Coverage for /home/caleb/Documents/University/CHE3123/thermo/thermo/datasheet.py : 8%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# -*- coding: utf-8 -*- Copyright (C) 2016, Caleb Bell <Caleb.Andrew.Bell@gmail.com>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.'''
'tabulate_constants']
chem = Chemical(chemical)
(rhos, Cps) = [[] for i in range(2)] if not Tmin: # pragma: no cover if chem.Tm: Tmin = chem.Tm-100 else: Tmin = 150. if not Tmax: # pragma: no cover if chem.Tm: Tmax = chem.Tm else: Tmax = 350
Ts = np.linspace(Tmin, Tmax, pts) for T in Ts: chem = Chemical(chemical, T=T) rhos.append(chem.rhos) Cps.append(chem.Cps)
data = OrderedDict() data['Density, kg/m^3'] = rhos data['Constant-pressure heat capacity, J/kg/K'] = Cps
df = pd.DataFrame(data, index=Ts) df.index.name = 'T, K' return df
chem = Chemical(chemical)
(rhos, Cps, mugs, kgs, Prs, alphas, isobarics, JTs, Psats, sigmas, Hvaps, permittivities) = [[] for i in range(12)] if not Tmin: # pragma: no cover if chem.Tm: Tmin = chem.Tm else: Tmin = 273.15 if not Tmax: # pragma: no cover if chem.Tc: Tmax = chem.Tc else: Tmax = 450
Ts = np.linspace(Tmin, Tmax, pts) for T in Ts: chem = Chemical(chemical, T=T)
rhos.append(chem.rhol) Cps.append(chem.Cpl) mugs.append(chem.mul) kgs.append(chem.kl) Prs.append(chem.Prl) alphas.append(chem.alphal) isobarics.append(chem.isobaric_expansion_l) JTs.append(chem.JTg) Psats.append(chem.Psat) Hvaps.append(chem.Hvap) sigmas.append(chem.sigma) permittivities.append(chem.permittivity)
data = OrderedDict() data['Saturation pressure, Pa'] = Psats data['Density, kg/m^3'] = rhos data['Constant-pressure heat capacity, J/kg/K'] = Cps data['Heat of vaporization, J/kg'] = Hvaps data['Viscosity, Pa*S'] = mugs data['Thermal consuctivity, W/m/K'] = kgs data['Surface tension, N/m'] = sigmas data['Prandtl number'] = Prs data['Thermal diffusivity, m^2/s'] = alphas data['Isobaric expansion, 1/K'] = isobarics data['Joule-Thompson expansion coefficient, K/Pa'] = JTs data['Permittivity'] = permittivities
df = pd.DataFrame(data, index=Ts) df.index.name = 'T, K' return df
chem = Chemical(chemical)
(rhos, Cps, Cvs, mugs, kgs, Prs, alphas, isobarics, isentropics, JTs) = [[] for i in range(10)] if not Tmin: # pragma: no cover if chem.Tm: Tmin = chem.Tm else: Tmin = 273.15 if not Tmax: # pragma: no cover if chem.Tc: Tmax = chem.Tc else: Tmax = 450
Ts = np.linspace(Tmin, Tmax, pts) for T in Ts: chem = Chemical(chemical, T=T)
rhos.append(chem.rhog) Cps.append(chem.Cpg) Cvs.append(chem.Cvg) mugs.append(chem.mug) kgs.append(chem.kg) Prs.append(chem.Prg) alphas.append(chem.alphag) isobarics.append(chem.isobaric_expansion_g) isentropics.append(chem.isentropic_exponent) JTs.append(chem.JTg) data = OrderedDict() data['Density, kg/m^3'] = rhos data['Constant-pressure heat capacity, J/kg/K'] = Cps data['Constant-volume heat capacity, J/kg/K'] = Cvs data['Viscosity, Pa*S'] = mugs data['Thermal consuctivity, W/m/K'] = kgs data['Prandtl number'] = Prs data['Thermal diffusivity, m^2/s'] = alphas data['Isobaric expansion, 1/K'] = isobarics data['Isentropic exponent'] = isentropics data['Joule-Thompson expansion coefficient, K/Pa'] = JTs
df = pd.DataFrame(data, index=Ts) # add orient='index' df.index.name = 'T, K' return df
pd.set_option('display.max_rows', 100000) pd.set_option('display.max_columns', 100000)
all_chemicals = OrderedDict()
if isinstance(chemical, str): cs = [chemical] else: cs = chemical
for chemical in cs: chem = Chemical(chemical) data = OrderedDict() data['CAS'] = chem.CAS data['Formula'] = chem.formula data['MW, g/mol'] = chem.MW data['Tm, K'] = chem.Tm data['Tb, K'] = chem.Tb data['Tc, K'] = chem.Tc data['Pc, Pa'] = chem.Pc data['Vc, m^3/mol'] = chem.Vc data['Zc'] = chem.Zc data['rhoC, kg/m^3'] = chem.rhoC data['Acentric factor'] = chem.omega data['Triple temperature, K'] = chem.Tt data['Triple pressure, Pa'] = chem.Pt data['Heat of vaporization at Tb, J/mol'] = chem.HvapTbm data['Heat of fusion, J/mol'] = chem.Hfusm data['Heat of sublimation, J/mol'] = chem.Hsubm data['Heat of formation, J/mol'] = chem.Hf data['Dipole moment, debye'] = chem.dipole data['Molecular Diameter, Angstrom'] = chem.molecular_diameter data['Stockmayer parameter, K'] = chem.Stockmayer data['Refractive index'] = chem.RI data['Lower flammability limit, fraction'] = chem.LFL data['Upper flammability limit, fraction'] = chem.UFL data['Flash temperature, K'] = chem.Tflash data['Autoignition temperature, K'] = chem.Tautoignition data['Time-weighted average exposure limit'] = str(chem.TWA) data['Short-term exposure limit'] = str(chem.STEL) data['logP'] = chem.logP
if full: data['smiles'] = chem.smiles data['InChI'] = chem.InChI data['InChI key'] = chem.InChI_Key data['IUPAC name'] = chem.IUPAC_name data['solubility parameter, Pa^0.5'] = chem.solubility_parameter data['Parachor'] = chem.Parachor data['Global warming potential'] = chem.GWP data['Ozone depletion potential'] = chem.ODP data['Electrical conductivity, S/m'] = chem.conductivity
all_chemicals[chem.name] = data
if vertical: df = pd.DataFrame.from_dict(all_chemicals) else: df = pd.DataFrame.from_dict(all_chemicals, orient='index') return df
#chemicals = ['Sodium Hydroxide', 'sodium chloride', 'methanol', #'hydrogen sulfide', 'methyl mercaptan', 'Dimethyl disulfide', 'dimethyl sulfide', # 'alpha-pinene', 'chlorine dioxide', 'sulfuric acid', 'SODIUM CHLORATE', 'carbon dioxide', 'Cl2', 'formic acid', # 'sodium sulfate'] #for i in chemicals: # print tabulate_solid(i) # print tabulate_liq(i) # print tabulate_gas(i) # tabulate_constants(i)
#tabulate_constants('Methylene blue') |