Mini-Guild - Build your own Actor Core

Michael Sparks

August 24, 2022

Contents

1 Introduction
1.1 Concurrency & Parallelism
1.2 Core Aspects of Actors

1.2.1 General perspective
1.2.2 Tutorial perspective
1.2.3 Limitations

NNNN— -

2 Getting things Started
2.1 Concurrency
2.2 MicroActors

2.2.1 Exercise: Write a MicroActor baseclass
2.2.2 Exercise: Write a MicroScheduler class
2.2.3 Toy Example Usage
2.3 From MicroActors to Actors
2.3.1 Exercise: Simplest Possible MicroActor with a Mailbox

DU, phWWNDN

1 Introduction

Back in the day we’d periodically have relatively novice python developers working
with Kamaelia. In order to bring them up to speed, we created a set of targetted
tutorials. These focussed on two things. One aspect the python concepts they
needed to know. The other was “how does Kamelia’s core ‘Axon’ work”. To that end
it essentially walked them through building a simplified core. This tutorial was
called “mini-axon”.

This turned out to be a very effective way of introducing developers. It also turned
out to be a very effective way of building micro-versions that could be used in spe-
cific targetted ways. For example when we shifted to zero copy, or threaded ver-
sions of kamaelia components, these experiments started as targeted mini-axon
examples.

To this end, this mini-guild “build your own guide” aims to provide:

* A means of illustrating the concepts around actors and actor systems
* A basis for explaining some key ideas, specifically in the context of Guild

* A basis for experimentation around lightweight actor implementations
e Clear user code and clear core code

1.1 Concurrency & Parallelism
This a is a huge topic, so this section defines how I am using these words here.
Concurrency

Concurrency normally means “multiple things going on at once”. This is generally
conceptual and relates to activities. Reality is that CPU may be spending some
time on this, then some time on that, and the some more on something else. Some
problems in life are inherently concurrent - such as muliple browser fetches for a
webpage or a webserver having to deal with 1000 concurrent users.

Parallelism
Parallel normally refers to “things actually occurring simultaneously”. Examples:

* Eating, breathing and your heart beating at the same time.

* A CPU doing lots of work on the 12 discrete cores it has.

* 12 physical web servers handling network traffic

* Calculations regarding shading of a scene being handled by 2000 physical
shaders on a GPU

Of note here is that in all the above, there needs to be multiple physical things
capable of doing work. (I'll refer to these as devices in the next section) Not all
concurrent activities need be parallel. Parallel activities are always concurrent.
Despite this, not all concurrent activities are parallelisable.

Usage

* I use concurrent to refer to tools and techniques for managing the inherent
complexity in a problem space.

* I use parallel, when we are referring to techniques for to spreading load over
multiple devices.

Actors are good for orchestrating and managing concurrency - as such, this is the
focus of Guild and this tutorial

Techniques (like GPU offloading, SIMD, etc) for intentionally boosting parallelism
are out of scope for this tutorial. A developer friendly metaphor that would be more
suitable for GPU offloading, SIMD and similar parallelism related aspects would be
Entity Component Systems. (Indeed a follow on document on how ECS and Actors
can work together is likely to be written)

1.2 Core Aspects of Actors
1.2.1 General perspective
As defined by Carl Hewitt, actors:

¢ Are concurrent things

* That can send messages to each other

¢ Can decide what to do and what to next based on those messages
¢ Can create new actors

If you’re implementing actors, you have to decide how each of these things work.
Some decisions you can make are:

* To implement concurrent thing we have a number of options from high level
network servers, all the way down to processes, threads, green threads, corou-
tines, state machines. These maintain some sort of state and that state is not
shared directly at all.

¢ Actors interact by sending messages to each other in a concurrent safe form.
This can be any/all of: REST API, RPC, MPI, methods, mailboxes, queues, lists,
STM, mutexes, semaphones, etc

¢ Can decide what to do and what to next based on those messages - variables,
switches, methods, statemachines, etc

¢ Can create new actors - spin up a server/process/thread/etc

It’s because of this very loose description and the very many different ways of imple-
menting it that personally I think of actors as a pattern of implementation rather
than a specific single implementation style.

1.2.2 Tutorial perspective

In this tutorial, we make the following decisions around concurrency, messages
and behaviour.

Concurrency

¢ Our unit of concurrency is a restricted co-routine
* These are managed by a single threaded scheduler
* After creating new actors, we will ask the scheduler to run it

Messages

* Our message system is a method call
* Method calls result in named references to methods being queued
* The queue is simply a list

Behaviour

¢ The actor performs actions based on messages in the queue
* The behaviour of an actor is a basic class.

1.2.3 Limitations

* If we were using a functional programming language our messages would be
immutable. As a result the rule applies: If you’ve handed it off to someone else,
you cannot assume that the content will not change, except within the limited
restriction of a single piece of code.

Things in guild, that are not in this tutorial. These will be discussed at the end.

* Promises/futures - a means for an actor to reply back to the sender

e Actor-functions with exceptions - Send a message, wait for a response and
if an error occurred, propogate the error

» Simplified STM - software transactional memory (though this will be added
later)

2 Getting things Started

2.1 Concurrency

Our basic unit of concurrency is a restricted co-routine. In python this specifically
means a python generator. A python generator can be viewed as a single function
that has the ability to suspend and restart.

A simple fibonacci generator looks like this:

def fib(basecase=1):
a, b = basecase, basecase
while True:
yield a
a,b = b, a+b

This function creates a generator when called.

>>> f = fibQ

>>> f

<generator object fib at Ox7efd3b9046d0>
>>>

We can repeatedly ask for the next! values:

>>> for _ in range(5):
print(next(f))

VW N — — .

We can use the same approach to stuff the values into a list using a list compre-
hension:

>>> f = fibQ
>>> [next(f) for _ in range(5)]
[]! 1! 2l 3! 5]

NB, we made out fib() function configurable, so a different base case gives different
results:

>>> f = fib(2)
>>> [next(f) for _ in range(5)]
[2, 2, 4, 6, 10]

We could create 5 different generator objects like this, using different base cases to
tell them apart:

>>> fibs = [fib(i) for i
>>> fibs

[<generator object fib at 0x7fc888c53610>, <generator object fib at
0x7fc888b587b0>, <generator object fib at 0x7fc888h58820>, <generator
object fib at 0x7fc888b58890>, <generator object fib at 0x7fc888h58900>]

in range(5)]

A compact way of getting the first 5 values out of each of these concurrently looks
like this:

fibs = [fib(i) for i in range(l, 6)]

for i in range(5):
x = [next(f) for f in fibs]
print(x)

With the result:

(1, 2, 3, 4, 5]
(1, 2, 3, 4, 5]
[2, 4, 6, 8, 10]

Thext() is a helper function that calls the __next__() method on a generator.

[3, 6, 9, 12, 15]
(5, 10, 15, 20, 25]

Note that the various versions of fibonacci form vertical slices. Effectively each call
to next() gave each generator a timeslice.

2.2 MicroActors

It should be clear that generators give us a way of having “something that can be
given a bit of time to run”. We can then run something else.

We'll start start there and create a MicroActor. We can then create a MicroScheduler
that can run these MicroActors. We can then create a couple of toy examples.

In later section’s we’ll flesh out MicroActora to Actors.

2.2.1 Exercise: Write a MicroActor baseclass
Definition of done:

* Create a class called MicroActor

* Give it a main method.

* That main method must yield 1 to the caller. This makes it generator. It also
means the first value returned will be 1. Requesting further values would raise
the exception Stopteration - since that’s what happens with generators when
you fall of the bottom of them.

Expected usage/results:

>>> m = MicroActor()

>>> g = m.mainQ

>>> next(g)

1

>>> next(g)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Answer

class MicroActor:
def main(self):
yield 1

3
]

MicroActor()
m.main()

(o]
Il

next(g)
next(g)

2.2.2 Exercise: Write a Microscheduler class

We'll generally create 1 MicroScheduler (or Scheduler) instance in this tutorial. How-
ever you could imagine having mutiple schedulers (one per CPU for example). We
expect to create one instance, then add MicroActors to it and then run them. A de-
tail is that while MicroActors are running, they may ask to add more MicroActors to
the runqueue. (This means our runqueue may change while we’re looping through
it)

Definition of done:
* Create a class called Microscheduler
* Add an __init_ method with anything you feel necessary.
¢ Add a schedule(self, microactor) method

— This accepts an instance of MicroActor called microactor as an argument
— Call microactor.main() to give you a generator g
— Add this generator g to the list of microactors to give CPU time

¢ Add a run(self) method — When this is called (with no arguments)

- Ifthere is nothing to run, it exits, otherwise it loops round everything below
* it repeatedly runs through all microactors’ generators
* For each generator g, call next(g) to give it a time slice.
* The yielded value is ignored (for now)
* next(g) may raise a StopIteration exceptin:
- If it doesn’t - add it to the runqueue to run again next time
- If it does - do anything (meaning it will not be run again)

* Tip: iterate through the runqueue with a while loop and explicit index.

Expected usage/results:

>>> class LimitedFibonacciPrinter(MicroActor):
def __init__(self, basecase=1):
self.basecase = basecase
def main(self):
a = b = self.basecase
for _ in range(5):

yield 1
print("FIB:", a)
a, b =b, ath

>>> |fp = LimitedFibonacciPrinter()
>>> s = MicroScheduler()

>>> S.runqueue
(]

>>> s.add(1fp)

>>> S.runqueue

[<generator object LimitedFibonacciPrinter.main at Ox7f7953447610>]
>>> s.run()

UvT W N — —

>>> S.runqueue

(]
Answer

The simplest possible answer that will work looks like this:

class MicroScheduler:
def __init__(self):
self.runqueue = []
def add(self, microactor):
g = microactor.main()
self.runqueue.append(g)
def run(self):
while len(self.runqueue) > 0:
new_runqueue= []
i =0
while i < len(self.runqueue):
g = self.runqueueli]
try:
next(g)
new_runqueue.append(g)
except StopIteration:
Expected - generator has exitted
pass
i +=1
self.runqueue = new_runqueue

2.2.3 Toy Example Usage

Suppose we have 3 MicroActor classes:

class LimitedFibonacciPrinter(MicroActor):
def __init__(self, basecase=1):
self.basecase = basecase

def main(self):
a = b = self.basecase

for _ in range(5):
yield 1
print("FIB:", a)
a, b =b, a+tb

class LimitedTrianglesPrinter(MicroActor):

def __init__(self, basecase=1):
self.basecase = basecase
def main(self):
a = self.basecase

n=a+l

for _ in range(5):
yield 1
print("TRIANGLE:", a)
a=a-+n
n=n+1

def isprime(n):

for i in range(2,n):
ifn%i==
return False
return True

class LimitedPrimesPrinter(MicroActor):

We can now run create instances of these MicroActors and run them:

>>>
>>>
>>>
>>>
>>>

def __init__(self, basecase=1):
self.basecase = basecase
def main(self):
a = self.basecase

for _ in range(5):
while not isprime(a):
a += 1
yield 1
print("PRIME:", a)
a += 1

Ifp = LimitedFibonacciPrinter(1)
Itp = LimitedTrianglesPrinter(1)
Ipp LimitedPrimesPrinter(99)

s = MicroScheduler()

>>> s.add(Ifp)
.add(ltp)
.add(lpp)
>>> s.run()
FIB: 1
TRIANGLE: 1
PRIME: 101
FIB: 1
TRIANGLE: 3
PRIME: 103
FIB: 2
TRIANGLE: 6
PRIME: 107
FIB: 3
TRIANGLE: 10
PRIME: 109
FIB: 5
TRIANGLE: 15
PRIME: 113

>>>
>>>

n n un n

2.3 From MicroActors to Actors

It’s clear from the last example that we’re creating 3 little MicroActors and they
all run conccurently and they all send stuff to the console. They are all however
all printing to the console. Since they’re all part of the same thread of control this
isn’t a problem, but if these were actually separate threads this would be a complete
mess. Indeed the output could look something like this:

TRIPFIB: 1
RIME: 101
ANGFIB: 1
LE: 1
TRIANPRIME: 103
GLE: 3
TRIAPFIB: 2
RIME: 107
NGLE: 6
TRFIB: 3
IPRIME: 109
ANGLE: 10
TRFIB: 5
IPRIME: 113
ANGLE: 15

The next steps in this section therefore are:

¢ Change the 3 MicroActors so that they send a message to another actor asking

it to print to the console.

* Tweak our MicroActors and Scheduler to allow the system to exit

e Tweak the system so that it doesn’t eat all the system CPU
* Split off the behaviour from the concurrency model.

At that point we’ll have something that could be reasonably called a simple actor

system.

2.3.1 Exercise: Simplest Possible MicroActor with a Mailbox

So now

we have some decisions to make.

* How do we send messages to other MicroActors?

- Sender must be placing the messages where the recipient is looking

¢ How do we ensure these messages are well formed?
* We need to ensure that these are processed in order.

class PrintActor(MicroActor):

def

def

def

def

We can modify our example MicroActors to use a PrinterActor instance for printing:

__init__(self):

self.inbox = []

_print(self, *args):

print(*args)

print(self, *args):

self. inbox.append(("print", args))

main(self):
while True:
while self.inbox:
msg = self. inbox.pop(0)
func, args = msg
if func == "print":
self._print(*args)
yield 1

class LimitedFibonacciPrinter(MicroActor):

def

def

__init__(self, printer, basecase=1): # NOTE: Changed
self.basecase = basecase
self.printer = printer # NOTE: Added

main(self):
a = b = self.basecase
for _ in range(5):

yield 1
self.printer.print("FIB:", a) # NOTE: Changed
a, b =b, atb

class LimitedTrianglesPrinter(MicroActor):
def __init__(self, printer, basecase=1): # NOTE: Changed

self.basecase = basecase
self.printer = printer # NOTE: Added

def main(self):

a = self.basecase

n=a +lI
for _ in range(5):
yield 1
self.printer.print("TRIANGLE:", a) # NOTE: Changed
a=a+n
n=n+1

def isprime(n):
for i in range(2,n):

ifn%i==
return False

return True

class LimitedPrimesPrinter(MicroActor):
def _init__(self, printer, basecase=1): # NOTE: Changed

self.basecase = basecase
self.printer = printer # NOTE: Added

def main(self):

a = self.basecase

for _ in range(5):
while not isprime(a):
a += 1
yield 1
self.printer.print("PRIME:", a) # NOTE: Changed
a += 1

Now we can run this:

pa = PrintActor()

Ifp = LimitedFibonacciPrinter(pa, 1)
Itp = LimitedTrianglesPrinter(pa, 1)
Ipp = LimitedPrimesPrinter(pa, 99)

s = MicroScheduler()

s.add(pa)

s.add(Ilfp)

s.add(ltp)

s.add(lpp)
s.run(Q)

And we find that the output is as expected. Not only that if we switched the mi-
croactors to using threads and from a list to a threadsafe geue like Queue.Queue, we
would find that this still works as expected.

	Introduction
	Concurrency & Parallelism
	Core Aspects of Actors
	General perspective
	Tutorial perspective
	Limitations

	Getting things Started
	Concurrency
	MicroActors
	Exercise: Write a MicroActor baseclass
	Exercise: Write a MicroScheduler class
	Toy Example Usage

	From MicroActors to Actors
	Exercise: Simplest Possible MicroActor with a Mailbox

