Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

 

# -*- coding: utf-8 -*- 

 

u'''Precision floating point summation and utilities. 

''' 

# make sure int/int division yields float quotient, see .basics 

from __future__ import division as _; del _ # PYCHOK semicolon 

 

from pygeodesy.basics import copysign0, _isfinite, isint, isnear0, \ 

isscalar, len2, neg 

from pygeodesy.errors import _IsnotError, LenError, _NotImplementedError, \ 

_OverflowError, _TypeError, _ValueError, \ 

_xkwds_get 

from pygeodesy.interns import EPS0, EPS02, EPS1, MISSING, NN, PI, PI_2, PI_4, \ 

_finite_, _few_, _h_, _negative_, _not_, \ 

_singular_, _SPACE_, _too_, _0_0, _0_5, \ 

_1_0, _N_1_0, _1_5, _2_0, _3_0 

from pygeodesy.lazily import _ALL_LAZY, _sys_version_info2 

from pygeodesy.named import _Named, _NotImplemented 

# from pygeodesy.props import property_RO # from .units 

from pygeodesy.streprs import Fmt, unstr 

from pygeodesy.units import Int_, property_RO 

 

from math import ceil as _ceil, floor as _floor, sqrt # pow 

from operator import mul as _mul 

 

__all__ = _ALL_LAZY.fmath 

__version__ = '22.01.05' 

 

# sqrt(2) <https://WikiPedia.org/wiki/Square_root_of_2> 

_0_4142 = 0.414213562373095 # sqrt(_2_0) - _1_0 

_1_3rd = _1_0 / _3_0 

_2_3rd = _2_0 / _3_0 

 

_iadd_ = '+=' 

_idiv_ = '/=' 

_imul_ = '*=' 

_isub_ = '-=' 

_partials_ = 'partials' 

 

 

def _2even(s, r, p): 

'''(INTERNAL) Half-even rounding. 

''' 

if (r > 0 and p > 0) or \ 

(r < 0 and p < 0): # signs match 

t, p = _2sum(s, p * 2) 

if not p: 

s = t 

return s 

 

 

def _2float(index=None, **name_value): 

'''(INTERNAL) Raise C{TypeError} or C{ValueError} if not scalar or infinite. 

''' 

n, v = name_value.popitem() 

try: 

if _isfinite(v): 

return float(v) 

X, t = _ValueError, _not_(_finite_) 

except TypeError as x: 

X, t = _TypeError, str(x) 

except ValueError as x: 

X, t = _ValueError, str(x) 

except Exception as x: 

X, t = _NotImplementedError, repr(x) 

if index is not None: 

n = Fmt.SQUARE(n, index) 

raise X(n, v, txt=t) 

 

 

def _2sum(a, b): # by .testFmath 

'''(INTERNAL) Precision C{2sum} of M{a + b} as 2-tuple (sum, residual). 

''' 

s = a + b 

if not _isfinite(s): 

raise _OverflowError(unstr(_2sum.__name__, a, b), txt=str(s)) 

if abs(a) < abs(b): 

a, b = b, a 

return s, (b - (s - a)) # abs(b) <= abs(a) 

 

 

class Fsum(_Named): 

'''Precision summation similar to standard Python function C{math.fsum}. 

 

Unlike C{math.fsum}, this class accumulates the values and provides 

intermediate, precision running sums. Accumulation may continue 

after intermediate summations. 

 

@note: Handling of exceptions, C{inf}, C{INF}, C{nan} and C{NAN} 

values is different from C{math.fsum}. 

 

@see: U{Hettinger<https://GitHub.com/ActiveState/code/blob/master/recipes/Python/ 

393090_Binary_floating_point_summatiaccurate_full/recipe-393090.py>}, 

U{Kahan<https://WikiPedia.org/wiki/Kahan_summation_algorithm>}, 

U{Klein<https://Link.Springer.com/article/10.1007/s00607-005-0139-x>}, 

Python 2.6+ file I{Modules/mathmodule.c} and the issue log 

U{Full precision summation<https://Bugs.Python.org/issue2819>}. 

''' 

_fsum2_ = None 

_n = 0 

_ps = [] # partials 

 

def __init__(self, *starts, **name): 

'''Initialize a new accumulator with one or more start values. 

 

@arg starts: No, one or more start values (C{scalar}s). 

@kwarg name: Optional name (C{str}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{starts}} value. 

 

@raise ValueError: Invalid or non-finite B{C{starts}} value. 

''' 

self._n = 0 

self._ps = [] 

if starts: 

self.fadd(starts) 

if name: 

self.name = _xkwds_get(name, name=NN) 

 

def __abs__(self): 

'''Return absolute value of this instance. 

''' 

return self.__neg__() if self.__lt__(0) else self 

 

def __add__(self, other): 

'''Sum of this and a scalar or an other instance. 

 

@arg other: L{Fsum} instance or C{scalar}. 

 

@return: The sum (L{Fsum}). 

 

@see: Method L{Fsum.__iadd__}. 

''' 

f = self.fcopy(name=self.__add__.__name__) 

f += other 

return f 

 

def __bool__(self): # PYCHOK PyChecker 

'''Is this instance non-zero?. 

''' 

return self.__ne__(0) 

 

def __ceil__(self): # PYCHOK not special in Python 2- 

'''Return the C{ceil} of this instance as C{float}. 

 

@see: Methods L{__floor__} and L{__int__}. 

''' 

s, p = self._cmp2() 

return _ceil(max(p, -s)) 

 

def __divmod__(self, other): 

'''Return the 2-tuple C{divmod(this_instance, B{other})}. 

 

@see: Method L{__itruediv__}. 

''' 

f = self.fcopy(name=self.__divmod__.__name__) 

i = f.__truediv__(other).__int__() 

return float(i), f.__isub__(other * i) 

 

def __eq__(self, other): 

'''Compare this and an other instance or scalar. 

''' 

s, p = self._cmp2(other) 

return p == s 

 

def __float__(self): 

'''Convert this instance to C{float} as C{float(self.fsum())}. 

''' 

s = self._fsum2_ 

return self.fsum() if s is None else s 

 

def __floor__(self): # PYCHOK not special in Python 2- 

'''Return the C{floor} of this instance as C{float}. 

 

@see: Methods L{__ceil__} and L{__int__}. 

''' 

s, p = self._cmp2() 

return _floor(min(p, -s)) 

 

def __floordiv__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __format__(self, *other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, *other) 

 

def __ge__(self, other): 

'''Compare this and an other instance or scalar. 

''' 

s, p = self._cmp2(other) 

return p >= s 

 

def __gt__(self, other): 

'''Compare this and an other instance or scalar. 

''' 

s, p = self._cmp2(other) 

return p > s 

 

def __hash__(self): # PYCHOK no cover 

'''Return the C{hash} of this instance. 

''' 

return hash(self._ps) 

 

def __iadd__(self, other): 

'''Add a scalar or an other instance to this instance. 

 

@arg other: L{Fsum} instance or C{scalar}. 

 

@return: This instance, updated (L{Fsum}). 

 

@raise TypeError: Invalid B{C{other}} type. 

 

@see: Method L{Fsum.fadd}. 

''' 

if isscalar(other): 

if other: 

self.fadd_(other) 

elif isinstance(other, Fsum): 

if other is self: # or self.__eq__(other): 

self.fmul(2) 

else: 

self.fadd(other._ps) 

else: 

raise self._Error(_iadd_, other) 

return self 

 

def __int__(self): 

'''Convert this instance to C{int} as C{int(self.fsum() + partials)}. 

 

@see: Methods L{__ceil__} and L{__floor__}. 

''' 

s, p = self._cmp2() 

s = -s 

return int(p if (s > 0 and p < s) or 

(s < 0 and p > s) else s) 

 

def __imatmul__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __imul__(self, other): 

'''Multiply this instance by a scalar or an other instance. 

 

@arg other: L{Fsum} instance or C{scalar}. 

 

@return: This instance, updated (L{Fsum}). 

 

@raise TypeError: Invalid B{C{other}} type. 

 

@see: Method L{Fsum.fmul}. 

''' 

if isscalar(other): 

if other != _1_0: 

self.fmul(other) 

elif isinstance(other, Fsum): 

ps = list(other._ps) # copy 

p = ps.pop() if ps else 0 

if p: 

s = self.fcopy() 

self.fmul(p) 

while ps: # self += s * ps.pop() 

p = ps.pop() 

if p: 

p = s.fcopy().fmul(p) 

self.fadd(p._ps) 

else: # PYCHOK no cover 

self._ps = [] # zero 

self._fsum2_ = _0_0 

else: 

raise self._Error(_imul_, other) 

return self 

 

def __isub__(self, other): 

'''Subtract a scalar or an other instance from this instance. 

 

@arg other: L{Fsum} instance or C{scalar}. 

 

@return: This instance, updated (L{Fsum}). 

 

@raise TypeError: Invalid B{C{other}} type. 

 

@see: Method L{Fsum.fadd}. 

''' 

if isscalar(other): 

if other: 

self.fadd_(-other) 

elif isinstance(other, Fsum): 

if other is self: # or self.__eq__(other): 

self._ps = [] # zero 

self._fsum2_ = _0_0 

else: 

self.fadd(-p for p in other._ps) # neg_(*other._ps) 

else: 

raise self._Error(_isub_, other) 

return self 

 

def __itruediv__(self, other): 

'''Devide this instance by a I{scalar} divisor only. 

 

@arg other: The denominator (C{scalar}). 

 

@raise TypeError: Non-scalar B{C{other}}. 

 

@raise ValueError: Zero, invalid or non-finite B{C{other}} 

or an L{Fsum} B{C{other}} with too many 

C{partials}. 

 

@return: This instance (L{Fsum}). 

''' 

if isscalar(other): 

s = other 

elif isinstance(other, Fsum): 

if other.__eq__(0): 

s = 0 # throw ZeroDivisionError 

elif other is self or self.__eq__(other): 

self._ps[:] = [_1_0] 

self._fsum2_ = _1_0 

return self 

else: 

f = other.fcopy() 

s = f.fsum() 

p = len(f._ps) - 1 # NOT len(f)! 

if p > 0: 

raise self._Error(_idiv_, other, Error=_ValueError, 

txt=_SPACE_(_partials_, Fmt.PAREN(p))) 

else: 

raise self._Error(_idiv_, other) 

return self.fdiv(s) 

 

def __le__(self, other): 

'''Compare this and an other instance or scalar. 

''' 

s, p = self._cmp2(other) 

return p <= s 

 

def __len__(self): 

'''Return the I{total} number of accumulated values (C{int}). 

''' 

return self._n 

 

def __lt__(self, other): 

'''Compare this and an other instance or scalar. 

''' 

s, p = self._cmp2(other) 

return p < s 

 

def __matmul__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __mod__(self, other): 

'''Return C{this_instance % B{other}}. 

 

@see: Method L{__divmod__}. 

''' 

_, m = self.__divmod__(other) 

return m 

 

def __mul__(self, other): 

'''Product of this and an other instance or a scalar. 

 

@arg other: L{Fsum} instance or C{scalar}. 

 

@return: The product (L{Fsum}). 

 

@see: Method L{Fsum.__imul__}. 

''' 

f = self.fcopy(name=self.__mul__.__name__) 

f *= other 

return f 

 

def __ne__(self, other): 

'''Compare this and an other instance or scalar. 

''' 

s, p = self._cmp2(other) 

return p != s 

 

def __neg__(self): 

'''Return a copy of this instance, negated. 

''' 

f = self.fcopy(name=self.__neg__.__name__) 

f *= -1 # negates 

return f 

 

def __pos__(self): # PYCHOK no cover 

'''Return this instance, I{as-is}. 

''' 

return self 

 

def __pow__(self, other, *mod): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other, *mod) 

 

def __radd__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __rdivmod__ (self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __rfloordiv__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __rmatmul__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __rmod__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __rmul__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __round__(self, ndigits=None): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, ndigits=ndigits) 

 

def __rpow__(self, other, *mod): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other, *mod) 

 

def __rsub__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __rtruediv__(self, other): # PYCHOK no cover 

'''Not implemented.''' 

return _NotImplemented(self, other) 

 

def __sizeof__(self): # PYCHOK no cover 

'''Size of this instance in C{bytes}. 

''' 

return sum(p.__sizeof__() for p in (self._ps + [self._ps])) 

 

def __str__(self): 

return Fmt.SQUARE(self.named3, len(self)) 

 

def __sub__(self, other): 

'''Difference of this and an other instance or a scalar. 

 

@arg other: L{Fsum} instance or C{scalar}. 

 

@return: The difference (L{Fsum}). 

 

@see: Method L{Fsum.__isub__}. 

''' 

f = self.fcopy(name=self.__sub__.__name__) 

f -= other 

return f 

 

def __truediv__(self, other): 

'''Quotient of this instance and a I{scalar}. 

 

@arg other: The denominator (C{scalar}). 

 

@raise TypeError: Non-scalar B{C{other}}. 

 

@raise ValueError: Zero, invalid or non-finite B{C{other}} 

or an L{Fsum} B{C{other}} with too many 

C{partials}. 

 

@return: The quotient (L{Fsum}). 

''' 

f = self.fcopy(name=self.__truediv__.__name__) 

f.__itruediv__(other) # /= chokes PyChecker 

return f 

 

__trunc__ = __int__ 

 

if _sys_version_info2 < (3, 0): # PYCHOK no cover 

# <https://docs.Python.org/2/library/operator.html#mapping-operators-to-functions> 

__div__ = __truediv__ 

__idiv__ = __itruediv__ 

__long__ = __int__ 

__nonzero__ = __bool__ 

 

def _cmp2(self, *other): 

'''(INTERNAL) Diff this and another instance or C{0}. 

''' 

f = self.fcopy() 

if other: 

f = f.__isub__(*other) 

s = neg(f.fsum()) # negative sum! 

p = (fsum(p for p in f._ps if p > 0) + 

fsum(p for p in f._ps if p < 0)) if f._ps else _0_0 

return s, p 

 

def _Error(self, op, other, Error=_TypeError, **txt): # PYCHOK no cover 

'''(INTERNAL) Return an operation error. 

''' 

return Error(_SPACE_(self, op, repr(other)), **txt) 

 

def fadd(self, xs): 

'''Accumulate more scalar values from an iterable. 

 

@arg xs: Iterable, list, tuple, etc. (C{scalar}s). 

 

@return: This instance (L{Fsum}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{xs}} value. 

 

@raise ValueError: Invalid or non-finite B{C{xs}} value. 

''' 

if isscalar(xs): # for backward compatibility 

xs = (xs,) # PYCHOK no cover 

 

ps, n = self._ps, -1 

for n, x in enumerate(xs): # _iter() 

if x: 

x = _2float(xs=x, index=n) 

i = 0 

for p in ps: 

x, p = _2sum(x, p) 

if p: 

ps[i] = p 

i += 1 

ps[i:] = [x] 

# assert self._ps is ps 

self._n += n + 1 

self._fsum2_ = None 

return self 

 

def fadd_(self, *xs): 

'''Accumulate more I{scalar} values from positional arguments. 

 

@arg xs: Values to add (C{scalar}s), all positional. 

 

@return: This instance (L{Fsum}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{xs}} value. 

 

@raise ValueError: Invalid or non-finite B{C{xs}} value. 

''' 

return self.fadd(xs) 

 

def fcopy(self, deep=False, name=NN): 

'''Copy this instance, C{shallow} or B{C{deep}}. 

 

@return: The copy (L{Fsum}). 

''' 

f = _Named.copy(self, deep=deep, name=name) # see .__neg__ 

# f._fsum2_ = self._fsum2_ 

# f._n = self._n 

f._ps = list(self._ps) # separate copy 

return f 

 

copy = fcopy 

 

def fdiv(self, divisor): 

'''Devide this instance by a I{scalar}. 

 

@arg divisor: The denominator (C{scalar}). 

 

@raise TypeError: Non-scalar B{C{divisor}}. 

 

@raise ValueError: Zero, invalid or non-finite B{C{divisor}}. 

 

@return: This instance (L{Fsum}). 

''' 

try: 

self.fmul(_1_0 / _2float(divisor=divisor)) 

except (TypeError, ValueError, ZeroDivisionError) as x: 

raise self._Error(_idiv_, divisor, Error=_ValueError, txt=str(x)) 

return self 

 

def fmul(self, factor): 

'''Multiple this instance by a I{scalar}. 

 

@arg factor: The multiplier (C{scalar}). 

 

@raise TypeError: Non-scalar B{C{factor}}. 

 

@raise ValueError: Invalid or non-finite B{C{factor}}. 

 

@return: This instance (L{Fsum}). 

 

@see: Method L{Fsum.fadd}. 

''' 

f, ps = _2float(factor=factor), self._ps 

if ps: 

if abs(f) != 1: 

# multiply and adjust partial sums 

ps[:] = [p * f for p in ps] 

self.fadd_(ps.pop()) 

self._n -= 1 

elif f < 0: # == -1 

ps[:] = [-p for p in ps] 

if self._fsum2_: 

self._fsum2_ = -self._fsum2_ 

# assert self._ps is ps 

return self 

 

def fsub(self, iterable): 

'''Subtract more I{scalar} values from an iterable. 

 

@arg iterable: Sequence, list, tuple, etc. (C{scalar}s). 

 

@return: This instance (L{Fsum}). 

 

@see: Method L{Fsum.fadd}. 

''' 

if iterable: 

self.fadd(-s for s in iterable) 

return self 

 

def fsub_(self, *xs): 

'''Subtract more I{scalar} values from positional arguments. 

 

@arg xs: Values to subtract (C{scalar}s), all positional. 

 

@return: This instance (L{Fsum}). 

 

@see: Method L{Fsum.fadd}. 

''' 

return self.fsub(xs) 

 

def fsum(self, iterable=()): 

'''Accumulate more I{scalar} values from an iterable and sum all. 

 

@kwarg iterable: Sequence, list, tuple, etc. (C{scalar}s), optional. 

 

@return: Accurate, running sum (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{iterable}} value. 

 

@raise ValueError: Invalid or non-finite B{C{iterable}} value. 

 

@note: Accumulation can continue after summation. 

''' 

if iterable: 

self.fadd(iterable) 

 

ps = self._ps 

i = len(ps) - 1 

if i < 0: 

s = _0_0 

else: 

s = ps[i] 

while i > 0: 

i -= 1 

s, p = _2sum(s, ps[i]) 

ps[i:] = [s] 

if p: # sum(ps) became inexact 

ps.append(p) 

if i > 0: # half-even round if signs match 

s = _2even(s, ps[i-1], p) 

break 

# assert self._ps is ps 

self._fsum2_ = s 

return s 

 

def fsum_(self, *xs): 

'''Accumulate more I{scalar} values from positional arguments and sum all. 

 

@arg xs: Values to add (C{scalar}s), all positional. 

 

@return: Accurate, running sum (C{float}). 

 

@see: Method L{Fsum.fsum}. 

 

@note: Accumulation can continue after summation. 

''' 

return self.fsum(xs) 

 

def fsum2_(self, *xs): 

'''Accumulate more I{scalar} values from positional arguments, 

sum all and provide the sum and delta. 

 

@arg xs: Values to add (C{scalar}s), all positional. 

 

@return: 2-Tuple C{(sum, delta)} with the accurate, 

running C{sum} and the C{delta} with the 

previous running C{sum}, both (C{float}). 

 

@see: Method L{Fsum.fsum_}. 

 

@note: Accumulation can continue after summation. 

''' 

p = self._fsum2_ 

if p is None: 

p = self.fsum() 

s = self.fsum(xs) # if xs else self._fsum2_ 

return s, s - p 

 

@property_RO 

def imag(self): 

'''Return the imaginary part of this instance. 

''' 

return _0_0 

 

def is_integer(self): 

'''Return C{True} if this instance is an integer. 

''' 

s, p = self._cmp2() 

return s.is_integer() and p == -s 

 

@property_RO 

def real(self): 

'''Return the real part of this instance. 

''' 

return float(self) 

 

 

class Fdot(Fsum): 

'''Precision dot product. 

''' 

def __init__(self, a, *b): 

'''New L{Fdot} precision dot product M{sum(a[i] * b[i] 

for i=0..len(a))}. 

 

@arg a: List, sequence, tuple, etc. (C{scalar}s). 

@arg b: All positional arguments (C{scalar}s). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise LenError: Unequal C{len(B{a})} and C{len(B{b})}. 

 

@see: Function L{fdot} and method L{Fsum.fadd}. 

''' 

Fsum.__init__(self) 

self.fadd(_map_a_x_b(a, b)) 

 

 

class Fhorner(Fsum): 

'''Precision polynomial evaluation using the Horner form. 

''' 

def __init__(self, x, *cs): 

'''New L{Fhorner} evaluation of the polynomial 

M{sum(cs[i] * x**i for i=0..len(cs))}. 

 

@arg x: Polynomial argument (C{scalar}). 

@arg cs: Polynomial coeffients (C{scalar}[]). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{x}}. 

 

@raise ValueError: Non-finite B{C{x}}. 

 

@see: Function L{fhorner} and methods L{Fsum.fadd} and L{Fsum.fmul}. 

''' 

Fsum.__init__(self, *cs[-1:]) 

if len(cs) > 1: 

x = _2float(x=x) 

a_ = self.fadd_ 

ps = self._ps 

for c in reversed(cs[:-1]): # multiply-accumulate 

ps[:] = [p * x for p in ps] 

a_(c) 

# assert self._ps is ps 

 

 

class Fpolynomial(Fsum): 

'''Precision polynomial evaluation. 

''' 

def __init__(self, x, *cs): 

'''New L{Fpolynomial} evaluation of the polynomial 

M{sum(cs[i] * x**i for i=0..len(cs))}. 

 

@arg x: Polynomial argument (C{scalar}). 

@arg cs: Polynomial coeffients (C{scalar}[]). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{x}}. 

 

@raise ValueError: Non-finite B{C{x}}. 

 

@see: Function L{fpolynomial} and method L{Fsum.fadd}. 

''' 

Fsum.__init__(self, *cs[:1]) 

n = len(cs) - 1 

if n > 0: 

self.fadd(_map_a_x_b(cs[1:], fpowers(x, n))) 

 

 

class Fwelford(_Named): 

'''U{Welford's<https://WikiPedia.org/wiki/Algorithms_for_calculating_variance>} 

accumulator computing the running mean, sample variance and standard deviation. 

 

@see: U{Cook<https://www.JohnDCook.com/blog/standard_deviation/>} and U{Cook 

<https://www.JohnDCook.com/blog/skewness_kurtosis/>}. 

''' 

def __init__(self, *xs, **name): 

'''New L{Fwelford} accumulator. 

 

@arg xs: Optional, initial values (C{scalar}s). 

@kwarg name: Optional name (C{str}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{ s}} value. 

 

@raise ValueError: Invalid or non-finite B{C{xs}} value. 

''' 

self._M = Fsum() 

self._m = _0_0 # mean 

self._n = 0 

self._S = Fsum() 

if name: 

self.name = _xkwds_get(name, name=NN) 

if xs: 

self.fmean_(*xs) 

 

def __len__(self): 

'''Return the I{total} number of accumulated values (C{int}). 

''' 

return self._n 

 

def fcopy(self, deep=False, name=NN): 

'''Copy this instance, C{shallow} or B{C{deep}}. 

 

@return: The copy (L{Fwelford}). 

''' 

f = _Named.copy(self, deep=deep, name=name) 

f._M = self._M.fcopy(deep=False) 

f._n = self._n 

f._m = self._m 

f._S = self._S.fcopy(deep=False) 

return f 

 

copy = fcopy 

 

def fmean_(self, *xs): 

'''Accumulate and return the running mean. 

 

@arg xs: Additional values to accumulate (C{scalar}s). 

 

@return: Current, running mean (C{float}). 

''' 

M = self._M.fsum_ 

m = self._m 

n = self._n 

S = self._S.fadd_ 

for x in xs: 

n += 1 

d = float(x - m) 

m = M(d / n) 

S(float(x - m) * d) 

self._m = m 

self._n = n 

return m 

 

def fstdev_(self, *xs, **sample): 

'''Accumulate and return the running standard deviation. 

 

@arg xs: Additional values to accumulate (C{scalar}s). 

@kwarg sample: If C{True} use the reduced number of 

accumulated values (C{bool}). 

 

@return: Current, running standard deviation (C{float}). 

''' 

v = self.fvariance_(*xs, **sample) 

return sqrt(v) if v > 0 else _0_0 

 

def fvariance_(self, *xs, **sample): 

'''Accumulate and return the running variance. 

 

@arg xs: Additional values to accumulate (C{scalar}s). 

@kwarg sample: If C{True} use the reduced number of 

accumulated values (C{bool}). 

 

@return: Current, running variance (C{float}). 

''' 

if xs: 

self.fmean_(*xs) 

s = 1 if _xkwds_get(sample, sample=False) else 0 

n = float(len(self) - s) 

return (self._S.fsum() / n) if n > 0 else _0_0 

 

 

def cbrt(x3): 

'''Compute the cube root M{x3**(1/3)}. 

 

@arg x3: Value (C{scalar}). 

 

@return: Cubic root (C{float}). 

 

@see: Functions L{cbrt2} and L{sqrt3}. 

''' 

# <https://archive.lib.MSU.edu/crcmath/math/math/r/r021.htm> 

# simpler and more accurate than Ken Turkowski's CubeRoot, see 

# <https://People.FreeBSD.org/~lstewart/references/apple_tr_kt32_cuberoot.pdf> 

return copysign0(pow(abs(x3), _1_3rd), x3) 

 

 

def cbrt2(x3): 

'''Compute the cube root I{squared} M{x3**(2/3)}. 

 

@arg x3: Value (C{scalar}). 

 

@return: Cube root I{squared} (C{float}). 

 

@see: Functions L{cbrt} and L{sqrt3}. 

''' 

return pow(abs(x3), _2_3rd) # XXX pow(abs(x3), _1_3rd)**2 

 

 

def euclid(x, y): 

'''I{Appoximate} the norm M{sqrt(x**2 + y**2)} by 

M{max(abs(x), abs(y)) + min(abs(x), abs(y)) * 0.4142...}. 

 

@arg x: X component (C{scalar}). 

@arg y: Y component (C{scalar}). 

 

@return: Appoximate norm (C{float}). 

 

@see: Function L{euclid_}. 

''' 

x, y = abs(x), abs(y) 

if y > x: 

x, y = y, x 

return x + y * _0_4142 # XXX * _0_5 before 20.10.02 

 

 

def euclid_(*xs): 

'''I{Appoximate} the norm M{sqrt(sum(x**2 for x in xs))} 

by cascaded L{euclid}. 

 

@arg xs: X arguments, positional (C{scalar}[]). 

 

@return: Appoximate norm (C{float}). 

 

@see: Function L{euclid}. 

''' 

e = _0_0 

for x in sorted(map(abs, xs)): # XXX not reverse=True 

# e = euclid(x, e) 

if x > e: 

e, x = x, e 

if x: 

e += x * _0_4142 

return e 

 

 

def facos1(x): 

'''Fast approximation of L{pygeodesy.acos1}C{(B{x})}. 

 

@see: U{ShaderFastLibs.h<https://GitHub.com/michaldrobot/ 

ShaderFastLibs/blob/master/ShaderFastMathLib.h>}. 

''' 

a = abs(x) 

if a < EPS0: 

r = PI_2 

elif a < EPS1: 

H = Fhorner(-a, 1.5707288, 0.2121144, 0.0742610, 0.0187293) 

r = H.fmul(sqrt(_1_0 - a)).fsum() 

if x < 0: 

r = PI - r 

else: 

r = PI if x < 0 else _0_0 

return r 

 

 

def fasin1(x): # PYCHOK no cover 

'''Fast approximation of L{pygeodesy.asin1}C{(B{x})}. 

 

@see: L{facos1}. 

''' 

return PI_2 - facos1(x) 

 

 

def fatan(x): 

'''Fast approximation of C{atan(B{x})}. 

''' 

a = abs(x) 

if a < _1_0: 

r = fatan1(a) if a else _0_0 

elif a > _1_0: 

r = PI_2 - fatan1(_1_0 / a) # == fatan2(a, _1_0) 

else: 

r = PI_4 

return (-r) if x < 0 else r # copysign0(r, x) 

 

 

def fatan1(x): 

'''Fast approximation of C{atan(B{x})} for C{0 <= B{x} <= 1}, I{unchecked}. 

 

@see: U{ShaderFastLibs.h<https://GitHub.com/michaldrobot/ 

ShaderFastLibs/blob/master/ShaderFastMathLib.h>} and 

U{Efficient approximations for the arctangent function 

<http://www-Labs.IRO.UMontreal.Ca/~mignotte/IFT2425/Documents/ 

EfficientApproximationArctgFunction.pdf>}, IEEE Signal 

Processing Magazine, 111, May 2006. 

''' 

# Eq (9): PI_4 * x - x * (x - 1) * (0.2447 + 0.0663 * x**2) 

# == x * (1.0300982 + x * (-0.2447 + x * 0.0663 * (1 - x))) 

return x * fhorner(x, 1.0300982, -0.2447, 0.0663, -0.0663) 

 

 

def fatan2(y, x): 

'''Fast approximation of C{atan2(B{y}, B{x})}. 

 

@see: U{fastApproximateAtan(x, y)<https://GitHub.com/CesiumGS/cesium/blob/ 

master/Source/Shaders/Builtin/Functions/fastApproximateAtan.glsl>} 

and L{fatan1}. 

''' 

b, a = abs(y), abs(x) 

if a < b: 

r = (PI_2 - fatan1(a / b)) if a else PI_2 

elif b < a: 

r = fatan1(b / a) if b else _0_0 

elif a: # == b != 0 

r = PI_4 

else: # a == b == 0 

return _0_0 

if x < 0: 

r = PI - r 

return (-r) if y < 0 else r # copysign0(r, y) 

 

 

def favg(v1, v2, f=_0_5): 

'''Return the average of two values. 

 

@arg v1: One value (C{scalar}). 

@arg v2: Other value (C{scalar}). 

@kwarg f: Optional fraction (C{float}). 

 

@return: M{v1 + f * (v2 - v1)} (C{float}). 

''' 

# @raise ValueError: Fraction out of range. 

# ''' 

# if not 0 <= f <= 1: # XXX restrict fraction? 

# raise _ValueError(fraction=f) 

# v1 + f * (v2 - v1) == v1 * (1 - f) + v2 * f 

return fsum1_(v1, -f * v1, f * v2) 

 

 

def fdot(a, *b): 

'''Return the precision dot product M{sum(a[i] * b[i] for 

i=0..len(a))}. 

 

@arg a: List, sequence, tuple, etc. (C{scalar}s). 

@arg b: All positional arguments (C{scalar}s). 

 

@return: Dot product (C{float}). 

 

@raise LenError: Unequal C{len(B{a})} and C{len(B{b})}. 

 

@see: Class L{Fdot} and U{Algorithm 5.10 B{DotK} 

<https://www.TUHH.De/ti3/paper/rump/OgRuOi05.pdf>}. 

''' 

return fsum(_map_a_x_b(a, b)) 

 

 

def fdot3(a, b, c, start=0): 

'''Return the precision dot product M{start + 

sum(a[i] * b[i] * c[i] for i=0..len(a))}. 

 

@arg a: List, sequence, tuple, etc. (C{scalar}[]). 

@arg b: List, sequence, tuple, etc. (C{scalar}[]). 

@arg c: List, sequence, tuple, etc. (C{scalar}[]). 

@kwarg start: Optional bias (C{scalar}). 

 

@return: Dot product (C{float}). 

 

@raise LenError: Unequal C{len(B{a})}, C{len(B{b})} 

and/or C{len(B{c})}. 

 

@raise OverflowError: Partial C{2sum} overflow. 

''' 

def _mul3(a, b, c): # map function 

return a * b * c 

 

def _muly(a, b, c, start): 

yield start 

for abc in map(_mul3, a, b, c): 

yield abc 

 

if not len(a) == len(b) == len(c): 

raise LenError(fdot3, a=len(a), b=len(b), c=len(c)) 

 

return fsum(_muly(a, b, c, start) if start else map(_mul3, a, b, c)) 

 

 

def fhorner(x, *cs): 

'''Evaluate the polynomial M{sum(cs[i] * x**i for 

i=0..len(cs))} using the Horner form. 

 

@arg x: Polynomial argument (C{scalar}). 

@arg cs: Polynomial coeffients (C{scalar}[]). 

 

@return: Horner value (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{x}}. 

 

@raise ValueError: No B{C{cs}} coefficients or B{C{x}} is not finite. 

 

@see: Function L{fpolynomial} and class L{Fhorner}. 

''' 

h = Fhorner(x, *cs) 

return h.fsum() 

 

 

def fidw(xs, ds, beta=2): 

'''Interpolate using using U{Inverse Distance Weighting 

<https://WikiPedia.org/wiki/Inverse_distance_weighting>} (IDW). 

 

@arg xs: Known values (C{scalar}[]). 

@arg ds: Non-negative distances (C{scalar}[]). 

@kwarg beta: Inverse distance power (C{int}, 0, 1, 2, or 3). 

 

@return: Interpolated value C{x} (C{float}). 

 

@raise LenError: Unequal or zero C{len(B{ds})} and C{len(B{xs})}. 

 

@raise ValueError: Invalid B{C{beta}}, negative B{C{ds}} value, 

weighted B{C{ds}} below L{EPS}. 

 

@note: Using C{B{beta}=0} returns the mean of B{C{xs}}. 

''' 

n, xs = len2(xs) 

d, ds = len2(ds) 

if n != d or n < 1: 

raise LenError(fidw, xs=n, ds=d) 

 

d, x = min(zip(ds, xs)) 

if d > EPS0 and n > 1: 

b = -Int_(beta=beta, low=0, high=3) 

if b < 0: 

ds = tuple(d**b for d in ds) 

d = fsum(ds) 

if isnear0(d): # PYCHOK no cover 

n = Fmt.PAREN(fsum='ds') 

raise _ValueError(n, d, txt=_singular_) 

x = fdot(xs, *ds) / d 

else: # b == 0 

x = fsum(xs) / n # fmean(xs) 

elif d < 0: # PYCHOK no cover 

n = Fmt.SQUARE(ds=ds.index(d)) 

raise _ValueError(n, d, txt=_negative_) 

return x 

 

 

def fmean(xs): 

'''Compute the accurate mean M{sum(xs[i] for 

i=0..len(xs)) / len(xs)}. 

 

@arg xs: Values (C{scalar}s). 

 

@return: Mean value (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise ValueError: No B{C{xs}} values. 

''' 

n, xs = len2(xs) 

if n > 0: 

return fsum(xs) / n 

raise _ValueError(xs=xs) 

 

 

def fmean_(*xs): 

'''Compute the accurate mean M{sum(xs[i] for 

i=0..len(xs)) / len(xs)}. 

 

@arg xs: Values (C{scalar}s). 

 

@return: Mean value (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise ValueError: No B{C{xs}} values. 

''' 

return fmean(xs) 

 

 

def fpolynomial(x, *cs): 

'''Evaluate the polynomial M{sum(cs[i] * x**i for 

i=0..len(cs))}. 

 

@arg x: Polynomial argument (C{scalar}). 

@arg cs: Polynomial coeffients (C{scalar}[]). 

 

@return: Polynomial value (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{x}}. 

 

@raise ValueError: No B{C{cs}} coefficients or B{C{x}} is not finite. 

 

@see: Function L{fhorner} and class L{Fpolynomial}. 

''' 

p = Fpolynomial(x, *cs) 

return p.fsum() 

 

 

def fpowers(x, n, alts=0): 

'''Return a series of powers M{[x**i for i=1..n]}. 

 

@arg x: Value (C{scalar}). 

@arg n: Highest exponent (C{int}). 

@kwarg alts: Only alternating powers, starting with 

this exponent (C{int}). 

 

@return: Powers of B{C{x}} (C{float}s or C{int}s). 

 

@raise TypeError: Non-scalar B{C{x}} or B{C{n}} not C{int}. 

 

@raise ValueError: Non-finite B{C{x}} or non-positive B{C{n}}. 

''' 

if not isint(n): 

raise _IsnotError(int.__name__, n=n) 

elif n < 1: 

raise _ValueError(n=n) 

 

p = t = x if isint(x) else _2float(x=x) 

ps = [p] 

a_ = ps.append 

for _ in range(1, n): 

p *= t 

a_(p) 

 

if alts > 0: # x**2, x**4, ... 

# ps[alts-1::2] chokes PyChecker 

ps = ps[slice(alts-1, None, 2)] 

 

return ps 

 

 

try: 

from math import prod as fprod # Python 3.8 

except ImportError: 

 

def fprod(iterable, start=_1_0): 

'''Iterable product, like C{math.prod} or C{numpy.prod}. 

 

@arg iterable: Terms to be multiplied (C{scalar}[]). 

@kwarg start: Initial term, also the value returned 

for an empty iterable (C{scalar}). 

 

@return: The product (C{float}). 

 

@see: U{NumPy.prod<https://docs.SciPy.org/doc/ 

numpy/reference/generated/numpy.prod.html>}. 

''' 

return freduce(_mul, iterable, start) 

 

 

def frange(start, number, step=1): 

'''Generate a range of C{float}s. 

 

@arg start: First value (C{float}). 

@arg number: The number of C{float}s to generate (C{int}). 

@kwarg step: Increment value (C{float}). 

 

@return: A generator (C{float}s). 

 

@see: U{NumPy.prod<https://docs.SciPy.org/doc/ 

numpy/reference/generated/numpy.arange.html>}. 

''' 

if not isint(number): 

raise _IsnotError(int.__name__, number=number) 

for i in range(number): 

yield start + i * step 

 

 

try: 

from functools import reduce as freduce 

except ImportError: 

try: 

freduce = reduce # PYCHOK expected 

except NameError: # Python 3+ 

 

def freduce(f, iterable, *start): 

'''For missing C{functools.reduce}. 

''' 

if start: 

r = v = start[0] 

else: 

r, v = 0, MISSING 

for v in iterable: 

r = f(r, v) 

if v is MISSING: 

raise _TypeError(iterable=(), start=MISSING) 

return r 

 

try: 

from math import fsum # precision IEEE-754 sum, Python 2.6+ 

 

# make sure fsum works as expected (XXX check 

# float.__getformat__('float')[:4] == 'IEEE'?) 

if fsum((1, 1e101, 1, -1e101)) != 2: # PYCHOK no cover 

del fsum # nope, remove fsum ... 

raise ImportError # ... use fsum below 

 

except ImportError: 

 

def fsum(iterable): 

'''Precision summation similar to standard Python function C{math.fsum}. 

 

Exception and I{non-finite} handling differs from C{math.fsum}. 

 

@arg iterable: Values to be added (C{scalar}[]). 

 

@return: Accurate C{sum} (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{iterable}} value. 

 

@raise ValueError: Invalid or non-finite B{C{iterable}} value. 

 

@see: Class L{Fsum}. 

''' 

f = Fsum(name=fsum.__name__) 

return f.fsum(iterable) 

 

 

def fsum1(iterable): 

'''Precision summation, primed with C{1.0}. 

 

@arg iterable: Values to be added (C{scalar}[]). 

 

@return: Accurate L{fsum} (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{iterable}} value. 

 

@raise ValueError: Invalid or non-finite B{C{iterable}} value. 

''' 

def _xs(iterable): 

yield _1_0 

for x in iterable: 

yield x 

yield _N_1_0 

 

return fsum(_xs(iterable)) 

 

 

def fsum_(*xs): 

'''Precision summation of all positional arguments. 

 

@arg xs: Values to be added (C{scalar}s). 

 

@return: Accurate L{fsum} (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{xs}} value. 

 

@raise ValueError: Invalid or non-finite B{C{xs}} value. 

''' 

return fsum(map(float, xs)) 

 

 

def fsum1_(*xs): 

'''Precision summation of a few arguments, primed with C{1.0}. 

 

@arg xs: Values to be added (C{scalar}s). 

 

@return: Accurate L{fsum} (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise TypeError: Non-scalar B{C{xs}} value. 

 

@raise ValueError: Invalid or non-finite B{C{xs}} value. 

''' 

return fsum1(xs) 

 

 

if _sys_version_info2 < (3, 8): 

 

from math import hypot # OK in Python 3.7- 

 

def hypot_(*xs): 

'''Compute the norm M{sqrt(sum(x**2 for x in xs))}. 

 

Similar to Python 3.8+ n-dimension U{math.hypot 

<https://docs.Python.org/3.8/library/math.html#math.hypot>}, 

but exceptions, C{nan} and C{infinite} values are 

handled differently. 

 

@arg xs: X arguments, positional (C{scalar}[]). 

 

@return: Norm (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise ValueError: Invalid or no B{C{xs}} values. 

 

@note: The Python 3.8+ Euclidian distance U{math.dist 

<https://docs.Python.org/3.8/library/math.html#math.dist>} 

between 2 I{n}-dimensional points I{p1} and I{p2} can be 

computed as M{hypot_(*((c1 - c2) for c1, c2 in zip(p1, p2)))}, 

provided I{p1} and I{p2} have the same, non-zero length I{n}. 

''' 

h, x2 = _h_x2(xs) 

return (h * sqrt(x2)) if x2 else _0_0 

 

elif _sys_version_info2 < (3, 10): 

 

# In Python 3.8 and 3.9 C{math.hypot} is inaccurate, see 

# agdhruv <https://GitHub.com/geopy/geopy/issues/466>, 

# cffk <https://Bugs.Python.org/issue43088> and module 

# geomath.py <https://PyPI.org/project/geographiclib/1.52> 

 

def hypot(x, y): 

'''Compute the norm M{sqrt(x**2 + y**2)}. 

 

@arg x: Argument (C{scalar}). 

@arg y: Argument (C{scalar}). 

 

@return: C{sqrt(B{x}**2 + B{y}**2)} (C{float}). 

''' 

if x: 

h = sqrt(fsum1_(x**2, y**2)) if y else abs(x) 

elif y: 

h = abs(y) 

else: 

h = _0_0 

return h 

 

from math import hypot as hypot_ # PYCHOK in Python 3.8 and 3.9 

else: 

from math import hypot # PYCHOK in Python 3.10+ 

hypot_ = hypot 

 

 

def _h_x2(xs): 

'''(INTERNAL) Helper for L{hypot_} and L{hypot2_}. 

''' 

def _x2s(xs, h): 

yield _1_0 

for x in xs: 

if x: 

yield (x / h)**2 

yield _N_1_0 

 

if xs: 

n, xs = len2(xs) 

if n > 0: 

h = float(max(map(abs, xs))) 

x2 = fsum(_x2s(xs, h)) if h else _0_0 

return h, x2 

 

raise _ValueError(xs=xs, txt=_too_(_few_)) 

 

 

def hypot1(x): 

'''Compute the norm M{sqrt(1 + x**2)}. 

 

@arg x: Argument (C{scalar}). 

 

@return: Norm (C{float}). 

''' 

return hypot(_1_0, x) if x else _1_0 

 

 

def hypot2(x, y): 

'''Compute the I{squared} norm M{x**2 + y**2}. 

 

@arg x: Argument (C{scalar}). 

@arg y: Argument (C{scalar}). 

 

@return: C{B{x}**2 + B{y}**2} (C{float}). 

''' 

if x: 

x *= x 

h2 = fsum1_(x, y**2) if y else x 

elif y: 

h2 = y**2 

else: 

h2 = _0_0 

return h2 

 

 

def hypot2_(*xs): 

'''Compute the I{squared} norm C{sum(x**2 for x in B{xs})}. 

 

@arg xs: X arguments, positional (C{scalar}[]). 

 

@return: Squared norm (C{float}). 

 

@raise OverflowError: Partial C{2sum} overflow. 

 

@raise ValueError: Invalid or no B{C{xs}} value. 

 

@see: Function L{hypot_}. 

''' 

h, x2 = _h_x2(xs) 

return (h**2 * x2) if x2 else _0_0 

 

 

def _map_a_x_b(a, b): 

'''(INTERNAL) Yield B{C{a * b}}. 

''' 

n = len(b) 

if len(a) != n: 

raise LenError(fdot, a=len(a), b=n) 

return map(_mul, a, b) if n > 3 else _map_a_x_b1(a, b) 

 

 

def _map_a_x_b1(a, b): 

'''(INTERNAL) Yield B{C{a * b}}, primed with C{1.0}. 

''' 

yield _1_0 

for ab in map(_mul, a, b): 

if ab: 

yield ab 

yield _N_1_0 

 

 

def norm2(x, y): 

'''Normalize a 2-dimensional vector. 

 

@arg x: X component (C{scalar}). 

@arg y: Y component (C{scalar}). 

 

@return: 2-Tuple C{(x, y)}, normalized. 

 

@raise ValueError: Invalid B{C{x}} or B{C{y}} 

or zero norm. 

''' 

h = hypot(x, y) 

try: 

return x / h, y / h 

except (TypeError, ValueError) as X: 

raise _ValueError(x=x, y=y, h=h, txt=str(X)) 

 

 

def norm_(*xs): 

'''Normalize all n-dimensional vector components. 

 

@arg xs: The component (C{scalar}[]). 

 

@return: Yield each component, normalized. 

 

@raise ValueError: Invalid or insufficent B{C{xs}} 

or zero norm. 

''' 

h = hypot_(*xs) 

try: 

for i, x in enumerate(xs): 

yield x / h 

except (TypeError, ValueError) as X: 

raise _ValueError(Fmt.SQUARE(xs=i), x, _h_, h, txt=str(X)) 

 

 

def sqrt0(x2): 

'''Compute the square root iff C{B{x2} >} L{EPS02}. 

 

@arg x2: Value (C{scalar}). 

 

@return: Square root (C{float}) or C{0.0}. 

 

@note: Any C{B{x2} <} L{EPS02} I{including} C{B{x2} < 0} 

returns C{0.0}. 

''' 

return sqrt(x2) if x2 > EPS02 else (_0_0 if x2 < EPS02 else EPS0) 

 

 

def sqrt3(x2): 

'''Compute the square root, I{cubed} M{sqrt(x)**3} or M{sqrt(x**3)}. 

 

@arg x2: Value (C{scalar}). 

 

@return: Cubed square root (C{float}). 

 

@raise ValueError: Negative B{C{x2}}. 

 

@see: Functions L{cbrt} and L{cbrt2}. 

''' 

if x2 < 0: 

raise _ValueError(x2=x2, txt=_negative_) 

return pow(x2, _1_5) if x2 else _0_0 

 

# **) MIT License 

# 

# Copyright (C) 2016-2022 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE.