usage)

 o You may not pretend that you wrote this software. If you use
 it, or only parts of it, in a program, you must acknowledge
 somewhere in your documentation that you have used the
 FreeType code. (`credits')

 We specifically permit and encourage the inclusion of this
 software, with or without modifications, in commercial products.
 We disclaim all warranties covering The FreeType Project and
 assume no liability related to The FreeType Project.

 Finally, many people asked us for a preferred form for a
 credit/disclaimer to use in compliance with this license. We thus
 encourage you to use the following text:

 """
 Portions of this software are copyright © <year> The FreeType
 Project (www.freetype.org). All rights reserved.
 """

 Please replace <year> with the value from the FreeType version you
 actually use.

Legal Terms
===========

0. Definitions

 Throughout this license, the terms `package', `FreeType Project',
 and `FreeType archive' refer to the set of files originally
 distributed by the authors (David Turner, Robert Wilhelm, and
 Werner Lemberg) as the `FreeType Project', be they named as alpha,
 beta or final release.

 `You' refers to the licensee, or person using the project, where
 `using' is a generic term including compiling the project's source
 code as well as linking it to form a `program' or `executable'.
 This program is referred to as `a program using the FreeType
 engine'.

 This license applies to all files distributed in the original
 FreeType Project, including all source code, binaries and
 documentation, unless otherwise stated in the file in its
 original, unmodified form as distributed in the original archive.
 If you are unsure whether or not a particular file is covered by
 this license, you must contact us to verify this.

 The FreeType Project is copyright (C) 1996-2000 by David Turner,
 Robert Wilhelm, and Werner Lemberg. All rights reserved except as
 specified below.

1. No Warranty

 THE FREETYPE PROJECT IS PROVIDED `AS IS' WITHOUT WARRANTY OF ANY
 KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE. IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS
 BE LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO
 USE, OF THE FREETYPE PROJECT.

2. Redistribution

 This license grants a worldwide, royalty-free, perpetual and
 irrevocable right and license to use, execute, perform, compile,
 display, copy, create derivative works of, distribute and
 sublicense the FreeType Project (in both source and object code
 forms) and derivative works thereof for any purpose; and to
 authorize others to exercise some or all of the rights granted
 herein, subject to the following conditions:

 o Redistribution of source code must retain this license file
 (`FTL.TXT') unaltered; any additions, deletions or changes to
 the original files must be clearly indicated in accompanying
 documentation. The copyright notices of the unaltered,
 original files must be preserved in all copies of source
 files.

 o Redistribution in binary form must provide a disclaimer that
 states that the software is based in part of the work of the
 FreeType Team, in the distribution documentation. We also
 encourage you to put an URL to the FreeType web page in your
 documentation, though this isn't mandatory.

 These conditions apply to any software derived from or based on
 the FreeType Project, not just the unmodified files. If you use
 our work, you must acknowledge us. However, no fee need be paid
 to us.

3. Advertising

 Neither the FreeType authors and contributors nor you shall use
 the name of the other for commercial, advertising, or promotional
 purposes without specific prior written permission.

 We suggest, but do not require, that you use one or more of the
 following phrases to refer to this software in your documentation
 or advertising materials: `FreeType Project', `FreeType Engine',
 `FreeType library', or `FreeType Distribution'.

 As you have not signed this license, you are not required to
 accept it. However, as the FreeType Project is copyrighted
 material, only this license, or another one contracted with the
 authors, grants you the right to use, distribute, and modify it.
 Therefore, by using, distributing, or modifying the FreeType
 Project, you indicate that you understand and accept all the terms
 of this license.

4. Contacts

 There are two mailing lists related to FreeType:

 o freetype@nongnu.org

 Discusses general use and applications of FreeType, as well as
 future and wanted additions to the library and distribution.
 If you are looking for support, start in this list if you
 haven't found anything to help you in the documentation.

 o freetype-devel@nongnu.org

 Discusses bugs, as well as engine internals, design issues,
 specific licenses, porting, etc.

 Our home page can be found at

 https://www.freetype.org

END FreeType license

BEGIN lcms license note

//---
//
// Little Color Management System
// Copyright (c) 1998-2020 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---
//

END lcms license note

BEGIN openjpeg license note

/*
 * The copyright in this software is being made available under the 2-clauses
 * BSD License, included below. This software may be subject to other third
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR
 * Copyright (c) 2012, CS Systemes d'Information, France
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

END openjpeg license note

BEGIN zlib license

/* zlib.h -- interface of the 'zlib' general purpose compression library
 version 1.2.11, January 15th, 2017

 Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler

 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu

*/

END zlib license

BEGIN libjpeg-turbo license file

libjpeg-turbo Licenses
======================

libjpeg-turbo is covered by three compatible BSD-style open source licenses:

- The IJG (Independent JPEG Group) License, which is listed in
 README.ijg

 This license applies to the libjpeg API library and associated programs
 (any code inherited from libjpeg, and any modifications to that code.)

- The Modified (3-clause) BSD License, which is listed below

 This license covers the TurboJPEG API library and associated programs, as
 well as the build system.

- The [zlib License](https://opensource.org/licenses/Zlib)

 This license is a subset of the other two, and it covers the libjpeg-turbo
 SIMD extensions.

Complying with the libjpeg-turbo Licenses
===

This section provides a roll-up of the libjpeg-turbo licensing terms, to the
best of our understanding.

1. If you are distributing a modified version of the libjpeg-turbo source,
 then:

 1. You cannot alter or remove any existing copyright or license notices
 from the source.

 Origin
 - Clause 1 of the IJG License
 - Clause 1 of the Modified BSD License
 - Clauses 1 and 3 of the zlib License

 2. You must add your own copyright notice to the header of each source
 file you modified, so others can tell that you modified that file (if
 there is not an existing copyright header in that file, then you can
 simply add a notice stating that you modified the file.)

 Origin
 - Clause 1 of the IJG License
 - Clause 2 of the zlib License

 3. You must include the IJG README file, and you must not alter any of the
 copyright or license text in that file.

 Origin
 - Clause 1 of the IJG License

2. If you are distributing only libjpeg-turbo binaries without the source, or
 if you are distributing an application that statically links with
 libjpeg-turbo, then:

 1. Your product documentation must include a message stating:

 This software is based in part on the work of the Independent JPEG
 Group.

 Origin
 - Clause 2 of the IJG license

 2. If your binary distribution includes or uses the TurboJPEG API, then
 your product documentation must include the text of the Modified BSD
 License (see below.)

 Origin
 - Clause 2 of the Modified BSD License

3. You cannot use the name of the IJG or The libjpeg-turbo Project or the
 contributors thereof in advertising, publicity, etc.

 Origin
 - IJG License
 - Clause 3 of the Modified BSD License

4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be
 free of defects, nor do we accept any liability for undesirable
 consequences resulting from your use of the software.

 Origin
 - IJG License
 - Modified BSD License
 - zlib License

The Modified (3-clause) BSD License
===================================

Copyright (C)2009-2021 D. R. Commander. All Rights Reserved.
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
- Neither the name of the libjpeg-turbo Project nor the names of its
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Why Three Licenses?
===================

The zlib License could have been used instead of the Modified (3-clause) BSD
License, and since the IJG License effectively subsumes the distribution
conditions of the zlib License, this would have effectively placed
libjpeg-turbo binary distributions under the IJG License. However, the IJG
License specifically refers to the Independent JPEG Group and does not extend
attribution and endorsement protections to other entities. Thus, it was
desirable to choose a license that granted us the same protections for new code
that were granted to the IJG for code derived from their software.

END libjpeg-turbo license file

BEGIN IJG (Independent JPEG Group) legal information

LEGAL ISSUES
============

In plain English:

1. We don't promise that this software works. (But if you find any bugs,
 please let us know!)
2. You can use this software for whatever you want. You don't have to pay us.
3. You may not pretend that you wrote this software. If you use it in a
 program, you must acknowledge somewhere in your documentation that
 you've used the IJG code.

In legalese:

The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.

This software is copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this
software (or portions thereof) for any purpose, without fee, subject to these
conditions:
(1) If any part of the source code for this software is distributed, then this
README file must be included, with this copyright and no-warranty notice
unaltered; and any additions, deletions, or changes to the original files
must be clearly indicated in accompanying documentation.
(2) If only executable code is distributed, then the accompanying
documentation must state that "this software is based in part on the work of
the Independent JPEG Group".
(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirable consequences; the authors accept
NO LIABILITY for damages of any kind.

These conditions apply to any software derived from or based on the IJG code,
not just to the unmodified library. If you use our work, you ought to
acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name
in advertising or publicity relating to this software or products derived from
it. This software may be referred to only as "the Independent JPEG Group's
software".

We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are
assumed by the product vendor.

END IJG (Independent JPEG Group) legal information

BEGIN ICU (International Components for Unicode) license file

COPYRIGHT AND PERMISSION NOTICE (ICU 58 and later)

Copyright © 1991-2020 Unicode, Inc. All rights reserved.
Distributed under the Terms of Use in https://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining
a copy of the Unicode data files and any associated documentation
(the "Data Files") or Unicode software and any associated documentation
(the "Software") to deal in the Data Files or Software
without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of
the Data Files or Software, and to permit persons to whom the Data Files
or Software are furnished to do so, provided that either
(a) this copyright and permission notice appear with all copies
of the Data Files or Software, or
(b) this copyright and permission notice appear in associated
Documentation.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale,
use or other dealings in these Data Files or Software without prior
written authorization of the copyright holder.

Third-Party Software Licenses

This section contains third-party software notices and/or additional
terms for licensed third-party software components included within ICU
libraries.

1. ICU License - ICU 1.8.1 to ICU 57.1

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2016 International Business Machines Corporation and others
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this
permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale, use
or other dealings in this Software without prior written authorization
of the copyright holder.

All trademarks and registered trademarks mentioned herein are the
property of their respective owners.

2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)

 # The Google Chrome software developed by Google is licensed under
 # the BSD license. Other software included in this distribution is
 # provided under other licenses, as set forth below.
 #
 # The BSD License
 # http://opensource.org/licenses/bsd-license.php
 # Copyright (C) 2006-2008, Google Inc.
 #
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice,
 # this list of conditions and the following disclaimer.
 # Redistributions in binary form must reproduce the above
 # copyright notice, this list of conditions and the following
 # disclaimer in the documentation and/or other materials provided with
 # the distribution.
 # Neither the name of Google Inc. nor the names of its
 # contributors may be used to endorse or promote products derived from
 # this software without specific prior written permission.
 #
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 # BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 #
 #
 # The word list in cjdict.txt are generated by combining three word lists
 # listed below with further processing for compound word breaking. The
 # frequency is generated with an iterative training against Google web
 # corpora.
 #
 # * Libtabe (Chinese)
 # - https://sourceforge.net/project/?group_id=1519
 # - Its license terms and conditions are shown below.
 #
 # * IPADIC (Japanese)
 # - http://chasen.aist-nara.ac.jp/chasen/distribution.html
 # - Its license terms and conditions are shown below.
 #
 # ---------COPYING.libtabe ---- BEGIN--------------------
 #
 # /*
 # * Copyright (c) 1999 TaBE Project.
 # * Copyright (c) 1999 Pai-Hsiang Hsiao.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the TaBE Project nor the names of its
 # * contributors may be used to endorse or promote products derived
 # * from this software without specific prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # /*
 # * Copyright (c) 1999 Computer Systems and Communication Lab,
 # * Institute of Information Science, Academia
 # * Sinica. All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the Computer Systems and Communication Lab
 # * nor the names of its contributors may be used to endorse or
 # * promote products derived from this software without specific
 # * prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # Copyright 1996 Chih-Hao Tsai @ Beckman Institute,
 # University of Illinois
 # c-tsai4@uiuc.edu http://casper.beckman.uiuc.edu/~c-tsai4
 #
 # ---------------COPYING.libtabe-----END--------------------------------
 #
 #
 # ---------------COPYING.ipadic-----BEGIN-------------------------------
 #
 # Copyright 2000, 2001, 2002, 2003 Nara Institute of Science
 # and Technology. All Rights Reserved.
 #
 # Use, reproduction, and distribution of this software is permitted.
 # Any copy of this software, whether in its original form or modified,
 # must include both the above copyright notice and the following
 # paragraphs.
 #
 # Nara Institute of Science and Technology (NAIST),
 # the copyright holders, disclaims all warranties with regard to this
 # software, including all implied warranties of merchantability and
 # fitness, in no event shall NAIST be liable for
 # any special, indirect or consequential damages or any damages
 # whatsoever resulting from loss of use, data or profits, whether in an
 # action of contract, negligence or other tortuous action, arising out
 # of or in connection with the use or performance of this software.
 #
 # A large portion of the dictionary entries
 # originate from ICOT Free Software. The following conditions for ICOT
 # Free Software applies to the current dictionary as well.
 #
 # Each User may also freely distribute the Program, whether in its
 # original form or modified, to any third party or parties, PROVIDED
 # that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear
 # on, or be attached to, the Program, which is distributed substantially
 # in the same form as set out herein and that such intended
 # distribution, if actually made, will neither violate or otherwise
 # contravene any of the laws and regulations of the countries having
 # jurisdiction over the User or the intended distribution itself.
 #
 # NO WARRANTY
 #
 # The program was produced on an experimental basis in the course of the
 # research and development conducted during the project and is provided
 # to users as so produced on an experimental basis. Accordingly, the
 # program is provided without any warranty whatsoever, whether express,
 # implied, statutory or otherwise. The term "warranty" used herein
 # includes, but is not limited to, any warranty of the quality,
 # performance, merchantability and fitness for a particular purpose of
 # the program and the nonexistence of any infringement or violation of
 # any right of any third party.
 #
 # Each user of the program will agree and understand, and be deemed to
 # have agreed and understood, that there is no warranty whatsoever for
 # the program and, accordingly, the entire risk arising from or
 # otherwise connected with the program is assumed by the user.
 #
 # Therefore, neither ICOT, the copyright holder, or any other
 # organization that participated in or was otherwise related to the
 # development of the program and their respective officials, directors,
 # officers and other employees shall be held liable for any and all
 # damages, including, without limitation, general, special, incidental
 # and consequential damages, arising out of or otherwise in connection
 # with the use or inability to use the program or any product, material
 # or result produced or otherwise obtained by using the program,
 # regardless of whether they have been advised of, or otherwise had
 # knowledge of, the possibility of such damages at any time during the
 # project or thereafter. Each user will be deemed to have agreed to the
 # foregoing by his or her commencement of use of the program. The term
 # "use" as used herein includes, but is not limited to, the use,
 # modification, copying and distribution of the program and the
 # production of secondary products from the program.
 #
 # In the case where the program, whether in its original form or
 # modified, was distributed or delivered to or received by a user from
 # any person, organization or entity other than ICOT, unless it makes or
 # grants independently of ICOT any specific warranty to the user in
 # writing, such person, organization or entity, will also be exempted
 # from and not be held liable to the user for any such damages as noted
 # above as far as the program is concerned.
 #
 # ---------------COPYING.ipadic-----END----------------------------------

3. Lao Word Break Dictionary Data (laodict.txt)

 # Copyright (C) 2016 and later: Unicode, Inc. and others.
 # License & terms of use: http://www.unicode.org/copyright.html
 # Copyright (c) 2015 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # Project: https://github.com/rober42539/lao-dictionary
 # Dictionary: https://github.com/rober42539/lao-dictionary/laodict.txt
 # License: https://github.com/rober42539/lao-dictionary/LICENSE.txt
 # (copied below)
 #
 #	This file is derived from the above dictionary version of Nov 22, 2020
 # --
 # Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice, this
 # list of conditions and the following disclaimer. Redistributions in binary
 # form must reproduce the above copyright notice, this list of conditions and
 # the following disclaimer in the documentation and/or other materials
 # provided with the distribution.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # OF THE POSSIBILITY OF SUCH DAMAGE.
 # --

4. Burmese Word Break Dictionary Data (burmesedict.txt)

 # Copyright (c) 2014 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # This list is part of a project hosted at:
 # github.com/kanyawtech/myanmar-karen-word-lists
 #
 # --
 # Copyright (c) 2013, LeRoy Benjamin Sharon
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions
 # are met: Redistributions of source code must retain the above
 # copyright notice, this list of conditions and the following
 # disclaimer. Redistributions in binary form must reproduce the
 # above copyright notice, this list of conditions and the following
 # disclaimer in the documentation and/or other materials provided
 # with the distribution.
 #
 # Neither the name Myanmar Karen Word Lists, nor the names of its
 # contributors may be used to endorse or promote products derived
 # from this software without specific prior written permission.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
 # THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 # SUCH DAMAGE.
 # --

5. Time Zone Database

 ICU uses the public domain data and code derived from Time Zone
Database for its time zone support. The ownership of the TZ database
is explained in BCP 175: Procedure for Maintaining the Time Zone
Database section 7.

 # 7. Database Ownership
 #
 # The TZ database itself is not an IETF Contribution or an IETF
 # document. Rather it is a pre-existing and regularly updated work
 # that is in the public domain, and is intended to remain in the
 # public domain. Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do
 # not apply to the TZ Database or contributions that individuals make
 # to it. Should any claims be made and substantiated against the TZ
 # Database, the organization that is providing the IANA
 # Considerations defined in this RFC, under the memorandum of
 # understanding with the IETF, currently ICANN, may act in accordance
 # with all competent court orders. No ownership claims will be made
 # by ICANN or the IETF Trust on the database or the code. Any person
 # making a contribution to the database or code waives all rights to
 # future claims in that contribution or in the TZ Database.

6. Google double-conversion

Copyright 2006-2011, the V8 project authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 * Neither the name of Google Inc. nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

END ICU (International Components for Unicode) license file

pypdfium2-3.4.0/MANIFEST.in

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

This only includes a bare minimum of files required for local installation (and PyPI upload).
Note: If setuptools-scm is installed, it will include all files checked into version control, and it is not currently possible to opt out (setuptools_scm/issues/190)

license files are already included setup.cfg
recursive-include sourcebuild/patches/ *
recursive-include src *.py
recursive-include setupsrc *.py

pypdfium2-3.4.0/PKG-INFO

Metadata-Version: 2.1
Name: pypdfium2
Version: 3.4.0
Summary: Python bindings to PDFium
Home-page: https://github.com/pypdfium2-team/pypdfium2
Author: pypdfium2-team
Author-email: geisserml@gmail.com
License: Apache-2.0 or BSD-3-Clause
Project-URL: Documentation, https://pypdfium2.readthedocs.io/
Project-URL: Source, https://github.com/pypdfium2-team/pypdfium2
Project-URL: Tracker, https://github.com/pypdfium2-team/pypdfium2/issues
Keywords: Python,PDF,PDFium
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: Education
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Multimedia :: Graphics
Classifier: Topic :: Software Development :: Libraries
Requires-Python: !=3.7.6,!=3.8.1,>=3.5
Description-Content-Type: text/markdown
Provides-Extra: converters
Provides-Extra: inserttext
Provides-Extra: autocomplete
Provides-Extra: test
Provides-Extra: docs
Provides-Extra: utilities
License-File: LICENSES/Apache-2.0.txt
License-File: LICENSES/BSD-3-Clause.txt
License-File: LICENSES/CC-BY-4.0.txt
License-File: LICENSES/LicenseRef-PdfiumThirdParty.txt
License-File: .reuse/dep5

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

pypdfium2

[pypdfium2](https://github.com/pypdfium2-team/pypdfium2) is an ABI-level Python 3 binding to [PDFium](https://pdfium.googlesource.com/pdfium/+/refs/heads/main), a powerful and liberal-licensed library for PDF creation, inspection, manipulation and rendering.

The project is built using [ctypesgen](https://github.com/ctypesgen/ctypesgen) and external [PDFium binaries](https://github.com/bblanchon/pdfium-binaries/).
Its custom setup infrastructure provides a seamless packaging and installation process. A wide range of platforms and Python versions is supported with wheel packages.

pypdfium2 includes helper classes to simplify common use cases, while the raw PDFium/ctypes API remains accessible as well.

Installation

* Installing the latest PyPI release (recommended)
  ```bash
  python3 -m pip install -U pypdfium2
  ```
 This will use a pre-built wheel package, the easiest way of installing pypdfium2.

* Installing from source

 * With an external PDFium binary
    ```bash
    # In the directory containing the source code of pypdfium2
    python3 -m pip install .
    ```

 * With a locally built PDFium binary
    ```bash
    python3 setupsrc/pl_setup/build_pdfium.py
    PDFIUM_BINARY="sourcebuild" python3 -m pip install .
    ```
 The build script provides a few options that can be listed by calling it with `--help`.
 Building PDFium may take a long time because it comes with its own toolchain and bundled dependencies, rather than using system-provided components.[^pdfium_buildsystem]

 [^pdfium_buildsystem]: Replacing PDFium's toolchain with a leaner and more elegant build system that is designed to run on any host platform constitutes a long-standing task. This would be required to be able to reliably perform a local source build when installing an `sdist` package. If you have the time and expertise to set up such a build system, please start a repository and inform us about it.

 The host system needs to provide `git` and `gcc`.
 Setup code also depends on the Python packages `ctypesgen`, `wheel`, and `setuptools`, which will usually get installed automatically.

 When installing from source, some additional options of the `pip` package manager may be relevant:
 * `-v`: Request more detailed logging output. Useful for debugging.
 * `-e`: Install in editable mode, so that the installation will point to the source tree. This way, changes directly take effect without needing to re-install. Recommended for development.
 * `--no-build-isolation`: Do not isolate the installation in a virtual environment and use system packages instead. In this case, dependencies specified in `pyproject.toml` (PEP 518) will not take effect and should be pre-installed by the caller. This is an indispensable option if wanting to run the installation with custom versions of setup dependencies.[^no_build_isolation]

 [^no_build_isolation]: Possible scenarios include using a locally modified version of a dependency, or supplying a dependency built from a certain commit (while not changing the code)

* Installing an unofficial distribution

 To the authors' knowledge, there currently are no other distributions of pypdfium2 apart from the official wheel releases on PyPI and GitHub.
 There is no conda package yet.
 So far, pypdfium2 has not been included in any operating system repositories. While we are interested in cooperation with external package maintainers to make this possible, the authors of this project have no control over and are not responsible for third-party distributions of pypdfium2.

Setup magic

As pypdfium2 uses external binaries, there are some special setup aspects to consider.

* Binaries are stored in platform-specific sub-directories of `data/`, along with bindings and version information.
* The environment variable `PDFIUM_BINARY` controls which binary to include on setup.
 * If unset or `auto`, the host platform is detected and a corresponding binary will be selected.
 Platform files are downloaded/generated automatically, if not present yet. By default, existing platform files will also be updated if a newer version is available, but this may be prevented by creating an empty file called `.lock_autoupdate.txt` in `data/`.
 * If set to a certain platform identifier, binaries for the requested platform will be used.[^platform_ids]
 In this case, platform files will not be downloaded/generated automatically, but need to be supplied beforehand using the `update_pdfium.py` script.
 * If set to `sourcebuild`, binaries will be taken from the location where the build script places its artefacts, assuming a prior run of `build_pdfium.py`.
 * If set to `none`, no platform-dependent files will be injected, so as to create a source distribution.

[^platform_ids]: This is mainly of internal interest for packaging, so that wheels can be crafted for any platform without access to a native host.

Runtime Dependencies

pypdfium2 does not have any mandatory runtime dependencies apart from Python and its standard library.

However, some optional support model features require additional packages:
* [`Pillow`](https://pillow.readthedocs.io/en/stable/) (module name `PIL`) is a highly pouplar imaging library for Python.
 pypdfium2 provides convenience methods to directly return PIL image objects when dealing with raster graphics.
* [`NumPy`](https://numpy.org/doc/stable/index.html) is a library for scientific computing. Similar to `Pillow`, pypdfium2 provides helpers to get raster graphics in the form of multidimensional numpy arrays.
* [`uharfbuzz`](https://github.com/harfbuzz/uharfbuzz) is a text shaping engine used by text insertion helpers, to support foreign writing systems.
 If you do not care about this, you may insert text using the raw PDFium functions `FPDFPageObj_NewTextObj()` (or `FPDFPageObj_CreateTextObj()`) and `FPDFText_SetText()` without being dependent on uharfbuzz.

Usage

[Support model](https://pypdfium2.readthedocs.io/en/stable/python_api.html)

Here are some examples of using the support model API.

* Import the library
  ```python
  import pypdfium2 as pdfium
  ```

* Open a PDF using the helper class `PdfDocument` (supports file path strings, bytes, and byte buffers)
  ```python
  pdf = pdfium.PdfDocument("./path/to/document.pdf")
  version = pdf.get_version()  # get the PDF standard version
  n_pages = len(pdf)  # get the number of pages in the document
  ```

* Render multiple pages concurrently
  ```python
  page_indices = [i for i in range(n_pages)]  # all pages
  renderer = pdf.render_to(
      pdfium.BitmapConv.pil_image,
      page_indices = page_indices,
      scale = 300/72,  # 300dpi resolution
  )
  for i, image in zip(page_indices, renderer):
      image.save("out_%s.jpg" % str(i).zfill(n_pages))
  ```

* Read the table of contents
  ```python
  for item in toc:
    
      if item.n_kids == 0:
          state = "*"
      elif item.is_closed:
          state = "-"
      else:
          state = "+"
      
      if item.page_index is None:
          target = "?"
      else:
          target = item.page_index + 1
      
      print(
          "    " * item.level +
          "[%s] %s -> %s  # %s %s" % (
              state, item.title, target,
              pdfium.ViewmodeToStr[item.view_mode],
              [round(c, n_digits) for c in item.view_pos],
          )
      )
  ```

* Load a page to work with
  ```python
  page = pdf[0]  # or pdf.get_page(0)
  
  # Get page dimensions in PDF canvas units (1pt->1/72in by default)
  width, height = page.get_size()
  # Set the absolute page rotation to 90° clockwise
  page.set_rotation(90)
  
  # Locate objects on the page
  for obj in page.get_objects():
      print("    "*obj.level + pdfium.ObjectTypeToStr[obj.type], obj.get_pos())
  ```

* Render a single page
  ```python
  image = page.render_to(
      # defaults
      scale = 1,                           # 72dpi resolution
      rotation = 0,                        # no additional rotation
      crop = (0, 0, 0, 0),                 # no crop (form: left, right, bottom, top)
      greyscale = False,                   # coloured output
      fill_colour = (255, 255, 255, 255),  # fill bitmap with white background before rendering (form: RGBA)
      colour_scheme = None,                # no custom colour scheme
      optimise_mode = OptimiseMode.NONE,   # no optimisations (e. g. subpixel rendering)
      draw_annots = True,                  # show annotations
      draw_forms = True,                   # show forms
      no_smoothtext = False,               # anti-alias text
      no_smoothimage = False,              # anti-alias images
      no_smoothpath = False,               # anti-alias paths
      force_halftone = False,              # don't force halftone for image stretching
      rev_byteorder = False,               # don't reverse byte order
      prefer_bgrx = False,                 # don't prefer four channels for coloured output
      force_bitmap_format = None,          # don't force a specific bitmap format
      extra_flags = 0,                     # no extra flags
      allocator = None,                    # no custom allocator
      memory_limit = 2**30,                # maximum allocation (1 GiB)
  )
  image.show()
  ```

* Extract and search text
  ```python
  # Load a text page helper
  textpage = page.get_textpage()
  
  # Extract text from the whole page
  text_all = textpage.get_text_range()
  # Extract text from a specific rectangular area
  text_part = textpage.get_text_bounded(left=50, bottom=100, right=width-50, top=height-100)
  
  # Extract URLs from the page
  links = [l for l in textpage.get_links()]
  
  # Locate text on the page
  searcher = textpage.search("something", match_case=False, match_whole_word=False)
  # This will be a list of bounding boxes of the form (left, right, bottom, top)
  first_occurrence = searcher.get_next()
  ```

* Finished objects may be closed explicitly to release memory allocated by PDFium.
 Otherwise, they will be finalised automatically on garbage collection.
  ```python
  # Attention: objects must be closed in correct order!
  for garbage in (searcher, textpage, page, pdf):
      garbage.close()
  ```

* Create a new PDF with an empty A4 sized page
  ```python
  pdf = pdfium.PdfDocument.new()
  width, height = (595, 842)
  page_a = pdf.new_page(width, height)
  ```

* Insert text content
  ```python
  NotoSans = "./tests/resources/NotoSans-Regular.ttf"
  hb_font = pdfium.HarfbuzzFont(NotoSans)
  pdf_font = pdf.add_font(
      NotoSans,
      type = pdfium.FPDF_FONT_TRUETYPE,
      is_cid = True,
  )
  page_a.insert_text(
      text = "मैं घोषणा, पुष्टि और सहमत हूँ कि:",
      pos_x = 50,
      pos_y = height - 75,
      font_size = 25,
      hb_font = hb_font,
      pdf_font = pdf_font,
  )
  page_a.generate_content()
  ```

* Add a JPEG image on a second page
  ```python
  # Direct JPEG inclusion (only a small overhead for the PDF container)
  image = pdfium.PdfImageObject.new(pdf)
  buffer = open("./tests/resources/mona_lisa.jpg", "rb")
  width, height = image.load_jpeg(buffer, autoclose=True)
  page_b = pdf.new_page(width, height)
  page_b.insert_object(image)
  page_b.generate_content()
  ```

* Save the document
  ```python
  with open("output.pdf", "wb") as buffer:
      pdf.save(buffer, version=17)  # use PDF 1.7 standard
  ```

PDFium provides a large amount of functions, many of which are not covered by support models yet.
You may seamlessly interact with these functions while still using helper classes where available, as they provide a `raw` attribute to access the underlying PDFium/ctypes object, e. g.

```python
permission_flags = pdfium.FPDF_GetDocPermission(pdf.raw)
has_transparency = pdfium.FPDFPage_HasTransparency(page.raw)
```

Raw PDFium API

While helper classes conveniently wrap the raw PDFium API, it may still be accessed directly and is publicly exposed in the main namespace of pypdfium2.
As the vast majority of PDFium members is prefixed with `FPDF`, they are clearly distinguishable from support model components.

For PDFium documentation, please look at the comments in its [public header files](https://pdfium.googlesource.com/pdfium/+/refs/heads/main/public/).[^pdfium_docs]
A large variety of examples on how to interface with the raw API using [`ctypes`](https://docs.python.org/3/library/ctypes.html) is already provided with [support model source code](src/pypdfium2/_helpers).
Nonetheless, the following guide may be helpful to get started with the raw API, especially for developers who are not familiar with `ctypes` yet.

[^pdfium_docs]: Unfortunately, no recent HTML-rendered documentation is available for PDFium at the moment. While large parts of the old [Foxit docs](https://developers.foxit.com/resources/pdf-sdk/c_api_reference_pdfium/group___f_p_d_f_i_u_m.html) still seem similar to PDFium's current API, many modifications and new functions are actually missing, which can be confusing.

* In general, PDFium functions can be called just like normal Python functions.
 However, parameters may only be passed positionally, i. e. it is not possible to use keyword arguments.
 There are no defaults, so you always need to provide a value for each argument.
  ```python
  # arguments: filepath (str|bytes), password (str|bytes|None)
  pdf = pdfium.FPDF_LoadDocument(filepath.encode("utf-8"), None)
  ```
 This is the underlying bindings declaration,[^bindings_decl] which loads the function from the binary and
 contains the information required to convert Python types to their C equivalents.
  ```python
  if _libs["pdfium"].has("FPDF_LoadDocument", "cdecl"):
      FPDF_LoadDocument = _libs["pdfium"].get("FPDF_LoadDocument", "cdecl")
      FPDF_LoadDocument.argtypes = [FPDF_STRING, FPDF_BYTESTRING]
      FPDF_LoadDocument.restype = FPDF_DOCUMENT
  ```
 For instance, Python `str` or `bytes` are converted to `FPDF_STRING` automatically.
 If a `str` is provided, its UTF-8 encoding will be used. However, it is usually advisable to encode strings explicitly.

[^bindings_decl]: From the auto-generated bindings file, which is not part of the repository. It is built into wheels, or created on installation. If you have an editable install, the bindings file may be found at `src/_pypdfium.py`.

* While some functions are quite easy to use, things soon get more complex.
 First of all, function parameters are not only used for input, but also for output:
  ```python
  # Initialise an integer object (defaults to 0)
  c_version = ctypes.c_int()
  # Let the function assign a value to the c_int object, and capture its return code (True for success, False for failure)
  success = pdfium.FPDF_GetFileVersion(pdf, c_version)
  # Get the Python int by accessing the `value` attribute of the c_int object
  py_version = c_version.value
  ```

* If an array is required as output parameter, you can initialise one like this (conceived in general terms):
  ```python
  # long form
  array_type = (c_type * array_length)
  array_object = array_type()
  # short form
  array_object = (c_type * array_length)()
  ```
 Example: Getting view mode and target position from a destination object returned by some other function.
  ```python
  # (Assuming `dest` is an FPDF_DEST)
  n_params = ctypes.c_ulong()
  # Create a C array to store up to four coordinates
  view_pos = (pdfium.FS_FLOAT * 4)()
  view_mode = pdfium.FPDFDest_GetView(dest, n_params, view_pos)
  # Convert the C array to a Python list and cut it down to the actual number of coordinates
  view_pos = list(view_pos)[:n_params.value]
  ```

* For string output parameters, callers needs to provide a sufficiently long, pre-allocated buffer.
 This may work differently depending on what type the function requires, which encoding is used, whether the number of bytes or characters is returned, and whether space for a null terminator is included or not. Carefully review the documentation for the function in question to fulfill its requirements.

 Example A: Getting the title string of a bookmark.
  ```python
  # (Assuming `bookmark` is an FPDF_BOOKMARK)
  # First call to get the required number of bytes (not characters!), including space for a null terminator
  n_bytes = pdfium.FPDFBookmark_GetTitle(bookmark, None, 0)
  # Initialise the output buffer
  buffer = ctypes.create_string_buffer(n_bytes)
  # Second call with the actual buffer
  pdfium.FPDFBookmark_GetTitle(bookmark, buffer, n_bytes)
  # Decode to string, cutting off the null terminator
  # Encoding: UTF-16LE (2 bytes per character)
  title = buffer.raw[:n_bytes-2].decode('utf-16-le')
  ```

 Example B: Extracting text in given boundaries.
  ```python
  # (Assuming `textpage` is an FPDF_TEXTPAGE and the boundary variables are set)
  # Store common arguments for the two calls
  args = (textpage, left, top, right, bottom)
  # First call to get the required number of characters (not bytes!) - a possible null terminator is not included
  n_chars = pdfium.FPDFText_GetBoundedText(*args, None, 0)
  # If no characters were found, return an empty string
  if n_chars <= 0:
      return ""
  # Calculate the required number of bytes
  # Encoding: UTF-16LE (2 bytes per character)
  n_bytes = 2 * n_chars
  # Initialise the output buffer - this function can work without null terminator, so skip it
  buffer = ctypes.create_string_buffer(n_bytes)
  # Re-interpret the type from char to unsigned short as required by the function
  buffer_ptr = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_ushort))
  # Second call with the actual buffer
  pdfium.FPDFText_GetBoundedText(*args, buffer_ptr, n_chars)
  # Decode to string
  # (You may want to pass `errors="ignore"` to skip possible errors in the PDF's encoding)
  text = buffer.raw.decode("utf-16-le")
  ```

* Not only are there different ways of string output that need to be handled according to the requirements of the function in question.
 String input, too, can work differently depending on encoding, null termination, and type.
 While functions that take a `UTF-8` encoded `FPDF_STRING` or `FPDF_BYTESTRING` are easy to call, other functions may have more peculiar needs. For instance, `FPDFText_FindStart()` demands a UTF-16LE encoded string with null terminator, given as a pointer to an `unsigned short` array:
  ```python
  # (Assuming `text` is a str and `textpage` an FPDF_TEXTPAGE)
  # Add the null terminator and encode as UTF-16LE
  enc_text = (text + "\x00").encode("utf-16-le")
  # Obtain a pointer of type c_ushort to `enc_text`
  text_ptr = ctypes.cast(enc_text, ctypes.POINTER(ctypes.c_ushort))
  search = pdfium.FPDFText_FindStart(textpage, text_ptr, 0, 0)
  ```

* Suppose you have a C memory buffer allocated by PDFium and wish to read its data.
 PDFium will provide you with a pointer to the first item of the byte array.
 To access the data, you'll want to re-interpret the pointer using `ctypes.cast()` to encompass the whole array:
  ```python
  # (Assuming `bitmap` is an FPDF_BITMAP and `size` is the expected number of bytes in the buffer)
  first_item = pdfium.FPDFBitmap_GetBuffer(bitmap)
  buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_ubyte * size))
  # Buffer as ctypes array (referencing the original buffer, will be unavailable as soon as the bitmap is destroyed)
  c_array = buffer.contents
  # Buffer as Python bytes (independent copy)
  data = bytes(c_array)
  ```

* Writing data from Python into a C buffer works in a similar fashion:
  ```python
  # (Assuming `first_item` is a pointer to the first item of a C buffer to write into,
  #  `size` the number of bytes it can store, and `py_buffer` a Python byte buffer)
  c_buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_char * size))
  # Read from the Python buffer, starting at its current position, directly into the C buffer
  # (until the target is full or the end of the source is reached)
  n_bytes = py_buffer.readinto(c_buffer.contents)  # returns the number of bytes read
  ```

* In many situations, callback functions come in handy.[^callback_usecases] Thanks to `ctypes`, it is seamlessly possible to use callbacks across Python/C language boundaries.

 [^callback_usecases]: e. g. incremental reading/writing, progress bars, pausing of progressive tasks, ...

 Example: Loading a document from a Python buffer. This way, file access can be controlled in Python while the whole data does not need to be in memory at once.
  ```python
  # Factory class to create callable objects holding a reference to a Python buffer
  class _reader_class:
    
    def __init__(self, py_buffer):
        self.py_buffer = py_buffer
    
    def __call__(self, _, position, p_buf, size):
        # Write data from Python buffer into C buffer, as explained before
        c_buffer = ctypes.cast(p_buf, ctypes.POINTER(ctypes.c_char * size))
        self.py_buffer.seek(position)
        self.py_buffer.readinto(c_buffer.contents)
        return 1  # non-zero return code for success
  
  # (Assuming py_buffer is a Python file buffer, e. g. io.BufferedReader)
  # Get the length of the buffer
  py_buffer.seek(0, 2)
  file_len = py_buffer.tell()
  py_buffer.seek(0)
  
  # Set up an interface structure for custom file access
  fileaccess = pdfium.FPDF_FILEACCESS()
  fileaccess.m_FileLen = file_len
  # CFUNCTYPE declaration copied from the bindings file (unfortunately, this is not applied automatically)
  functype = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.POINTER(None), ctypes.c_ulong, ctypes.POINTER(ctypes.c_ubyte), ctypes.c_ulong)
  # Alternatively, the CFUNCTYPE declaration can also be extracted dynamically using a helper function of pypdfium2
  functype = pdfium.get_functype(pdfium.FPDF_FILEACCESS, "m_GetBlock")
  # Instantiate a callable object, wrapped with the CFUNCTYPE declaration
  fileaccess.m_GetBlock = functype( _reader_class(py_buffer) )
  # Finally, load the document
  pdf = pdfium.FPDF_LoadCustomDocument(fileaccess, None)
  ```

* When using the raw API, special care needs to be taken regarding object lifetime, considering that Python may garbage collect objects as soon as their reference count reaches zero. However, the interpreter has no way of magically knowing how long the underlying resources of a Python object might still be needed on the C side, so measures need to be taken to keep such objects referenced until PDFium does not depend on them anymore.

 If resources need to remain valid after the time of a function call, PDFium documentation usually indicates this clearly. Ignoring requirements on object lifetime will lead to memory corruption (commonly resulting in a segmentation fault).

 For instance, the documentation on `FPDF_LoadCustomDocument()` states that
 > The application must keep the file resources |pFileAccess| points to valid until the returned FPDF_DOCUMENT is closed. |pFileAccess| itself does not need to outlive the FPDF_DOCUMENT.

 This means that the callback function and the Python buffer need to be kept alive as long as the `FPDF_DOCUMENT` is used.
 This can be achieved by referencing these objects in an accompanying class, e. g.

  ```python
  class PdfDataHolder:
      
      def __init__(self, buffer, function):
          self.buffer = buffer
          self.function = function
      
      def close(self):
          # Make sure both objects remain available until this function is called
          # No-op id() call to denote that the object needs to stay in memory up to this point
          id(self.function)
          self.buffer.close()
  
  # ... set up an FPDF_FILEACCESS structure
  
  # (Assuming `py_buffer` is the buffer and `fileaccess` the FPDF_FILEACCESS interface)
  data_holder = PdfDataHolder(py_buffer, fileaccess.m_GetBlock)
  pdf = pdfium.FPDF_LoadCustomDocument(fileaccess, None)
  
  # ... work with the pdf
  
  # Close the PDF to free resources
  pdfium.FPDF_CloseDocument(pdf)
  # Close the data holder, to keep the object itself and thereby the objects it
  # references alive up to this point, as well as to release the buffer
  data_holder.close()
  ```

* If you wish to check whether two objects returned by PDFium are the same, the `is` operator won't help you because `ctypes` does not have original object return (OOR),
 i. e. new, equivalent Python objects are created each time, although they might represent one and the same C object.[^ctypes_no_oor] That's why you'll want to use `ctypes.addressof()` to get the memory addresses of the underlying C object.
 For instance, this is used to avoid infinite loops on circular bookmark references when iterating through the document outline:
  ```python
  # (Assuming `pdf` is an FPDF_DOCUMENT)
  seen = set()
  bookmark = pdfium.FPDFBookmark_GetFirstChild(pdf, None)
  while bookmark:
      # bookmark is a pointer, so we need to use its `contents` attribute to get the object the pointer refers to
      # (otherwise we'd only get the memory address of the pointer itself, which would result in random behaviour)
      address = ctypes.addressof(bookmark.contents)
      if address in seen:
          break  # circular reference detected
      else:
          seen.add(address)
      bookmark = pdfium.FPDFBookmark_GetNextSibling(pdf, bookmark)
  ```

 [^ctypes_no_oor]: Confer the [ctypes documentation on Pointers](https://docs.python.org/3/library/ctypes.html#pointers).

* Finally, let's finish this guide with an example on how to render the first page of a document to a `PIL` image in `RGBA` colour format.
  ```python
  import math
  import ctypes
  import os.path
  import PIL.Image
  import pypdfium2 as pdfium
  
  # Load the document
  filepath = os.path.abspath("tests/resources/render.pdf")
  pdf = pdfium.FPDF_LoadDocument(filepath, None)
  
  # Check page count to make sure it was loaded correctly
  page_count = pdfium.FPDF_GetPageCount(pdf)
  assert page_count >= 1
  
  # Load the first page and get its dimensions
  page = pdfium.FPDF_LoadPage(pdf, 0)
  width  = math.ceil(pdfium.FPDF_GetPageWidthF(page))
  height = math.ceil(pdfium.FPDF_GetPageHeightF(page))
  
  # Create a bitmap
  use_alpha = False  # We don't render with transparent background
  bitmap = pdfium.FPDFBitmap_Create(width, height, int(use_alpha))
  # Fill the whole bitmap with a white background
  # The colour is given as a 32-bit integer in ARGB format (8 bits per channel)
  pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)
  
  # Store common rendering arguments
  render_args = (
      bitmap,  # the bitmap
      page,    # the page
      # positions and sizes are to be given in pixels and may exceed the bitmap
      0,       # left start position
      0,       # top start position
      width,   # horizontal size
      height,  # vertical size
      0,       # rotation (as constant, not in degrees!)
      pdfium.FPDF_LCD_TEXT | pdfium.FPDF_ANNOT,  # rendering flags, combined with binary or
  )
  
  # Render the page
  pdfium.FPDF_RenderPageBitmap(*render_args)
  
  # Get a pointer to the first item of the buffer
  first_item = pdfium.FPDFBitmap_GetBuffer(bitmap)
  # Re-interpret the pointer to encompass the whole buffer
  buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))
  
  # Create a PIL image from the buffer contents
  img = PIL.Image.frombuffer("RGBA", (width, height), buffer.contents, "raw", "BGRA", 0, 1)
  # Save it as file
  img.save("out.png")
  
  # Free resources
  pdfium.FPDFBitmap_Destroy(bitmap)
  pdfium.FPDF_ClosePage(page)
  pdfium.FPDF_CloseDocument(pdf)
  ```

[Command-line Interface](https://pypdfium2.readthedocs.io/en/stable/shell_api.html)

pypdfium2 also ships with a simple command-line interface, providing access to key features of the support model in a shell environment (e. g. rendering, text extraction, TOC inspection, document merging, ...).

The primary motivation in providing a CLI is to simplify manual testing, but it may be helpful in a variety of other situations as well.
Usage should be largely self-explanatory, assuming a minimum of familiarity with the command-line.

Licensing

PDFium and pypdfium2 are available by the terms and conditions of either [`Apache-2.0`](LICENSES/Apache-2.0.txt) or [`BSD-3-Clause`](LICENSES/BSD-3-Clause.txt), at your choice.

Various other open-source licenses apply to the dependencies of PDFium. Verbatim copies of their respective licenses are contained in the file [`LicenseRef-PdfiumThirdParty.txt`](LICENSES/LicenseRef-PdfiumThirdParty.txt), which is also shipped with binary redistributions.

Documentation and examples of pypdfium2 are licensed under [`CC-BY-4.0`](LICENSES/CC-BY-4.0.txt).

pypdfium2 complies with the [reuse standard](https://reuse.software/spec/) by including [SPDX](https://spdx.org/licenses/) headers in source files, and license information for data files in [`.reuse/dep5`](.reuse/dep5).

To the authors' knowledge, pypdfium2 is one of the very rare Python libraries that are capable of PDF rendering while not being covered by restrictive licenses which prohibit the use in closed-source projects (such as the `GPL`).[^liberal_pdf_renderlibs]

[^liberal_pdf_renderlibs]: The only other liberal-licensed PDF rendering libraries known to the authors are [`pdf.js`](https://github.com/mozilla/pdf.js/) (JavaScript) and [`Apache PDFBox`](https://github.com/apache/pdfbox) (Java). `pdf.js` is limited to a web environment. Creating Python bindings to `PDFBox` might be possible but there is no serious solution yet (apart from amateurish wrappers around its command-line API).

Issues

While using pypdfium2, you might encounter bugs or missing features.

In the endeavour to improve the product, the maintainers wish to be informed about any problems related to pypdfium2 usage.
Therefore, the first place for your report should be this repository.
Remember to include applicable details such as tracebacks, operating system and CPU architecture, as well as the versions of pypdfium2 and used dependencies.

In case your issue could be tracked down to a third-party dependency, we will accompany or conduct subsequent measures.

Here is a roadmap of relevant places:
* pypdfium2
 - [Issues panel](https://github.com/pypdfium2-team/pypdfium2/issues): Initial reports of specific issues.
 They may need to be transferred to other projects. Issues related to support model code, packaging or documentation probably need to be addressed in pypdfium2 itself.
 - [Discussions page](https://github.com/pypdfium2-team/pypdfium2/discussions): General questions and suggestions.
 - In case you do not want to publicly disclose the issue or your code, you may also contact the maintainers privately via e-mail.
* PDFium
 - [Bug tracker](https://bugs.chromium.org/p/pdfium/issues/list): Defects in PDFium.
 Beware: The bridge between Python and C increases the probability of integration issues or API misuse.
 The symptoms can often make it look like a PDFium bug while it is not. In some cases, this may be quite difficult to distinguish.
 - [Mailing list](https://groups.google.com/g/pdfium/): Questions regarding PDFium usage.
* [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/issues): Binary builder.
* [ctypesgen](https://github.com/ctypesgen/ctypesgen/issues): Bindings generator.

Known limitations

pypdfium2 also has some drawbacks, of which you will be informed below.

Incompatibility with CPython 3.7.6 and 3.8.1

pypdfium2 cannot be used with releases 3.7.6 and 3.8.1 of the CPython interpreter due to a [regression](https://github.com/python/cpython/pull/16799#issuecomment-612353119) that broke ctypesgen-created string handling code.

Risk of unknown object lifetime violations

As outlined in the raw API section, it is essential that Python-managed resources remain available as long as they are needed by PDFium.

The problem is that the Python interpreter may garbage collect objects with reference count zero at any time. Thus, it can happen that an unreferenced but still required object by chance stays around long enough before it is garbage collected. Such dangling objects are likely to cause non-deterministic segmentation faults.
If the timeframe between reaching reference count zero and removal is sufficiently large and roughly consistent across different runs, it is even possible that mistakes regarding object lifetime remain unnoticed for a long time.

Although great care has been taken while developing the support model, it cannot be fully excluded that unknown object lifetime violations are still lurking around somewhere, especially if unexpected requirements were not documented by the time the code was written.

No direct access to PDF data structures

It should be noted that PDFium, unlike many other PDF libraries, is currently not providing direct access to raw PDF data structures. It does not publicly expose APIs to read/write PDF dictionaries, name trees, etc. Instead, it merely offers a variety of higher-level functions to modify PDFs. While these are certainly useful to abstract away some of the format's complexity and to avoid the creation of invalid PDFs, the fact that universal instruments for low-level access are largely missing in the public API does considerably limit the library's potential. If PDFium's capabilities are not sufficient for your use case, or you just wish to work with the raw PDF structure on your own, you may want to consider other products such as [`pikepdf`](https://github.com/pikepdf/pikepdf) to use instead of, or in conjunction with, pypdfium2.

Development

This section contains some key information relevant for project maintainers.

<!-- TODO wheel tags, maintainer access, GitHub peculiarities -->

Documentation

pypdfium2 provides API documentation using [sphinx](https://github.com/sphinx-doc/sphinx/). It may be rendered to various formats, including HTML:
```bash
sphinx-build -b html ./docs/source ./docs/build/html/
```

Built documentation is hosted on [`readthedocs.org`](https://readthedocs.org/projects/pypdfium2/).
It is primarily configured using a [`.readthedocs.yaml`](.readthedocs.yaml) file (see the [instructions](https://docs.readthedocs.io/en/stable/config-file/v2.html)).
The web interface also provides an administration page for maintainers.

Testing

pypdfium2 contains a small test suite to verify the library's functionality. It is written with [pytest](https://github.com/pytest-dev/pytest/):
```bash
python3 -m pytest tests/
```
You may pass `-sv` to get more detailed output.

Release workflow

The release process is fully automated using Python scripts and a CI setup for GitHub Actions.
A new release is triggered every Monday, following the schedule of `pdfium-binaries`.
You may also trigger the workflow manually using the GitHub Actions panel or the [`gh`](https://cli.github.com/) command-line tool.

Python release scripts are located in the folder `setupsrc/pl_setup`, along with custom setup code:
* `update_pdfium.py` downloads binaries and generates the bindings.
* `craft_wheels.py` builds platform-specific wheel packages and a source distribution suitable for PyPI upload.
* `autorelease.py` takes care of versioning, changelog, release note generation and VCS checkin.

The autorelease script has some peculiarities maintainers should know about:
* The changelog for the next release shall be written into `docs/devel/changelog_staging.md`.
 On release, it will be moved into the main changelog under `docs/source/changelog.md`, annotated with the PDFium version update.
 It will also be shown on the GitHub release page.
* pypdfium2 versioning uses the pattern `major.minor.patch`, optionally with an appended beta mark (e. g. `2.7.1`, `2.11.0`, `3.0.0b1`, ...).
 Version changes are based on the following logic:
 * If PDFium was updated, the minor version is incremented.
 * If only pypdfium2 code was updated, the patch version is incremented instead.
 * Major updates and beta marks are controlled via empty files in the `autorelease/` directory.
 If `update_major.txt` exists, the major version is incremented.
 If `update_beta.txt` exists, a new beta tag is set, or an existing one is incremented.
 These files are removed automatically once the release is finished.
 * If switching from a beta release to a non-beta release, only the beta mark is removed while minor and patch versions remain unchanged.

In case of necessity, you may also forego autorelease/CI and do the release manually, which will roughly work like this (though ideally it should never be needed):
* Commit changes to the version file
  ```bash
  git add src/pypdfium2/version.py
  git commit -m "increment version"
  git push
  ```
* Create a new tag that matches the version file
  ```bash
  # substitute $VERSION accordingly
  git tag -a $VERSION
  git push --tags
  ```
* Build the packages
  ```bash
  python3 setupsrc/pl_setup/update_pdfium.py
  python3 setupsrc/pl_setup/craft_wheels.py
  ```
* Upload to PyPI
  ```bash
  # make sure the packages are valid
  twine check dist/*
  # upload to PyPI (this will interactively ask for your username/password)
  twine upload dist/*
  ```
* Update the `stable` branch to trigger a documentation rebuild
  ```bash
  git checkout stable
  git rebase origin/main  # alternatively: git reset --hard main
  git checkout main
  ```

If something went wrong with commit or tag, you can still revert the changes:
```bash
# perform an interactive rebase to change history (substitute $N_COMMITS with the number of commits to drop or modify)
git rebase -i HEAD~$N_COMMITS
git push --force
# delete local tag (substitute $TAGNAME accordingly)
git tag -d $TAGNAME
# delete remote tag
git push --delete origin $TAGNAME
```
Faulty PyPI releases may be yanked using the web interface.

In Use

We are curious to see what people are doing with pypdfium2. Always feel free to share knowledge or code samples on the discussions page.
Here are some public projects that are known to use pypdfium2:

* [doctr](https://github.com/mindee/doctr), an OCR library powered by deep learning, uses pypdfium2 to render PDFs.
* [EDS-PDF](https://github.com/aphp/edspdf), a framework for PDF text extraction and classification, also uses pypdfium2 for rendering.
* [Arabic-OCR](https://github.com/ssraza21/Arabic-OCR), a small web application to create digital documents from the result of arabic OCR, renders PDF pages with pypdfium2.
* [Extract-URLs](https://github.com/elescamilla/Extract-URLs/), uses pypdfium2 to extract URLs from PDF documents.
* [py-pdf/benchmarks](https://github.com/py-pdf/benchmarks) compares pypdfium2's text extraction capabilities with other Python PDF libraries.
* [pdfbrain](https://github.com/innodatalabs/pdfbrain) provides alternative helper classes around the raw API exposed by pypdfium2. It predates pypdfium2's own support model and only covers PDF parsing, not manipulation.

Your project uses pypdfium2, but is not part of the list yet? Please let us know!

There are also a few projects that *could* update to pypdfium2 but are still using its predecessor, pypdfium:
* [kuafu](https://github.com/YinlinHu/kuafu), an unmaintained PyQt5-based PDF reader, provides a PDFium backend.
* [microsoft/OCR-Form-Tools](https://github.com/microsoft/OCR-Form-Tools) uses pypdfium to render PDFs.

Thanks to[^thanks_to]

<!-- order: alphabetical by surname -->

* [Anurag Bansal](https://github.com/banagg): Support model for text insertion (`PdfPage.insert_text()`).
* [Benoît Blanchon](https://github.com/bblanchon): Author of [PDFium binaries](https://github.com/bblanchon/pdfium-binaries/) and [patches](sourcebuild/patches/).
* [Anderson Bravalheri](https://github.com/abravalheri): Help with PEP 517/518 compliance. Hint to use an environment variable rather than separate setup files.
* [Bastian Germann](https://github.com/bgermann): Help with inclusion of licenses for third-party components of PDFium.
* [Tim Head](https://github.com/betatim): Original idea for Python bindings to PDFium with ctypesgen in `wowpng`.
* [Yinlin Hu](https://github.com/YinlinHu): `pypdfium` prototype and `kuafu` PDF viewer.
* [Adam Huganir](https://github.com/adam-huganir): Help with maintenance and development decisions since the beginning of the project.
* [kobaltcore](https://github.com/kobaltcore): Bug fix for `PdfDocument.save()`.
* [Mike Kroutikov](https://github.com/mkroutikov): Examples on how to use PDFium with ctypes in `redstork` and `pdfbrain`.
* [Peter Saalbrink](https://github.com/petersaalbrink): Code style improvements to the multipage renderer.
* [Lei Zhang](https://github.com/leizleiz): Windows-specific fixes concerning `FPDF_LoadDocument()`.

If you have somehow contributed to this project but we forgot to mention you here, feel encouraged to help us correct this oversight.

[^thanks_to]: People listed in this section may not necessarily have contributed any copyrightable code to the repository. Some have rather helped with ideas, or contributions to dependencies of pypdfium2.

History

pypdfium2 is the successor of *pypdfium* and *pypdfium-reboot*.

Inspired by *wowpng*, the first known proof of concept Python binding to PDFium using ctypesgen, the initial *pypdfium* package was created. It had to be updated manually, which did not happen frequently. There were no platform-specific wheels, but only a single wheel that contained binaries for 64-bit Linux, Windows and macOS.

pypdfium-reboot then added a script to automate binary deployment and bindings generation to simplify regular updates. However, it was still not platform specific.

pypdfium2 is a full rewrite of *pypdfium-reboot* to build platform-specific wheels and consolidate the setup scripts. Further additions include ...
* A CI workflow to automatically release new wheels every Monday
* Support models that conveniently wrap the raw PDFium/ctypes API
* Test code
* A script to build PDFium from source

pypdfium2-3.4.0/README.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

pypdfium2

[pypdfium2](https://github.com/pypdfium2-team/pypdfium2) is an ABI-level Python 3 binding to [PDFium](https://pdfium.googlesource.com/pdfium/+/refs/heads/main), a powerful and liberal-licensed library for PDF creation, inspection, manipulation and rendering.

The project is built using [ctypesgen](https://github.com/ctypesgen/ctypesgen) and external [PDFium binaries](https://github.com/bblanchon/pdfium-binaries/).
Its custom setup infrastructure provides a seamless packaging and installation process. A wide range of platforms and Python versions is supported with wheel packages.

pypdfium2 includes helper classes to simplify common use cases, while the raw PDFium/ctypes API remains accessible as well.

Installation

* Installing the latest PyPI release (recommended)
  ```bash
  python3 -m pip install -U pypdfium2
  ```
 This will use a pre-built wheel package, the easiest way of installing pypdfium2.

* Installing from source

 * With an external PDFium binary
    ```bash
    # In the directory containing the source code of pypdfium2
    python3 -m pip install .
    ```

 * With a locally built PDFium binary
    ```bash
    python3 setupsrc/pl_setup/build_pdfium.py
    PDFIUM_BINARY="sourcebuild" python3 -m pip install .
    ```
 The build script provides a few options that can be listed by calling it with `--help`.
 Building PDFium may take a long time because it comes with its own toolchain and bundled dependencies, rather than using system-provided components.[^pdfium_buildsystem]

 [^pdfium_buildsystem]: Replacing PDFium's toolchain with a leaner and more elegant build system that is designed to run on any host platform constitutes a long-standing task. This would be required to be able to reliably perform a local source build when installing an `sdist` package. If you have the time and expertise to set up such a build system, please start a repository and inform us about it.

 The host system needs to provide `git` and `gcc`.
 Setup code also depends on the Python packages `ctypesgen`, `wheel`, and `setuptools`, which will usually get installed automatically.

 When installing from source, some additional options of the `pip` package manager may be relevant:
 * `-v`: Request more detailed logging output. Useful for debugging.
 * `-e`: Install in editable mode, so that the installation will point to the source tree. This way, changes directly take effect without needing to re-install. Recommended for development.
 * `--no-build-isolation`: Do not isolate the installation in a virtual environment and use system packages instead. In this case, dependencies specified in `pyproject.toml` (PEP 518) will not take effect and should be pre-installed by the caller. This is an indispensable option if wanting to run the installation with custom versions of setup dependencies.[^no_build_isolation]

 [^no_build_isolation]: Possible scenarios include using a locally modified version of a dependency, or supplying a dependency built from a certain commit (while not changing the code)

* Installing an unofficial distribution

 To the authors' knowledge, there currently are no other distributions of pypdfium2 apart from the official wheel releases on PyPI and GitHub.
 There is no conda package yet.
 So far, pypdfium2 has not been included in any operating system repositories. While we are interested in cooperation with external package maintainers to make this possible, the authors of this project have no control over and are not responsible for third-party distributions of pypdfium2.

Setup magic

As pypdfium2 uses external binaries, there are some special setup aspects to consider.

* Binaries are stored in platform-specific sub-directories of `data/`, along with bindings and version information.
* The environment variable `PDFIUM_BINARY` controls which binary to include on setup.
 * If unset or `auto`, the host platform is detected and a corresponding binary will be selected.
 Platform files are downloaded/generated automatically, if not present yet. By default, existing platform files will also be updated if a newer version is available, but this may be prevented by creating an empty file called `.lock_autoupdate.txt` in `data/`.
 * If set to a certain platform identifier, binaries for the requested platform will be used.[^platform_ids]
 In this case, platform files will not be downloaded/generated automatically, but need to be supplied beforehand using the `update_pdfium.py` script.
 * If set to `sourcebuild`, binaries will be taken from the location where the build script places its artefacts, assuming a prior run of `build_pdfium.py`.
 * If set to `none`, no platform-dependent files will be injected, so as to create a source distribution.

[^platform_ids]: This is mainly of internal interest for packaging, so that wheels can be crafted for any platform without access to a native host.

Runtime Dependencies

pypdfium2 does not have any mandatory runtime dependencies apart from Python and its standard library.

However, some optional support model features require additional packages:
* [`Pillow`](https://pillow.readthedocs.io/en/stable/) (module name `PIL`) is a highly pouplar imaging library for Python.
 pypdfium2 provides convenience methods to directly return PIL image objects when dealing with raster graphics.
* [`NumPy`](https://numpy.org/doc/stable/index.html) is a library for scientific computing. Similar to `Pillow`, pypdfium2 provides helpers to get raster graphics in the form of multidimensional numpy arrays.
* [`uharfbuzz`](https://github.com/harfbuzz/uharfbuzz) is a text shaping engine used by text insertion helpers, to support foreign writing systems.
 If you do not care about this, you may insert text using the raw PDFium functions `FPDFPageObj_NewTextObj()` (or `FPDFPageObj_CreateTextObj()`) and `FPDFText_SetText()` without being dependent on uharfbuzz.

Usage

[Support model](https://pypdfium2.readthedocs.io/en/stable/python_api.html)

Here are some examples of using the support model API.

* Import the library
  ```python
  import pypdfium2 as pdfium
  ```

* Open a PDF using the helper class `PdfDocument` (supports file path strings, bytes, and byte buffers)
  ```python
  pdf = pdfium.PdfDocument("./path/to/document.pdf")
  version = pdf.get_version()  # get the PDF standard version
  n_pages = len(pdf)  # get the number of pages in the document
  ```

* Render multiple pages concurrently
  ```python
  page_indices = [i for i in range(n_pages)]  # all pages
  renderer = pdf.render_to(
      pdfium.BitmapConv.pil_image,
      page_indices = page_indices,
      scale = 300/72,  # 300dpi resolution
  )
  for i, image in zip(page_indices, renderer):
      image.save("out_%s.jpg" % str(i).zfill(n_pages))
  ```

* Read the table of contents
  ```python
  for item in toc:
    
      if item.n_kids == 0:
          state = "*"
      elif item.is_closed:
          state = "-"
      else:
          state = "+"
      
      if item.page_index is None:
          target = "?"
      else:
          target = item.page_index + 1
      
      print(
          "    " * item.level +
          "[%s] %s -> %s  # %s %s" % (
              state, item.title, target,
              pdfium.ViewmodeToStr[item.view_mode],
              [round(c, n_digits) for c in item.view_pos],
          )
      )
  ```

* Load a page to work with
  ```python
  page = pdf[0]  # or pdf.get_page(0)
  
  # Get page dimensions in PDF canvas units (1pt->1/72in by default)
  width, height = page.get_size()
  # Set the absolute page rotation to 90° clockwise
  page.set_rotation(90)
  
  # Locate objects on the page
  for obj in page.get_objects():
      print("    "*obj.level + pdfium.ObjectTypeToStr[obj.type], obj.get_pos())
  ```

* Render a single page
  ```python
  image = page.render_to(
      # defaults
      scale = 1,                           # 72dpi resolution
      rotation = 0,                        # no additional rotation
      crop = (0, 0, 0, 0),                 # no crop (form: left, right, bottom, top)
      greyscale = False,                   # coloured output
      fill_colour = (255, 255, 255, 255),  # fill bitmap with white background before rendering (form: RGBA)
      colour_scheme = None,                # no custom colour scheme
      optimise_mode = OptimiseMode.NONE,   # no optimisations (e. g. subpixel rendering)
      draw_annots = True,                  # show annotations
      draw_forms = True,                   # show forms
      no_smoothtext = False,               # anti-alias text
      no_smoothimage = False,              # anti-alias images
      no_smoothpath = False,               # anti-alias paths
      force_halftone = False,              # don't force halftone for image stretching
      rev_byteorder = False,               # don't reverse byte order
      prefer_bgrx = False,                 # don't prefer four channels for coloured output
      force_bitmap_format = None,          # don't force a specific bitmap format
      extra_flags = 0,                     # no extra flags
      allocator = None,                    # no custom allocator
      memory_limit = 2**30,                # maximum allocation (1 GiB)
  )
  image.show()
  ```

* Extract and search text
  ```python
  # Load a text page helper
  textpage = page.get_textpage()
  
  # Extract text from the whole page
  text_all = textpage.get_text_range()
  # Extract text from a specific rectangular area
  text_part = textpage.get_text_bounded(left=50, bottom=100, right=width-50, top=height-100)
  
  # Extract URLs from the page
  links = [l for l in textpage.get_links()]
  
  # Locate text on the page
  searcher = textpage.search("something", match_case=False, match_whole_word=False)
  # This will be a list of bounding boxes of the form (left, right, bottom, top)
  first_occurrence = searcher.get_next()
  ```

* Finished objects may be closed explicitly to release memory allocated by PDFium.
 Otherwise, they will be finalised automatically on garbage collection.
  ```python
  # Attention: objects must be closed in correct order!
  for garbage in (searcher, textpage, page, pdf):
      garbage.close()
  ```

* Create a new PDF with an empty A4 sized page
  ```python
  pdf = pdfium.PdfDocument.new()
  width, height = (595, 842)
  page_a = pdf.new_page(width, height)
  ```

* Insert text content
  ```python
  NotoSans = "./tests/resources/NotoSans-Regular.ttf"
  hb_font = pdfium.HarfbuzzFont(NotoSans)
  pdf_font = pdf.add_font(
      NotoSans,
      type = pdfium.FPDF_FONT_TRUETYPE,
      is_cid = True,
  )
  page_a.insert_text(
      text = "मैं घोषणा, पुष्टि और सहमत हूँ कि:",
      pos_x = 50,
      pos_y = height - 75,
      font_size = 25,
      hb_font = hb_font,
      pdf_font = pdf_font,
  )
  page_a.generate_content()
  ```

* Add a JPEG image on a second page
  ```python
  # Direct JPEG inclusion (only a small overhead for the PDF container)
  image = pdfium.PdfImageObject.new(pdf)
  buffer = open("./tests/resources/mona_lisa.jpg", "rb")
  width, height = image.load_jpeg(buffer, autoclose=True)
  page_b = pdf.new_page(width, height)
  page_b.insert_object(image)
  page_b.generate_content()
  ```

* Save the document
  ```python
  with open("output.pdf", "wb") as buffer:
      pdf.save(buffer, version=17)  # use PDF 1.7 standard
  ```

PDFium provides a large amount of functions, many of which are not covered by support models yet.
You may seamlessly interact with these functions while still using helper classes where available, as they provide a `raw` attribute to access the underlying PDFium/ctypes object, e. g.

```python
permission_flags = pdfium.FPDF_GetDocPermission(pdf.raw)
has_transparency = pdfium.FPDFPage_HasTransparency(page.raw)
```

Raw PDFium API

While helper classes conveniently wrap the raw PDFium API, it may still be accessed directly and is publicly exposed in the main namespace of pypdfium2.
As the vast majority of PDFium members is prefixed with `FPDF`, they are clearly distinguishable from support model components.

For PDFium documentation, please look at the comments in its [public header files](https://pdfium.googlesource.com/pdfium/+/refs/heads/main/public/).[^pdfium_docs]
A large variety of examples on how to interface with the raw API using [`ctypes`](https://docs.python.org/3/library/ctypes.html) is already provided with [support model source code](src/pypdfium2/_helpers).
Nonetheless, the following guide may be helpful to get started with the raw API, especially for developers who are not familiar with `ctypes` yet.

[^pdfium_docs]: Unfortunately, no recent HTML-rendered documentation is available for PDFium at the moment. While large parts of the old [Foxit docs](https://developers.foxit.com/resources/pdf-sdk/c_api_reference_pdfium/group___f_p_d_f_i_u_m.html) still seem similar to PDFium's current API, many modifications and new functions are actually missing, which can be confusing.

* In general, PDFium functions can be called just like normal Python functions.
 However, parameters may only be passed positionally, i. e. it is not possible to use keyword arguments.
 There are no defaults, so you always need to provide a value for each argument.
  ```python
  # arguments: filepath (str|bytes), password (str|bytes|None)
  pdf = pdfium.FPDF_LoadDocument(filepath.encode("utf-8"), None)
  ```
 This is the underlying bindings declaration,[^bindings_decl] which loads the function from the binary and
 contains the information required to convert Python types to their C equivalents.
  ```python
  if _libs["pdfium"].has("FPDF_LoadDocument", "cdecl"):
      FPDF_LoadDocument = _libs["pdfium"].get("FPDF_LoadDocument", "cdecl")
      FPDF_LoadDocument.argtypes = [FPDF_STRING, FPDF_BYTESTRING]
      FPDF_LoadDocument.restype = FPDF_DOCUMENT
  ```
 For instance, Python `str` or `bytes` are converted to `FPDF_STRING` automatically.
 If a `str` is provided, its UTF-8 encoding will be used. However, it is usually advisable to encode strings explicitly.

[^bindings_decl]: From the auto-generated bindings file, which is not part of the repository. It is built into wheels, or created on installation. If you have an editable install, the bindings file may be found at `src/_pypdfium.py`.

* While some functions are quite easy to use, things soon get more complex.
 First of all, function parameters are not only used for input, but also for output:
  ```python
  # Initialise an integer object (defaults to 0)
  c_version = ctypes.c_int()
  # Let the function assign a value to the c_int object, and capture its return code (True for success, False for failure)
  success = pdfium.FPDF_GetFileVersion(pdf, c_version)
  # Get the Python int by accessing the `value` attribute of the c_int object
  py_version = c_version.value
  ```

* If an array is required as output parameter, you can initialise one like this (conceived in general terms):
  ```python
  # long form
  array_type = (c_type * array_length)
  array_object = array_type()
  # short form
  array_object = (c_type * array_length)()
  ```
 Example: Getting view mode and target position from a destination object returned by some other function.
  ```python
  # (Assuming `dest` is an FPDF_DEST)
  n_params = ctypes.c_ulong()
  # Create a C array to store up to four coordinates
  view_pos = (pdfium.FS_FLOAT * 4)()
  view_mode = pdfium.FPDFDest_GetView(dest, n_params, view_pos)
  # Convert the C array to a Python list and cut it down to the actual number of coordinates
  view_pos = list(view_pos)[:n_params.value]
  ```

* For string output parameters, callers needs to provide a sufficiently long, pre-allocated buffer.
 This may work differently depending on what type the function requires, which encoding is used, whether the number of bytes or characters is returned, and whether space for a null terminator is included or not. Carefully review the documentation for the function in question to fulfill its requirements.

 Example A: Getting the title string of a bookmark.
  ```python
  # (Assuming `bookmark` is an FPDF_BOOKMARK)
  # First call to get the required number of bytes (not characters!), including space for a null terminator
  n_bytes = pdfium.FPDFBookmark_GetTitle(bookmark, None, 0)
  # Initialise the output buffer
  buffer = ctypes.create_string_buffer(n_bytes)
  # Second call with the actual buffer
  pdfium.FPDFBookmark_GetTitle(bookmark, buffer, n_bytes)
  # Decode to string, cutting off the null terminator
  # Encoding: UTF-16LE (2 bytes per character)
  title = buffer.raw[:n_bytes-2].decode('utf-16-le')
  ```

 Example B: Extracting text in given boundaries.
  ```python
  # (Assuming `textpage` is an FPDF_TEXTPAGE and the boundary variables are set)
  # Store common arguments for the two calls
  args = (textpage, left, top, right, bottom)
  # First call to get the required number of characters (not bytes!) - a possible null terminator is not included
  n_chars = pdfium.FPDFText_GetBoundedText(*args, None, 0)
  # If no characters were found, return an empty string
  if n_chars <= 0:
      return ""
  # Calculate the required number of bytes
  # Encoding: UTF-16LE (2 bytes per character)
  n_bytes = 2 * n_chars
  # Initialise the output buffer - this function can work without null terminator, so skip it
  buffer = ctypes.create_string_buffer(n_bytes)
  # Re-interpret the type from char to unsigned short as required by the function
  buffer_ptr = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_ushort))
  # Second call with the actual buffer
  pdfium.FPDFText_GetBoundedText(*args, buffer_ptr, n_chars)
  # Decode to string
  # (You may want to pass `errors="ignore"` to skip possible errors in the PDF's encoding)
  text = buffer.raw.decode("utf-16-le")
  ```

* Not only are there different ways of string output that need to be handled according to the requirements of the function in question.
 String input, too, can work differently depending on encoding, null termination, and type.
 While functions that take a `UTF-8` encoded `FPDF_STRING` or `FPDF_BYTESTRING` are easy to call, other functions may have more peculiar needs. For instance, `FPDFText_FindStart()` demands a UTF-16LE encoded string with null terminator, given as a pointer to an `unsigned short` array:
  ```python
  # (Assuming `text` is a str and `textpage` an FPDF_TEXTPAGE)
  # Add the null terminator and encode as UTF-16LE
  enc_text = (text + "\x00").encode("utf-16-le")
  # Obtain a pointer of type c_ushort to `enc_text`
  text_ptr = ctypes.cast(enc_text, ctypes.POINTER(ctypes.c_ushort))
  search = pdfium.FPDFText_FindStart(textpage, text_ptr, 0, 0)
  ```

* Suppose you have a C memory buffer allocated by PDFium and wish to read its data.
 PDFium will provide you with a pointer to the first item of the byte array.
 To access the data, you'll want to re-interpret the pointer using `ctypes.cast()` to encompass the whole array:
  ```python
  # (Assuming `bitmap` is an FPDF_BITMAP and `size` is the expected number of bytes in the buffer)
  first_item = pdfium.FPDFBitmap_GetBuffer(bitmap)
  buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_ubyte * size))
  # Buffer as ctypes array (referencing the original buffer, will be unavailable as soon as the bitmap is destroyed)
  c_array = buffer.contents
  # Buffer as Python bytes (independent copy)
  data = bytes(c_array)
  ```

* Writing data from Python into a C buffer works in a similar fashion:
  ```python
  # (Assuming `first_item` is a pointer to the first item of a C buffer to write into,
  #  `size` the number of bytes it can store, and `py_buffer` a Python byte buffer)
  c_buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_char * size))
  # Read from the Python buffer, starting at its current position, directly into the C buffer
  # (until the target is full or the end of the source is reached)
  n_bytes = py_buffer.readinto(c_buffer.contents)  # returns the number of bytes read
  ```

* In many situations, callback functions come in handy.[^callback_usecases] Thanks to `ctypes`, it is seamlessly possible to use callbacks across Python/C language boundaries.

 [^callback_usecases]: e. g. incremental reading/writing, progress bars, pausing of progressive tasks, ...

 Example: Loading a document from a Python buffer. This way, file access can be controlled in Python while the whole data does not need to be in memory at once.
  ```python
  # Factory class to create callable objects holding a reference to a Python buffer
  class _reader_class:
    
    def __init__(self, py_buffer):
        self.py_buffer = py_buffer
    
    def __call__(self, _, position, p_buf, size):
        # Write data from Python buffer into C buffer, as explained before
        c_buffer = ctypes.cast(p_buf, ctypes.POINTER(ctypes.c_char * size))
        self.py_buffer.seek(position)
        self.py_buffer.readinto(c_buffer.contents)
        return 1  # non-zero return code for success
  
  # (Assuming py_buffer is a Python file buffer, e. g. io.BufferedReader)
  # Get the length of the buffer
  py_buffer.seek(0, 2)
  file_len = py_buffer.tell()
  py_buffer.seek(0)
  
  # Set up an interface structure for custom file access
  fileaccess = pdfium.FPDF_FILEACCESS()
  fileaccess.m_FileLen = file_len
  # CFUNCTYPE declaration copied from the bindings file (unfortunately, this is not applied automatically)
  functype = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.POINTER(None), ctypes.c_ulong, ctypes.POINTER(ctypes.c_ubyte), ctypes.c_ulong)
  # Alternatively, the CFUNCTYPE declaration can also be extracted dynamically using a helper function of pypdfium2
  functype = pdfium.get_functype(pdfium.FPDF_FILEACCESS, "m_GetBlock")
  # Instantiate a callable object, wrapped with the CFUNCTYPE declaration
  fileaccess.m_GetBlock = functype( _reader_class(py_buffer) )
  # Finally, load the document
  pdf = pdfium.FPDF_LoadCustomDocument(fileaccess, None)
  ```

* When using the raw API, special care needs to be taken regarding object lifetime, considering that Python may garbage collect objects as soon as their reference count reaches zero. However, the interpreter has no way of magically knowing how long the underlying resources of a Python object might still be needed on the C side, so measures need to be taken to keep such objects referenced until PDFium does not depend on them anymore.

 If resources need to remain valid after the time of a function call, PDFium documentation usually indicates this clearly. Ignoring requirements on object lifetime will lead to memory corruption (commonly resulting in a segmentation fault).

 For instance, the documentation on `FPDF_LoadCustomDocument()` states that
 > The application must keep the file resources |pFileAccess| points to valid until the returned FPDF_DOCUMENT is closed. |pFileAccess| itself does not need to outlive the FPDF_DOCUMENT.

 This means that the callback function and the Python buffer need to be kept alive as long as the `FPDF_DOCUMENT` is used.
 This can be achieved by referencing these objects in an accompanying class, e. g.

  ```python
  class PdfDataHolder:
      
      def __init__(self, buffer, function):
          self.buffer = buffer
          self.function = function
      
      def close(self):
          # Make sure both objects remain available until this function is called
          # No-op id() call to denote that the object needs to stay in memory up to this point
          id(self.function)
          self.buffer.close()
  
  # ... set up an FPDF_FILEACCESS structure
  
  # (Assuming `py_buffer` is the buffer and `fileaccess` the FPDF_FILEACCESS interface)
  data_holder = PdfDataHolder(py_buffer, fileaccess.m_GetBlock)
  pdf = pdfium.FPDF_LoadCustomDocument(fileaccess, None)
  
  # ... work with the pdf
  
  # Close the PDF to free resources
  pdfium.FPDF_CloseDocument(pdf)
  # Close the data holder, to keep the object itself and thereby the objects it
  # references alive up to this point, as well as to release the buffer
  data_holder.close()
  ```

* If you wish to check whether two objects returned by PDFium are the same, the `is` operator won't help you because `ctypes` does not have original object return (OOR),
 i. e. new, equivalent Python objects are created each time, although they might represent one and the same C object.[^ctypes_no_oor] That's why you'll want to use `ctypes.addressof()` to get the memory addresses of the underlying C object.
 For instance, this is used to avoid infinite loops on circular bookmark references when iterating through the document outline:
  ```python
  # (Assuming `pdf` is an FPDF_DOCUMENT)
  seen = set()
  bookmark = pdfium.FPDFBookmark_GetFirstChild(pdf, None)
  while bookmark:
      # bookmark is a pointer, so we need to use its `contents` attribute to get the object the pointer refers to
      # (otherwise we'd only get the memory address of the pointer itself, which would result in random behaviour)
      address = ctypes.addressof(bookmark.contents)
      if address in seen:
          break  # circular reference detected
      else:
          seen.add(address)
      bookmark = pdfium.FPDFBookmark_GetNextSibling(pdf, bookmark)
  ```

 [^ctypes_no_oor]: Confer the [ctypes documentation on Pointers](https://docs.python.org/3/library/ctypes.html#pointers).

* Finally, let's finish this guide with an example on how to render the first page of a document to a `PIL` image in `RGBA` colour format.
  ```python
  import math
  import ctypes
  import os.path
  import PIL.Image
  import pypdfium2 as pdfium
  
  # Load the document
  filepath = os.path.abspath("tests/resources/render.pdf")
  pdf = pdfium.FPDF_LoadDocument(filepath, None)
  
  # Check page count to make sure it was loaded correctly
  page_count = pdfium.FPDF_GetPageCount(pdf)
  assert page_count >= 1
  
  # Load the first page and get its dimensions
  page = pdfium.FPDF_LoadPage(pdf, 0)
  width  = math.ceil(pdfium.FPDF_GetPageWidthF(page))
  height = math.ceil(pdfium.FPDF_GetPageHeightF(page))
  
  # Create a bitmap
  use_alpha = False  # We don't render with transparent background
  bitmap = pdfium.FPDFBitmap_Create(width, height, int(use_alpha))
  # Fill the whole bitmap with a white background
  # The colour is given as a 32-bit integer in ARGB format (8 bits per channel)
  pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)
  
  # Store common rendering arguments
  render_args = (
      bitmap,  # the bitmap
      page,    # the page
      # positions and sizes are to be given in pixels and may exceed the bitmap
      0,       # left start position
      0,       # top start position
      width,   # horizontal size
      height,  # vertical size
      0,       # rotation (as constant, not in degrees!)
      pdfium.FPDF_LCD_TEXT | pdfium.FPDF_ANNOT,  # rendering flags, combined with binary or
  )
  
  # Render the page
  pdfium.FPDF_RenderPageBitmap(*render_args)
  
  # Get a pointer to the first item of the buffer
  first_item = pdfium.FPDFBitmap_GetBuffer(bitmap)
  # Re-interpret the pointer to encompass the whole buffer
  buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))
  
  # Create a PIL image from the buffer contents
  img = PIL.Image.frombuffer("RGBA", (width, height), buffer.contents, "raw", "BGRA", 0, 1)
  # Save it as file
  img.save("out.png")
  
  # Free resources
  pdfium.FPDFBitmap_Destroy(bitmap)
  pdfium.FPDF_ClosePage(page)
  pdfium.FPDF_CloseDocument(pdf)
  ```

[Command-line Interface](https://pypdfium2.readthedocs.io/en/stable/shell_api.html)

pypdfium2 also ships with a simple command-line interface, providing access to key features of the support model in a shell environment (e. g. rendering, text extraction, TOC inspection, document merging, ...).

The primary motivation in providing a CLI is to simplify manual testing, but it may be helpful in a variety of other situations as well.
Usage should be largely self-explanatory, assuming a minimum of familiarity with the command-line.

Licensing

PDFium and pypdfium2 are available by the terms and conditions of either [`Apache-2.0`](LICENSES/Apache-2.0.txt) or [`BSD-3-Clause`](LICENSES/BSD-3-Clause.txt), at your choice.

Various other open-source licenses apply to the dependencies of PDFium. Verbatim copies of their respective licenses are contained in the file [`LicenseRef-PdfiumThirdParty.txt`](LICENSES/LicenseRef-PdfiumThirdParty.txt), which is also shipped with binary redistributions.

Documentation and examples of pypdfium2 are licensed under [`CC-BY-4.0`](LICENSES/CC-BY-4.0.txt).

pypdfium2 complies with the [reuse standard](https://reuse.software/spec/) by including [SPDX](https://spdx.org/licenses/) headers in source files, and license information for data files in [`.reuse/dep5`](.reuse/dep5).

To the authors' knowledge, pypdfium2 is one of the very rare Python libraries that are capable of PDF rendering while not being covered by restrictive licenses which prohibit the use in closed-source projects (such as the `GPL`).[^liberal_pdf_renderlibs]

[^liberal_pdf_renderlibs]: The only other liberal-licensed PDF rendering libraries known to the authors are [`pdf.js`](https://github.com/mozilla/pdf.js/) (JavaScript) and [`Apache PDFBox`](https://github.com/apache/pdfbox) (Java). `pdf.js` is limited to a web environment. Creating Python bindings to `PDFBox` might be possible but there is no serious solution yet (apart from amateurish wrappers around its command-line API).

Issues

While using pypdfium2, you might encounter bugs or missing features.

In the endeavour to improve the product, the maintainers wish to be informed about any problems related to pypdfium2 usage.
Therefore, the first place for your report should be this repository.
Remember to include applicable details such as tracebacks, operating system and CPU architecture, as well as the versions of pypdfium2 and used dependencies.

In case your issue could be tracked down to a third-party dependency, we will accompany or conduct subsequent measures.

Here is a roadmap of relevant places:
* pypdfium2
 - [Issues panel](https://github.com/pypdfium2-team/pypdfium2/issues): Initial reports of specific issues.
 They may need to be transferred to other projects. Issues related to support model code, packaging or documentation probably need to be addressed in pypdfium2 itself.
 - [Discussions page](https://github.com/pypdfium2-team/pypdfium2/discussions): General questions and suggestions.
 - In case you do not want to publicly disclose the issue or your code, you may also contact the maintainers privately via e-mail.
* PDFium
 - [Bug tracker](https://bugs.chromium.org/p/pdfium/issues/list): Defects in PDFium.
 Beware: The bridge between Python and C increases the probability of integration issues or API misuse.
 The symptoms can often make it look like a PDFium bug while it is not. In some cases, this may be quite difficult to distinguish.
 - [Mailing list](https://groups.google.com/g/pdfium/): Questions regarding PDFium usage.
* [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/issues): Binary builder.
* [ctypesgen](https://github.com/ctypesgen/ctypesgen/issues): Bindings generator.

Known limitations

pypdfium2 also has some drawbacks, of which you will be informed below.

Incompatibility with CPython 3.7.6 and 3.8.1

pypdfium2 cannot be used with releases 3.7.6 and 3.8.1 of the CPython interpreter due to a [regression](https://github.com/python/cpython/pull/16799#issuecomment-612353119) that broke ctypesgen-created string handling code.

Risk of unknown object lifetime violations

As outlined in the raw API section, it is essential that Python-managed resources remain available as long as they are needed by PDFium.

The problem is that the Python interpreter may garbage collect objects with reference count zero at any time. Thus, it can happen that an unreferenced but still required object by chance stays around long enough before it is garbage collected. Such dangling objects are likely to cause non-deterministic segmentation faults.
If the timeframe between reaching reference count zero and removal is sufficiently large and roughly consistent across different runs, it is even possible that mistakes regarding object lifetime remain unnoticed for a long time.

Although great care has been taken while developing the support model, it cannot be fully excluded that unknown object lifetime violations are still lurking around somewhere, especially if unexpected requirements were not documented by the time the code was written.

No direct access to PDF data structures

It should be noted that PDFium, unlike many other PDF libraries, is currently not providing direct access to raw PDF data structures. It does not publicly expose APIs to read/write PDF dictionaries, name trees, etc. Instead, it merely offers a variety of higher-level functions to modify PDFs. While these are certainly useful to abstract away some of the format's complexity and to avoid the creation of invalid PDFs, the fact that universal instruments for low-level access are largely missing in the public API does considerably limit the library's potential. If PDFium's capabilities are not sufficient for your use case, or you just wish to work with the raw PDF structure on your own, you may want to consider other products such as [`pikepdf`](https://github.com/pikepdf/pikepdf) to use instead of, or in conjunction with, pypdfium2.

Development

This section contains some key information relevant for project maintainers.

<!-- TODO wheel tags, maintainer access, GitHub peculiarities -->

Documentation

pypdfium2 provides API documentation using [sphinx](https://github.com/sphinx-doc/sphinx/). It may be rendered to various formats, including HTML:
```bash
sphinx-build -b html ./docs/source ./docs/build/html/
```

Built documentation is hosted on [`readthedocs.org`](https://readthedocs.org/projects/pypdfium2/).
It is primarily configured using a [`.readthedocs.yaml`](.readthedocs.yaml) file (see the [instructions](https://docs.readthedocs.io/en/stable/config-file/v2.html)).
The web interface also provides an administration page for maintainers.

Testing

pypdfium2 contains a small test suite to verify the library's functionality. It is written with [pytest](https://github.com/pytest-dev/pytest/):
```bash
python3 -m pytest tests/
```
You may pass `-sv` to get more detailed output.

Release workflow

The release process is fully automated using Python scripts and a CI setup for GitHub Actions.
A new release is triggered every Monday, following the schedule of `pdfium-binaries`.
You may also trigger the workflow manually using the GitHub Actions panel or the [`gh`](https://cli.github.com/) command-line tool.

Python release scripts are located in the folder `setupsrc/pl_setup`, along with custom setup code:
* `update_pdfium.py` downloads binaries and generates the bindings.
* `craft_wheels.py` builds platform-specific wheel packages and a source distribution suitable for PyPI upload.
* `autorelease.py` takes care of versioning, changelog, release note generation and VCS checkin.

The autorelease script has some peculiarities maintainers should know about:
* The changelog for the next release shall be written into `docs/devel/changelog_staging.md`.
 On release, it will be moved into the main changelog under `docs/source/changelog.md`, annotated with the PDFium version update.
 It will also be shown on the GitHub release page.
* pypdfium2 versioning uses the pattern `major.minor.patch`, optionally with an appended beta mark (e. g. `2.7.1`, `2.11.0`, `3.0.0b1`, ...).
 Version changes are based on the following logic:
 * If PDFium was updated, the minor version is incremented.
 * If only pypdfium2 code was updated, the patch version is incremented instead.
 * Major updates and beta marks are controlled via empty files in the `autorelease/` directory.
 If `update_major.txt` exists, the major version is incremented.
 If `update_beta.txt` exists, a new beta tag is set, or an existing one is incremented.
 These files are removed automatically once the release is finished.
 * If switching from a beta release to a non-beta release, only the beta mark is removed while minor and patch versions remain unchanged.

In case of necessity, you may also forego autorelease/CI and do the release manually, which will roughly work like this (though ideally it should never be needed):
* Commit changes to the version file
  ```bash
  git add src/pypdfium2/version.py
  git commit -m "increment version"
  git push
  ```
* Create a new tag that matches the version file
  ```bash
  # substitute $VERSION accordingly
  git tag -a $VERSION
  git push --tags
  ```
* Build the packages
  ```bash
  python3 setupsrc/pl_setup/update_pdfium.py
  python3 setupsrc/pl_setup/craft_wheels.py
  ```
* Upload to PyPI
  ```bash
  # make sure the packages are valid
  twine check dist/*
  # upload to PyPI (this will interactively ask for your username/password)
  twine upload dist/*
  ```
* Update the `stable` branch to trigger a documentation rebuild
  ```bash
  git checkout stable
  git rebase origin/main  # alternatively: git reset --hard main
  git checkout main
  ```

If something went wrong with commit or tag, you can still revert the changes:
```bash
# perform an interactive rebase to change history (substitute $N_COMMITS with the number of commits to drop or modify)
git rebase -i HEAD~$N_COMMITS
git push --force
# delete local tag (substitute $TAGNAME accordingly)
git tag -d $TAGNAME
# delete remote tag
git push --delete origin $TAGNAME
```
Faulty PyPI releases may be yanked using the web interface.

In Use

We are curious to see what people are doing with pypdfium2. Always feel free to share knowledge or code samples on the discussions page.
Here are some public projects that are known to use pypdfium2:

* [doctr](https://github.com/mindee/doctr), an OCR library powered by deep learning, uses pypdfium2 to render PDFs.
* [EDS-PDF](https://github.com/aphp/edspdf), a framework for PDF text extraction and classification, also uses pypdfium2 for rendering.
* [Arabic-OCR](https://github.com/ssraza21/Arabic-OCR), a small web application to create digital documents from the result of arabic OCR, renders PDF pages with pypdfium2.
* [Extract-URLs](https://github.com/elescamilla/Extract-URLs/), uses pypdfium2 to extract URLs from PDF documents.
* [py-pdf/benchmarks](https://github.com/py-pdf/benchmarks) compares pypdfium2's text extraction capabilities with other Python PDF libraries.
* [pdfbrain](https://github.com/innodatalabs/pdfbrain) provides alternative helper classes around the raw API exposed by pypdfium2. It predates pypdfium2's own support model and only covers PDF parsing, not manipulation.

Your project uses pypdfium2, but is not part of the list yet? Please let us know!

There are also a few projects that *could* update to pypdfium2 but are still using its predecessor, pypdfium:
* [kuafu](https://github.com/YinlinHu/kuafu), an unmaintained PyQt5-based PDF reader, provides a PDFium backend.
* [microsoft/OCR-Form-Tools](https://github.com/microsoft/OCR-Form-Tools) uses pypdfium to render PDFs.

Thanks to[^thanks_to]

<!-- order: alphabetical by surname -->

* [Anurag Bansal](https://github.com/banagg): Support model for text insertion (`PdfPage.insert_text()`).
* [Benoît Blanchon](https://github.com/bblanchon): Author of [PDFium binaries](https://github.com/bblanchon/pdfium-binaries/) and [patches](sourcebuild/patches/).
* [Anderson Bravalheri](https://github.com/abravalheri): Help with PEP 517/518 compliance. Hint to use an environment variable rather than separate setup files.
* [Bastian Germann](https://github.com/bgermann): Help with inclusion of licenses for third-party components of PDFium.
* [Tim Head](https://github.com/betatim): Original idea for Python bindings to PDFium with ctypesgen in `wowpng`.
* [Yinlin Hu](https://github.com/YinlinHu): `pypdfium` prototype and `kuafu` PDF viewer.
* [Adam Huganir](https://github.com/adam-huganir): Help with maintenance and development decisions since the beginning of the project.
* [kobaltcore](https://github.com/kobaltcore): Bug fix for `PdfDocument.save()`.
* [Mike Kroutikov](https://github.com/mkroutikov): Examples on how to use PDFium with ctypes in `redstork` and `pdfbrain`.
* [Peter Saalbrink](https://github.com/petersaalbrink): Code style improvements to the multipage renderer.
* [Lei Zhang](https://github.com/leizleiz): Windows-specific fixes concerning `FPDF_LoadDocument()`.

If you have somehow contributed to this project but we forgot to mention you here, feel encouraged to help us correct this oversight.

[^thanks_to]: People listed in this section may not necessarily have contributed any copyrightable code to the repository. Some have rather helped with ideas, or contributions to dependencies of pypdfium2.

History

pypdfium2 is the successor of *pypdfium* and *pypdfium-reboot*.

Inspired by *wowpng*, the first known proof of concept Python binding to PDFium using ctypesgen, the initial *pypdfium* package was created. It had to be updated manually, which did not happen frequently. There were no platform-specific wheels, but only a single wheel that contained binaries for 64-bit Linux, Windows and macOS.

pypdfium-reboot then added a script to automate binary deployment and bindings generation to simplify regular updates. However, it was still not platform specific.

pypdfium2 is a full rewrite of *pypdfium-reboot* to build platform-specific wheels and consolidate the setup scripts. Further additions include ...
* A CI workflow to automatically release new wheels every Monday
* Support models that conveniently wrap the raw PDFium/ctypes API
* Test code
* A script to build PDFium from source

pypdfium2-3.4.0/pyproject.toml

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

[build-system]
build-backend = "setuptools.build_meta"
requires = [
 "setuptools",
 "build",
 "wheel",
 "ctypesgen",
]

pypdfium2-3.4.0/setup.cfg

[metadata]
name = pypdfium2
description = Python bindings to PDFium
long_description = file: README.md
long_description_content_type = text/markdown
url = https://github.com/pypdfium2-team/pypdfium2
author = pypdfium2-team
author_email = geisserml@gmail.com
license = Apache-2.0 or BSD-3-Clause
license_files =
	LICENSES/Apache-2.0.txt
	LICENSES/BSD-3-Clause.txt
	LICENSES/CC-BY-4.0.txt
	LICENSES/LicenseRef-PdfiumThirdParty.txt
	.reuse/dep5
classifiers =
	Development Status :: 4 - Beta
	Intended Audience :: Developers
	Intended Audience :: Information Technology
	Intended Audience :: Education
	Programming Language :: Python :: 3
	Programming Language :: Python :: 3 :: Only
	Programming Language :: Python :: Implementation :: CPython
	Programming Language :: Python :: Implementation :: PyPy
	Topic :: Multimedia :: Graphics
	Topic :: Software Development :: Libraries
keywords = Python, PDF, PDFium
project_urls =
	Documentation = https://pypdfium2.readthedocs.io/
	Source = https://github.com/pypdfium2-team/pypdfium2
	Tracker = https://github.com/pypdfium2-team/pypdfium2/issues

[options]
packages = find:
package_dir =
	=src
setup_requires =
	build
	wheel
	ctypesgen
python_requires = >=3.5, !=3.7.6, !=3.8.1
zip_safe = False

[options.packages.find]
where = src

[options.entry_points]
console_scripts =
	pypdfium2 = pypdfium2._cli.main:main

[options.extras_require]
converters =
	pillow >=6.0
	numpy
inserttext =
	uharfbuzz
autocomplete =
	argcomplete
test =
	pytest
	importlib-metadata >=4; python_version < '3.8'
docs =
	sphinx >=4.4.0
	sphinx-rtd-theme >=1.0
	sphinxcontrib-programoutput
	docutils >=0.17
	myst-parser
utilities =
	importchecker
	codespell
	reuse
	check-wheel-contents
	twine

[egg_info]
tag_build =
tag_date = 0

pypdfium2-3.4.0/setup.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import sys
import setuptools
from os.path import (
 join,
 abspath,
 dirname,
 exists,
)

sys.path.insert(0, join(dirname(abspath(__file__)), "setupsrc"))
from pl_setup import check_deps
from pl_setup.packaging_base import (
 Host,
 DataTree,
 BinaryTargetVar,
 BinaryTarget_None,
 VerStatusFileName,
 PlatformNames,
 get_platfiles,
 get_latest_version,
)

NOTE Setuptools may, unfortunately, run this code several times (if using PEP 517 style setup).

LockFile = join(DataTree, ".lock_autoupdate.txt")

def install_handler():

 from pl_setup import update_pdfium
 from pl_setup.setup_base import mkwheel

 pl_name = Host.platform
 if pl_name is None:
 # If PDFium had a proper build system, we could trigger a source build here
 raise RuntimeError(
 "No pre-built binaries available for platform '%s' with libc implementation '%s'. " % (Host._plat_info, Host._libc_info) +
 "You can attempt a source build, but it's unlikely to work out due to binary toolchain requirements of PDFium's build system. Doing cross-compilation or using a different build system might be possible, though. Please get in touch with the project maintainers."
)

 need_update = False
 pl_dir = join(DataTree, pl_name)
 ver_file = join(pl_dir, VerStatusFileName)

 if not os.path.exists(pl_dir):
 need_update = True # platform directory doesn't exist yet
 elif not os.path.exists(ver_file) or not all(exists(fp) for fp in get_platfiles(pl_name)):
 print("Warning: Specific platform files are missing -> implicit update", file=sys.stderr)
 need_update = True

 elif not exists(LockFile):

 # Automatic updates imply some duplication across different runs. The code runs quickly enough, so this is not much of a problem.

 latest_ver = get_latest_version()
 with open(ver_file, "r") as fh:
 curr_version = int(fh.read().strip())

 if curr_version > latest_ver:
 raise RuntimeError("Current version must not be greater than latest")
 if curr_version < latest_ver:
 need_update = True

 if need_update:
 update_pdfium.main([pl_name])
 mkwheel(pl_name)

def packaging_handler(target):

 from pl_setup.setup_base import mkwheel, SetupKws

 if target == BinaryTarget_None:
 setuptools.setup(**SetupKws)
 elif hasattr(PlatformNames, target):
 mkwheel(getattr(PlatformNames, target))
 else:
 raise ValueError("Invalid deployment target '%s'" % target)

 return False

def main():

 target = os.environ.get(BinaryTargetVar, None)

 if target in (None, "auto"):
 # As check_deps should only need to be run once, we could prevent repeated runs using a status file. However, it runs quickly enough, so this isn't necessary.
 check_deps.main()
 install_handler()
 else:
 packaging_handler(target)

if __name__ == "__main__":
 main()

pypdfium2-3.4.0/setupsrc/pl_setup/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

pypdfium2-3.4.0/setupsrc/pl_setup/autorelease.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import sys
import time
import copy
import argparse
import tempfile
from os.path import (
 join,
 abspath,
 dirname,
)

sys.path.insert(0, dirname(dirname(abspath(__file__))))
from pl_setup.packaging_base import (
 run_cmd,
 set_versions,
 get_version_ns,
 get_latest_version,
 get_changelog_staging,
 SourceTree,
 PDFium_URL,
 RepositoryURL,
 Changelog,
 ChangelogStaging,
 VersionFile,
 VerNamespace,
)

AutoreleaseDir = join(SourceTree, "autorelease")
MajorUpdateFile = join(AutoreleaseDir, "update_major.txt")
BetaUpdateFile = join(AutoreleaseDir, "update_beta.txt")

def run_local(*args, **kws):
 return run_cmd(*args, **kws, cwd=SourceTree)

def _check_py_updates(v_pypdfium2):
 # see if pypdfium2 code was updated by checking if the latest commit is tagged
 tag = run_local(["git", "tag", "--list", "--contains", "HEAD"], capture=True)
 if tag == "":
 return True # untagged -> new commits since previous release
 elif tag == v_pypdfium2:
 return False # tagged with previous version -> no new commits
 else:
 assert False # tagged but not with previous version -> invalid state

def do_versioning(latest):

 # sourcebuild version changes must never be checked into version control
 # (autorelease can't work with that state because it needs information about the previous release for its version changes)
 assert not VerNamespace["IS_SOURCEBUILD"]
 assert VerNamespace["V_LIBPDFIUM"].isnumeric()

 v_beta = VerNamespace["V_BETA"]
 v_libpdfium = int(VerNamespace["V_LIBPDFIUM"])
 assert not v_libpdfium > latest # the current libpdfium version must never be larger than the determined latest

 c_updates = (v_libpdfium < latest)
 py_updates = _check_py_updates(VerNamespace["V_PYPDFIUM2"])
 inc_major = os.path.exists(MajorUpdateFile)
 inc_beta = os.path.exists(BetaUpdateFile)

 if not c_updates and not py_updates:
 raise RuntimeError("Neither pypdfium2 code nor pdfium binaries updated. Making a new release would be pointless.")

 ver_changes = dict()

 if c_updates:
 # denote pdfium update (independent change)
 ver_changes["V_LIBPDFIUM"] = str(latest)

 if inc_major:
 # major update
 ver_changes["V_MAJOR"] = VerNamespace["V_MAJOR"] + 1
 ver_changes["V_MINOR"] = 0
 ver_changes["V_PATCH"] = 0
 os.remove(MajorUpdateFile)
 elif v_beta is None:
 # if we're not doing a major update and the previous version was not a beta, update minor and/or patch
 # however, we still want to run this if adding a new beta tag
 if c_updates:
 # pdfium update -> increment minor version and reset patch version
 ver_changes["V_MINOR"] = VerNamespace["V_MINOR"] + 1
 ver_changes["V_PATCH"] = 0
 else:
 # no pdfium update -> increment patch version
 ver_changes["V_PATCH"] = VerNamespace["V_PATCH"] + 1

 if inc_beta:
 # if the new version shall be a beta, set or increment the tag (independent change)
 if v_beta is None:
 v_beta = 0
 v_beta += 1
 ver_changes["V_BETA"] = v_beta
 os.remove(BetaUpdateFile)
 elif v_beta is not None:
 # if the previous version was a beta but the new one shall not be, remove the tag (independent change)
 ver_changes["V_BETA"] = None

 did_change = set_versions(ver_changes)
 assert did_change

 return (c_updates, py_updates)

def log_changes(summary, prev_ns, curr_ns):

 pdfium_msg = "## %s (%s)\n\n- " % (curr_ns["V_PYPDFIUM2"], time.strftime("%Y-%m-%d"))
 if prev_ns["V_LIBPDFIUM"] != curr_ns["V_LIBPDFIUM"]:
 pdfium_msg += "Updated PDFium from `%s` to `%s`" % (prev_ns["V_LIBPDFIUM"], curr_ns["V_LIBPDFIUM"])
 else:
 pdfium_msg += "No PDFium update"
 pdfium_msg += " (autorelease)."

 with open(Changelog, "r") as fh:
 content = fh.read()
 pos = content.index("\n", content.index("# Changelog")) + 1
 part_a = content[:pos].strip() + "\n"
 part_b = content[pos:].strip() + "\n"
 content = part_a + "\n\n" + pdfium_msg + "\n"
 if curr_ns["V_BETA"] is None:
 content += summary
 content += "\n\n" + part_b

 with open(Changelog, "w") as fh:
 fh.write(content)

def register_changes(curr_ns):
 run_local(["git", "add", AutoreleaseDir, VersionFile, Changelog, ChangelogStaging])
 run_local(["git", "commit", "-m", "[autorelease] update changelog and version file"])
 run_local(["git", "tag", "-a", curr_ns["V_PYPDFIUM2"], "-m", "Autorelease"])
 run_local(["git", "checkout", "stable"])
 run_local(["git", "reset", "--hard", "main"])
 run_local(["git", "checkout", "main"])

def _get_log(name, url, cwd, ver_a, ver_b, prefix_ver, prefix_commit, prefix_tag):
 log = ""
 log += "\n<details>\n"
 log += " <summary>%s commit log</summary>\n\n" % name
 log += "Commits between [`%s`](%s) and [`%s`](%s) " % (
 ver_a, url+prefix_ver+ver_a,
 ver_b, url+prefix_ver+ver_b,
)
 log += "(latest commit first):\n\n"
 log += run_cmd(["git", "log",
 "%s..%s" % (prefix_tag+ver_a, prefix_tag+ver_b),
 "--pretty=format:* [`%h`]({}%H) %s".format(url+prefix_commit)],
 capture=True, cwd=cwd,
)
 log += "\n\n</details>\n"
 return log

def make_releasenotes(summary, prev_ns, curr_ns, c_updates):

 relnotes = ""
 relnotes += "## Changes (Release %s)\n\n" % curr_ns["V_PYPDFIUM2"]
 relnotes += "### Summary (pypdfium2)\n\n"
 if summary:
 relnotes += summary + "\n"

 # even if python code was not updated, there will be a release commit
 relnotes += _get_log(
 "pypdfium2", RepositoryURL, SourceTree,
 prev_ns["V_PYPDFIUM2"], curr_ns["V_PYPDFIUM2"],
 "/tree/", "/commit/", "",
)
 relnotes += "\n"

 if c_updates:

 # FIXME is there a faster way to get pdfium's commit log?
 with tempfile.TemporaryDirectory() as tempdir:
 run_cmd(["git", "clone", "--filter=blob:none", "--no-checkout", PDFium_URL, "pdfium_history"], cwd=tempdir)
 relnotes += _get_log(
 "PDFium", PDFium_URL, join(tempdir, "pdfium_history"),
 prev_ns["V_LIBPDFIUM"], curr_ns["V_LIBPDFIUM"],
 "/+/refs/heads/chromium/", "/+/", "origin/chromium/",
)

 with open(join(SourceTree, "RELEASE.md"), "w") as fh:
 fh.write(relnotes)

def main():

 parser = argparse.ArgumentParser(
 description = "Automatic update script for pypdfium2, to be run in the CI release workflow."
)
 parser.add_argument(
 "--checkin",
 action = "store_true",
 help = "Allow running modifying git commands (commit, tag, reset)."
)
 args = parser.parse_args()

 prev_ns = copy.deepcopy(VerNamespace)
 latest = get_latest_version()
 c_updates, py_updates = do_versioning(latest)
 curr_ns = get_version_ns()

 summary = get_changelog_staging(
 flush = (curr_ns["V_BETA"] is None),
)
 log_changes(summary, prev_ns, curr_ns)
 if args.checkin:
 register_changes(curr_ns)
 make_releasenotes(summary, prev_ns, curr_ns, c_updates)

if __name__ == "__main__":
 main()

pypdfium2-3.4.0/setupsrc/pl_setup/build_pdfium.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import sys
import shutil
import argparse
from os.path import join, abspath, dirname

sys.path.insert(0, dirname(dirname(abspath(__file__))))
from pl_setup.packaging_base import (
 Host,
 SB_Dir,
 DataTree,
 PDFium_URL,
 DepotTools_URL,
 MainLibnames,
 LibnameForSystem,
 VerStatusFileName,
 PlatformNames,
 run_cmd,
 call_ctypesgen,
)

PatchDir = join(SB_Dir, "patches")
DepotToolsDir = join(SB_Dir, "depot_tools")
PDFiumDir = join(SB_Dir, "pdfium")
PDFiumBuildDir = join(PDFiumDir, "out", "Default")
OutputDir = join(DataTree, PlatformNames.sourcebuild)

PdfiumMainPatches = [
 (join(PatchDir, "public_headers.patch"), PDFiumDir),
 (join(PatchDir, "shared_library.patch"), PDFiumDir),
]
PdfiumWinPatches = [
 (join(PatchDir, "win", "pdfium.patch"), PDFiumDir),
 (join(PatchDir, "win", "build.patch"), join(PDFiumDir, "build")),
]

DefaultConfig = {
 "is_debug": False,
 "treat_warnings_as_errors": False,
 # "clang_use_chrome_plugins": False,
 "pdf_is_standalone": True,
 "pdf_enable_v8": False,
 "pdf_enable_xfa": False,
 "pdf_use_skia": False,
}

if sys.platform.startswith("darwin"):
 DefaultConfig["mac_deployment_target"] = "10.11.0"
elif sys.platform.startswith("win32"):
 DefaultConfig["pdf_use_win32_gdi"] = True

def dl_depottools(do_update):

 if not os.path.isdir(SB_Dir):
 os.makedirs(SB_Dir)

 is_update = True

 if os.path.isdir(DepotToolsDir):
 if do_update:
 print("DepotTools: Revert and update ...")
 run_cmd(["git", "reset", "--hard", "HEAD"], cwd=DepotToolsDir)
 run_cmd(["git", "pull", DepotTools_URL], cwd=DepotToolsDir)
 else:
 print("DepotTools: Using existing repository as-is.")
 is_update = False
 else:
 print("DepotTools: Download ...")
 run_cmd(["git", "clone", "--depth", "1", DepotTools_URL, DepotToolsDir], cwd=SB_Dir)

 os.environ["PATH"] += os.pathsep + DepotToolsDir

 return is_update

def dl_pdfium(GClient, do_update, revision):

 is_sync = True

 if os.path.isdir(PDFiumDir):
 if do_update:
 print("PDFium: Revert / Sync ...")
 run_cmd([GClient, "revert"], cwd=SB_Dir)
 else:
 is_sync = False
 print("PDFium: Using existing repository as-is.")
 else:
 print("PDFium: Download ...")
 run_cmd([GClient, "config", "--custom-var", "checkout_configuration=minimal", "--unmanaged", PDFium_URL], cwd=SB_Dir)

 # TODO consider --with_branch_heads so we can improve get_pdfium_version()
 # while the heads take up additional disk space, this shouldn't be a problem for a shallow clone
 if is_sync:
 run_cmd([GClient, "sync", "--revision", "origin/%s" % revision, "--no-history", "--shallow"], cwd=SB_Dir)

 return is_sync

def get_pdfium_version():

 # FIXME awkward mix of local/remote git - this will fail to identify the tag if local and remote state do not match

 head_commit = run_cmd(["git", "rev-parse", "--short", "HEAD"], cwd=PDFiumDir, capture=True)
 refs_string = run_cmd(["git", "ls-remote", "--heads", PDFium_URL, "chromium/*"], cwd=None, capture=True)

 latest = refs_string.split("\n")[-1]
 tag_commit, ref = latest.split("\t")
 tag_commit = tag_commit[:7]
 tag = ref.split("/")[-1]

 print("Current head %s, latest tagged commit %s (%s)" % (head_commit, tag_commit, tag))

 if head_commit == tag_commit:
 v_libpdfium = tag
 else:
 v_libpdfium = head_commit

 return v_libpdfium

def update_version(v_libpdfium):
 ver_file = join(OutputDir, VerStatusFileName)
 with open(ver_file, "w") as fh:
 fh.write(str(v_libpdfium))

def _apply_patchset(patchset):
 for patch, cwd in patchset:
 run_cmd(["git", "apply", "-v", patch], cwd=cwd)

def _create_resources_rc(v_libpdfium):

 input_path = join(PatchDir, "win", "resources.rc")
 output_path = join(PDFiumDir, "resources.rc")

 with open(input_path, "r") as fh:
 content = fh.read()

 vars = ("$VERSION_CSV", "$VERSION")
 for var in vars:
 content = content.replace(var, v_libpdfium)

 with open(output_path, "w") as fh:
 fh.write(content)

def patch_pdfium(v_libpdfium):
 _apply_patchset(PdfiumMainPatches)
 if sys.platform.startswith("win32"):
 _apply_patchset(PdfiumWinPatches)
 _create_resources_rc(v_libpdfium)

def configure(GN, config):
 if not os.path.exists(PDFiumBuildDir):
 os.makedirs(PDFiumBuildDir)
 with open(join(PDFiumBuildDir, "args.gn"), "w") as args_handle:
 args_handle.write(config)
 run_cmd([GN, "gen", PDFiumBuildDir], cwd=PDFiumDir)

def build(Ninja, target):
 run_cmd([Ninja, "-C", PDFiumBuildDir, target], cwd=PDFiumDir)

def find_lib(src_libname=None, directory=PDFiumBuildDir):

 if src_libname is not None:
 path = join(PDFiumBuildDir, src_libname)
 if os.path.isfile(path):
 return path
 else:
 print("Warning: Binary not found under given name.", file=sys.stderr)

 try_names = []
 for name in MainLibnames + ["pdfium.so"]:
 try_names += [name, "lib"+name]

 try_paths = [join(directory, n) for n in try_names]
 found_paths = [fp for fp in try_paths if os.path.isfile(fp)]

 assert len(found_paths) == 1
 return found_paths[0]

def pack(src_libpath, v_libpdfium, destname=None):

 # TODO remove existing binary/bindings, just to be safe

 if destname is None:
 destname = LibnameForSystem[Host.system]

 destpath = join(OutputDir, destname)
 shutil.copy(src_libpath, destpath)

 update_version(v_libpdfium)

 include_dir = join(PDFiumDir, "public")
 call_ctypesgen(OutputDir, include_dir)

def get_tool(tool, win_append):
 exe = join(DepotToolsDir, tool)
 if sys.platform.startswith("win32"):
 exe += "." + win_append
 return exe

def serialise_config(config_dict):

 config_str = ""
 sep = ""

 for key, value in config_dict.items():
 config_str += sep + "%s = " % key
 if isinstance(value, bool):
 config_str += str(value).lower()
 elif isinstance(value, str):
 config_str += '"%s"' % value
 else:
 raise TypeError("Not sure how to serialise type %s" % type(value))
 sep = "\n"

 return config_str

def main(
 b_src_libname = None,
 b_dest_libname = None,
 b_update = False,
 b_revision = None,
 b_target = None,
):

 if not os.path.exists(OutputDir):
 os.makedirs(OutputDir)

 if b_revision is None:
 b_revision = "main"
 if b_target is None:
 b_target = "pdfium"

 if sys.platform.startswith("win32"):
 os.environ["DEPOT_TOOLS_WIN_TOOLCHAIN"] = "0"

 dl_depottools(b_update)

 GClient = get_tool("gclient", "bat")
 GN = get_tool("gn", "bat")
 Ninja = get_tool("ninja", "exe")

 pdfium_dl_done = dl_pdfium(GClient, b_update, b_revision)
 v_libpdfium = get_pdfium_version()
 if pdfium_dl_done:
 patch_pdfium(v_libpdfium)

 config_dict = DefaultConfig.copy()
 config_str = serialise_config(config_dict)
 print("\nBuild configuration:\n%s\n" % config_str)

 configure(GN, config_str)
 build(Ninja, b_target)
 libpath = find_lib(b_src_libname)
 pack(libpath, v_libpdfium, b_dest_libname)

def parse_args(argv):

 parser = argparse.ArgumentParser(
 description = "A script to automate building PDFium from source and generating bindings with ctypesgen.",
)

 parser.add_argument(
 "--src-libname",
 help = "Name of the generated PDFium binary file. This script tries to automatically find the binary, which should usually work. If it does not, however, this option may be used to explicitly provide the file name to look for.",
)
 parser.add_argument(
 "--dest-libname",
 help = "Rename the binary. Must be a name recognised by packaging code.",
)
 parser.add_argument(
 "--update", "-u",
 action = "store_true",
 help = "Update existing PDFium/DepotTools repositories, removing local changes.",
)
 parser.add_argument(
 "--revision", "-r",
 help = "PDFium revision to check out (defaults to main).",
)
 parser.add_argument(
 "--target", "-t",
 help = "PDFium build target (defaults to `pdfium`). Use `pdfium_all` to also build tests."
)

 return parser.parse_args(argv)

def main_cli(argv=sys.argv[1:]):
 args = parse_args(argv)
 return main(
 b_src_libname = args.src_libname,
 b_dest_libname = args.dest_libname,
 b_update = args.update,
 b_revision = args.revision,
 b_target = args.target,
)

if __name__ == "__main__":
 main_cli()

pypdfium2-3.4.0/setupsrc/pl_setup/check_deps.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import shutil

Commands = (
 "git",
 "gcc",
 "ctypesgen",
)

def main():
 missing = {cmd for cmd in Commands if not shutil.which(cmd)}
 if len(missing) > 0:
 raise RuntimeError("The following packages or commands are missing: %s" % missing)

if __name__ == "__main__":
 main()

pypdfium2-3.4.0/setupsrc/pl_setup/craft_wheels.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import sys
import shutil
import argparse
import tempfile
from os.path import (
 join,
 dirname,
 abspath,
)

sys.path.insert(0, dirname(dirname(abspath(__file__))))
from pl_setup.packaging_base import (
 run_cmd,
 clean_artefacts,
 Host,
 ModuleDir,
 BindingsFileName,
 LibnameForSystem,
 BinaryPlatforms,
 SourceTree,
 BinaryTargetVar,
 BinaryTarget_None,
)

class ArtefactStash:

 # Preserve in-tree aftefacts from editable install

 def __init__(self):

 self.tmp_dir = None
 self.plfile_names = []
 self.plfile_paths = []

 patterns = (BindingsFileName, LibnameForSystem[Host.system])
 for fn in patterns:
 fp = join(ModuleDir, fn)
 if not os.path.exists(fp):
 continue
 self.plfile_names.append(fn)
 self.plfile_paths.append(fp)
 assert len(self.plfile_names) == len(self.plfile_paths)

 if len(self.plfile_paths) == 0:
 return
 elif len(self.plfile_paths) != 2:
 print("Warning: Expected exactly 2 platform files, but found %s." % len(self.plfile_paths), file=sys.stderr)

 self.tmp_dir = tempfile.TemporaryDirectory(prefix="pypdfium2_artefact_stash_")
 for fp in self.plfile_paths:
 shutil.move(fp, self.tmp_dir.name)

 def pop(self):
 if self.tmp_dir is None:
 return
 for fn in self.plfile_names:
 shutil.move(join(self.tmp_dir.name, fn), ModuleDir)
 self.tmp_dir.cleanup()

def run_build(args):
 run_cmd([sys.executable, "-m", "build", "--skip-dependency-check", "--no-isolation"] + args, cwd=SourceTree, env=os.environ)

def main():

 parser = argparse.ArgumentParser(
 description = "Craft sdist and wheels for pypdfium2, using `python3 -m build`. (This script does not take any arguments.)",
)
 args = parser.parse_args()

 stash = ArtefactStash()

 os.environ[BinaryTargetVar] = BinaryTarget_None
 run_build(["--sdist"])
 clean_artefacts()

 for plat in BinaryPlatforms:
 os.environ[BinaryTargetVar] = plat
 run_build(["--wheel"])
 clean_artefacts()

 stash.pop()

if __name__ == '__main__':
 main()

pypdfium2-3.4.0/setupsrc/pl_setup/packaging_base.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

No external dependencies shall be imported in this file

import os
import shutil
import platform
import sysconfig
import subprocess
from glob import glob
from os.path import (
 join,
 abspath,
 dirname,
 expanduser,
)

TODO improve consistency of variable names; think about variables to move in/out

BinaryTargetVar = "PDFIUM_BINARY"
BinaryTarget_None = "none"
BinaryTarget_Auto = "auto"
BindingsFileName = "_pypdfium.py"
VerStatusFileName = ".pdfium_version.txt"
HomeDir = expanduser("~")
SourceTree = dirname(dirname(dirname(abspath(__file__))))
DataTree = join(SourceTree, "data")
SB_Dir = join(SourceTree, "sourcebuild")
ModuleDir = join(SourceTree, "src", "pypdfium2")
VersionFile = join(ModuleDir, "version.py")
Changelog = join(SourceTree, "docs", "devel", "changelog.md")
ChangelogStaging = join(SourceTree, "docs", "devel", "changelog_staging.md")
RepositoryURL = "https://github.com/pypdfium2-team/pypdfium2"
PDFium_URL = "https://pdfium.googlesource.com/pdfium"
DepotTools_URL = "https://chromium.googlesource.com/chromium/tools/depot_tools.git"
ReleaseRepo = "https://github.com/bblanchon/pdfium-binaries"
ReleaseURL = ReleaseRepo + "/releases/download/chromium%2F"

class SystemNames:
 linux = "linux"
 darwin = "darwin"
 windows = "windows"

class PlatformNames:
 # - Attribute names and values are expected to match
 # - Platform names are expected to start with the corresponding system name
 linux_x64 = SystemNames.linux + "_x64"
 linux_x86 = SystemNames.linux + "_x86"
 linux_arm64 = SystemNames.linux + "_arm64"
 linux_arm32 = SystemNames.linux + "_arm32"
 linux_musl_x64 = SystemNames.linux + "_musl_x64"
 linux_musl_x86 = SystemNames.linux + "_musl_x86"
 darwin_x64 = SystemNames.darwin + "_x64"
 darwin_arm64 = SystemNames.darwin + "_arm64"
 windows_x64 = SystemNames.windows + "_x64"
 windows_x86 = SystemNames.windows + "_x86"
 windows_arm64 = SystemNames.windows + "_arm64"
 sourcebuild = "sourcebuild"

ReleaseNames = {
 PlatformNames.darwin_x64 : "pdfium-mac-x64",
 PlatformNames.darwin_arm64 : "pdfium-mac-arm64",
 PlatformNames.linux_x64 : "pdfium-linux-x64",
 PlatformNames.linux_x86 : "pdfium-linux-x86",
 PlatformNames.linux_arm64 : "pdfium-linux-arm64",
 PlatformNames.linux_arm32 : "pdfium-linux-arm",
 PlatformNames.linux_musl_x64 : "pdfium-linux-musl-x64",
 PlatformNames.linux_musl_x86 : "pdfium-linux-musl-x86",
 PlatformNames.windows_x64 : "pdfium-win-x64",
 PlatformNames.windows_x86 : "pdfium-win-x86",
 PlatformNames.windows_arm64 : "pdfium-win-arm64",
}

LibnameForSystem = {
 SystemNames.linux: "pdfium",
 SystemNames.darwin: "pdfium.dylib",
 SystemNames.windows: "pdfium.dll",
}

BinaryPlatforms = list(ReleaseNames.keys())
BinarySystems = list(LibnameForSystem.keys())
MainLibnames = list(LibnameForSystem.values())

def plat_to_system(pl_name):
 if pl_name == PlatformNames.sourcebuild:
 # NOTE If doing a sourcebuild on an unknown host system, this returns None, which will cause binary detection code to fail (we need to know the platform-specific binary name).
 return Host.system
 result = [s for s in BinarySystems if pl_name.startswith(s)]
 assert len(result) == 1
 return result[0]

class _host_platform:

 def __init__(self):

 # `libc_ver()` currently returns an empty string on libc implementations other than glibc - hence, we assume musl if it's not glibc
 # FIXME is there some function to actually detect musl?
 self._plat_info = sysconfig.get_platform().lower().replace("-", "_").replace(".", "_")
 self._libc_info, self._is_glibc = None, None
 if self._plat_info.startswith("linux"):
 self._libc_info = platform.libc_ver()
 self._is_glibc = (self._libc_info[0] == "glibc")

 self.platform = self._get_platform()
 self.system = None
 if self.platform is not None:
 self.system = plat_to_system(self.platform)

 def _is_plat(self, start, end):
 return self._plat_info.startswith(start) and self._plat_info.endswith(end)

 def _get_platform(self):
 if self._is_plat("macosx", "arm64"):
 return PlatformNames.darwin_arm64
 elif self._is_plat("macosx", "x86_64"):
 return PlatformNames.darwin_x64
 elif self._is_plat("linux", "armv7l"):
 return PlatformNames.linux_arm32
 elif self._is_plat("linux", "aarch64"):
 return PlatformNames.linux_arm64
 elif self._is_plat("linux", "x86_64"):
 return PlatformNames.linux_x64 if self._is_glibc else PlatformNames.linux_musl_x64
 elif self._is_plat("linux", "i686"):
 return PlatformNames.linux_x86 if self._is_glibc else PlatformNames.linux_musl_x86
 elif self._is_plat("win", "arm64"):
 return PlatformNames.windows_arm64
 elif self._is_plat("win", "amd64"):
 return PlatformNames.windows_x64
 elif self._is_plat("win32", ""):
 return PlatformNames.windows_x86
 else:
 return None

Host = _host_platform()

def _get_linux_tag(arch):
 return "manylinux_2_17_%s.manylinux2014_%s" % (arch, arch)

def _get_musllinux_tag(arch):
 return "musllinux_1_2_%s" % (arch)

def _get_mac_tag(arch, *versions):

 assert len(versions) > 0

 template = "macosx_%s_%s"

 tag = ""
 sep = ""
 for v in versions:
 tag += sep + template % (v, arch)
 sep = "."

 return tag

def get_wheel_tag(pl_name):
 # pip>=20.3 now accepts macOS wheels tagged as 10_x on 11_x. Not sure what applies to 12_x.
 # Let's retain multi-version tagging for broader compatibility all the same.
 if pl_name == PlatformNames.darwin_x64:
 # pdfium-binaries/steps/05-configure.sh defines `mac_deployment_target = "10.13.0"`
 return _get_mac_tag("x86_64", "10_13", "11_0", "12_0")
 elif pl_name == PlatformNames.darwin_arm64:
 return _get_mac_tag("arm64", "11_0", "12_0")
 elif pl_name == PlatformNames.linux_x64:
 return _get_linux_tag("x86_64")
 elif pl_name == PlatformNames.linux_x86:
 return _get_linux_tag("i686")
 elif pl_name == PlatformNames.linux_arm64:
 return _get_linux_tag("aarch64")
 elif pl_name == PlatformNames.linux_arm32:
 return _get_linux_tag("armv7l")
 elif pl_name == PlatformNames.linux_musl_x64:
 return _get_musllinux_tag("x86_64")
 elif pl_name == PlatformNames.linux_musl_x86:
 return _get_musllinux_tag("i686")
 elif pl_name == PlatformNames.windows_x64:
 return "win_amd64"
 elif pl_name == PlatformNames.windows_arm64:
 return "win_arm64"
 elif pl_name == PlatformNames.windows_x86:
 return "win32"
 elif pl_name == PlatformNames.sourcebuild:
 tag = sysconfig.get_platform()
 for char in ("-", "."):
 tag = tag.replace(char, "_")
 return tag
 else:
 raise ValueError("Unknown platform name %s" % pl_name)

def run_cmd(command, cwd, capture=False, **kwargs):

 print('%s ("%s")' % (command, cwd))
 if capture:
 kwargs.update(dict(stdout=subprocess.PIPE, stderr=subprocess.STDOUT))

 comp_process = subprocess.run(command, cwd=cwd, **kwargs)
 if capture:
 return comp_process.stdout.decode("utf-8").strip()
 else:
 return comp_process

def get_latest_version():
 git_ls = run_cmd(["git", "ls-remote", "%s.git" % ReleaseRepo], cwd=None, capture=True)
 tag = git_ls.split("\t")[-1]
 return int(tag.split("/")[-1])

def call_ctypesgen(target_dir, include_dir):

 bindings = join(target_dir, BindingsFileName)

 ctypesgen_cmd = ["ctypesgen", "--library", "pdfium", "--strip-build-path", target_dir, "-L", "."] + sorted(glob(join(include_dir, "*.h"))) + ["-o", bindings]
 run_cmd(ctypesgen_cmd, cwd=target_dir)

 with open(bindings, "r") as file_reader:
 text = file_reader.read()
 text = text.replace(target_dir, ".")
 text = text.replace(HomeDir, "~")

 with open(bindings, "w") as file_writer:
 file_writer.write(text)

def clean_artefacts():

 deletables = [
 join(SourceTree, "build"),
 join(ModuleDir, BindingsFileName),
]
 deletables += [join(ModuleDir, fn) for fn in MainLibnames]

 for item in deletables:
 if not os.path.exists(item):
 continue
 if os.path.isfile(item):
 os.remove(item)
 elif os.path.isdir(item):
 shutil.rmtree(item)

def get_platfiles(pl_name):
 system = plat_to_system(pl_name)
 platfiles = (
 join(DataTree, pl_name, BindingsFileName),
 join(DataTree, pl_name, LibnameForSystem[system])
)
 return platfiles

def copy_platfiles(pl_name):
 platfiles = get_platfiles(pl_name)
 for fp in platfiles:
 if not os.path.exists(fp):
 raise RuntimeError("Platform file missing: %s" % fp)
 shutil.copy(fp, ModuleDir)

def get_changelog_staging(flush=False):

 with open(ChangelogStaging, "r") as fh:
 content = fh.read()
 pos = content.index("\n", content.index("# Changelog")) + 1
 header = content[:pos].strip() + "\n"
 devel_msg = content[pos:].strip()
 if devel_msg:
 devel_msg += "\n"

 if flush:
 with open(ChangelogStaging, "w") as fh:
 fh.write(header)

 return devel_msg

def get_version_ns():
 ver_ns = {}
 with open(VersionFile, "r") as fh:
 exec(fh.read(), ver_ns)
 ver_ns = {k: v for k, v in ver_ns.items() if not k.startswith("_")}
 return ver_ns

VerNamespace = get_version_ns()

def set_versions(ver_changes):

 if len(ver_changes) == 0:
 return False

 skip = {var for var, value in ver_changes.items() if value == VerNamespace[var]}
 if len(skip) == len(ver_changes):
 return False

 with open(VersionFile, "r") as fh:
 content = fh.read()

 for var, new_val in ver_changes.items():

 if var in skip:
 continue

 # this does not work universally - only one notation per type is supported, and switches between str and non-str types don't work
 # FIXME see if we can restructure this code for improved flexibility
 if isinstance(new_val, str):
 template = '%s = "%s"'
 else:
 template = '%s = %s'
 previous = template % (var, VerNamespace[var])
 updated = template % (var, new_val)

 print("'%s' -> '%s'" % (previous, updated))
 assert content.count(previous) == 1
 content = content.replace(previous, updated)

 # Beware: While this updates the VerNamespace entry itself, it will not update dependent entries, which may lead to inconsistent data. That is, no reliance can be placed upon the values of dynamic variables (V_PYPDFIUM2 !) after this method has been run. If you need the real value, VerNamespace needs to be re-created.
 VerNamespace[var] = new_val

 with open(VersionFile, "w") as fh:
 fh.write(content)

 return True

pypdfium2-3.4.0/setupsrc/pl_setup/setup_base.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import sys
import setuptools
from os.path import (
 join,
 exists,
 abspath,
 dirname,
)
from wheel.bdist_wheel import bdist_wheel

sys.path.insert(0, dirname(dirname(abspath(__file__))))
from pl_setup.packaging_base import (
 DataTree,
 VerNamespace,
 LibnameForSystem,
 VerStatusFileName,
 PlatformNames,
 plat_to_system,
 get_wheel_tag,
 clean_artefacts,
 copy_platfiles,
 set_versions,
)

def bdist_factory(pl_name):

 class pypdfium_bdist (bdist_wheel):

 def finalize_options(self, *args, **kws):
 bdist_wheel.finalize_options(self, *args, **kws)
 self.root_is_pure = False

 def get_tag(self, *args, **kws):
 return "py3", "none", get_wheel_tag(pl_name)

 return pypdfium_bdist

class BinaryDistribution (setuptools.Distribution):
 def has_ext_modules(self):
 return True

SetupKws = dict(
 version = VerNamespace["V_PYPDFIUM2"],
)

def mkwheel(pl_name):

 system = plat_to_system(pl_name)
 libname = LibnameForSystem[system]

 pl_dir = join(DataTree, pl_name)
 if not exists(pl_dir):
 raise RuntimeError("Missing platform directory %s - you might have forgotten to run update_pdfium.py" % pl_name)

 ver_file = join(pl_dir, VerStatusFileName)
 if not exists(ver_file):
 raise RuntimeError("Missing PDFium version file for %s" % pl_name)

 with open(ver_file, "r") as fh:
 v_libpdfium = fh.read().strip()

 ver_changes = dict()
 ver_changes["V_LIBPDFIUM"] = str(v_libpdfium)
 ver_changes["IS_SOURCEBUILD"] = (pl_name == PlatformNames.sourcebuild)
 set_versions(ver_changes)

 clean_artefacts()
 copy_platfiles(pl_name)

 setuptools.setup(
 package_data = {"": [libname]},
 cmdclass = {"bdist_wheel": bdist_factory(pl_name)},
 distclass = BinaryDistribution,
 **SetupKws,
)

pypdfium2-3.4.0/setupsrc/pl_setup/update_pdfium.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import sys
import shutil
import tarfile
import argparse
import traceback
import functools
from urllib import request
from os.path import join, abspath, dirname
from concurrent.futures import ThreadPoolExecutor

sys.path.insert(0, dirname(dirname(abspath(__file__))))
from pl_setup.packaging_base import (
 Host,
 DataTree,
 VerStatusFileName,
 ReleaseNames,
 BinaryPlatforms,
 ReleaseURL,
 BinaryTarget_Auto,
 get_latest_version,
 call_ctypesgen,
)

def clear_data(download_files):
 for pl_name in download_files:
 pl_dir = join(DataTree, pl_name)
 if os.path.isdir(pl_dir):
 shutil.rmtree(pl_dir)

def _get_package(latest_ver, robust, pl_name):

 pl_dir = join(DataTree, pl_name)
 if not os.path.exists(pl_dir):
 os.makedirs(pl_dir)

 file_name = "%s.%s" % (ReleaseNames[pl_name], "tgz")
 file_url = "%s%s/%s" % (ReleaseURL, latest_ver, file_name)
 file_path = join(pl_dir, file_name)
 print("'%s' -> '%s'" % (file_url, file_path))

 try:
 request.urlretrieve(file_url, file_path)
 except Exception:
 if robust:
 traceback.print_exc()
 return None, None
 else:
 raise

 return pl_name, file_path

def download_releases(latest_ver, platforms, robust, max_workers):
 if not max_workers:
 max_workers = len(platforms)
 archives = {}
 with ThreadPoolExecutor(max_workers=max_workers) as pool:
 func = functools.partial(_get_package, latest_ver, robust)
 for pl_name, file_path in pool.map(func, platforms):
 if pl_name is None:
 continue
 archives[pl_name] = file_path
 return archives

def unpack_archives(archives):
 for pl_name, file_path in archives.items():
 extraction_path = join(DataTree, pl_name, "build_tar")
 with tarfile.open(file_path) as archive:
 archive.extractall(extraction_path)
 os.remove(file_path)

def generate_bindings(archives, latest_ver):

 for pl_name in archives.keys():

 pl_dir = join(DataTree, pl_name)
 build_dir = join(pl_dir, "build_tar")
 bin_dir = join(build_dir, "lib")
 dirname = os.path.basename(pl_dir)

 if dirname.startswith("windows"):
 target_name = "pdfium.dll"
 bin_dir = join(build_dir, "bin")
 elif dirname.startswith("darwin"):
 target_name = "pdfium.dylib"
 elif "linux" in dirname:
 target_name = "pdfium"
 else:
 raise ValueError("Unknown platform directory name '%s'" % dirname)

 items = os.listdir(bin_dir)
 assert len(items) == 1
 shutil.move(join(bin_dir, items[0]), join(pl_dir, target_name))

 ver_file = join(DataTree, pl_name, VerStatusFileName)
 with open(ver_file, "w") as fh:
 fh.write(latest_ver)

 call_ctypesgen(pl_dir, join(build_dir, "include"))
 shutil.rmtree(build_dir)

def main(platforms, robust=False, max_workers=None):

 if len(platforms) != len(set(platforms)):
 raise ValueError("Duplicate platforms not allowed.")
 if BinaryTarget_Auto in platforms:
 platforms = platforms.copy()
 platforms[platforms.index(BinaryTarget_Auto)] = Host.platform

 latest_ver = str(get_latest_version())
 clear_data(platforms)

 archives = download_releases(latest_ver, platforms, robust, max_workers)
 unpack_archives(archives)
 generate_bindings(archives, latest_ver)

def parse_args(argv):
 platform_choices = (BinaryTarget_Auto, *BinaryPlatforms)
 parser = argparse.ArgumentParser(
 description = "Download pre-built PDFium packages and generate bindings.",
)
 parser.add_argument(
 "--platforms", "-p",
 nargs = "+",
 metavar = "identifier",
 choices = platform_choices,
 default = BinaryPlatforms,
 help = "The platform(s) to include. Available platform identifiers are %s. `auto` represents the current host platform." % (platform_choices,),
)
 parser.add_argument(
 "--robust",
 action = "store_true",
 help = "Skip missing binaries instead of raising an exception.",
)
 parser.add_argument(
 "--max-workers",
 type = int,
 help = "Maximum number of jobs to run in parallel when downloading binaries.",
)
 return parser.parse_args(argv)

def run_cli(argv=sys.argv[1:]):
 args = parse_args(argv)
 main(
 args.platforms,
 robust = args.robust,
 max_workers = args.max_workers,
)

if __name__ == "__main__":
 run_cli()

pypdfium2-3.4.0/sourcebuild/patches/public_headers.patch

diff --git a/public/cpp/fpdf_deleters.h b/public/cpp/fpdf_deleters.h
index 633ddf5e3..3ecd19e0b 100644
--- a/public/cpp/fpdf_deleters.h
+++ b/public/cpp/fpdf_deleters.h
@@ -5,15 +5,15 @@
 #ifndef PUBLIC_CPP_FPDF_DELETERS_H_
 #define PUBLIC_CPP_FPDF_DELETERS_H_

-#include "public/fpdf_annot.h"
-#include "public/fpdf_dataavail.h"
-#include "public/fpdf_edit.h"
-#include "public/fpdf_formfill.h"
-#include "public/fpdf_javascript.h"
-#include "public/fpdf_structtree.h"
-#include "public/fpdf_text.h"
-#include "public/fpdf_transformpage.h"
-#include "public/fpdfview.h"
+#include "../fpdf_annot.h"
+#include "../fpdf_dataavail.h"
+#include "../fpdf_edit.h"
+#include "../fpdf_formfill.h"
+#include "../fpdf_javascript.h"
+#include "../fpdf_structtree.h"
+#include "../fpdf_text.h"
+#include "../fpdf_transformpage.h"
+#include "../fpdfview.h"

 // Custom deleters for using FPDF_* types with std::unique_ptr<>.

diff --git a/public/cpp/fpdf_scopers.h b/public/cpp/fpdf_scopers.h
index ff57c1b48..2ed295d88 100644
--- a/public/cpp/fpdf_scopers.h
+++ b/public/cpp/fpdf_scopers.h
@@ -8,7 +8,7 @@
 #include <memory>
 #include <type_traits>

-#include "public/cpp/fpdf_deleters.h"
+#include "fpdf_deleters.h"

 // Versions of FPDF types that clean up the object at scope exit.

diff --git a/public/fpdfview.h b/public/fpdfview.h
index e996d4a3b..b8c4b3dc2 100644
--- a/public/fpdfview.h
+++ b/public/fpdfview.h
@@ -176,9 +176,6 @@ typedef int FPDF_ANNOT_APPEARANCEMODE;
 // Dictionary value types.
 typedef int FPDF_OBJECT_TYPE;

-#if defined(COMPONENT_BUILD)
-// FPDF_EXPORT should be consistent with |export| in the pdfium_fuzzer
-// template in testing/fuzzers/BUILD.gn.
 #if defined(WIN32)
 #if defined(FPDF_IMPLEMENTATION)
 #define FPDF_EXPORT __declspec(dllexport)
@@ -192,9 +189,6 @@ typedef int FPDF_OBJECT_TYPE;
 #define FPDF_EXPORT
 #endif // defined(FPDF_IMPLEMENTATION)
 #endif // defined(WIN32)
-#else
-#define FPDF_EXPORT
-#endif // defined(COMPONENT_BUILD)

 #if defined(WIN32) && defined(FPDFSDK_EXPORTS)
 #define FPDF_CALLCONV __stdcall

pypdfium2-3.4.0/sourcebuild/patches/shared_library.patch

diff --git a/BUILD.gn b/BUILD.gn
index bf0994aee..021d1bd99 100644
--- a/BUILD.gn
+++ b/BUILD.gn
@@ -160,7 +160,7 @@ group("pdfium_public_headers") {
]
 }

-component("pdfium") {
+shared_library("pdfium") {
 libs = []
 configs += [":pdfium_strict_config"]
 public_configs = [":pdfium_public_config"]
@@ -199,6 +199,9 @@ component("pdfium") {
 "gdi32.lib",
 "user32.lib",
]
+ sources = [
+ "resources.rc"
+]
 }

 if (is_mac) {

pypdfium2-3.4.0/sourcebuild/patches/win/build.patch

diff --git a/toolchain/win/toolchain.gni b/toolchain/win/toolchain.gni
index e7fd62098..b5b034765 100644
--- a/toolchain/win/toolchain.gni
+++ b/toolchain/win/toolchain.gni
@@ -230,7 +230,7 @@ template("msvc_toolchain") {
 }

 tool("rc") {
- command = "$python_path $_tool_wrapper_path rc-wrapper $env rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}"
+ command = "rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}"
 depsformat = "msvc"
 outputs = ["$object_subdir/{{source_name_part}}.res"]
 description = "RC {{output}}"

pypdfium2-3.4.0/sourcebuild/patches/win/pdfium.patch

diff --git a/core/fxge/win32/cgdi_printer_driver.cpp b/core/fxge/win32/cgdi_printer_driver.cpp
index 51b164659..cae49ea56 100644
--- a/core/fxge/win32/cgdi_printer_driver.cpp
+++ b/core/fxge/win32/cgdi_printer_driver.cpp
@@ -15,6 +15,7 @@
 #include "core/fxcrt/fx_memory.h"
 #include "core/fxcrt/fx_system.h"
 #include "core/fxcrt/retain_ptr.h"
+#include "core/fxcrt/widestring.h"
 #include "core/fxge/cfx_font.h"
 #include "core/fxge/cfx_windowsrenderdevice.h"
 #include "core/fxge/dib/cfx_dibextractor.h"

pypdfium2-3.4.0/sourcebuild/patches/win/resources.rc

1 VERSIONINFO
FILEVERSION 	$VERSION_CSV
PRODUCTVERSION 	$VERSION_CSV
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904E4"
 BEGIN
 VALUE "CompanyName", "Google Inc."
 VALUE "FileDescription", "PDFium"
 VALUE "FileVersion", "$VERSION"
 VALUE "InternalName", "pdfium"
 VALUE "OriginalFilename", "pdfium.dll"
 VALUE "ProductName", "pdfium"
 VALUE "ProductVersion", "$VERSION"
 VALUE "LegalCopyright", "Copyright 2022 PDFium Authors."
 END
 END

 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1252
 END
END

pypdfium2-3.4.0/src/pypdfium2/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import atexit
import logging
from pypdfium2._namespace import *

logger = logging.getLogger(__name__)

Note: PDFium developers plan changes to the initialisation API
FPDF_InitLibrary()
atexit.register(FPDF_DestroyLibrary)

pypdfium2-3.4.0/src/pypdfium2/__main__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2._cli.main import main

if __name__ == '__main__':
 main()

pypdfium2-3.4.0/src/pypdfium2/_cli/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

pypdfium2-3.4.0/src/pypdfium2/_cli/_parsers.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

def pagetext_type(value):

 if not value:
 return

 page_indices = []
 splitted = value.split(",")

 for page_or_range in splitted:

 if "-" in page_or_range:

 start, end = page_or_range.split("-")
 start = int(start) - 1
 end = int(end) - 1

 if start < end:
 pages = [i for i in range(start, end+1)]
 else:
 pages = [i for i in range(start, end-1, -1)]

 page_indices.extend(pages)

 else:

 page_indices.append(int(page_or_range) - 1)

 return page_indices

pypdfium2-3.4.0/src/pypdfium2/_cli/extract_text.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os.path
from pypdfium2 import _namespace as pdfium
from pypdfium2._cli._parsers import pagetext_type

STRATEGY_RANGE = "range"
STRATEGY_BOUNDED = "bounded"

def attach_parser(subparsers):
 parser = subparsers.add_parser(
 "extract-text",
 help = "Extract text from a PDF page in given boundaries",
)
 parser.add_argument(
 "input",
 type = os.path.abspath,
 help = "Path to the PDF document to work with",
)
 parser.add_argument(
 "--password",
 help = "Password to unlock the PDF, if encrypted",
)
 parser.add_argument(
 "--pages",
 help = "Page numbers to include (defaults to all)",
 type = pagetext_type,
)
 parser.add_argument(
 "--strategy",
 type = str,
 choices = (STRATEGY_RANGE, STRATEGY_BOUNDED),
 default = STRATEGY_RANGE,
 help = "PDFium text extraction strategy.",
)

def main(args):

 doc = pdfium.PdfDocument(args.input, password=args.password)
 if args.pages is None:
 args.pages = [i for i in range(len(doc))]

 sep = ""
 for index in args.pages:

 page = doc.get_page(index)
 textpage = page.get_textpage()

 # TODO let caller pass in possible range/boundary parameters
 if args.strategy == STRATEGY_RANGE:
 text = textpage.get_text_range()
 elif args.strategy == STRATEGY_BOUNDED:
 text = textpage.get_text_bounded()
 else:
 assert False

 print(sep + "# Page %s\n" % (index+1) + text)
 sep = "\n"

pypdfium2-3.4.0/src/pypdfium2/_cli/find_pageobjects.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os.path
from pypdfium2 import _namespace as pdfium
from pypdfium2._cli._parsers import pagetext_type

def attach_parser(subparsers):
 obj_types = list(pdfium.ObjectTypeToConst.keys())
 parser = subparsers.add_parser(
 "find-pageobjects",
 help = "Locate page objects of given types.",
)
 parser.add_argument(
 "input",
 type = os.path.abspath,
 help = "Path to the PDF document to work with.",
)
 parser.add_argument(
 "--password",
 help = "Password to unlock the PDF, if encrypted."
)
 parser.add_argument(
 "--pages",
 type = pagetext_type,
 help = "The pages to search (defaults to all).",
)
 parser.add_argument(
 "--types",
 nargs = "+",
 metavar = "T",
 choices = obj_types,
 default = obj_types,
 help = "Object types to consider (defaults to all). Choices: %s" % obj_types,
)
 parser.add_argument(
 "--max-depth",
 type = int,
 default = 2,
 help = "Maximum recursion depth to consider when descending into Form XObjects.",
)

def main(args):

 doc = pdfium.PdfDocument(args.input, password=args.password)
 args.types = [pdfium.ObjectTypeToConst[t] for t in args.types]
 if args.pages is None:
 args.pages = [i for i in range(len(doc))]

 for index in args.pages:
 page = doc.get_page(index)
 for obj in page.get_objects(max_depth=args.max_depth):
 if obj.type in args.types:
 print(" "*obj.level + pdfium.ObjectTypeToStr[obj.type], obj.get_pos())

pypdfium2-3.4.0/src/pypdfium2/_cli/jpegtopdf.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os.path
from pypdfium2 import _namespace as pdfium

def attach_parser(subparsers):
 parser = subparsers.add_parser(
 "jpegtopdf",
 help = "Convert JPEG images to PDF",
)
 parser.add_argument(
 "images",
 nargs = "+",
 help = "Input JPEG images",
 type = os.path.abspath,
)
 parser.add_argument(
 "--output", "-o",
 required = True,
 help = "Target path for the new PDF"
)
 parser.add_argument(
 "--inline",
 action = "store_true",
 help = "Whether to use FPDFImageObj_LoadJpegFileInline() rather than FPDFImageObj_LoadJpegFile()."
)

def main(args):

 # Very rudimentary JPEG to PDF conversion, mostly for testing
 # The implementation could certainly be more sophisticated (e. g. configurable DPI, default DPI based on image metadata via Pillow, margins, crop, positioning, ...)

 pdf = pdfium.PdfDocument.new()

 for file in args.images:

 # Simple check if the input files are actually JPEGs
 # A better implementation could use mimetypes or python-magic instead
 assert any(file.lower().endswith(ext) for ext in (".jpg", ".jpeg"))

 image = pdfium.PdfImageObject.new(pdf)

 buffer = open(file, "rb")
 width, height = image.load_jpeg(buffer, inline=args.inline, autoclose=True)

 page = pdf.new_page(width, height)
 page.insert_object(image)
 page.generate_content()

 if os.path.exists(args.output):
 raise FileExistsError("Refusing to overwrite '%s'" % args.output)

 with open(args.output, "wb") as buffer:
 pdf.save(buffer)

pypdfium2-3.4.0/src/pypdfium2/_cli/main.py

PYTHON_ARGCOMPLETE_OK
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import sys
import logging
import argparse
from pypdfium2.version import (
 V_PYPDFIUM2,
 V_LIBPDFIUM,
 IS_SOURCEBUILD,
)
from pypdfium2._cli import (
 render,
 toc,
 merge,
 tile,
 extract_text,
 find_pageobjects,
 jpegtopdf,
)

try:
 import argcomplete
except ImportError:
 argcomplete = None

Subcommands = {
 "render": render,
 "toc": toc,
 "merge": merge,
 "tile": tile,
 "extract-text": extract_text,
 "find-pageobjects": find_pageobjects,
 "jpegtopdf": jpegtopdf,
}

def parse_args(argv=sys.argv[1:]):

 parser = argparse.ArgumentParser(
 prog = "pypdfium2",
 description = "Command line interface to the pypdfium2 Python library",
)
 parser.add_argument(
 "--version", "-v",
 action = "version",
 version = "pypdfium2 %s (libpdfium %s, %s)" % (
 V_PYPDFIUM2, V_LIBPDFIUM,
 "source build" if IS_SOURCEBUILD else "official build",
),
)

 subparsers = parser.add_subparsers(dest="subcommand")
 for cmd in Subcommands.values():
 cmd.attach_parser(subparsers)

 if argcomplete is not None:
 argcomplete.autocomplete(parser)

 return parser.parse_args(argv)

def main():

 lib_logger = logging.getLogger("pypdfium2")
 lib_logger.addHandler(logging.StreamHandler())

 args = parse_args()
 if not args.subcommand:
 print("One of the following subcommands must be given: %s" % [sc for sc in Subcommands.keys()])
 return

 Subcommands[args.subcommand].main(args)

pypdfium2-3.4.0/src/pypdfium2/_cli/merge.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2 import _namespace as pdfium

def _merge_files(input_paths, passwords):

 dest_pdf = pdfium.PdfDocument.new()
 index = 0

 for in_path, pwd in zip(input_paths, passwords):

 src_pdf = pdfium.PdfDocument(in_path, password=pwd)
 success = pdfium.FPDF_ImportPagesByIndex(dest_pdf.raw, src_pdf.raw, None, 0, index)
 if not success:
 raise RuntimeError("Importing pages failed.")

 index += len(src_pdf)

 return dest_pdf

def attach_parser(subparsers):
 parser = subparsers.add_parser(
 "merge",
 help = "Concatenate PDF files",
)
 parser.add_argument(
 "inputs",
 nargs = "+",
 help = "A sequence of PDF files to concatenate",
)
 parser.add_argument(
 "--passwords",
 nargs = "*",
 help = "A sequence of passwords to unlock encrypted PDFs. The value is ignored for non-encrypted documents, where any placeholder may be used.",
)
 parser.add_argument(
 "--output", "-o",
 required = True,
 help = "Target path for the output document",
)

def main(args):

 if not args.passwords:
 args.passwords = [None for _ in args.inputs]

 merged_pdf = _merge_files(args.inputs, args.passwords)
 with open(args.output, "wb") as buffer:
 merged_pdf.save(buffer)

pypdfium2-3.4.0/src/pypdfium2/_cli/render.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
from os.path import (
 join,
 abspath,
 basename,
 splitext,
)
from pypdfium2 import _namespace as pdfium
from pypdfium2._cli._parsers import pagetext_type

ColourOpts = dict(
 metavar = "C",
 nargs = 4,
 type = int,
)

def attach_parser(subparsers):
 parser = subparsers.add_parser(
 "render",
 help = "Rasterise pages of a PDF file",
)
 parser.add_argument(
 "inputs",
 nargs = "+",
 help = "PDF documents to render",
)
 parser.add_argument(
 "--passwords",
 nargs = "*",
 help = "A sequence of passwords to unlock encrypted PDFs. The value is ignored for non-encrypted documents, where any placeholder may be used.",
)
 parser.add_argument(
 "--output", "-o",
 type = abspath,
 required = True,
 help = "Output directory where to place the serially numbered images",
)
 parser.add_argument(
 "--format", "-f",
 default = "jpg",
 help = "The image format to use",
)
 parser.add_argument(
 "--pages",
 default = None,
 type = pagetext_type,
 help = "Numbers of the pages to render (defaults to all)",
)
 parser.add_argument(
 "--scale",
 default = 1,
 type = float,
 help = "Define the resolution of the output images. By default, one PDF point (1/72in) is rendered to 1x1 pixel. This factor scales the number of pixels that represent one point.",
)
 parser.add_argument(
 "--rotation",
 default = 0,
 type = int,
 choices = (0, 90, 180, 270),
 help = "Rotate pages by 90, 180 or 270 degrees",
)
 parser.add_argument(
 "--fill-colour",
 default = (255, 255, 255, 255),
 help = "Colour the bitmap will be filled with before rendering. It shall be given in RGBA format as a sequence of integers ranging from 0 to 255. Defaults to white.",
 **ColourOpts,
)
 parser.add_argument(
 "--force-halftone",
 action = "store_true",
 help = "Always use halftone for image stretching",
)
 parser.add_argument(
 "--no-annotations",
 action = "store_true",
 help = "Prevent rendering of PDF annotations",
)
 parser.add_argument(
 "--no-forms",
 action = "store_true",
 help = "Prevent rendering of PDF forms",
)
 parser.add_argument(
 "--optimise-mode",
 default = pdfium.OptimiseMode.NONE,
 type = lambda string: pdfium.OptimiseMode[string.upper()],
 help = "Select a rendering optimisation mode (none, lcd_display, printing)",
)
 parser.add_argument(
 "--greyscale",
 action = "store_true",
 help = "Whether to render in greyscale mode (no colours)",
)
 parser.add_argument(
 "--crop",
 nargs = 4,
 type = float,
 default = (0, 0, 0, 0),
 help = "Amount to crop from (left, bottom, right, top)",
)
 parser.add_argument(
 "--no-antialias",
 nargs = "+",
 default = (),
 choices = ("text", "image", "path"),
 help = "Item types that shall not be smoothed",
)
 parser.add_argument(
 "--rev-byteorder",
 action = "store_true",
 help = "Render with reverse byte order internally, i. e. RGB(A) instead of BGR(A). The result should be completely identical.",
)
 parser.add_argument(
 "--prefer-bgrx",
 action = "store_true",
 help = "Request the use of a four-channel pixel format for coloured output, even if rendering without transparency.",
)
 parser.add_argument(
 "--processes",
 default = os.cpu_count(),
 type = int,
 help = "The number of processes to use for rendering (defaults to the number of CPU cores)",
)

 colour_scheme = parser.add_argument_group(
 title = "Colour scheme",
 description = "Options for rendering with custom colour scheme",
)
 colour_scheme.add_argument(
 "--path-fill",
 **ColourOpts
)
 colour_scheme.add_argument(
 "--path-stroke",
 **ColourOpts
)
 colour_scheme.add_argument(
 "--text-fill",
 **ColourOpts
)
 colour_scheme.add_argument(
 "--text-stroke",
 **ColourOpts
)
 colour_scheme.add_argument(
 "--fill-to-stroke",
 action = "store_true",
 help = "Whether fill paths need to be stroked.",
)

def main(args):

 if not args.passwords:
 args.passwords = [None for _ in args.inputs]

 for input_path, password in zip(args.inputs, args.passwords):

 pdf = pdfium.PdfDocument(input_path, password=password)
 if args.pages:
 page_indices = args.pages
 else:
 page_indices = [i for i in range(len(pdf))]

 cs_kwargs = dict(
 path_fill = args.path_fill,
 path_stroke = args.path_stroke,
 text_fill = args.text_fill,
 text_stroke = args.text_stroke,
)
 cs = None
 if all(cs_kwargs.values()):
 cs = pdfium.ColourScheme(
 fill_to_stroke = args.fill_to_stroke,
 **cs_kwargs,
)
 elif any(cs_kwargs.values()):
 raise ValueError("If rendering with custom colour scheme, all parameters need to be set explicitly.")

 kwargs = dict(
 page_indices = page_indices,
 n_processes = args.processes,
 scale = args.scale,
 rotation = args.rotation,
 crop = args.crop,
 greyscale = args.greyscale,
 fill_colour = args.fill_colour,
 colour_scheme = cs,
 optimise_mode = args.optimise_mode,
 draw_annots = not args.no_annotations,
 draw_forms = not args.no_forms,
 force_halftone = args.force_halftone,
 rev_byteorder = args.rev_byteorder,
 prefer_bgrx = args.prefer_bgrx,
)
 for type in args.no_antialias:
 kwargs["no_smooth%s" % type] = True

 prefix = splitext(basename(input_path))[0] + "_"
 n_digits = len(str(max(page_indices)+1))
 renderer = pdf.render_to(pdfium.BitmapConv.pil_image, **kwargs)

 for image, index in zip(renderer, page_indices):
 suffix = str(index+1).zfill(n_digits)
 output_path = "%s.%s" % (join(args.output, prefix+suffix), args.format)
 image.save(output_path)

pypdfium2-3.4.0/src/pypdfium2/_cli/tile.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os.path
from enum import Enum
from pypdfium2 import _namespace as pdfium

class Units (Enum):
 PT = 0
 MM = 1
 CM = 2
 IN = 3

def units_to_pt(value, unit: Units):
 if unit is Units.PT:
 return value
 elif unit is Units.IN:
 return value*72
 elif unit is Units.CM:
 return (value*72) / 2.54
 elif unit is Units.MM:
 return (value*72) / 25.4
 else:
 raise ValueError("Invalid unit type %s" % unit)

def attach_parser(subparsers):
 parser = subparsers.add_parser(
 "tile",
 help = "Perform page tiling (N-up compositing)",
)
 parser.add_argument(
 "input",
 help = "PDF file on which to perform N-up compositing",
)
 parser.add_argument(
 "--password",
 help = "Password to unlock the PDF, if encrypted"
)
 parser.add_argument(
 "--output", "-o",
 required = True,
 type = os.path.abspath,
 help = "Target path for the new document",
)
 parser.add_argument(
 "--rows", "-r",
 type = int,
 required = True,
 help = "Number of rows (horizontal tiles)",
)
 parser.add_argument(
 "--cols", "-c",
 type = int,
 required = True,
 help = "Number of columns (vertical tiles)",
)
 parser.add_argument(
 "--width",
 type = float,
 required = True,
 help = "Target width",
)
 parser.add_argument(
 "--height",
 type = float,
 required = True,
 help = "Target height",
)
 parser.add_argument(
 "--unit", "-u",
 default = Units.MM,
 type = lambda string: Units[string.upper()],
 help = "Unit for target width and height (pt, mm, cm, in)",
)

def main(args):

 width = units_to_pt(args.width, args.unit)
 height = units_to_pt(args.height, args.unit)

 src_pdf = pdfium.PdfDocument(args.input, password=args.password)
 raw_dest = pdfium.FPDF_ImportNPagesToOne(
 src_pdf.raw,
 width, height,
 args.cols, args.rows,
)
 dest_pdf = pdfium.PdfDocument(raw_dest)
 with open(args.output, "wb") as buffer:
 dest_pdf.save(buffer)

pypdfium2-3.4.0/src/pypdfium2/_cli/toc.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2 import _namespace as pdfium

def attach_parser(subparsers):
 parser = subparsers.add_parser(
 "toc",
 help = "Show a PDF document's table of contents",
)
 parser.add_argument(
 "input",
 help = "PDF document of which to print the outline",
)
 parser.add_argument(
 "--password",
 help = "Password to unlock the PDF, if encrypted"
)
 parser.add_argument(
 "--max-depth",
 type = int,
 default = 15,
 help = "Maximum recursion depth to consider when parsing the table of contents",
)

def main(args):
 pdf = pdfium.PdfDocument(args.input, password=args.password)
 pdf.print_toc(pdf.get_toc())

pypdfium2-3.4.0/src/pypdfium2/_helpers/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2._helpers.misc import *
from pypdfium2._helpers.matrix import *
from pypdfium2._helpers.converters import *
from pypdfium2._helpers.document import *
from pypdfium2._helpers.page import *
from pypdfium2._helpers.pageobject import *
from pypdfium2._helpers.textpage import *

pypdfium2-3.4.0/src/pypdfium2/_helpers/converters.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2._helpers.misc import BitmapStrReverseToRegular

try:
 import PIL.Image
except ImportError:
 PIL = None

try:
 import numpy.ctypeslib
except ImportError:
 numpy = None

class BitmapConvBase:
 """
 Parent class for bitmap converters compatible with :meth:`.PdfPage.render_to` / :meth:`.PdfDocument.render_to`.
 The initialiser captures any arguments and adds them to the :meth:`.run` call.
 """

 def __init__(self, *args, **kwargs):
 self.args = args
 self.kwargs = kwargs

 @staticmethod
 def run(result, renderer_kws, *args, **kwargs):
 """
 The actual converter function, to be implemented by the inheriting class.

 Parameters:
 result (tuple):
 Result of the :meth:`~.PdfPage.render_base` call (ctypes array, colour format, size).
 renderer_kws (dict):
 Dictionary of rendering keywords that were passed in by the caller.
 args (tuple):
 Further positional arguments to the converter, as captured by the initialiser.
 kwargs (dict):
 Further keyword arguments to the converter, as captured by the initialiser.
 Returns:
 typing.Any: The converted rendering result (implementation-specific).
 """
 raise NotImplementedError("Inheriting class must provide run() method.")

class BitmapConv:
 """
 Built-in converters to be applied on the rendering result.
 """

 class any (BitmapConvBase):
 """
 Simple factory for converters that merely work with the ctypes array, while passing through additional information unaffected.

 Example:
 ``render_to(BitmapConv.any(bytes), **kwargs)``:
 Get an independent copy of the pixel data as bytes.

 Parameters:
 converter (typing.Callable):
 A function to translate a ctypes array to a different data type.
 Returns:
 (typing.Any, str, (int, int)): The converted bitmap (implementation-specific), and additional information returned by :meth:`~.PdfPage.render_base` (colour format, size).
 """

 @staticmethod
 def run(result, renderer_kws, converter):
 c_array, cl_format, size = result
 return converter(c_array), cl_format, size

 class numpy_ndarray (BitmapConvBase):
 """
 Requires :mod:`numpy`

 Get the bitmap as shaped NumPy array referencing the original ctypes array.
 This converter never makes a copy of the data.

 Returns:
 (numpy.ndarray, str): NumPy array, and colour format.
 """

 @staticmethod
 def run(result, renderer_kws):

 if numpy is None:
 raise RuntimeError("NumPy library needs to be installed for numpy_ndarray() converter.")

 c_array, cl_format, (width, height) = result
 np_array = numpy.ctypeslib.as_array(c_array)
 np_array.shape = (height, width, len(cl_format))

 return np_array, cl_format

 class pil_image (BitmapConvBase):
 """
 Requires :mod:`PIL`

 Get the bitmap as PIL image.

 Parameters:
 prefer_la (bool):
 If :data:`True`, automatically convert ``RGBA``/``BGRA`` to ``LA`` if rendering in greyscale mode with alpha channel
 (PDFium does not provide ``LA`` output directly).
 Returns:
 PIL.Image.Image: The image object.

 Hint:
 This uses :func:`PIL.Image.frombuffer` under the hood.
 If possible for the colour format in question, the image will reference the ctypes array. Otherwise, PIL may create a copy of the data.
 Among the pixel formats supported by PDFium, PIL can directly work with ``RGBA``, ``RGBX`` or ``L``.
 You may want to consider setting the rendering parameters *rev_byteorder* and *prefer_bgrx* to :data:`True` to generate natively compatible output.
 """

 @staticmethod
 def run(result, renderer_kws, prefer_la=False):

 if PIL is None:
 raise RuntimeError("Pillow library needs to be installed for pil_image() converter.")

 c_array, cl_src, size = result
 cl_dst = cl_src
 if cl_src in BitmapStrReverseToRegular.keys():
 cl_dst = BitmapStrReverseToRegular[cl_src]

 pil_image = PIL.Image.frombuffer(cl_dst, size, c_array, "raw", cl_src, 0, 1)
 if prefer_la:
 if renderer_kws.get("greyscale", False) and cl_dst == "RGBA":
 pil_image = pil_image.convert("LA")

 return pil_image

class BitmapConvAliases:
 """
 Base class containing rendering target aliases.
 Currently retained for backwards compatibility, but may be deprecated in the future.
 Consider using the :meth:`.PdfPage.render_to` / :meth:`.PdfDocument.render_to` APIs instead.
 """

 def render_to(self):
 """ Method to be implemented by the inheriting class. """
 raise NotImplementedError("Inheriting class must provide render_to() method.")

 def render_tobytes(self, **kwargs):
 """ Alias for ``render_to(BitmapConv.any(bytes), ...)``. """
 return self.render_to(BitmapConv.any(bytes), **kwargs)

 def render_tonumpy(self, **kwargs):
 """ Alias for ``render_to(BitmapConv.numpy_ndarray, ...)``. """
 return self.render_to(BitmapConv.numpy_ndarray, **kwargs)

 def render_topil(self, prefer_la=False, **kwargs):
 """ Alias for ``render_to(BitmapConv.pil_image, ...)``. """
 return self.render_to(BitmapConv.pil_image(prefer_la=prefer_la), **kwargs)

pypdfium2-3.4.0/src/pypdfium2/_helpers/document.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import io
import os
import os.path
import weakref
import ctypes
import logging
import functools
from concurrent.futures import ProcessPoolExecutor

import pypdfium2._pypdfium as pdfium
from pypdfium2._helpers.misc import (
 OutlineItem,
 FileAccess,
 PdfiumError,
 ErrorToStr,
 ViewmodeToStr,
 get_functype,
 get_fileaccess,
 is_input_buffer,
)
from pypdfium2._helpers.pageobject import (
 PdfPageObject,
)
from pypdfium2._helpers.converters import BitmapConvAliases
from pypdfium2._helpers.page import PdfPage

try:
 import uharfbuzz as harfbuzz
except ImportError:
 harfbuzz = None

logger = logging.getLogger(__name__)

class PdfDocument (BitmapConvAliases):
 """
 Document helper class.

 Parameters:
 input_data (str | bytes | typing.BinaryIO | FPDF_DOCUMENT):
 The input PDF given as file path, bytes, byte buffer, or raw PDFium document handle.
 :func:`.is_input_buffer` defines which objects are recognised as byte buffers.
 password (str | bytes):
 A password to unlock the PDF, if encrypted.
 If the document is not encrypted but a password was given, PDFium will ignore it.
 file_access (FileAccess):
 This parameter may be used to control how files are opened internally. It is ignored if *input_data* is not a file path.
 autoclose (bool):
 If set to :data:`True` and a byte buffer was provided as input, :meth:`.close` will not only close the PDFium document, but also the input source.

 Raises:
 PdfiumError: Raised if the document failed to load. The exception message is annotated with the reason reported by PDFium.
 FileNotFoundError: Raised if an invalid or non-existent file path was given.

 Hint:
 * :func:`len` may be called to get a document's number of pages.
 * Looping over a document will yield its pages from beginning to end.
 * Pages may be loaded using list index access.
 * The ``del`` keyword and list index access may be used to delete pages.

 Attributes:
 raw (FPDF_DOCUMENT): The underlying PDFium document handle.
 """

 def __init__(
 self,
 input_data,
 password = None,
 file_access = FileAccess.NATIVE,
 autoclose = False,
):

 self._orig_input = input_data
 self._actual_input = input_data
 self._data_holder = []
 self._data_closer = []
 self._rendering_input = None

 self._password = password
 self._file_access = file_access
 self._autoclose = autoclose

 self._form_env = None
 self._form_config = None
 self._form_finalizer = None

 if isinstance(self._orig_input, str):

 self._orig_input = os.path.abspath(os.path.expanduser(self._orig_input))
 if not os.path.isfile(self._orig_input):
 raise FileNotFoundError("File does not exist: '%s'" % self._orig_input)

 if self._file_access is FileAccess.NATIVE:
 pass
 elif self._file_access is FileAccess.BUFFER:
 self._actual_input = open(self._orig_input, "rb")
 self._data_closer.append(self._actual_input)
 elif self._file_access is FileAccess.BYTES:
 buf = open(self._orig_input, "rb")
 self._actual_input = buf.read()
 buf.close()
 else:
 assert False

 if isinstance(self._actual_input, pdfium.FPDF_DOCUMENT):
 self.raw = self._actual_input
 else:
 self.raw, ld_data = _open_pdf(self._actual_input, self._password)
 self._data_holder += ld_data

 if self._autoclose and is_input_buffer(self._actual_input):
 self._data_closer.append(self._actual_input)

 self._finalizer = weakref.finalize(
 self, self._static_close,
 self.raw, self._data_holder, self._data_closer,
)

 def __enter__(self):
 return self

 def __exit__(self, *_):
 # We do not invoke close at this place anymore because that would increase the risk of callers closing parent objects before child objects.
 # (Consider a `with`-block where pages are not closed explicitly: garbage collection of pages commonly happens later than context manager exit, so page would be closed after document, which is illegal.)
 pass

 def __len__(self):
 return pdfium.FPDF_GetPageCount(self.raw)

 def __iter__(self):
 for i in range(len(self)):
 yield self.get_page(i)

 def __getitem__(self, i):
 return self.get_page(i)

 def __delitem__(self, i):
 self.del_page(i)

 @classmethod
 def new(cls):
 """
 Returns:
 PdfDocument: A new, empty document.
 """
 new_pdf = pdfium.FPDF_CreateNewDocument()
 return cls(new_pdf)

 @staticmethod
 def _static_close(raw, data_holder, data_closer):

 # logger.debug("Closing document")
 pdfium.FPDF_CloseDocument(raw)

 for data in data_holder:
 id(data)
 for data in data_closer:
 data.close()

 @staticmethod
 def _static_exit_formenv(form_env, form_config):
 # logger.debug("Closing form env")
 pdfium.FPDFDOC_ExitFormFillEnvironment(form_env)
 id(form_config)

 def close(self):
 """
 Free memory by applying the finalizer for the underlying PDFium document.
 Please refer to the generic note on ``close()`` methods for details.

 This method calls :meth:`.exit_formenv`.
 """
 if self.raw is None:
 logger.warning("Duplicate close call suppressed on document %s" % self)
 return
 self.exit_formenv()
 self._finalizer()
 self.raw = None
 self._data_holder = []
 self._data_closer = []

 def _tree_closed(self):
 return (self.raw is None)

 def init_formenv(self):
 """
 Initialise a form environment handle for this document.
 If already initialised, the existing one will be returned instead.

 Returns:
 FPDF_FORMHANDLE:
 """
 if self._form_env is not None:
 return self._form_env
 self._form_config = pdfium.FPDF_FORMFILLINFO()
 self._form_config.version = 2
 self._form_env = pdfium.FPDFDOC_InitFormFillEnvironment(self.raw, self._form_config)
 self._form_finalizer = weakref.finalize(
 self, self._static_exit_formenv,
 self._form_env, self._form_config,
)
 return self._form_env

 def exit_formenv(self):
 """
 Free memory by applying the finalizer for the underlying PDFium form environment, if it was initialised.
 If :meth:`.init_formenv` was not called, nothing will be done.

 This behaves like the ``close()`` methods. Please refer to the generic note for details.
 """
 if self._form_env is None:
 return
 self._form_finalizer()
 self._form_env = None
 self._form_config = None

 def get_version(self):
 """
 Returns:
 int | None: The PDF version of the document (14 for 1.4, 15 for 1.5, ...),
 or :data:`None` if the version could not be determined (e. g. because the document was created using :meth:`PdfDocument.new`).
 """
 version = ctypes.c_int()
 success = pdfium.FPDF_GetFileVersion(self.raw, version)
 if not success:
 return
 return int(version.value)

 def save(self, buffer, version=None):
 """
 Save the document into an output buffer, at its current state.

 Parameters:
 buffer (typing.BinaryIO):
 A byte buffer to capture the data.
 It may be any object implementing the ``write()`` method.
 version (int | None):
 The PDF version to use, given as an integer (14 for 1.4, 15 for 1.5, ...).
 If :data:`None`, PDFium will set a version automatically.
 """

 filewrite = pdfium.FPDF_FILEWRITE()
 filewrite.version = 1
 filewrite.WriteBlock = get_functype(pdfium.FPDF_FILEWRITE, "WriteBlock")(_writer_class(buffer))

 saveargs = (self.raw, filewrite, pdfium.FPDF_NO_INCREMENTAL)
 if version is None:
 success = pdfium.FPDF_SaveAsCopy(*saveargs)
 else:
 success = pdfium.FPDF_SaveWithVersion(*saveargs, version)

 if not success:
 raise PdfiumError("Saving the document failed")

 def _handle_index(self, index):
 n_pages = len(self)
 if index < 0:
 index += n_pages
 if not 0 <= index < n_pages:
 raise IndexError("Page index %s is out of bounds for document with %s pages." % (index, n_pages))
 return index

 def get_page_size(self, index):
 """
 Get the dimensions of the page at *index*. Reverse indexing is allowed.

 Returns:
 (float, float): Page width and height in PDF canvas units.
 """
 index = self._handle_index(index)
 size = pdfium.FS_SIZEF()
 success = pdfium.FPDF_GetPageSizeByIndexF(self.raw, index, size)
 if not success:
 raise PdfiumError("Getting page size by index failed.")
 return (size.width, size.height)

 def page_as_xobject(self, index, dest_pdf):
 """
 Capture a page as XObject and attach it to a document's resources.

 Parameters:
 index (int): Zero-based index of the page. Reverse indexing is allowed.
 dest_pdf (PdfDocument): Target document to which the XObject shall be added.
 Returns:
 PdfXObject: The page as XObject.
 """

 index = self._handle_index(index)

 raw_xobject = pdfium.FPDF_NewXObjectFromPage(dest_pdf.raw, self.raw, index)
 if raw_xobject is None:
 raise PdfiumError("Failed to capture page %s as FPDF_XOBJECT" % index)

 return PdfXObject(
 raw = raw_xobject,
 pdf = dest_pdf,
)

 def new_page(self, width, height, index=None):
 """
 Insert a new, empty page into the document.

 Parameters:
 width (float):
 Target page width (horizontal size).
 height (float):
 Target page height (vertical size).
 index (int | None):
 Suggested zero-based index at which the page will be inserted.
 If *index* is negative, the indexing direction will be reversed.
 If *index* is zero, the page will be inserted at the beginning.
 If *index* is :data:`None` or larger that the document's current last index, the page will be appended to the end.
 Returns:
 PdfPage: The newly created page.
 """
 if index is None:
 index = len(self)
 elif index < 0:
 index += len(self)
 raw_page = pdfium.FPDFPage_New(self.raw, index, width, height)
 return PdfPage(raw_page, self)

 def del_page(self, index):
 """
 Remove the page at *index*. Reverse indexing is allowed.
 """
 index = self._handle_index(index)
 pdfium.FPDFPage_Delete(self.raw, index)

 def get_page(self, index):
 """
 Returns:
 PdfPage: The page at *index*. Reverse indexing is allowed.
 """
 index = self._handle_index(index)
 raw_page = pdfium.FPDF_LoadPage(self.raw, index)
 return PdfPage(raw_page, self)

 def add_font(self, font_path, type, is_cid):
 """
 Add a font to the document.

 Parameters:
 font_path (str):
 File path of the font to use.
 type (int):
 A constant signifying the type of the given font (:data:`.FPDF_FONT_*`).
 is_cid (bool):
 Whether the given font is a CID font or not.
 Returns:
 PdfFont: A PDF font helper object.
 """

 with open(font_path, "rb") as fh:
 font_data = fh.read()

 pdf_font = pdfium.FPDFText_LoadFont(
 self.raw,
 ctypes.cast(font_data, ctypes.POINTER(ctypes.c_uint8)),
 len(font_data),
 type,
 is_cid,
)

 return PdfFont(pdf_font, self, font_data)

 def _get_bookmark(self, bookmark, level):

 n_bytes = pdfium.FPDFBookmark_GetTitle(bookmark, None, 0)
 buffer = ctypes.create_string_buffer(n_bytes)
 pdfium.FPDFBookmark_GetTitle(bookmark, buffer, n_bytes)
 title = buffer.raw[:n_bytes-2].decode('utf-16-le')

 count = pdfium.FPDFBookmark_GetCount(bookmark)
 if count < 0:
 is_closed = True
 elif count == 0:
 is_closed = None
 else:
 is_closed = False

 n_kids = abs(count)
 dest = pdfium.FPDFBookmark_GetDest(self.raw, bookmark)
 page_index = pdfium.FPDFDest_GetDestPageIndex(self.raw, dest)
 if page_index == -1:
 page_index = None

 n_params = ctypes.c_ulong()
 view_pos = (pdfium.FS_FLOAT * 4)()
 view_mode = pdfium.FPDFDest_GetView(dest, n_params, view_pos)
 view_pos = list(view_pos)[:n_params.value]

 return OutlineItem(
 level = level,
 title = title,
 is_closed = is_closed,
 n_kids = n_kids,
 page_index = page_index,
 view_mode = view_mode,
 view_pos = view_pos,
)

 def get_toc(
 self,
 max_depth = 15,
 parent = None,
 level = 0,
 seen = None,
):
 """
 Read the document's outline ("table of contents").

 Parameters:
 max_depth (int):
 Maximum recursion depth to consider when reading the outline.
 Yields:
 :class:`.OutlineItem`: The data of an outline item ("bookmark").
 """

 if seen is None:
 seen = set()

 bookmark = pdfium.FPDFBookmark_GetFirstChild(self.raw, parent)

 while bookmark:

 address = ctypes.addressof(bookmark.contents)
 if address in seen:
 logger.warning("A circular bookmark reference was detected whilst parsing the table of contents.")
 break
 else:
 seen.add(address)

 yield self._get_bookmark(bookmark, level)
 if level < max_depth-1:
 yield from self.get_toc(
 max_depth = max_depth,
 parent = bookmark,
 level = level + 1,
 seen = seen,
)

 bookmark = pdfium.FPDFBookmark_GetNextSibling(self.raw, bookmark)

 @staticmethod
 def print_toc(toc, n_digits=2):
 """
 Print a table of contents.

 Parameters:
 toc (typing.Iterator[OutlineItem]):
 Sequence of outline items to show.
 n_digits (int):
 The number of digits to which viewport coordinates shall be rounded.
 """

 for item in toc:

 if item.n_kids == 0:
 state = "*"
 elif item.is_closed:
 state = "-"
 else:
 state = "+"

 if item.page_index is None:
 target = "?"
 else:
 target = item.page_index + 1

 print(
 " " * item.level +
 "[%s] %s -> %s # %s %s" % (
 state, item.title, target,
 ViewmodeToStr[item.view_mode],
 [round(c, n_digits) for c in item.view_pos],
)
)

 def update_rendering_input(self):
 """
 Update the input sources for concurrent rendering to the document's current state
 by saving to bytes and setting the result as new input.
 If you modified the document, you may want to call this method before :meth:`.render_to`.
 """
 buffer = io.BytesIO()
 self.save(buffer)
 buffer.seek(0)
 self._rendering_input = buffer.read()
 buffer.close()

 @classmethod
 def _process_page(cls, index, converter, input_data, password, file_access, **kwargs):
 pdf = cls(
 input_data,
 password = password,
 file_access = file_access,
)
 page = pdf.get_page(index)
 result = page.render_to(converter, **kwargs)
 return result, index

 def render_to(
 self,
 converter,
 page_indices = None,
 n_processes = os.cpu_count(),
 **kwargs
):
 """
 Concurrently render multiple pages, using a process pool executor.

 If rendering only a single page, the call is simply forwarded to :meth:`.PdfPage.render_to` as a shortcut.

 Parameters:
 page_indices (typing.Sequence[int] | None):
 A sequence of zero-based indices of the pages to render. Reverse indexing or duplicate page indices are prohibited.
 If :data:`None`, all pages will be included. The order of results is guaranteed to match the order of given page indices.
 n_processes (int):
 Target number of parallel processes.
 kwargs (dict):
 Keyword arguments to the renderer. See :meth:`.PdfPage.render_to` / :meth:`.PdfPage.render_base`.

 Yields:
 :data:`typing.Any`: Implementation-specific result object.
 """

 n_pages = len(self)
 if not page_indices:
 page_indices = [i for i in range(n_pages)]
 else:
 if not all(0 <= i < n_pages for i in page_indices):
 raise ValueError("Out-of-bounds page index")
 if len(page_indices) != len(set(page_indices)):
 raise ValueError("Duplicate page index")

 # shortcut: if we're rendering just a single page, don't waste time setting up a process pool
 if len(page_indices) == 1:
 page = self.get_page(page_indices[0])
 result = page.render_to(converter, **kwargs)
 yield result
 return

 if self._rendering_input is None:
 if isinstance(self._orig_input, pdfium.FPDF_DOCUMENT):
 logger.warning("Cannot perform concurrent processing without input sources - saving the document implicitly to get picklable data.")
 self.update_rendering_input()
 elif is_input_buffer(self._orig_input):
 logger.warning("Cannot perform concurrent rendering with buffer input - reading the whole buffer into memory implicitly.")
 cursor = self._orig_input.tell()
 self._orig_input.seek(0)
 self._rendering_input = self._orig_input.read()
 self._orig_input.seek(cursor)
 else:
 self._rendering_input = self._orig_input

 invoke_renderer = functools.partial(
 PdfDocument._process_page,
 converter = converter,
 input_data = self._rendering_input,
 password = self._password,
 file_access = self._file_access,
 **kwargs
)

 i = 0
 with ProcessPoolExecutor(n_processes) as pool:
 for result, index in pool.map(invoke_renderer, page_indices):
 assert index == page_indices[i]
 i += 1
 yield result

 assert len(page_indices) == i

def _open_pdf(input_data, password=None):

 if isinstance(password, str):
 password = password.encode("utf-8")

 ld_data = ()
 if isinstance(input_data, str):
 pdf = pdfium.FPDF_LoadDocument(input_data.encode("utf-8"), password)
 elif isinstance(input_data, bytes):
 pdf = pdfium.FPDF_LoadMemDocument64(input_data, len(input_data), password)
 ld_data = (input_data,)
 elif is_input_buffer(input_data):
 fileaccess, ld_data = get_fileaccess(input_data)
 pdf = pdfium.FPDF_LoadCustomDocument(fileaccess, password)
 else:
 raise TypeError("Invalid input type '%s'" % type(input_data).__name__)

 if pdfium.FPDF_GetPageCount(pdf) < 1:
 err_code = pdfium.FPDF_GetLastError()
 pdfium_msg = ErrorToStr.get(err_code, "Error code %s" % err_code)
 raise PdfiumError("Loading the document failed (PDFium: %s)" % pdfium_msg)

 return pdf, ld_data

class _writer_class:

 def __init__(self, buffer):
 self.buffer = buffer
 if not callable(getattr(self.buffer, "write", None)):
 raise ValueError("Output buffer must implement the write() method.")

 def __call__(self, _, data, size):
 block = ctypes.cast(data, ctypes.POINTER(ctypes.c_ubyte * size))
 self.buffer.write(block.contents)
 return 1

class PdfXObject:
 """
 XObject helper class.

 Attributes:
 raw (FPDF_XOBJECT): The underlying PDFium XObject handle.
 pdf (PdfDocument): Reference to the document this XObject belongs to.
 """

 def __init__(self, raw, pdf):
 self.raw = raw
 self.pdf = pdf
 self._finalizer = weakref.finalize(
 self, self._static_close,
 self.raw, self.pdf,
)

 def _tree_closed(self):
 if self.raw is None:
 return True
 return self.pdf._tree_closed()

 @staticmethod
 def _static_close(raw, parent):
 # logger.debug("Closing XObject")
 if parent._tree_closed():
 logger.critical("Document closed before XObject (this is illegal). Document: %s" % parent)
 pdfium.FPDF_CloseXObject(raw)

 def close(self):
 """
 Free memory by applying the finalizer for the underlying PDFium XObject.
 Please refer to the generic note on ``close()`` methods for details.
 """
 if self.raw is None:
 logger.warning("Duplicate close call suppressed on XObject %s" % self)
 return
 self._finalizer()
 self.raw = None

 def as_pageobject(self):
 """
 Returns:
 PdfPageObject: A new pageobject referencing the XObject.
 """
 raw_pageobj = pdfium.FPDF_NewFormObjectFromXObject(self.raw)
 return PdfPageObject(
 raw = raw_pageobj,
 type = pdfium.FPDF_PAGEOBJ_FORM,
 pdf = self.pdf,
)

class HarfbuzzFont:
 """ Harfbuzz font data helper class. """

 def __init__(self, font_path):
 if harfbuzz is None:
 raise RuntimeError("Font helpers require uharfbuzz to be installed.")
 self.blob = harfbuzz.Blob.from_file_path(font_path)
 self.face = harfbuzz.Face(self.blob)
 self.font = harfbuzz.Font(self.face)
 self.scale = self.font.scale[0]

class PdfFont:
 """
 PDF font data helper class.

 Attributes:
 raw (FPDF_FONT): The underlying PDFium font handle.
 pdf (PdfDocument): Reference to the document this font belongs to.
 """

 def __init__(self, raw, pdf, font_data):
 self.raw = raw
 self.pdf = pdf
 self._font_data = font_data
 self._finalizer = weakref.finalize(
 self, self._static_close,
 self.raw, self.pdf, self._font_data,
)

 def _tree_closed(self):
 if self.raw is None:
 return True
 return self.pdf._tree_closed()

 @staticmethod
 def _static_close(raw, parent, font_data):
 # logger.debug("Closing font")
 if parent._tree_closed():
 logger.critical("Document closed before font (this is illegal). Document: %s" % parent)
 pdfium.FPDFFont_Close(raw)
 id(font_data)

 def close(self):
 """
 Free memory by applying the finalizer for the underlying PDFium font.
 Please refer to the generic note on ``close()`` methods for details.
 """
 if self.raw is None:
 logger.warning("Duplicate close call suppressed on font %s" % self)
 return
 self._finalizer()
 self.raw = None

pypdfium2-3.4.0/src/pypdfium2/_helpers/matrix.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import math
import pypdfium2._pypdfium as pdfium

class PdfMatrix:
 """
 PDF transformation matrix helper class (Python).

 See the PDF 1.7 specification, Section 8.3.3 ("Common Transformations").

 Note:
 * The PDF format uses row vectors.
 * Transformations operate from the origin of the coordinate system.

 Attributes:
 a (float): Matrix value [0][0].
 b (float): Matrix value [0][1].
 c (float): Matrix value [1][0].
 d (float): Matrix value [1][1].
 e (float): Matrix value [2][0] (X translation).
 f (float): Matrix value [2][1] (Y translation).
 """

 # The effect of applying the matrix on a vector (x, y) is (ax+cy+e, bx+dy+f)

 def __init__(self, a=1, b=0, c=0, d=1, e=0, f=0):
 self.set(a, b, c, d, e, f)

 def __eq__(self, matrix):
 if type(self) is not type(matrix):
 return False
 return (self.get() == matrix.get())

 def __repr__(self):
 return "PdfMatrix%s" % (self.get(),)

 def get(self):
 """
 Get the matrix as tuple of the form (a, b, c, d, e, f).
 """
 return (self.a, self.b, self.c, self.d, self.e, self.f)

 def set(self, a, b, c, d, e, f):
 """
 Set the matrix values.
 """
 self.a = a
 self.b = b
 self.c = c
 self.d = d
 self.e = e
 self.f = f

 def copy(self):
 """
 Returns:
 An independent copy of the matrix.
 """
 return PdfMatrix(*self.get())

 @classmethod
 def from_pdfium(cls, fs_matrix):
 """
 Load a :class:`.PdfMatrix` from a raw :class:`FS_MATRIX` object.
 """
 return PdfMatrix(
 fs_matrix.a,
 fs_matrix.b,
 fs_matrix.c,
 fs_matrix.d,
 fs_matrix.e,
 fs_matrix.f,
)

 def to_pdfium(self):
 """
 Convert the matrix to a raw :class:`FS_MATRIX` object.
 """
 return pdfium.FS_MATRIX(*self.get())

 def multiply(self, other):
 """
 Multiply this matrix by another :class:`.PdfMatrix`, to concatenate transformations.
 """
 # M1 x M2 (self x other)
 # (a1, b1, 0) (a2, b2, 0) (a1a2+b1c2, a1b2+b1d2, 0)
 # (c1, d1, 0) x (c2, d2, 0) = (c1a2+d1c2, c1b2+d1d2, 0)
 # (e1, f1, 1) (e2, f2, 0) (e1a2+f1c2+e2, e1b2+f1d2+f2, 1)
 new_matrix = (
 self.a*other.a + self.b*other.c, # a
 self.a*other.b + self.b*other.d, # b
 self.c*other.a + self.d*other.c, # c
 self.c*other.b + self.d*other.d, # d
 self.e*other.a + self.f*other.c + other.e, # e
 self.e*other.b + self.f*other.d + other.f, # f
)
 self.set(*new_matrix)

 def translate(self, x, y):
 """
 Parameters:
 x (float): Horizontal shift (<0: left, >0: right).
 y (float): Vertical shift.
 """
 # same as self.multiply(PdfMatrix(1, 0, 0, 1, x, y))
 self.e += x
 self.f += y

 def scale(self, x, y):
 """
 Parameters:
 x (float): A factor to scale the X axis (<1: compress, >1: stretch).
 y (float): A factor to scale the Y axis.
 """
 # same as a*=x, b*=y, c*=x, d*=y, e*=x, f*=y
 self.multiply(PdfMatrix(x, 0, 0, y))

 def rotate(self, angle):
 """
 Parameters:
 angle (float): Clockwise angle in degrees to rotate the matrix.
 """
 # row vectors -> b = -s leads to clockwise rotation indeed
 angle = (angle/180) * math.pi # arc measure
 c, s = math.cos(angle), math.sin(angle)
 self.multiply(PdfMatrix(c, -s, s, c))

 def mirror(self, vertical, horizontal):
 """
 Parameters:
 vertical (bool): Whether to mirror at the Y axis.
 horizontal (bool): Whether to mirror at the X axis.
 """
 s_x = (-1 if vertical else 1)
 s_y = (-1 if horizontal else 1)
 self.scale(s_x, s_y)

 def skew(self, x_angle, y_angle):
 """
 Parameters:
 x_angle (float): Inner angle in degrees to skew the X axis.
 y_angle (float): Inner angle in degrees to skew the Y axis.
 """
 tan_a = math.tan((x_angle/180) * math.pi)
 tan_b = math.tan((y_angle/180) * math.pi)
 self.multiply(PdfMatrix(1, tan_a, tan_b, 1))

pypdfium2-3.4.0/src/pypdfium2/_helpers/misc.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import enum
import ctypes
import pypdfium2._pypdfium as pdfium

class PdfiumError (RuntimeError):
 """ An exception from the PDFium library, detected by function return code. """
 pass

class FileAccess (enum.Enum): # FIXME ambiguous name?
 """
 Different ways how files can be loaded.

 .. list-table:: Overview of file access modes
 :header-rows: 1
 :widths: auto

 * - Mode
 - PDFium loader
 - Comment
 * - :attr:`.NATIVE`
 - :func:`.FPDF_LoadDocument`
 - File access managed by PDFium in C/C++.
 * - :attr:`.BUFFER`
 - :func:`.FPDF_LoadCustomDocument`
 - Data read incrementally from Python file buffer.
 * - :attr:`.BYTES`
 - :func:`.FPDF_LoadMemDocument64`
 - Data loaded into memory and passed to PDFium at once.
 """
 NATIVE = 0
 BUFFER = 1
 BYTES = 2

class OptimiseMode (enum.Enum):
 """ Modes defining how page rendering shall be optimised. """
 NONE = 0 #: No optimisation.
 LCD_DISPLAY = 1 #: Optimise for LCD displays (via subpixel rendering).
 PRINTING = 2 #: Optimise for printing.

class OutlineItem:
 """
 Class to store information about an entry in the table of contents ("bookmark").

 Parameters:
 level (int):
 Number of parent items.
 title (str):
 String of the bookmark.
 is_closed (bool):
 :data:`True` if child items shall be collapsed by default.
 :data:`False` if they shall be expanded by default.
 :data:`None` if the item has no descendants (i. e. *n_kids* == 0).
 n_kids (int):
 Number of child items (>= 0).
 page_index (int | None):
 Zero-based index of the page the bookmark points to.
 May be :data:`None` if the bookmark has no target page (or it could not be determined).
 view_mode (int):
 A view mode constant (:data:`PDFDEST_VIEW_*`) defining how the coordinates of *view_pos* shall be interpreted.
 view_pos (typing.Sequence[float]):
 Target position on the page the viewport should jump to when the bookmark is clicked.
 It is a sequence of :class:`float` values in PDF canvas units.
 Depending on *view_mode*, it can contain between 0 and 4 coordinates.
 """

 def __init__(
 self,
 level,
 title,
 is_closed,
 n_kids,
 page_index,
 view_mode,
 view_pos,
):
 self.level = level
 self.title = title
 self.is_closed = is_closed
 self.n_kids = n_kids
 self.page_index = page_index
 self.view_mode = view_mode
 self.view_pos = view_pos

def colour_tohex(colour, rev_byteorder):
 """
 Convert an RGBA colour specified by 4 integers ranging from 0 to 255 to a single 32-bit integer as required by PDFium.
 If using regular byte order, the output format will be ARGB. If using reversed byte order, it will be ABGR.
 """

 if len(colour) != 4:
 raise ValueError("Colour must consist of exactly 4 values.")
 if not all(0 <= c <= 255 for c in colour):
 raise ValueError("Colour value exceeds boundaries.")

 r, g, b, a = colour

 # colour is interpreted differently with FPDF_REVERSE_BYTE_ORDER (perhaps inadvertently?)
 if rev_byteorder:
 channels = (a, b, g, r)
 else:
 channels = (a, r, g, b)

 c_colour = 0
 shift = 24
 for c in channels:
 c_colour |= c << shift
 shift -= 8

 return c_colour

def get_functype(struct, funcname):
 """
 Parameters:
 struct (ctypes.Structure): A structure (e. g. ``FPDF_FILEWRITE``).
 funcname (str): Name of the callback function to implement (e. g. ``WriteBlock``).
 Returns:
 A :func:`ctypes.CFUNCTYPE` instance to wrap the callback function.
 For some reason, this is not done automatically, although the information is present in the bindings file.
 This is a convenience function to retrieve the declaration.
 """
 return {k: v for k, v in struct._fields_}[funcname]

class _reader_class:

 def __init__(self, buffer):
 self._buffer = buffer

 def __call__(self, _, position, p_buf, size):
 c_buf = ctypes.cast(p_buf, ctypes.POINTER(ctypes.c_char * size))
 self._buffer.seek(position)
 self._buffer.readinto(c_buf.contents)
 return 1

def is_input_buffer(maybe_buffer):
 """
 Returns:
 bool: True if the given object implements the methods ``seek()``, ``tell()``, ``read()``, and ``readinto()``. False otherwise.
 """
 return all(callable(getattr(maybe_buffer, a, None)) for a in ("seek", "tell", "read", "readinto"))

def get_fileaccess(buffer):
 """
 Acquire an :class:`FPDF_FILEACCESS` interface for a byte buffer.

 Returns:
 (FPDF_FILEACCESS, tuple): PDFium file access interface, and accompanying data that needs to be held in memory.
 """

 buffer.seek(0, 2)
 file_len = buffer.tell()
 buffer.seek(0)

 fileaccess = pdfium.FPDF_FILEACCESS()
 fileaccess.m_FileLen = file_len
 fileaccess.m_GetBlock = get_functype(pdfium.FPDF_FILEACCESS, "m_GetBlock")(_reader_class(buffer))
 fileaccess.m_Param = None

 ld_data = (fileaccess.m_GetBlock, buffer)

 return fileaccess, ld_data

def _invert_dict(dictionary):
 """
 Returns:
 A copy of *dictionary*, with inverted keys and values.
 """
 return {v: k for k, v in dictionary.items()}

#: Get the number of channels for a PDFium pixel format constant.
BitmapTypeToNChannels = {
 pdfium.FPDFBitmap_Gray: 1,
 pdfium.FPDFBitmap_BGR: 3,
 pdfium.FPDFBitmap_BGRA: 4,
 pdfium.FPDFBitmap_BGRx: 4,
}

#: Convert a PDFium pixel format constant to string, assuming regular byte order.
BitmapTypeToStr = {
 pdfium.FPDFBitmap_Gray: "L",
 pdfium.FPDFBitmap_BGR: "BGR",
 pdfium.FPDFBitmap_BGRA: "BGRA",
 pdfium.FPDFBitmap_BGRx: "BGRX",
}

#: Convert a reverse pixel format string to its regular counterpart.
BitmapStrReverseToRegular = {
 "BGR": "RGB",
 "BGRA": "RGBA",
 "BGRX": "RGBX",
}

#: Convert a PDFium pixel format constant to string, assuming reversed byte order.
BitmapTypeToStrReverse = {
 pdfium.FPDFBitmap_Gray: "L",
 pdfium.FPDFBitmap_BGR: "RGB",
 pdfium.FPDFBitmap_BGRA: "RGBA",
 pdfium.FPDFBitmap_BGRx: "RGBX",
}

#: Convert a PDFium view mode constant (:attr:`PDFDEST_VIEW_*`) to string.
ViewmodeToStr = {
 pdfium.PDFDEST_VIEW_XYZ: "XYZ",
 pdfium.PDFDEST_VIEW_FIT: "Fit",
 pdfium.PDFDEST_VIEW_FITH: "FitH",
 pdfium.PDFDEST_VIEW_FITV: "FitV",
 pdfium.PDFDEST_VIEW_FITR: "FitR",
 pdfium.PDFDEST_VIEW_FITB: "FitB",
 pdfium.PDFDEST_VIEW_FITBH: "FitBH",
 pdfium.PDFDEST_VIEW_FITBV: "FitBV",
 pdfium.PDFDEST_VIEW_UNKNOWN_MODE: "?",
}

#: Convert a PDFium error constant (:attr:`FPDF_ERR_*`) to string.
ErrorToStr = {
 pdfium.FPDF_ERR_SUCCESS: "Success",
 pdfium.FPDF_ERR_UNKNOWN: "Unknown error",
 pdfium.FPDF_ERR_FILE: "File access error",
 pdfium.FPDF_ERR_FORMAT: "Data format error",
 pdfium.FPDF_ERR_PASSWORD: "Incorrect password error",
 pdfium.FPDF_ERR_SECURITY: "Unsupported security scheme error",
 pdfium.FPDF_ERR_PAGE: "Page not found or content error",
}

#: Convert a PDFium object type constant (:attr:`FPDF_PAGEOBJ_*`) to string.
ObjectTypeToStr = {
 pdfium.FPDF_PAGEOBJ_UNKNOWN: "unknown",
 pdfium.FPDF_PAGEOBJ_TEXT: "text",
 pdfium.FPDF_PAGEOBJ_PATH: "path",
 pdfium.FPDF_PAGEOBJ_IMAGE: "image",
 pdfium.FPDF_PAGEOBJ_SHADING: "shading",
 pdfium.FPDF_PAGEOBJ_FORM: "form",
}

#: Convert an object type string to a PDFium constant. Inversion of :data:`.ObjectTypeToStr`.
ObjectTypeToConst = _invert_dict(ObjectTypeToStr)

#: Convert a rotation value in degrees to a PDFium constant.
RotationToConst = {
 0: 0,
 90: 1,
 180: 2,
 270: 3,
}

#: Convert a PDFium rotation constant to a value in degrees. Inversion of :data:`.RotationToConst`.
RotationToDegrees = _invert_dict(RotationToConst)

pypdfium2-3.4.0/src/pypdfium2/_helpers/page.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import math
import ctypes
import weakref
import logging
from ctypes import c_float
import pypdfium2._pypdfium as pdfium
from pypdfium2._helpers.misc import (
 OptimiseMode,
 PdfiumError,
 get_functype,
 colour_tohex,
 RotationToConst,
 RotationToDegrees,
 BitmapTypeToStr,
 BitmapTypeToStrReverse,
)
from pypdfium2._helpers.pageobject import (
 PdfPageObject,
)
from pypdfium2._helpers.converters import (
 BitmapConvBase,
 BitmapConvAliases,
)
from pypdfium2._helpers.textpage import PdfTextPage

try:
 import uharfbuzz as harfbuzz
except ImportError:
 harfbuzz = None

logger = logging.getLogger(__name__)

class PdfPage (BitmapConvAliases):
 """
 Page helper class.

 Attributes:
 raw (FPDF_PAGE): The underlying PDFium page handle.
 pdf (PdfDocument): Reference to the document this page belongs to.
 """

 def __init__(self, raw, pdf):
 self.raw = raw
 self.pdf = pdf
 # if the form env of the parent document is initialised, we could call FORM_OnAfterLoadPage() here
 self._finalizer = weakref.finalize(
 self, self._static_close,
 self.raw, self.pdf,
)

 def _tree_closed(self):
 if self.raw is None:
 return True
 return self.pdf._tree_closed()

 @staticmethod
 def _static_close(raw, parent):
 # logger.debug("Closing page")
 if parent._tree_closed():
 logger.critical("Document closed before page (this is illegal). Document: %s" % parent)
 # if the form env of the parent document is initialised, we could call FORM_OnBeforeClosePage() here
 pdfium.FPDF_ClosePage(raw)

 def close(self):
 """
 Free memory by applying the finalizer for the underlying PDFium page.
 Please refer to the generic note on ``close()`` methods for details.
 """
 if self.raw is None:
 logger.warning("Duplicate close call suppressed on page %s" % self)
 return
 self._finalizer()
 self.raw = None

 def get_width(self):
 """
 Returns:
 float: Page width (horizontal size).
 """
 return pdfium.FPDF_GetPageWidthF(self.raw)

 def get_height(self):
 """
 Returns:
 float: Page height (vertical size).
 """
 return pdfium.FPDF_GetPageHeightF(self.raw)

 def get_size(self):
 """
 Returns:
 (float, float): Page width and height.
 """
 return (self.get_width(), self.get_height())

 def get_rotation(self):
 """
 Returns:
 int: Clockwise page rotation in degrees.
 """
 return RotationToDegrees[pdfium.FPDFPage_GetRotation(self.raw)]

 def set_rotation(self, rotation):
 """ Define the absolute, clockwise page rotation (0, 90, 180, or 270 degrees). """
 pdfium.FPDFPage_SetRotation(self.raw, RotationToConst[rotation])

 def _get_box(self, box_func, fallback_func):
 left, bottom, right, top = c_float(), c_float(), c_float(), c_float()
 success = box_func(self.raw, left, bottom, right, top)
 if not success:
 # TODO avoid repeated initialisation of c_float objects for fallback
 return fallback_func()
 return (left.value, bottom.value, right.value, top.value)

 def _set_box(self, box_func, l, b, r, t):
 if not all(isinstance(val, (int, float)) for val in (l, b, r, t)):
 raise ValueError("Box values must be int or float.")
 box_func(self.raw, l, b, r, t)

 def get_mediabox(self):
 """
 Returns:
 (float, float, float, float):
 The page MediaBox in PDF canvas units, consisting of four coordinates (usually x0, y0, x1, y1).
 Falls back to ANSI A (0, 0, 612, 792) in case MediaBox is not defined.
 """
 return self._get_box(pdfium.FPDFPage_GetMediaBox, lambda: (0, 0, 612, 792))

 def set_mediabox(self, l, b, r, t):
 """
 Set the page's MediaBox by passing four :class:`float` coordinates (usually x0, y0, x1, y1).
 """
 self._set_box(pdfium.FPDFPage_SetMediaBox, l, b, r, t)

 def get_cropbox(self):
 """
 Returns:
 The page's CropBox (If not defined, falls back to MediaBox).
 """
 return self._get_box(pdfium.FPDFPage_GetCropBox, self.get_mediabox)

 def set_cropbox(self, l, b, r, t):
 """ Set the page's CropBox. """
 self._set_box(pdfium.FPDFPage_SetCropBox, l, b, r, t)

 def get_bleedbox(self):
 """
 Returns:
 The page's BleedBox (If not defined, falls back to CropBox).
 """
 return self._get_box(pdfium.FPDFPage_GetBleedBox, self.get_cropbox)

 def set_bleedbox(self, l, b, r, t):
 """ Set the page's BleedBox. """
 self._set_box(pdfium.FPDFPage_SetBleedBox, l, b, r, t)

 def get_trimbox(self):
 """
 Returns:
 The page's TrimBox (If not defined, falls back to CropBox).
 """
 return self._get_box(pdfium.FPDFPage_GetTrimBox, self.get_cropbox)

 def set_trimbox(self, l, b, r, t):
 """ Set the page's TrimBox. """
 self._set_box(pdfium.FPDFPage_SetTrimBox, l, b, r, t)

 def get_artbox(self):
 """
 Returns:
 The page's ArtBox (If not defined, falls back to CropBox).
 """
 return self._get_box(pdfium.FPDFPage_GetArtBox, self.get_cropbox)

 def set_artbox(self, l, b, r, t):
 """ Set the page's ArtBox. """
 self._set_box(pdfium.FPDFPage_SetArtBox, l, b, r, t)

 def get_textpage(self):
 """
 Returns:
 PdfTextPage: The text page that corresponds to this page.
 """
 textpage = pdfium.FPDFText_LoadPage(self.raw)
 if not textpage:
 raise PdfiumError("Loading the text page failed")
 return PdfTextPage(textpage, self)

 def insert_object(self, pageobj):
 """
 Insert a page object into the page.

 Position and form are defined by the object's matrix.
 If it is the identity matrix, the object will appear as-is on the bottom left corner of the page.

 The page object must not belong to a page yet. If it belongs to a PDF, this page must be part of the PDF.

 You may want to call :meth:`.generate_content` once you finished adding new content to the page.

 Parameters:
 pageobj (PdfPageObject): The page object to insert.
 """

 if pageobj.page is not None:
 raise ValueError("The pageobject you attempted to insert already belongs to a page.")
 if (pageobj.pdf is not None) and (pageobj.pdf is not self.pdf):
 raise ValueError("The pageobject you attempted to insert belongs to a different PDF.")

 pdfium.FPDFPage_InsertObject(self.raw, pageobj.raw)

 pageobj.page = self
 pageobj.pdf = self.pdf

 def generate_content(self):
 """
 Generate added page content.
 This function shall be called to apply changes before saving the document or reloading the page.
 """
 success = pdfium.FPDFPage_GenerateContent(self.raw)
 if not success:
 raise PdfiumError("Generating page content failed.")

 def insert_text(
 self,
 text,
 pos_x,
 pos_y,
 font_size,
 hb_font,
 pdf_font,
):
 """
 Requires :mod:`uharfbuzz`

 Insert text into the page at a specified position, using the writing system's ligature.
 This function supports Asian scripts such as Hindi.

 You may want to call :meth:`.generate_content` once you finished adding new content to the page.

 Parameters:
 text (str):
 The message to insert.
 pos_x (float):
 Distance from left border to first character.
 pos_y (float):
 Distance from bottom border to first character.
 font_size (float):
 Font size the text shall have.
 hb_font (HarfbuzzFont):
 Harfbuzz font data.
 pdf_font (PdfFont):
 PDF font data.
 """

 # User-contributed code
 # SPDX-FileCopyrightText: 2022 Anurag Bansal <anurag.bansal.585@gmail.com>

 hb_buffer = harfbuzz.Buffer()
 hb_buffer.add_str(text)
 hb_buffer.guess_segment_properties()
 hb_features = {"kern": True, "liga": True}
 harfbuzz.shape(hb_font.font, hb_buffer, hb_features)

 start_point = pos_x
 for info, pos in zip(hb_buffer.glyph_infos, hb_buffer.glyph_positions):
 pdf_textobj = pdfium.FPDFPageObj_CreateTextObj(self.pdf.raw, pdf_font.raw, font_size)
 pdfium.FPDFText_SetCharcodes(pdf_textobj, ctypes.c_uint32(info.codepoint), 1)
 pdfium.FPDFPageObj_Transform(
 pdf_textobj,
 1, 0, 0, 1,
 start_point - (pos.x_offset / hb_font.scale) * font_size,
 pos_y,
)
 pdfium.FPDFPage_InsertObject(self.raw, pdf_textobj)
 start_point += (pos.x_advance / hb_font.scale) * font_size

 def get_objects(self, max_depth=2, form=None, level=0):
 """
 Iterate through the page objects on this page.

 Parameters:
 max_depth (int):
 Maximum recursion depth to consider when descending into Form XObjects.

 Yields:
 :class:`.PdfPageObject`: The page object.
 """

 if form is None:
 count_objects = pdfium.FPDFPage_CountObjects
 get_object = pdfium.FPDFPage_GetObject
 parent = self.raw
 else:
 count_objects = pdfium.FPDFFormObj_CountObjects
 get_object = pdfium.FPDFFormObj_GetObject
 parent = form

 n_objects = count_objects(parent)
 if n_objects == 0:
 return
 elif n_objects < 0:
 raise PdfiumError("Failed to get number of page objects.")

 for i in range(n_objects):

 raw_obj = get_object(parent, i)
 if raw_obj is None:
 raise PdfiumError("Failed to get page object.")

 type = pdfium.FPDFPageObj_GetType(raw_obj)
 yield PdfPageObject(
 raw = raw_obj,
 type = type,
 page = self,
 pdf = self.pdf,
 level = level,
)

 if level < max_depth-1 and type == pdfium.FPDF_PAGEOBJ_FORM:
 yield from self.get_objects(
 max_depth = max_depth,
 form = raw_obj,
 level = level + 1,
)

 def render_to(self, converter, **renderer_kws):
 """
 Rasterise a page to a specific output format.

 Parameters:
 converter (BitmapConvBase | typing.Callable):
 A translator to convert the output of :meth:`.render_base`. See :class:`.BitmapConv` for a set of built-in converters.
 renderer_kws (dict):
 Keyword arguments to the renderer.

 Returns:
 typing.Any: Converter-specific result.

 Examples:

 .. code-block:: python

 # convert to a NumPy array
 array, cl_format = render_to(BitmapConv.numpy_ndarray, ...)
 # passing an initialised converter without arguments is equivalent
 array, cl_format = render_to(BitmapConv.numpy_ndarray(), ...)

 # convert to a PIL image (with default settings)
 image = render_to(BitmapConv.pil_image, ...)

 # convert to PIL image (with specific settings)
 image = render_to(BitmapConv.pil_image(prefer_la=True), ...)

 # convert to bytes using the special "any" converter factory
 data, cl_format, size = render_to(BitmapConv.any(bytes), ...)
 """

 args = (self.render_base(**renderer_kws), renderer_kws)
 if isinstance(converter, BitmapConvBase):
 return converter.run(*args, *converter.args, **converter.kwargs)
 elif isinstance(converter, type) and issubclass(converter, BitmapConvBase):
 return converter().run(*args)
 elif callable(converter):
 return converter(*args)
 else:
 raise ValueError("Converter must be an instance or subclass of BitmapConvBase, or a callable, but %s was given." % converter)

 def render_base(
 self,
 scale = 1,
 rotation = 0,
 crop = (0, 0, 0, 0),
 greyscale = False,
 fill_colour = (255, 255, 255, 255),
 colour_scheme = None,
 optimise_mode = OptimiseMode.NONE,
 draw_annots = True,
 draw_forms = True,
 no_smoothtext = False,
 no_smoothimage = False,
 no_smoothpath = False,
 force_halftone = False,
 limit_image_cache = False,
 rev_byteorder = False,
 prefer_bgrx = False,
 force_bitmap_format = None,
 extra_flags = 0,
 allocator = None,
 memory_limit = 2**30,
):
 """
 Rasterise the page to a :class:`ctypes.c_ubyte` array. This is the base method for :meth:`.render_to`.

 Parameters:

 scale (float):
 A factor scaling the number of pixels that represent the length of 1 PDF canvas unit (usually 1/72 in). [1]_
 This defines the resolution of the image. To convert a DPI value to a scale factor, multiply it by the size of 1 canvas unit in inches.

 .. [1] Since PDF 1.6, pages may define a so-called user unit. In this case, 1 canvas unit is equivalent to ``user_unit * (1/72)`` inches. pypdfium2 currently does not take this into account.

 rotation (int):
 A rotation value in degrees (0, 90, 180, or 270), in addition to page rotation.

 crop (typing.Tuple[float, float, float, float]):
 Amount in PDF canvas units to cut off from page borders (left, bottom, right, top).
 Crop is applied after rotation.

 greyscale (bool):
 Whether to render in greyscale mode (no colours).

 fill_colour (typing.Tuple[int, int, int, int]):
 Colour the bitmap will be filled with before rendering.
 Shall be a list of values for red, green, blue and alpha, ranging from 0 to 255.
 For RGB, 0 will include nothing of the colour in question, while 255 will fully include it.
 For Alpha, 0 means full transparency, while 255 means no transparency.

 colour_scheme (ColourScheme | None):
 A custom colour scheme for rendering, defining fill and stroke colours for path and text objects.

 optimise_mode (OptimiseMode):
 How to optimise page rendering.

 draw_annots (bool):
 Whether to render page annotations.

 draw_forms (bool):
 Whether to render form fields.

 no_smoothtext (bool):
 Disable anti-aliasing of text. Implicitly wipes out :attr:`.OptimiseMode.LCD_DISPLAY`.

 no_smoothimage (bool):
 Disable anti-aliasing of images.

 no_smoothpath (bool):
 Disable anti-aliasing of paths.

 force_halftone (bool):
 Always use halftone for image stretching.

 limit_image_cache (bool):
 Limit image cache size.

 rev_byteorder (bool):
 By default, the output pixel format will be ``BGR(A/X)``.
 This option may be used to render with reversed byte order, leading to ``RGB(A/X)`` output instead.
 ``L`` is unaffected.

 prefer_bgrx (bool):
 Request the use of a four-channel pixel format for coloured output, even if rendering without transparency.
 (i. e. ``BGRX``/``RGBX`` rather than ``BGR``/``RGB``).

 force_bitmap_format (int | None):
 If given, override the automatic pixel format selection and enforce the use of a specific format.
 May be one of the :attr:`FPDFBitmap_*` constants, except :attr:`FPDFBitmap_Unknown`.
 For instance, this may be used to render in greyscale mode while using ``BGR`` as output format (default choice would be ``L``).

 extra_flags (int):
 Additional PDFium rendering flags. Multiple flags may be combined with bitwise OR (``|`` operator).

 allocator (typing.Callable | None):
 A function to provide a custom ctypes buffer. It is called with the required buffer size in bytes.
 If not given, a new :class:`ctypes.c_ubyte` array is allocated by Python (this simplify memory management, as opposed to allocation by PDFium).

 memory_limit (int | None):
 Maximum number of bytes that may be allocated (defaults to 1 GiB rsp. 2^30 bytes).
 If the limit would be exceeded, a :exc:`RuntimeError` is raised.
 If :data:`None` or 0, this function may allocate arbitrary amounts of memory as far as Python and the OS permit.

 Returns:
 (ctypes array, str, (int, int)): Bitmap data, colour format, and image size.
 The colour format may be ``BGR``/``RGB``, ``BGRA``/``RGBA``, ``BGRX``/``RGBX``, or ``L``, depending on the parameters *colour*, *greyscale*, *rev_byteorder* and *prefer_bgrx*.
 Image size is given in pixels as a tuple of width and height.
 """

 if force_bitmap_format in (None, pdfium.FPDFBitmap_Unknown):
 cl_pdfium = _auto_bitmap_format(fill_colour, greyscale, prefer_bgrx)
 else:
 cl_pdfium = force_bitmap_format

 if cl_pdfium == pdfium.FPDFBitmap_Gray:
 rev_byteorder = False

 if rev_byteorder:
 cl_string = BitmapTypeToStrReverse[cl_pdfium]
 else:
 cl_string = BitmapTypeToStr[cl_pdfium]

 c_fill_colour = colour_tohex(fill_colour, rev_byteorder)
 n_channels = len(cl_string)

 src_width = math.ceil(self.get_width() * scale)
 src_height = math.ceil(self.get_height() * scale)
 if rotation in (90, 270):
 src_width, src_height = src_height, src_width

 crop = [math.ceil(c*scale) for c in crop]
 width = src_width - crop[0] - crop[2]
 height = src_height - crop[1] - crop[3]
 if any(d < 1 for d in (width, height)):
 raise ValueError("Crop exceeds page dimensions (in px): width %s, height %s, crop %s" % (src_width, src_height, crop))

 stride = width * n_channels
 n_bytes = stride * height
 if memory_limit and n_bytes > memory_limit:
 raise RuntimeError(
 "Planned allocation of %s bytes exceeds the defined limit of %s. " % (n_bytes, memory_limit) +
 "Consider adjusting the *memory_limit* parameter."
)

 if allocator is None:
 buffer = (ctypes.c_ubyte * n_bytes)()
 else:
 buffer = allocator(n_bytes)
 if ctypes.sizeof(buffer) < n_bytes:
 raise RuntimeError("Not enough bytes allocated (buffer length: %s, required bytes: %s)." % (ctypes.sizeof(buffer), n_bytes))

 bitmap = pdfium.FPDFBitmap_CreateEx(width, height, cl_pdfium, buffer, stride)
 pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, c_fill_colour)

 render_flags = extra_flags
 if greyscale:
 render_flags |= pdfium.FPDF_GRAYSCALE
 if draw_annots:
 render_flags |= pdfium.FPDF_ANNOT
 if no_smoothtext:
 render_flags |= pdfium.FPDF_RENDER_NO_SMOOTHTEXT
 if no_smoothimage:
 render_flags |= pdfium.FPDF_RENDER_NO_SMOOTHIMAGE
 if no_smoothpath:
 render_flags |= pdfium.FPDF_RENDER_NO_SMOOTHPATH
 if force_halftone:
 render_flags |= pdfium.FPDF_RENDER_FORCEHALFTONE
 if limit_image_cache:
 render_flags |= pdfium.FPDF_RENDER_LIMITEDIMAGECACHE
 if rev_byteorder:
 render_flags |= pdfium.FPDF_REVERSE_BYTE_ORDER
 if colour_scheme and colour_scheme.fill_to_stroke:
 render_flags |= pdfium.FPDF_CONVERT_FILL_TO_STROKE

 if optimise_mode is OptimiseMode.NONE:
 pass
 elif optimise_mode is OptimiseMode.LCD_DISPLAY:
 render_flags |= pdfium.FPDF_LCD_TEXT
 elif optimise_mode is OptimiseMode.PRINTING:
 render_flags |= pdfium.FPDF_PRINTING
 else:
 raise ValueError("Invalid optimise_mode %s" % optimise_mode)

 render_args = (bitmap, self.raw, -crop[0], -crop[3], src_width, src_height, RotationToConst[rotation], render_flags)

 if colour_scheme is None:
 pdfium.FPDF_RenderPageBitmap(*render_args)
 else:

 ifsdk_pause = pdfium.IFSDK_PAUSE()
 ifsdk_pause.version = 1
 ifsdk_pause.NeedToPauseNow = get_functype(pdfium.IFSDK_PAUSE, "NeedToPauseNow")(lambda _: False)

 fpdf_cs = colour_scheme.convert(rev_byteorder)
 status = pdfium.FPDF_RenderPageBitmapWithColorScheme_Start(*render_args, fpdf_cs, ifsdk_pause)

 assert status == pdfium.FPDF_RENDER_DONE
 pdfium.FPDF_RenderPage_Close(self.raw)

 if draw_forms:
 form_type = pdfium.FPDF_GetFormType(self.pdf.raw) # consider moving to document ?
 if form_type != pdfium.FORMTYPE_NONE:
 form_env = self.pdf.init_formenv()
 pdfium.FPDF_FFLDraw(form_env, *render_args)

 return buffer, cl_string, (width, height)

def _auto_bitmap_format(fill_colour, greyscale, prefer_bgrx):
 # no need to take alpha values of colour_scheme into account (drawings are additive)
 if (fill_colour[3] < 255):
 return pdfium.FPDFBitmap_BGRA
 elif greyscale:
 return pdfium.FPDFBitmap_Gray
 elif prefer_bgrx:
 return pdfium.FPDFBitmap_BGRx
 else:
 return pdfium.FPDFBitmap_BGR

class ColourScheme:
 """
 Rendering colour scheme.
 Each colour shall be provided as a list of values for red, green, blue and alpha, ranging from 0 to 255.
 """

 def __init__(
 self,
 path_fill,
 path_stroke,
 text_fill,
 text_stroke,
 fill_to_stroke = False,
):
 self.colours = dict(
 path_fill_color = path_fill,
 path_stroke_color = path_stroke,
 text_fill_color = text_fill,
 text_stroke_color = text_stroke,
)
 self.fill_to_stroke = fill_to_stroke

 def convert(self, rev_byteorder):
 """
 Returns:
 The colour scheme as :class:`FPDF_COLORSCHEME` object.
 """
 fpdf_cs = pdfium.FPDF_COLORSCHEME()
 for key, value in self.colours.items():
 setattr(fpdf_cs, key, colour_tohex(value, rev_byteorder))
 return fpdf_cs

pypdfium2-3.4.0/src/pypdfium2/_helpers/pageobject.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from ctypes import c_float
import pypdfium2._pypdfium as pdfium
from pypdfium2._helpers.misc import (
 PdfiumError,
 get_fileaccess,
 is_input_buffer,
)
from pypdfium2._helpers.matrix import PdfMatrix

class PdfPageObject:
 """
 Page object helper class.

 When constructing a :class:`.PdfPageObject`, a more specific subclass may be returned instead,
 depending on :attr:`.type` (e. g. :class:`.PdfImageObject`).

 Note:
 Page objects are automatically freed by PDFium with the page they belong to.
 If a page object ends up without associated page, you may want to call ``FPDFPageObj_Destroy(pageobj.raw)``.

 Attributes:
 raw (FPDF_PAGEOBJECT):
 The underlying PDFium pageobject handle.
 type (int):
 The type of the object (:data:`FPDF_PAGEOBJ_*`), at the time of initialisation.
 page (PdfPage):
 Reference to the page this pageobject belongs to. May be :data:`None` if the object does not belong to a page yet.
 pdf (PdfDocument):
 Reference to the document this pageobject belongs to. May be :data:`None` if the object does not belong to a document yet.
 This attribute is always set if :attr:`.page` is set.
 level (int):
 Nesting level signifying the number of parent Form XObjects, at the time of initialisation.
 Zero if the object is not nested in a Form XObject.
 """

 def __new__(cls, raw, type, *args, **kwargs):
 # Allow to create a more specific helper depending on the type
 if type == pdfium.FPDF_PAGEOBJ_IMAGE:
 instance = super().__new__(PdfImageObject)
 else:
 instance = super().__new__(PdfPageObject)
 instance.__init__(raw, type, *args, **kwargs)
 return instance

 def __init__(self, raw, type, page=None, pdf=None, level=0):

 self.raw = raw
 self.type = type
 self.page = page
 self.pdf = pdf
 self.level = level

 if page is not None:
 if self.pdf is None:
 self.pdf = page.pdf
 elif self.pdf is not page.pdf:
 raise ValueError("*page* must belong to *pdf* when constructing a pageobject.")

 def get_pos(self):
 """
 Get the position of the object on the page.

 Returns:
 A tuple of four :class:`float` coordinates for left, bottom, right, and top.
 """
 if self.page is None:
 raise RuntimeError("Must not call get_pos() on a loose pageobject.")

 left, bottom, right, top = c_float(), c_float(), c_float(), c_float()
 success = pdfium.FPDFPageObj_GetBounds(self.raw, left, bottom, right, top)
 if not success:
 raise PdfiumError("Failed to locate pageobject.")

 return (left.value, bottom.value, right.value, top.value)

 def get_matrix(self):
 """
 Returns:
 PdfMatrix: The pageobject's current transform matrix.
 """
 fs_matrix = pdfium.FS_MATRIX()
 success = pdfium.FPDFPageObj_GetMatrix(self.raw, fs_matrix)
 if not success:
 raise PdfiumError("Failed to get matrix of pageobject.")
 return PdfMatrix.from_pdfium(fs_matrix)

 def set_matrix(self, matrix):
 """
 Define *matrix* as the pageobject's transform matrix.
 """
 if not isinstance(matrix, PdfMatrix):
 raise ValueError("*matrix* must be a PdfMatrix object.")
 success = pdfium.FPDFPageObj_SetMatrix(self.raw, matrix.to_pdfium())
 if not success:
 raise PdfiumError("Failed to set matrix of pageobject.")

 def transform(self, matrix):
 """
 Apply *matrix* on top of the pageobject's current transform matrix.
 """
 if not isinstance(matrix, PdfMatrix):
 raise ValueError("*matrix* must be a PdfMatrix object.")
 pdfium.FPDFPageObj_Transform(self.raw, *matrix.get())

class PdfImageObject (PdfPageObject):
 """
 Image object helper class (specific kind of page object).
 """

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 @classmethod
 def new(cls, pdf):
 """
 Parameters:
 pdf (PdfDocument): The document to which the new image object shall be added.
 Returns:
 PdfImageObject: Handle to a new, empty image.
 """
 return cls(
 pdfium.FPDFPageObj_NewImageObj(pdf.raw),
 pdfium.FPDF_PAGEOBJ_IMAGE,
 page = None,
 pdf = pdf,
)

 def load_jpeg(self, buffer, pages=None, inline=False, autoclose=True):
 """
 Load a JPEG into the image object.

 Position and size of the image are defined by its matrix.
 If the image is new, it will appear as a tiny square of 1x1 units on the bottom left corner of the page.
 Use :class:`.PdfMatrix` and :meth:`.set_matrix` to adjust the position.

 If replacing an image, the existing matrix will be preserved.
 If aspect ratios do not match, the new image will be squashed into the old image's boundaries.
 Modify the matrix manually if you wish to prevent this.

 Parameters:
 buffer (typing.BinaryIO):
 A readable byte buffer to access the JPEG data.
 pages (typing.Sequence[PdfPage] | None):
 If replacing an image, pass in a list of loaded pages that might contain the it, to update their cache.
 (The same image may be shown multiple times in different transforms across a PDF.)
 If the image object handle is new, this parameter may be :data:`None` or an empty list.
 inline (bool):
 Whether to load the image content into memory.
 If :data:`True`, the buffer may be closed after this function call.
 Otherwise, the buffer needs to remain open until the PDF is closed.
 autoclose (bool):
 Whether the buffer should be automatically closed once it is not needed anymore.

 Returns:
 (int, int): Image width and height in pixels.
 """

 if not is_input_buffer(buffer):
 raise ValueError("This is not a compatible buffer: %s" % buffer)

 fileaccess, ld_data = get_fileaccess(buffer)

 if inline:
 loader = pdfium.FPDFImageObj_LoadJpegFileInline
 else:
 loader = pdfium.FPDFImageObj_LoadJpegFile

 c_pages = None
 page_count = 0
 if pages:
 page_count = len(pages)
 c_pages = (pdfium.FPDF_PAGE * page_count)(*[p.raw for p in pages])

 success = loader(c_pages, page_count, self.raw, fileaccess)
 if not success:
 raise PdfiumError("Loading JPEG into image object failed.")

 if inline:
 id(ld_data)
 if autoclose:
 buffer.close()
 else:
 self.pdf._data_holder += ld_data
 if autoclose:
 self.pdf._data_closer.append(buffer)

 metadata = self.get_info()
 return (metadata.width, metadata.height)

 def get_info(self):
 """
 Returns:
 FPDF_IMAGEOBJ_METADATA:
 A structure containing information about the image object, including dimensions, DPI, bits per pixel, and colour space.
 If the image does not belong to a page yet, some values will be unset (0).
 """

 raw_page = (self.page.raw if self.page else None)

 metadata = pdfium.FPDF_IMAGEOBJ_METADATA()
 success = pdfium.FPDFImageObj_GetImageMetadata(self.raw, raw_page, metadata)
 if not success:
 raise PdfiumError("Failed to retrieve image metadata.")

 return metadata

pypdfium2-3.4.0/src/pypdfium2/_helpers/textpage.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import ctypes
import weakref
import logging
from ctypes import c_double
import pypdfium2._pypdfium as pdfium
from pypdfium2._helpers.misc import PdfiumError

logger = logging.getLogger(__name__)

class PdfTextPage:
 """
 Text page helper class.

 Attributes:
 raw (FPDF_TEXTPAGE): The underlying PDFium textpage handle.
 page (PdfPage): Reference to the page this textpage belongs to.
 n_chars (int): Number of characters on the page, at the time of initialisation.
 """

 def __init__(self, raw, page):
 self.raw = raw
 self.page = page
 self._finalizer = weakref.finalize(
 self, self._static_close,
 self.raw, self.page,
)
 self.n_chars = pdfium.FPDFText_CountChars(self.raw)

 def _tree_closed(self):
 if self.raw is None:
 return True
 return self.page._tree_closed()

 @staticmethod
 def _static_close(raw, parent):
 # logger.debug("Closing text page")
 if parent._tree_closed():
 logger.critical("Some parent closed before text page (this is illegal). Direct parent: %s" % parent)
 pdfium.FPDFText_ClosePage(raw)

 def close(self):
 """
 Free memory by applying the finalizer for the underlying PDFium text page.
 Please refer to the generic note on ``close()`` methods for details.
 """
 if self.raw is None:
 logger.warning("Duplicate close call suppressed on text page %s" % self)
 return
 self._finalizer()
 self.raw = None

 def count_chars(self):
 """
 Deprecated alias for :attr:`.n_chars`. Will be removed with the next major release.
 """
 return self.n_chars

 @staticmethod
 def _check_span(n_chars, index, count):
 if not (0 <= index < index+count <= n_chars):
 raise ValueError("Character span is out of bounds.")

 def get_text_range(self, index=0, count=0, errors="ignore"):
 """
 Extract text from a given range.

 See `this benchmark <https://github.com/py-pdf/benchmarks>`_ for a performance and quality comparison with other tools.

 Parameters:
 index (int): Index of the first character to include.
 count (int): Number of characters to be extracted. If 0, it defaults to the number of characters on the page minus *index*.
 errors (str): Error treatment when decoding the data (see :meth:`bytes.decode`).
 Returns:
 str: The text in the range in question, or an empty string if no text was found.
 """

 if self.n_chars == 0:
 return ""
 if count == 0:
 count = self.n_chars - index
 self._check_span(self.n_chars, index, count)

 n_bytes = count * 2
 buffer = ctypes.create_string_buffer(n_bytes+2)
 buffer_ptr = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_ushort))
 pdfium.FPDFText_GetText(self.raw, index, count, buffer_ptr)
 return buffer.raw[:n_bytes].decode("utf-16-le", errors=errors)

 def get_text_bounded(self, left=None, bottom=None, right=None, top=None, errors="ignore"):
 """
 Extract text from given boundaries in PDF coordinates.
 If a parameter is :data:`None`, it defaults to the corresponding CropBox value.

 Parameters:
 errors (str): Error treatment when decoding the data (see :meth:`bytes.decode`).
 Returns:
 str: The text on the page area in question, or an empty string if no text was found.
 """

 if self.n_chars == 0:
 return ""

 cropbox = self.page.get_cropbox()
 if left is None:
 left = cropbox[0]
 if bottom is None:
 bottom = cropbox[1]
 if right is None:
 right = cropbox[2]
 if top is None:
 top = cropbox[3]

 args = (self.raw, left, top, right, bottom)
 n_chars = pdfium.FPDFText_GetBoundedText(*args, None, 0)
 if n_chars <= 0:
 return ""

 n_bytes = 2 * n_chars
 buffer = ctypes.create_string_buffer(n_bytes)
 buffer_ptr = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_ushort))
 pdfium.FPDFText_GetBoundedText(*args, buffer_ptr, n_chars)
 return buffer.raw.decode("utf-16-le", errors=errors)

 def get_text(self, *args, **kwargs):
 """
 Deprecated alias for :meth:`.get_text_bounded`. Will be removed with the next major release.
 """
 return self.get_text_bounded(*args, **kwargs)

 def count_rects(self, index=0, count=0):
 """
 Parameters:
 index (int): Character index at which to start.
 count (int): Character count to consider (defaults to :meth:`.count_chars`).
 Returns:
 int: The number of text rectangles on the page.
 """

 if self.n_chars == 0:
 return 0
 if count == 0:
 count = self.n_chars
 self._check_span(self.n_chars, index, count)

 return pdfium.FPDFText_CountRects(self.raw, index, count)

 def get_index(self, x, y, x_tol, y_tol):
 """
 Get the character index for a given position.

 Parameters:
 x (float): Horizontal position (in PDF canvas units).
 y (float): Vertical position.
 x_tol (float): Horizontal tolerance.
 y_tol (float): Vertical tolerance.
 Returns:
 int | None: The index of the character at or nearby the point (x, y).
 May be :data:`None` if there is no character or an error occurred.
 """
 index = pdfium.FPDFText_GetCharIndexAtPos(self.raw, x, y, x_tol, y_tol)
 if index < 0:
 return None
 return index

 def get_charbox(self, index, loose=False):
 """
 Get the bounding box of a single character.

 Parameters:
 index (int):
 Slot of the character to work with, in the page's character array.
 loose (bool):
 If True, the entire glyph bounds will be covered, without taking the actual glyph shape into account.
 Returns:
 (float, float, float, float):
 Values for left, bottom, right and top in PDF canvas units.
 """

 if not 0 <= index < self.n_chars:
 raise ValueError("Character index %s is out of bounds. The maximum index is %d." % (index, self.n_chars-1))

 if loose:
 rect = pdfium.FS_RECTF()
 success = pdfium.FPDFText_GetLooseCharBox(self.raw, index, rect)
 left, bottom, right, top = rect.left, rect.bottom, rect.right, rect.top
 else:
 left, bottom, right, top = c_double(), c_double(), c_double(), c_double()
 success = pdfium.FPDFText_GetCharBox(self.raw, index, left, right, bottom, top)
 left, bottom, right, top = left.value, bottom.value, right.value, top.value

 if not success:
 raise PdfiumError("Retrieving the char box failed")

 return left, bottom, right, top

 def get_rectboxes(self, index=0, count=0):
 """
 Get the bounding boxes of text rectangles in the requested scope.

 Yields:
 Coordinates for left, bottom, right, and top (as :class:`float` values).
 """
 n_rects = self.count_rects(index, count)
 for index in range(n_rects):
 left, top, right, bottom = c_double(), c_double(), c_double(), c_double()
 pdfium.FPDFText_GetRect(self.raw, index, left, top, right, bottom)
 yield (left.value, bottom.value, right.value, top.value)

 def get_links(self):
 """
 Iterate through web links on the page.

 Yields:
 :class:`str`: A web link string.
 """

 links = pdfium.FPDFLink_LoadWebLinks(self.raw)
 n_links = pdfium.FPDFLink_CountWebLinks(links)

 for i in range(n_links):
 n_chars = pdfium.FPDFLink_GetURL(links, i, None, 0)
 n_bytes = n_chars * 2
 buffer = ctypes.create_string_buffer(n_bytes)
 buffer_ptr = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_ushort))
 pdfium.FPDFLink_GetURL(links, i, buffer_ptr, n_chars)
 yield buffer.raw[:n_bytes-2].decode("utf-16-le")

 pdfium.FPDFLink_CloseWebLinks(links)

 def search(self, text, index=0, match_case=False, match_whole_word=False):
 """
 Locate text on the page.

 Parameters:
 text (str):
 The string to search for.
 index (int):
 Character index at which to start searching.
 match_case (bool):
 If :data:`True`, the search will be case-specific (upper and lower letters treated as different characters).
 match_whole_word (bool):
 If :data:`True`, substring occurrences will be ignored (e. g. `cat` would not match `category`).
 Returns:
 PdfTextSearcher: A helper object to search text.
 """

 if len(text) == 0:
 raise ValueError("Text length must be >0.")

 flags = 0
 if match_case:
 flags |= pdfium.FPDF_MATCHCASE
 if match_whole_word:
 flags |= pdfium.FPDF_MATCHWHOLEWORD

 # assuming the pointer returned by ctypes.cast() keeps the casted object alive
 enc_text = (text + "\x00").encode("utf-16-le")
 enc_text_ptr = ctypes.cast(enc_text, ctypes.POINTER(ctypes.c_ushort))
 search = pdfium.FPDFText_FindStart(self.raw, enc_text_ptr, flags, index)
 return PdfTextSearcher(search, self)

class PdfTextSearcher:
 """
 Text searcher helper class.

 Attributes:
 raw (FPDF_SCHHANDLE): The underlying PDFium searcher handle.
 textpage (PdfTextPage): Reference to the textpage this searcher belongs to.
 """

 def __init__(self, raw, textpage):
 self.raw = raw
 self.textpage = textpage
 self._finalizer = weakref.finalize(
 self, self._static_close,
 self.raw, self.textpage,
)

 def _tree_closed(self):
 if self.raw is None:
 return True
 return self.textpage._tree_closed()

 @staticmethod
 def _static_close(raw, parent):
 # logger.debug("Closing text searcher")
 if parent._tree_closed():
 logger.critical("Some parent closed before text searcher (this is illegal). Direct parent: %s" % parent)
 pdfium.FPDFText_FindClose(raw)

 def close(self):
 """
 Free memory by applying the finalizer for the underlying PDFium text searcher.
 Please refer to the generic note on ``close()`` methods for details.
 """
 if self.raw is None:
 logger.warning("Duplicate close call suppressed on text searcher %s" % self)
 return
 self._finalizer()
 self.raw = None

 def _get_occurrence(self, find_func):
 found = find_func(self.raw)
 if not found:
 return None
 index = pdfium.FPDFText_GetSchResultIndex(self.raw)
 count = pdfium.FPDFText_GetSchCount(self.raw)
 return tuple([box for box in self.textpage.get_rectboxes(index, count)])

 def get_next(self):
 """
 Returns:
 typing.Sequence[typing.Tuple[float, float, float, float]]:
 A list of bounding boxes for the next occurrence, or :data:`None` if the last occurrence was passed.
 """
 return self._get_occurrence(pdfium.FPDFText_FindNext)

 def get_prev(self):
 """
 Returns:
 typing.Sequence[typing.Tuple[float, float, float, float]]:
 A list of bounding boxes for the previous occurrence (i. e. the one before the last valid occurrence),
 or :data:`None` if the first occurrence was passed.
 """
 return self._get_occurrence(pdfium.FPDFText_FindPrev)

pypdfium2-3.4.0/src/pypdfium2/_namespace.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

This namespace encompasses all public pypdfium2 members

from pypdfium2._pypdfium import *
from pypdfium2._helpers import *
from pypdfium2.version import *

pypdfium2-3.4.0/src/pypdfium2/version.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

__all__ = ["V_PYPDFIUM2", "V_LIBPDFIUM", "IS_SOURCEBUILD"]

V_MAJOR = 3
V_MINOR = 4
V_PATCH = 0
V_BETA = None

#: pypdfium2 version string.
V_PYPDFIUM2 = "%s.%s.%s" % (V_MAJOR, V_MINOR, V_PATCH)
if V_BETA is not None:
 V_PYPDFIUM2 += "b%s" % V_BETA

#: PDFium library version string (git tag or commit hash).
V_LIBPDFIUM = "5364"

#: Whether the included PDFium binary was built from source locally (:data:`True`) or downloaded from pdfium-binaries (:data:`False`).
IS_SOURCEBUILD = False

pypdfium2-3.4.0/src/pypdfium2.egg-info/PKG-INFO

Metadata-Version: 2.1
Name: pypdfium2
Version: 3.4.0
Summary: Python bindings to PDFium
Home-page: https://github.com/pypdfium2-team/pypdfium2
Author: pypdfium2-team
Author-email: geisserml@gmail.com
License: Apache-2.0 or BSD-3-Clause
Project-URL: Documentation, https://pypdfium2.readthedocs.io/
Project-URL: Source, https://github.com/pypdfium2-team/pypdfium2
Project-URL: Tracker, https://github.com/pypdfium2-team/pypdfium2/issues
Keywords: Python,PDF,PDFium
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: Education
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Multimedia :: Graphics
Classifier: Topic :: Software Development :: Libraries
Requires-Python: !=3.7.6,!=3.8.1,>=3.5
Description-Content-Type: text/markdown
Provides-Extra: converters
Provides-Extra: inserttext
Provides-Extra: autocomplete
Provides-Extra: test
Provides-Extra: docs
Provides-Extra: utilities
License-File: LICENSES/Apache-2.0.txt
License-File: LICENSES/BSD-3-Clause.txt
License-File: LICENSES/CC-BY-4.0.txt
License-File: LICENSES/LicenseRef-PdfiumThirdParty.txt
License-File: .reuse/dep5

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

pypdfium2

[pypdfium2](https://github.com/pypdfium2-team/pypdfium2) is an ABI-level Python 3 binding to [PDFium](https://pdfium.googlesource.com/pdfium/+/refs/heads/main), a powerful and liberal-licensed library for PDF creation, inspection, manipulation and rendering.

The project is built using [ctypesgen](https://github.com/ctypesgen/ctypesgen) and external [PDFium binaries](https://github.com/bblanchon/pdfium-binaries/).
Its custom setup infrastructure provides a seamless packaging and installation process. A wide range of platforms and Python versions is supported with wheel packages.

pypdfium2 includes helper classes to simplify common use cases, while the raw PDFium/ctypes API remains accessible as well.

Installation

* Installing the latest PyPI release (recommended)
  ```bash
  python3 -m pip install -U pypdfium2
  ```
 This will use a pre-built wheel package, the easiest way of installing pypdfium2.

* Installing from source

 * With an external PDFium binary
    ```bash
    # In the directory containing the source code of pypdfium2
    python3 -m pip install .
    ```

 * With a locally built PDFium binary
    ```bash
    python3 setupsrc/pl_setup/build_pdfium.py
    PDFIUM_BINARY="sourcebuild" python3 -m pip install .
    ```
 The build script provides a few options that can be listed by calling it with `--help`.
 Building PDFium may take a long time because it comes with its own toolchain and bundled dependencies, rather than using system-provided components.[^pdfium_buildsystem]

 [^pdfium_buildsystem]: Replacing PDFium's toolchain with a leaner and more elegant build system that is designed to run on any host platform constitutes a long-standing task. This would be required to be able to reliably perform a local source build when installing an `sdist` package. If you have the time and expertise to set up such a build system, please start a repository and inform us about it.

 The host system needs to provide `git` and `gcc`.
 Setup code also depends on the Python packages `ctypesgen`, `wheel`, and `setuptools`, which will usually get installed automatically.

 When installing from source, some additional options of the `pip` package manager may be relevant:
 * `-v`: Request more detailed logging output. Useful for debugging.
 * `-e`: Install in editable mode, so that the installation will point to the source tree. This way, changes directly take effect without needing to re-install. Recommended for development.
 * `--no-build-isolation`: Do not isolate the installation in a virtual environment and use system packages instead. In this case, dependencies specified in `pyproject.toml` (PEP 518) will not take effect and should be pre-installed by the caller. This is an indispensable option if wanting to run the installation with custom versions of setup dependencies.[^no_build_isolation]

 [^no_build_isolation]: Possible scenarios include using a locally modified version of a dependency, or supplying a dependency built from a certain commit (while not changing the code)

* Installing an unofficial distribution

 To the authors' knowledge, there currently are no other distributions of pypdfium2 apart from the official wheel releases on PyPI and GitHub.
 There is no conda package yet.
 So far, pypdfium2 has not been included in any operating system repositories. While we are interested in cooperation with external package maintainers to make this possible, the authors of this project have no control over and are not responsible for third-party distributions of pypdfium2.

Setup magic

As pypdfium2 uses external binaries, there are some special setup aspects to consider.

* Binaries are stored in platform-specific sub-directories of `data/`, along with bindings and version information.
* The environment variable `PDFIUM_BINARY` controls which binary to include on setup.
 * If unset or `auto`, the host platform is detected and a corresponding binary will be selected.
 Platform files are downloaded/generated automatically, if not present yet. By default, existing platform files will also be updated if a newer version is available, but this may be prevented by creating an empty file called `.lock_autoupdate.txt` in `data/`.
 * If set to a certain platform identifier, binaries for the requested platform will be used.[^platform_ids]
 In this case, platform files will not be downloaded/generated automatically, but need to be supplied beforehand using the `update_pdfium.py` script.
 * If set to `sourcebuild`, binaries will be taken from the location where the build script places its artefacts, assuming a prior run of `build_pdfium.py`.
 * If set to `none`, no platform-dependent files will be injected, so as to create a source distribution.

[^platform_ids]: This is mainly of internal interest for packaging, so that wheels can be crafted for any platform without access to a native host.

Runtime Dependencies

pypdfium2 does not have any mandatory runtime dependencies apart from Python and its standard library.

However, some optional support model features require additional packages:
* [`Pillow`](https://pillow.readthedocs.io/en/stable/) (module name `PIL`) is a highly pouplar imaging library for Python.
 pypdfium2 provides convenience methods to directly return PIL image objects when dealing with raster graphics.
* [`NumPy`](https://numpy.org/doc/stable/index.html) is a library for scientific computing. Similar to `Pillow`, pypdfium2 provides helpers to get raster graphics in the form of multidimensional numpy arrays.
* [`uharfbuzz`](https://github.com/harfbuzz/uharfbuzz) is a text shaping engine used by text insertion helpers, to support foreign writing systems.
 If you do not care about this, you may insert text using the raw PDFium functions `FPDFPageObj_NewTextObj()` (or `FPDFPageObj_CreateTextObj()`) and `FPDFText_SetText()` without being dependent on uharfbuzz.

Usage

[Support model](https://pypdfium2.readthedocs.io/en/stable/python_api.html)

Here are some examples of using the support model API.

* Import the library
  ```python
  import pypdfium2 as pdfium
  ```

* Open a PDF using the helper class `PdfDocument` (supports file path strings, bytes, and byte buffers)
  ```python
  pdf = pdfium.PdfDocument("./path/to/document.pdf")
  version = pdf.get_version()  # get the PDF standard version
  n_pages = len(pdf)  # get the number of pages in the document
  ```

* Render multiple pages concurrently
  ```python
  page_indices = [i for i in range(n_pages)]  # all pages
  renderer = pdf.render_to(
      pdfium.BitmapConv.pil_image,
      page_indices = page_indices,
      scale = 300/72,  # 300dpi resolution
  )
  for i, image in zip(page_indices, renderer):
      image.save("out_%s.jpg" % str(i).zfill(n_pages))
  ```

* Read the table of contents
  ```python
  for item in toc:
    
      if item.n_kids == 0:
          state = "*"
      elif item.is_closed:
          state = "-"
      else:
          state = "+"
      
      if item.page_index is None:
          target = "?"
      else:
          target = item.page_index + 1
      
      print(
          "    " * item.level +
          "[%s] %s -> %s  # %s %s" % (
              state, item.title, target,
              pdfium.ViewmodeToStr[item.view_mode],
              [round(c, n_digits) for c in item.view_pos],
          )
      )
  ```

* Load a page to work with
  ```python
  page = pdf[0]  # or pdf.get_page(0)
  
  # Get page dimensions in PDF canvas units (1pt->1/72in by default)
  width, height = page.get_size()
  # Set the absolute page rotation to 90° clockwise
  page.set_rotation(90)
  
  # Locate objects on the page
  for obj in page.get_objects():
      print("    "*obj.level + pdfium.ObjectTypeToStr[obj.type], obj.get_pos())
  ```

* Render a single page
  ```python
  image = page.render_to(
      # defaults
      scale = 1,                           # 72dpi resolution
      rotation = 0,                        # no additional rotation
      crop = (0, 0, 0, 0),                 # no crop (form: left, right, bottom, top)
      greyscale = False,                   # coloured output
      fill_colour = (255, 255, 255, 255),  # fill bitmap with white background before rendering (form: RGBA)
      colour_scheme = None,                # no custom colour scheme
      optimise_mode = OptimiseMode.NONE,   # no optimisations (e. g. subpixel rendering)
      draw_annots = True,                  # show annotations
      draw_forms = True,                   # show forms
      no_smoothtext = False,               # anti-alias text
      no_smoothimage = False,              # anti-alias images
      no_smoothpath = False,               # anti-alias paths
      force_halftone = False,              # don't force halftone for image stretching
      rev_byteorder = False,               # don't reverse byte order
      prefer_bgrx = False,                 # don't prefer four channels for coloured output
      force_bitmap_format = None,          # don't force a specific bitmap format
      extra_flags = 0,                     # no extra flags
      allocator = None,                    # no custom allocator
      memory_limit = 2**30,                # maximum allocation (1 GiB)
  )
  image.show()
  ```

* Extract and search text
  ```python
  # Load a text page helper
  textpage = page.get_textpage()
  
  # Extract text from the whole page
  text_all = textpage.get_text_range()
  # Extract text from a specific rectangular area
  text_part = textpage.get_text_bounded(left=50, bottom=100, right=width-50, top=height-100)
  
  # Extract URLs from the page
  links = [l for l in textpage.get_links()]
  
  # Locate text on the page
  searcher = textpage.search("something", match_case=False, match_whole_word=False)
  # This will be a list of bounding boxes of the form (left, right, bottom, top)
  first_occurrence = searcher.get_next()
  ```

* Finished objects may be closed explicitly to release memory allocated by PDFium.
 Otherwise, they will be finalised automatically on garbage collection.
  ```python
  # Attention: objects must be closed in correct order!
  for garbage in (searcher, textpage, page, pdf):
      garbage.close()
  ```

* Create a new PDF with an empty A4 sized page
  ```python
  pdf = pdfium.PdfDocument.new()
  width, height = (595, 842)
  page_a = pdf.new_page(width, height)
  ```

* Insert text content
  ```python
  NotoSans = "./tests/resources/NotoSans-Regular.ttf"
  hb_font = pdfium.HarfbuzzFont(NotoSans)
  pdf_font = pdf.add_font(
      NotoSans,
      type = pdfium.FPDF_FONT_TRUETYPE,
      is_cid = True,
  )
  page_a.insert_text(
      text = "मैं घोषणा, पुष्टि और सहमत हूँ कि:",
      pos_x = 50,
      pos_y = height - 75,
      font_size = 25,
      hb_font = hb_font,
      pdf_font = pdf_font,
  )
  page_a.generate_content()
  ```

* Add a JPEG image on a second page
  ```python
  # Direct JPEG inclusion (only a small overhead for the PDF container)
  image = pdfium.PdfImageObject.new(pdf)
  buffer = open("./tests/resources/mona_lisa.jpg", "rb")
  width, height = image.load_jpeg(buffer, autoclose=True)
  page_b = pdf.new_page(width, height)
  page_b.insert_object(image)
  page_b.generate_content()
  ```

* Save the document
  ```python
  with open("output.pdf", "wb") as buffer:
      pdf.save(buffer, version=17)  # use PDF 1.7 standard
  ```

PDFium provides a large amount of functions, many of which are not covered by support models yet.
You may seamlessly interact with these functions while still using helper classes where available, as they provide a `raw` attribute to access the underlying PDFium/ctypes object, e. g.

```python
permission_flags = pdfium.FPDF_GetDocPermission(pdf.raw)
has_transparency = pdfium.FPDFPage_HasTransparency(page.raw)
```

Raw PDFium API

While helper classes conveniently wrap the raw PDFium API, it may still be accessed directly and is publicly exposed in the main namespace of pypdfium2.
As the vast majority of PDFium members is prefixed with `FPDF`, they are clearly distinguishable from support model components.

For PDFium documentation, please look at the comments in its [public header files](https://pdfium.googlesource.com/pdfium/+/refs/heads/main/public/).[^pdfium_docs]
A large variety of examples on how to interface with the raw API using [`ctypes`](https://docs.python.org/3/library/ctypes.html) is already provided with [support model source code](src/pypdfium2/_helpers).
Nonetheless, the following guide may be helpful to get started with the raw API, especially for developers who are not familiar with `ctypes` yet.

[^pdfium_docs]: Unfortunately, no recent HTML-rendered documentation is available for PDFium at the moment. While large parts of the old [Foxit docs](https://developers.foxit.com/resources/pdf-sdk/c_api_reference_pdfium/group___f_p_d_f_i_u_m.html) still seem similar to PDFium's current API, many modifications and new functions are actually missing, which can be confusing.

* In general, PDFium functions can be called just like normal Python functions.
 However, parameters may only be passed positionally, i. e. it is not possible to use keyword arguments.
 There are no defaults, so you always need to provide a value for each argument.
  ```python
  # arguments: filepath (str|bytes), password (str|bytes|None)
  pdf = pdfium.FPDF_LoadDocument(filepath.encode("utf-8"), None)
  ```
 This is the underlying bindings declaration,[^bindings_decl] which loads the function from the binary and
 contains the information required to convert Python types to their C equivalents.
  ```python
  if _libs["pdfium"].has("FPDF_LoadDocument", "cdecl"):
      FPDF_LoadDocument = _libs["pdfium"].get("FPDF_LoadDocument", "cdecl")
      FPDF_LoadDocument.argtypes = [FPDF_STRING, FPDF_BYTESTRING]
      FPDF_LoadDocument.restype = FPDF_DOCUMENT
  ```
 For instance, Python `str` or `bytes` are converted to `FPDF_STRING` automatically.
 If a `str` is provided, its UTF-8 encoding will be used. However, it is usually advisable to encode strings explicitly.

[^bindings_decl]: From the auto-generated bindings file, which is not part of the repository. It is built into wheels, or created on installation. If you have an editable install, the bindings file may be found at `src/_pypdfium.py`.

* While some functions are quite easy to use, things soon get more complex.
 First of all, function parameters are not only used for input, but also for output:
  ```python
  # Initialise an integer object (defaults to 0)
  c_version = ctypes.c_int()
  # Let the function assign a value to the c_int object, and capture its return code (True for success, False for failure)
  success = pdfium.FPDF_GetFileVersion(pdf, c_version)
  # Get the Python int by accessing the `value` attribute of the c_int object
  py_version = c_version.value
  ```

* If an array is required as output parameter, you can initialise one like this (conceived in general terms):
  ```python
  # long form
  array_type = (c_type * array_length)
  array_object = array_type()
  # short form
  array_object = (c_type * array_length)()
  ```
 Example: Getting view mode and target position from a destination object returned by some other function.
  ```python
  # (Assuming `dest` is an FPDF_DEST)
  n_params = ctypes.c_ulong()
  # Create a C array to store up to four coordinates
  view_pos = (pdfium.FS_FLOAT * 4)()
  view_mode = pdfium.FPDFDest_GetView(dest, n_params, view_pos)
  # Convert the C array to a Python list and cut it down to the actual number of coordinates
  view_pos = list(view_pos)[:n_params.value]
  ```

* For string output parameters, callers needs to provide a sufficiently long, pre-allocated buffer.
 This may work differently depending on what type the function requires, which encoding is used, whether the number of bytes or characters is returned, and whether space for a null terminator is included or not. Carefully review the documentation for the function in question to fulfill its requirements.

 Example A: Getting the title string of a bookmark.
  ```python
  # (Assuming `bookmark` is an FPDF_BOOKMARK)
  # First call to get the required number of bytes (not characters!), including space for a null terminator
  n_bytes = pdfium.FPDFBookmark_GetTitle(bookmark, None, 0)
  # Initialise the output buffer
  buffer = ctypes.create_string_buffer(n_bytes)
  # Second call with the actual buffer
  pdfium.FPDFBookmark_GetTitle(bookmark, buffer, n_bytes)
  # Decode to string, cutting off the null terminator
  # Encoding: UTF-16LE (2 bytes per character)
  title = buffer.raw[:n_bytes-2].decode('utf-16-le')
  ```

 Example B: Extracting text in given boundaries.
  ```python
  # (Assuming `textpage` is an FPDF_TEXTPAGE and the boundary variables are set)
  # Store common arguments for the two calls
  args = (textpage, left, top, right, bottom)
  # First call to get the required number of characters (not bytes!) - a possible null terminator is not included
  n_chars = pdfium.FPDFText_GetBoundedText(*args, None, 0)
  # If no characters were found, return an empty string
  if n_chars <= 0:
      return ""
  # Calculate the required number of bytes
  # Encoding: UTF-16LE (2 bytes per character)
  n_bytes = 2 * n_chars
  # Initialise the output buffer - this function can work without null terminator, so skip it
  buffer = ctypes.create_string_buffer(n_bytes)
  # Re-interpret the type from char to unsigned short as required by the function
  buffer_ptr = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_ushort))
  # Second call with the actual buffer
  pdfium.FPDFText_GetBoundedText(*args, buffer_ptr, n_chars)
  # Decode to string
  # (You may want to pass `errors="ignore"` to skip possible errors in the PDF's encoding)
  text = buffer.raw.decode("utf-16-le")
  ```

* Not only are there different ways of string output that need to be handled according to the requirements of the function in question.
 String input, too, can work differently depending on encoding, null termination, and type.
 While functions that take a `UTF-8` encoded `FPDF_STRING` or `FPDF_BYTESTRING` are easy to call, other functions may have more peculiar needs. For instance, `FPDFText_FindStart()` demands a UTF-16LE encoded string with null terminator, given as a pointer to an `unsigned short` array:
  ```python
  # (Assuming `text` is a str and `textpage` an FPDF_TEXTPAGE)
  # Add the null terminator and encode as UTF-16LE
  enc_text = (text + "\x00").encode("utf-16-le")
  # Obtain a pointer of type c_ushort to `enc_text`
  text_ptr = ctypes.cast(enc_text, ctypes.POINTER(ctypes.c_ushort))
  search = pdfium.FPDFText_FindStart(textpage, text_ptr, 0, 0)
  ```

* Suppose you have a C memory buffer allocated by PDFium and wish to read its data.
 PDFium will provide you with a pointer to the first item of the byte array.
 To access the data, you'll want to re-interpret the pointer using `ctypes.cast()` to encompass the whole array:
  ```python
  # (Assuming `bitmap` is an FPDF_BITMAP and `size` is the expected number of bytes in the buffer)
  first_item = pdfium.FPDFBitmap_GetBuffer(bitmap)
  buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_ubyte * size))
  # Buffer as ctypes array (referencing the original buffer, will be unavailable as soon as the bitmap is destroyed)
  c_array = buffer.contents
  # Buffer as Python bytes (independent copy)
  data = bytes(c_array)
  ```

* Writing data from Python into a C buffer works in a similar fashion:
  ```python
  # (Assuming `first_item` is a pointer to the first item of a C buffer to write into,
  #  `size` the number of bytes it can store, and `py_buffer` a Python byte buffer)
  c_buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_char * size))
  # Read from the Python buffer, starting at its current position, directly into the C buffer
  # (until the target is full or the end of the source is reached)
  n_bytes = py_buffer.readinto(c_buffer.contents)  # returns the number of bytes read
  ```

* In many situations, callback functions come in handy.[^callback_usecases] Thanks to `ctypes`, it is seamlessly possible to use callbacks across Python/C language boundaries.

 [^callback_usecases]: e. g. incremental reading/writing, progress bars, pausing of progressive tasks, ...

 Example: Loading a document from a Python buffer. This way, file access can be controlled in Python while the whole data does not need to be in memory at once.
  ```python
  # Factory class to create callable objects holding a reference to a Python buffer
  class _reader_class:
    
    def __init__(self, py_buffer):
        self.py_buffer = py_buffer
    
    def __call__(self, _, position, p_buf, size):
        # Write data from Python buffer into C buffer, as explained before
        c_buffer = ctypes.cast(p_buf, ctypes.POINTER(ctypes.c_char * size))
        self.py_buffer.seek(position)
        self.py_buffer.readinto(c_buffer.contents)
        return 1  # non-zero return code for success
  
  # (Assuming py_buffer is a Python file buffer, e. g. io.BufferedReader)
  # Get the length of the buffer
  py_buffer.seek(0, 2)
  file_len = py_buffer.tell()
  py_buffer.seek(0)
  
  # Set up an interface structure for custom file access
  fileaccess = pdfium.FPDF_FILEACCESS()
  fileaccess.m_FileLen = file_len
  # CFUNCTYPE declaration copied from the bindings file (unfortunately, this is not applied automatically)
  functype = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.POINTER(None), ctypes.c_ulong, ctypes.POINTER(ctypes.c_ubyte), ctypes.c_ulong)
  # Alternatively, the CFUNCTYPE declaration can also be extracted dynamically using a helper function of pypdfium2
  functype = pdfium.get_functype(pdfium.FPDF_FILEACCESS, "m_GetBlock")
  # Instantiate a callable object, wrapped with the CFUNCTYPE declaration
  fileaccess.m_GetBlock = functype( _reader_class(py_buffer) )
  # Finally, load the document
  pdf = pdfium.FPDF_LoadCustomDocument(fileaccess, None)
  ```

* When using the raw API, special care needs to be taken regarding object lifetime, considering that Python may garbage collect objects as soon as their reference count reaches zero. However, the interpreter has no way of magically knowing how long the underlying resources of a Python object might still be needed on the C side, so measures need to be taken to keep such objects referenced until PDFium does not depend on them anymore.

 If resources need to remain valid after the time of a function call, PDFium documentation usually indicates this clearly. Ignoring requirements on object lifetime will lead to memory corruption (commonly resulting in a segmentation fault).

 For instance, the documentation on `FPDF_LoadCustomDocument()` states that
 > The application must keep the file resources |pFileAccess| points to valid until the returned FPDF_DOCUMENT is closed. |pFileAccess| itself does not need to outlive the FPDF_DOCUMENT.

 This means that the callback function and the Python buffer need to be kept alive as long as the `FPDF_DOCUMENT` is used.
 This can be achieved by referencing these objects in an accompanying class, e. g.

  ```python
  class PdfDataHolder:
      
      def __init__(self, buffer, function):
          self.buffer = buffer
          self.function = function
      
      def close(self):
          # Make sure both objects remain available until this function is called
          # No-op id() call to denote that the object needs to stay in memory up to this point
          id(self.function)
          self.buffer.close()
  
  # ... set up an FPDF_FILEACCESS structure
  
  # (Assuming `py_buffer` is the buffer and `fileaccess` the FPDF_FILEACCESS interface)
  data_holder = PdfDataHolder(py_buffer, fileaccess.m_GetBlock)
  pdf = pdfium.FPDF_LoadCustomDocument(fileaccess, None)
  
  # ... work with the pdf
  
  # Close the PDF to free resources
  pdfium.FPDF_CloseDocument(pdf)
  # Close the data holder, to keep the object itself and thereby the objects it
  # references alive up to this point, as well as to release the buffer
  data_holder.close()
  ```

* If you wish to check whether two objects returned by PDFium are the same, the `is` operator won't help you because `ctypes` does not have original object return (OOR),
 i. e. new, equivalent Python objects are created each time, although they might represent one and the same C object.[^ctypes_no_oor] That's why you'll want to use `ctypes.addressof()` to get the memory addresses of the underlying C object.
 For instance, this is used to avoid infinite loops on circular bookmark references when iterating through the document outline:
  ```python
  # (Assuming `pdf` is an FPDF_DOCUMENT)
  seen = set()
  bookmark = pdfium.FPDFBookmark_GetFirstChild(pdf, None)
  while bookmark:
      # bookmark is a pointer, so we need to use its `contents` attribute to get the object the pointer refers to
      # (otherwise we'd only get the memory address of the pointer itself, which would result in random behaviour)
      address = ctypes.addressof(bookmark.contents)
      if address in seen:
          break  # circular reference detected
      else:
          seen.add(address)
      bookmark = pdfium.FPDFBookmark_GetNextSibling(pdf, bookmark)
  ```

 [^ctypes_no_oor]: Confer the [ctypes documentation on Pointers](https://docs.python.org/3/library/ctypes.html#pointers).

* Finally, let's finish this guide with an example on how to render the first page of a document to a `PIL` image in `RGBA` colour format.
  ```python
  import math
  import ctypes
  import os.path
  import PIL.Image
  import pypdfium2 as pdfium
  
  # Load the document
  filepath = os.path.abspath("tests/resources/render.pdf")
  pdf = pdfium.FPDF_LoadDocument(filepath, None)
  
  # Check page count to make sure it was loaded correctly
  page_count = pdfium.FPDF_GetPageCount(pdf)
  assert page_count >= 1
  
  # Load the first page and get its dimensions
  page = pdfium.FPDF_LoadPage(pdf, 0)
  width  = math.ceil(pdfium.FPDF_GetPageWidthF(page))
  height = math.ceil(pdfium.FPDF_GetPageHeightF(page))
  
  # Create a bitmap
  use_alpha = False  # We don't render with transparent background
  bitmap = pdfium.FPDFBitmap_Create(width, height, int(use_alpha))
  # Fill the whole bitmap with a white background
  # The colour is given as a 32-bit integer in ARGB format (8 bits per channel)
  pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)
  
  # Store common rendering arguments
  render_args = (
      bitmap,  # the bitmap
      page,    # the page
      # positions and sizes are to be given in pixels and may exceed the bitmap
      0,       # left start position
      0,       # top start position
      width,   # horizontal size
      height,  # vertical size
      0,       # rotation (as constant, not in degrees!)
      pdfium.FPDF_LCD_TEXT | pdfium.FPDF_ANNOT,  # rendering flags, combined with binary or
  )
  
  # Render the page
  pdfium.FPDF_RenderPageBitmap(*render_args)
  
  # Get a pointer to the first item of the buffer
  first_item = pdfium.FPDFBitmap_GetBuffer(bitmap)
  # Re-interpret the pointer to encompass the whole buffer
  buffer = ctypes.cast(first_item, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))
  
  # Create a PIL image from the buffer contents
  img = PIL.Image.frombuffer("RGBA", (width, height), buffer.contents, "raw", "BGRA", 0, 1)
  # Save it as file
  img.save("out.png")
  
  # Free resources
  pdfium.FPDFBitmap_Destroy(bitmap)
  pdfium.FPDF_ClosePage(page)
  pdfium.FPDF_CloseDocument(pdf)
  ```

[Command-line Interface](https://pypdfium2.readthedocs.io/en/stable/shell_api.html)

pypdfium2 also ships with a simple command-line interface, providing access to key features of the support model in a shell environment (e. g. rendering, text extraction, TOC inspection, document merging, ...).

The primary motivation in providing a CLI is to simplify manual testing, but it may be helpful in a variety of other situations as well.
Usage should be largely self-explanatory, assuming a minimum of familiarity with the command-line.

Licensing

PDFium and pypdfium2 are available by the terms and conditions of either [`Apache-2.0`](LICENSES/Apache-2.0.txt) or [`BSD-3-Clause`](LICENSES/BSD-3-Clause.txt), at your choice.

Various other open-source licenses apply to the dependencies of PDFium. Verbatim copies of their respective licenses are contained in the file [`LicenseRef-PdfiumThirdParty.txt`](LICENSES/LicenseRef-PdfiumThirdParty.txt), which is also shipped with binary redistributions.

Documentation and examples of pypdfium2 are licensed under [`CC-BY-4.0`](LICENSES/CC-BY-4.0.txt).

pypdfium2 complies with the [reuse standard](https://reuse.software/spec/) by including [SPDX](https://spdx.org/licenses/) headers in source files, and license information for data files in [`.reuse/dep5`](.reuse/dep5).

To the authors' knowledge, pypdfium2 is one of the very rare Python libraries that are capable of PDF rendering while not being covered by restrictive licenses which prohibit the use in closed-source projects (such as the `GPL`).[^liberal_pdf_renderlibs]

[^liberal_pdf_renderlibs]: The only other liberal-licensed PDF rendering libraries known to the authors are [`pdf.js`](https://github.com/mozilla/pdf.js/) (JavaScript) and [`Apache PDFBox`](https://github.com/apache/pdfbox) (Java). `pdf.js` is limited to a web environment. Creating Python bindings to `PDFBox` might be possible but there is no serious solution yet (apart from amateurish wrappers around its command-line API).

Issues

While using pypdfium2, you might encounter bugs or missing features.

In the endeavour to improve the product, the maintainers wish to be informed about any problems related to pypdfium2 usage.
Therefore, the first place for your report should be this repository.
Remember to include applicable details such as tracebacks, operating system and CPU architecture, as well as the versions of pypdfium2 and used dependencies.

In case your issue could be tracked down to a third-party dependency, we will accompany or conduct subsequent measures.

Here is a roadmap of relevant places:
* pypdfium2
 - [Issues panel](https://github.com/pypdfium2-team/pypdfium2/issues): Initial reports of specific issues.
 They may need to be transferred to other projects. Issues related to support model code, packaging or documentation probably need to be addressed in pypdfium2 itself.
 - [Discussions page](https://github.com/pypdfium2-team/pypdfium2/discussions): General questions and suggestions.
 - In case you do not want to publicly disclose the issue or your code, you may also contact the maintainers privately via e-mail.
* PDFium
 - [Bug tracker](https://bugs.chromium.org/p/pdfium/issues/list): Defects in PDFium.
 Beware: The bridge between Python and C increases the probability of integration issues or API misuse.
 The symptoms can often make it look like a PDFium bug while it is not. In some cases, this may be quite difficult to distinguish.
 - [Mailing list](https://groups.google.com/g/pdfium/): Questions regarding PDFium usage.
* [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/issues): Binary builder.
* [ctypesgen](https://github.com/ctypesgen/ctypesgen/issues): Bindings generator.

Known limitations

pypdfium2 also has some drawbacks, of which you will be informed below.

Incompatibility with CPython 3.7.6 and 3.8.1

pypdfium2 cannot be used with releases 3.7.6 and 3.8.1 of the CPython interpreter due to a [regression](https://github.com/python/cpython/pull/16799#issuecomment-612353119) that broke ctypesgen-created string handling code.

Risk of unknown object lifetime violations

As outlined in the raw API section, it is essential that Python-managed resources remain available as long as they are needed by PDFium.

The problem is that the Python interpreter may garbage collect objects with reference count zero at any time. Thus, it can happen that an unreferenced but still required object by chance stays around long enough before it is garbage collected. Such dangling objects are likely to cause non-deterministic segmentation faults.
If the timeframe between reaching reference count zero and removal is sufficiently large and roughly consistent across different runs, it is even possible that mistakes regarding object lifetime remain unnoticed for a long time.

Although great care has been taken while developing the support model, it cannot be fully excluded that unknown object lifetime violations are still lurking around somewhere, especially if unexpected requirements were not documented by the time the code was written.

No direct access to PDF data structures

It should be noted that PDFium, unlike many other PDF libraries, is currently not providing direct access to raw PDF data structures. It does not publicly expose APIs to read/write PDF dictionaries, name trees, etc. Instead, it merely offers a variety of higher-level functions to modify PDFs. While these are certainly useful to abstract away some of the format's complexity and to avoid the creation of invalid PDFs, the fact that universal instruments for low-level access are largely missing in the public API does considerably limit the library's potential. If PDFium's capabilities are not sufficient for your use case, or you just wish to work with the raw PDF structure on your own, you may want to consider other products such as [`pikepdf`](https://github.com/pikepdf/pikepdf) to use instead of, or in conjunction with, pypdfium2.

Development

This section contains some key information relevant for project maintainers.

<!-- TODO wheel tags, maintainer access, GitHub peculiarities -->

Documentation

pypdfium2 provides API documentation using [sphinx](https://github.com/sphinx-doc/sphinx/). It may be rendered to various formats, including HTML:
```bash
sphinx-build -b html ./docs/source ./docs/build/html/
```

Built documentation is hosted on [`readthedocs.org`](https://readthedocs.org/projects/pypdfium2/).
It is primarily configured using a [`.readthedocs.yaml`](.readthedocs.yaml) file (see the [instructions](https://docs.readthedocs.io/en/stable/config-file/v2.html)).
The web interface also provides an administration page for maintainers.

Testing

pypdfium2 contains a small test suite to verify the library's functionality. It is written with [pytest](https://github.com/pytest-dev/pytest/):
```bash
python3 -m pytest tests/
```
You may pass `-sv` to get more detailed output.

Release workflow

The release process is fully automated using Python scripts and a CI setup for GitHub Actions.
A new release is triggered every Monday, following the schedule of `pdfium-binaries`.
You may also trigger the workflow manually using the GitHub Actions panel or the [`gh`](https://cli.github.com/) command-line tool.

Python release scripts are located in the folder `setupsrc/pl_setup`, along with custom setup code:
* `update_pdfium.py` downloads binaries and generates the bindings.
* `craft_wheels.py` builds platform-specific wheel packages and a source distribution suitable for PyPI upload.
* `autorelease.py` takes care of versioning, changelog, release note generation and VCS checkin.

The autorelease script has some peculiarities maintainers should know about:
* The changelog for the next release shall be written into `docs/devel/changelog_staging.md`.
 On release, it will be moved into the main changelog under `docs/source/changelog.md`, annotated with the PDFium version update.
 It will also be shown on the GitHub release page.
* pypdfium2 versioning uses the pattern `major.minor.patch`, optionally with an appended beta mark (e. g. `2.7.1`, `2.11.0`, `3.0.0b1`, ...).
 Version changes are based on the following logic:
 * If PDFium was updated, the minor version is incremented.
 * If only pypdfium2 code was updated, the patch version is incremented instead.
 * Major updates and beta marks are controlled via empty files in the `autorelease/` directory.
 If `update_major.txt` exists, the major version is incremented.
 If `update_beta.txt` exists, a new beta tag is set, or an existing one is incremented.
 These files are removed automatically once the release is finished.
 * If switching from a beta release to a non-beta release, only the beta mark is removed while minor and patch versions remain unchanged.

In case of necessity, you may also forego autorelease/CI and do the release manually, which will roughly work like this (though ideally it should never be needed):
* Commit changes to the version file
  ```bash
  git add src/pypdfium2/version.py
  git commit -m "increment version"
  git push
  ```
* Create a new tag that matches the version file
  ```bash
  # substitute $VERSION accordingly
  git tag -a $VERSION
  git push --tags
  ```
* Build the packages
  ```bash
  python3 setupsrc/pl_setup/update_pdfium.py
  python3 setupsrc/pl_setup/craft_wheels.py
  ```
* Upload to PyPI
  ```bash
  # make sure the packages are valid
  twine check dist/*
  # upload to PyPI (this will interactively ask for your username/password)
  twine upload dist/*
  ```
* Update the `stable` branch to trigger a documentation rebuild
  ```bash
  git checkout stable
  git rebase origin/main  # alternatively: git reset --hard main
  git checkout main
  ```

If something went wrong with commit or tag, you can still revert the changes:
```bash
# perform an interactive rebase to change history (substitute $N_COMMITS with the number of commits to drop or modify)
git rebase -i HEAD~$N_COMMITS
git push --force
# delete local tag (substitute $TAGNAME accordingly)
git tag -d $TAGNAME
# delete remote tag
git push --delete origin $TAGNAME
```
Faulty PyPI releases may be yanked using the web interface.

In Use

We are curious to see what people are doing with pypdfium2. Always feel free to share knowledge or code samples on the discussions page.
Here are some public projects that are known to use pypdfium2:

* [doctr](https://github.com/mindee/doctr), an OCR library powered by deep learning, uses pypdfium2 to render PDFs.
* [EDS-PDF](https://github.com/aphp/edspdf), a framework for PDF text extraction and classification, also uses pypdfium2 for rendering.
* [Arabic-OCR](https://github.com/ssraza21/Arabic-OCR), a small web application to create digital documents from the result of arabic OCR, renders PDF pages with pypdfium2.
* [Extract-URLs](https://github.com/elescamilla/Extract-URLs/), uses pypdfium2 to extract URLs from PDF documents.
* [py-pdf/benchmarks](https://github.com/py-pdf/benchmarks) compares pypdfium2's text extraction capabilities with other Python PDF libraries.
* [pdfbrain](https://github.com/innodatalabs/pdfbrain) provides alternative helper classes around the raw API exposed by pypdfium2. It predates pypdfium2's own support model and only covers PDF parsing, not manipulation.

Your project uses pypdfium2, but is not part of the list yet? Please let us know!

There are also a few projects that *could* update to pypdfium2 but are still using its predecessor, pypdfium:
* [kuafu](https://github.com/YinlinHu/kuafu), an unmaintained PyQt5-based PDF reader, provides a PDFium backend.
* [microsoft/OCR-Form-Tools](https://github.com/microsoft/OCR-Form-Tools) uses pypdfium to render PDFs.

Thanks to[^thanks_to]

<!-- order: alphabetical by surname -->

* [Anurag Bansal](https://github.com/banagg): Support model for text insertion (`PdfPage.insert_text()`).
* [Benoît Blanchon](https://github.com/bblanchon): Author of [PDFium binaries](https://github.com/bblanchon/pdfium-binaries/) and [patches](sourcebuild/patches/).
* [Anderson Bravalheri](https://github.com/abravalheri): Help with PEP 517/518 compliance. Hint to use an environment variable rather than separate setup files.
* [Bastian Germann](https://github.com/bgermann): Help with inclusion of licenses for third-party components of PDFium.
* [Tim Head](https://github.com/betatim): Original idea for Python bindings to PDFium with ctypesgen in `wowpng`.
* [Yinlin Hu](https://github.com/YinlinHu): `pypdfium` prototype and `kuafu` PDF viewer.
* [Adam Huganir](https://github.com/adam-huganir): Help with maintenance and development decisions since the beginning of the project.
* [kobaltcore](https://github.com/kobaltcore): Bug fix for `PdfDocument.save()`.
* [Mike Kroutikov](https://github.com/mkroutikov): Examples on how to use PDFium with ctypes in `redstork` and `pdfbrain`.
* [Peter Saalbrink](https://github.com/petersaalbrink): Code style improvements to the multipage renderer.
* [Lei Zhang](https://github.com/leizleiz): Windows-specific fixes concerning `FPDF_LoadDocument()`.

If you have somehow contributed to this project but we forgot to mention you here, feel encouraged to help us correct this oversight.

[^thanks_to]: People listed in this section may not necessarily have contributed any copyrightable code to the repository. Some have rather helped with ideas, or contributions to dependencies of pypdfium2.

History

pypdfium2 is the successor of *pypdfium* and *pypdfium-reboot*.

Inspired by *wowpng*, the first known proof of concept Python binding to PDFium using ctypesgen, the initial *pypdfium* package was created. It had to be updated manually, which did not happen frequently. There were no platform-specific wheels, but only a single wheel that contained binaries for 64-bit Linux, Windows and macOS.

pypdfium-reboot then added a script to automate binary deployment and bindings generation to simplify regular updates. However, it was still not platform specific.

pypdfium2 is a full rewrite of *pypdfium-reboot* to build platform-specific wheels and consolidate the setup scripts. Further additions include ...
* A CI workflow to automatically release new wheels every Monday
* Support models that conveniently wrap the raw PDFium/ctypes API
* Test code
* A script to build PDFium from source

pypdfium2-3.4.0/src/pypdfium2.egg-info/SOURCES.txt

MANIFEST.in
README.md
pyproject.toml
setup.cfg
setup.py
.reuse/dep5
LICENSES/Apache-2.0.txt
LICENSES/BSD-3-Clause.txt
LICENSES/CC-BY-4.0.txt
LICENSES/LicenseRef-PdfiumThirdParty.txt
setupsrc/pl_setup/__init__.py
setupsrc/pl_setup/autorelease.py
setupsrc/pl_setup/build_pdfium.py
setupsrc/pl_setup/check_deps.py
setupsrc/pl_setup/craft_wheels.py
setupsrc/pl_setup/packaging_base.py
setupsrc/pl_setup/setup_base.py
setupsrc/pl_setup/update_pdfium.py
sourcebuild/patches/public_headers.patch
sourcebuild/patches/shared_library.patch
sourcebuild/patches/win/build.patch
sourcebuild/patches/win/pdfium.patch
sourcebuild/patches/win/resources.rc
src/pypdfium2/__init__.py
src/pypdfium2/__main__.py
src/pypdfium2/_namespace.py
src/pypdfium2/version.py
src/pypdfium2.egg-info/PKG-INFO
src/pypdfium2.egg-info/SOURCES.txt
src/pypdfium2.egg-info/dependency_links.txt
src/pypdfium2.egg-info/entry_points.txt
src/pypdfium2.egg-info/not-zip-safe
src/pypdfium2.egg-info/requires.txt
src/pypdfium2.egg-info/top_level.txt
src/pypdfium2/_cli/__init__.py
src/pypdfium2/_cli/_parsers.py
src/pypdfium2/_cli/extract_text.py
src/pypdfium2/_cli/find_pageobjects.py
src/pypdfium2/_cli/jpegtopdf.py
src/pypdfium2/_cli/main.py
src/pypdfium2/_cli/merge.py
src/pypdfium2/_cli/render.py
src/pypdfium2/_cli/tile.py
src/pypdfium2/_cli/toc.py
src/pypdfium2/_helpers/__init__.py
src/pypdfium2/_helpers/converters.py
src/pypdfium2/_helpers/document.py
src/pypdfium2/_helpers/matrix.py
src/pypdfium2/_helpers/misc.py
src/pypdfium2/_helpers/page.py
src/pypdfium2/_helpers/pageobject.py
src/pypdfium2/_helpers/textpage.py

pypdfium2-3.4.0/src/pypdfium2.egg-info/dependency_links.txt

pypdfium2-3.4.0/src/pypdfium2.egg-info/entry_points.txt

[console_scripts]
pypdfium2 = pypdfium2._cli.main:main

pypdfium2-3.4.0/src/pypdfium2.egg-info/not-zip-safe

pypdfium2-3.4.0/src/pypdfium2.egg-info/requires.txt

[autocomplete]
argcomplete

[converters]
pillow>=6.0
numpy

[docs]
sphinx>=4.4.0
sphinx-rtd-theme>=1.0
sphinxcontrib-programoutput
docutils>=0.17
myst-parser

[inserttext]
uharfbuzz

[test]
pytest

[test:python_version < "3.8"]
importlib-metadata>=4

[utilities]
importchecker
codespell
reuse
check-wheel-contents
twine

pypdfium2-3.4.0/src/pypdfium2.egg-info/top_level.txt

pypdfium2

