
 Michael Sparks
BBC R&D, http://www.kamaelia.org/Home

Embracing
Concurrency

for Fun, Utility & Simpler Code

 Ignite Leeds, Jan 2009

 Michael Sparks
BBC R&D, http://www.kamaelia.org/Home

Embracing
Concurrency

for Fun, Utility & Simpler Code

Or �what we've learnt as a part of the
 Kamaelia project about making concurrency
something that's fun and useful, and usable by

novice and advanced developers alike...
...rather than a pain in the neck�

 Ignite Leeds, Jan 2009

Hardware finally going
massively concurrent ...

.... PS3, high end servers, trickling down to desktops, laptops)

Why?

�many hands make light
work� but Viewed as Hard
... do we just have crap tools?

�And one language to in
the darkness bind them�
... can just we REALLY abandon 50 years of code for Erlang, Haskell
and occam?

Opportunity!

Problems

We're Taught Wrong
Fundamental Control Structures
... in imperative languages number greater than 3!

Control Structure Traditional Abstraction Biggest Pain Points

Sequence Function Global Var
Selection Function Global Var
Iteration Function Global Var
Parallel Thread Shared Data

Usually Skipped Lost or duplicate update
are most common bugs

Desktop

APPS

Network

Novice

3rd Party

Media

gsoc

trainee

Desktop

APPS

Network

Novice

3rd Party

P2P Whiteboard

ER DB Modeller Kids

Programming
(logo) Simple

Games

Speak 'n Write

UGC
Backend

Transcoder

Think backend
needed for
youtube/flickr
type systems

Media

Compose

Shot Change
Detection

Mobile
Reframing

DVB

Macro
�record

everything�

Podcasts

Email &
SpamSMTP

Greylisting
Pop3Proxy ClientSide

Spam Tools

IRC
Web

Serving

gsoc

trainee

AIM

AWS
(Amazon)

Sedna
XMLDBXMPP

pubsub
Qt

Gtk
microblogging

MiniAxon
ScriptReader
MediaPreview
on Mobile
Reliable
Multicast

P2P Radio
Torrent
3D Systems
Realtime Music
Paint App
P2P Web Server
Secure �phone�
Social Net Vis
...

Core Approach:
 Concurrent things with comms points
 Generally send messages
 Keep data private, don't share

Perspectives in APIs! (1/2)
1st, 2nd, 3rd Person

1st Person - I change my state

2nd Person � YOU
want to me to do
something
(you send
me a message)

private real methods

Messages
from public
inboxes

Perspectives in APIs! (2/2)
1st, 2nd, 3rd Person

Also, think
about stdin

Actor Systems

Advantages of outboxes

No hardcoding of recipient
allows:
 - Late Binding
 - Dynamic rewiring

Concurrency Patterns as
Reusable Code
 ... a concurrency DSL

A Core Concurrency DSL
Pipeline(A,B,C)
Graphline(A=A,B=B, C=C, linkages = {})
Tpipe(cond, C)
Seq(A,B,C), PAR(), ALT()
Backplane(�name�), PublishTo(�name�), SubscribeTo(�name�)
Carousel(...)
PureTransformer(...)
StatefulTransformer(...)
PureServer(...)
MessageDemuxer(...)
Source(*messages)
NullSink

Some of these are work in progress
� they've been identified as useful,
but not implemented as chassis, yet

Pipeline Example

Graphline Example

Server Example

Server Core

Remote
User

Protocol Handler Factory

Server Example

Server Core

Protocol Handler Factory

You therefore
need to provide
this bit.

Server Example
from Kamaelia.Chassis.ConnectedServer import ServerCore
from Kamaelia.Util.PureTransformer import PureTransformer

def greeter(*argv, **argd):
 return PureTransformer(lambda x: "hello" +x)

class GreeterServer(ServerCore):
 protocol=greeter
 port=1601

GreeterServer().run()

Backplane Example

 Michael Sparks
BBC R&D, http://www.kamaelia.org/Home

Thank you for listening!

If you have questions, grab me later :-)

