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ABSTRACT 

The wavelet transform shows great promise as a method for period analysis in time series, particularly for 
detecting the time evolution of the parameters (period, amplitude, phase) describing periodic and 
pseudo-periodic signals. However, when applied to unevenly sampled time series, the response of the 
wavelet transform is often more dependent on irregularities in the number and spacing of available data than 
on actual changes in the parameters of the signal. Yet by casting the wavelet transform as a projection, we 
can derive its statistical behavior and devise advantageous rescaled transforms. By treating it as a weighted 
projection to form the weighted wavelet Z-transform (WWZ), we improve its ability to detect, and especially 
to quantify, periodic and pseudo-periodic signals. The methods are illustrated by analysis of artificial test 
data, and of the light curves of the variable stars R Aquilae and FS Comae. © 1996 American 
Astronomical Society. 

1. INTRODUCTION 

Fourier analysis is an ideal tool for detecting and quanti- 
fying periodic fluctuations in time series, ifhy periodic we 
mean of truly constant period, amplitude, and phase. Real 
astrophysical systems rarely exhibit such constancy of fluc- 
tuation. Often periodic fluctuations arise intermittently, as 
transient phenomena. Even for a time series with consistent 
periodicity we usually see time evolution of the parameters 
of the fluctuation. Fourier analysis can detect, and to some 
degree quantify, such behavior, but it is far from ideal for 
such purposes (although recent developments promise to im- 
prove its performance, Foster 1995). 

The wavelet transform, on the other hand, is well-suited 
to detect transient periodic fluctuations, as well as changes in 
their parameters, because it can focus attention on a limited 
time span of the data. The continuous wavelet transform of a 
function of time x(t) is defined as (Grossman et al. 1989) 

= a>-mjx(co-'z+T)f*(z)dz, (1-1) 

where /* is the complex conjugate of /, and the function 
f(z) is the wavelet kernel, also known as the analyzing 
wavelet or mother wavelet. The transform depends on two 
parameters, the scale factor œ (o)~l is also called the scale 
factor, and called the dilation', I shall hereafter refer to o) as 
the frequency), and the time shift r (a.k.a. the shift param- 
eter, position, or location', as you can see, there is a wide 
variety of nomenclature in the literature). By choosing a 
mother wavelet which is concentrated near z = 0, we explore 
the behavior of x(t) near t—T. 

We have a bewildering variety of analyzing wavelets to 
choose from, but because we are interested in detecting and 
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quantifying periodic and pseudo-periodic fluctuations, we 
shall adopt a mother wavelet which fluctuates due to a term 
of the form elz. One of the important consequences of using 
a complex mother wavelet is that it possesses two degrees of 
freedom (its real and imaginary parts) to probe for structure 
in our time series. The Fourier transform is a special case of 
(1.1) with mother waxoioi f(z) = elz = elù)^~ r\ for which we 
do not insert the factor (ol/2 in front of the integral. Also, this 
function is an eigenfunction of the time translation operator, 
so for Fourier analysis we drop the irrelevant parameter r. 

Recently astronomers have begun to explore new possi- 
bilities; the en vogue mother wavelet for variable star light 
curves is the Fourier wavelet with a Gaussian decay profile 
(or, a Gaussian with harmonic modulation), the so-called 
Morlet wavefeL (Grossman & Morlet 1984) 1 

/(z) = e-«2(e^-e-l^) = e-c<U
2((-T)2^ia1(f-T)_e-l/4c^ 

(1-2) 

where the constant e~mc is inserted so that the average 
value of the analyzing wavelet is zero 

r +00 
f(z)dz = 0. (1-3) 

J -CO 

The constant c determines how rapidly the analyzing wavelet 
decays; it is usually chosen so that the exponential term de- 
creases significantly in a single cycle 2tt/(o. For variable 
star light curves, for example, a popular choice for c is 
1/8 7T2 (however, c could be treated as a parameter, in which 
case the wavelet transform would be characterized by three 
parameters instead of two). I shall choose the value 

rihe Morlet wavelet is more usually defined as f(z) = c z l2(e,0J,nZ 

— e-w»/2), where (om = l/flc. I have transferred the constant to the expo- 
nential factor (which is merely a choice of convention) so that the scale 
factor a) will exactly correspond to the (radian) frequency of a periodic 
fluctuation. 

© 1996 Am. Astron. Soc. 1709 0004-6256/96/112(4)/1709/21/$10.00 
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c = 0.0125, which is close enough to I/Stt2 that the two 
choices are functionally equivalent. When c is small (as is 
usually the case when applying wavelets to period analysis 
of time series), the constant e~l/4c is quite small; for 
c<.02 it is negligible (Grossman et al. 1989). Hence it is 
customary to ignore this term, giving a different wavelet ker- 
nel which I will dub the abbreviated Morlet wavelet 

/(Z) = e«-«2=e‘"((-T)-C1U
2(i-T)2> Q.4) 

This serves to define the abbreviated Morlet transform. 
When adapted to a discrete time series, it will define the 
discrete wavelet transform, or DWT. The abbreviated Morlet 
transform bears a striking similarity to a windowed Fourier 
transform, with window e~co> 0_r) The crucial difference 
is the factor o) in the exponential; the size of the “window” 
is frequency-dependent. 

My purpose is twofold: first, to consider the response of 
the DWT, as defined by the abbreviated Morlet wavelet, to 
periodic signals which are irregularly sampled; second, to 
propose modifications to wavelet analysis which improve its 
performance. Experience shows that adapting even some- 
thing as thoroughly well-understood as the Fourier transform 
to a discrete time series presents numerous difficulties. Even 
with a perfectly regular time spacing the discrete Fourier 
transform (DFT) has nontrivial statistical behavior (Kovacs 
1980; Foster 1996a). Uneven time spacing can wreak havoc. 
False peaks (ghost images of real peaks) can become very 
strong; in fact two false peaks may overlap and reinforce 
each other, so that even with a noise-free signal the strongest 
peak in the DFT is at a spurious frequency (Foster 1995). 
Any signal component we locate in the DFT will be shifted 
from the true signal frequency (Kovacs 1981), and the am- 
plitude we compute for that frequency component can be 
very much in error (Ferraz-Mello 1981; Foster 1995). 

It should come as no surprise that when we adapt the 
wavelet transform to uneven time sampling, the same diffi- 
culties arise as with the Fourier transform. The good news is, 
we can apply the same remedies. Many of the problems are 
overcome by treating Fourier analysis as a projection onto 
the trial functions sin(atf), cos(utfX and an arbitrary constant 
(Ferraz-Mello 1981; Foster 1995, 1996a, 1996b). Further- 
more, we can view the wavelet transform not just as a pro- 
jection onto a set of trial functions, but as a weighted projec- 
tion. Both strategies enhance our ability to detect periodic 
fluctuations, and to estimate their parameters with improved 
precision and consistency. Finally, the statistical behavior of 
projections is known, and quite simple (Foster 1996a). 

To ease the burden to the reader, I have relegated the 
goriest mathematical details to appendixes, which exist only 
to establish certain results used herein. There the wavelet 
transform is formulated in terms of tensor notation, accord- 
ing to the treatment of Foster (1996b). I warn the reader 
sternly that the notation used in the appendixes is quite dif- 
ferent from that of the main body of the paper; those inter- 
ested should definitely consult the aforementioned paper for 
details of the notation and conventions. 

2. DATA 

Pure theory is fine, but no method can be considered sat- 
isfactory which has not run the gauntlet of real data with real 
time sampling. Hence in order to test the efficacy of the 
various incarnations of the wavelet transform, I will apply 
these analyses to the light curves of two variable stars, R 
Aquilae and FS Comae. R Aquilae is a Mira-type long- 
period variable; according to the GCVS it has a magnitude 
range from 5.5 to 12.0, period 284.2 days, and spectral type 
M5E-M9E (Kholopov et al 1985). The data are 10-day av- 
erages of visual observations from the AAVSO international 
database (Mattel 1995a), yielding 1,107 data points covering 
the time interval ID 2437601 to 2449626. FS Comae is a 
semiregular (SR B) variable ranging from 5.5 to 6.1, period 
58 days, and type M3E spectrum (Kholopov et al 1985). 
The FS Com data for this study are 511 photoelectric mag- 
nitudes taken from the AAVSO international database of 
photoelectric photometry (Mattel 1995b), spanning the time 
range JD 2446165 to 2449508. For the most part, these data 
sets were selected for their time sampling. The sampling of 
the R Aquilae data is only mildly irregular, especially since 
we have taken 10-day averages; despite random fluctuations, 
the data are spaced roughly 10 days apart, with very few data 
missing. The FS Comae data have a nightmarish time sam- 
pling, showing large gaps in the data stream which repeat 
annually and large fluctuations of data density. 

For the purpose of evaluating period analysis techniques, 
real data do have a drawback: the true signal is not known 
a priori. Therefore in addition to the R Aql and FS Com 
data, I shall also analyze artificial test data of known signal. 
Instead of artificially gapping the test data, we have gener- 
ated test signals with the same time sampling as the real data 
for R Aql and FS Com. Test data set 1 is a pure sinusoid with 
perfect time spacing: it has period 300 days, (real semi-) 
amplitude 1 mag., with 401 data points spaced 10 days apart, 
covering the (arbitrary) time span JD 2446000 to 2450000. 
Test data set 2 is a pure sinusoid with period 283.3 days, 
amplitude 1.9011 mag, and the same time sampling as the R 
Aql data. Test data set 3 is a pure sinusoid with period 55.98 
days, amplitude 0.0598 mag., and the same time sampling as 
FS Com, while test data set 4 is a pure sinusoid with period 
662 days, amplitude 0.0513 mag, and (again) the same time 
sampling as FS Com. For all data sets we have subtracted the 
average value from the data prior to analysis. Figure 1 plots 
the test data sets. While introducing the many different forms 
of wavelet transform, I shall apply them to the artificial data 
sets in order to gauge their response to pure signals. After 
comparative analysis of different wavelet methods, I shall 
attack the light curves of R Aql and FS Com. 

3. DISCRETE WAVELET TRANSFORM (DWT) 

An observed time series consists of N data values x(ta), 
taken at a discrete set of N times {ra = 1,2,... ,V}. The 
most straightforward adaptation of the Fourier transform to a 
discrete time series is the discrete Fourier transform (DFT) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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(a) Test data set 1: P=300df A=1ml even time sampling 

o J- 1 I l,,.l ,.L I .1 I .,1 1 1 I I I—L J—1—L-. 1 I. I .1 I 1 I 1 1 I I I 1 1 I I  
46000 47000 48000 49000 50000 

(b) Test data set 2: P=283.3df A=1.9011m, sampling of R Aql 

(c) Test data set 3: P=55.98d, A=0.0598m, sampling of FS Com 

(d) Test data set 4: P=662d, A=0.0513m, sampling of FS Com 

Fig. 1. Test data sets, (a) Period=300, amplitude=l, even time sampling, (b) Period=283.3, amplitude= 1.9011, time sampling of R Aql. (c) Period=55.98, 
amplitude=0.0598, sampling of FS Com. (d) Period=662, amplitude=0.0513, sampling of FS Com. 

N 
D((ú-x(t)) = N~1^/ x{ta)eio>^. (3-1) 

a= 1 

We then define the DFT Power as 

P(co) = \D(io;x(t))\\ (3-2) 

which we use to evaluate the frequency co statistically. The 
(real semi-) amplitude of the periodic fluctuation correspond- 
ing to a significant peak in the DFT spectrum is 

A = 2y[P. (3-3) 

The wavelet analogue of (3.1) is the discrete wavelet 
transform (DWT) 

N 
W(ù),T;x(t))=\[ù)'^ x(ta)f*(o)(ta- t)). (3-4) 

a= 1 

For the abbreviated Morlet wavelet (1.4), the real and imagi- 
nary parts of the DWT are 

N 

Re(W)=Vö>2 x(ta)e~C(°2^a~T>>2cos(o)(ta-t)), (3-5) a= 1 

and 

N 
Im(W)= - x(ta)e~C(o2^a~T^2ún(o)(ta-r)). 

Ol= 1 
(3-6) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
96

A
J 

 1
12

.1
70

9F
 

1712 G. FOSTER: PERIOD ANALYSIS 1712 

We evaluate the response of the DWT by calculating the 
wavelet modulus | W\ (although the wavelet phase arg( W) is 
also of considerable interest, Goupil et al. 1991). The wave- 
let modulus \W\ is also referred to as the amplitude, but I 
shall not do so, reserving that term for another definition 
(Sec. 3.2). 

this quantity is not chi-square, as is often thought (but then, 
neither is the DFT, Foster 1996a). 

We see that the DWT squared modulus varies linearly 
with the data density p. If p fluctuates greatly, then the re- 
sponse to pure noise will be strongly r-dependent. This 
means that with irregular time sampling, statistical evalua- 
tion of the DWT is not so straightforward. 

3.1 Response of the DWT to Pure Noise 3.2 Discrete Wavelet Power (DWP) 

We begin by adopting the null hypothesis that the data are 
independent random variables with mean 0 and variance 
a2. 2 If the time sampling is ideal (perfectly even time spac- 
ing and no data missing), and if the density of data p is high 
enough and the frequency co low enough that the product 

and if the position r is far enough from the begin- 
ning and end of the data that edge effects may be ignored 
(that’s a lot of i/s!), then the expected value of the squared 
modulus of the DWT is independent of the frequency and 
position (Appendix C) 

(\W\2) = a-2p (3-7) 

This explains the factor Vä) in the definition of the wavelet 
transform (1.1); it gives a uniform response to random noise. 
The quantity (3.7) is (almost exactly) chi-square with 2 de- 
grees of freedom. 

For a less-than-ideal time spacing, the definition of the 
DWT indicates that it will depend strongly on the sheer num- 
ber of data in the vicinity of the position r. For convenience 
define the local data number as a function of the frequency 
ci) and position r 

N 

n(w,r)=2 e-
c“2<<a-< (3-8) a= 1 

We can rescale the DWT so that it has uniform noise 
level, even with uneven time sampling. We define the dis- 
crete wavelet power (DWP) as 

DWP = w2 

s2con (72 o),t) 
(3-12) 

where s2 is the estimated <r2, and is inserted so that if the 
data are random noise, the expected value of the DWT is 1. 
The DWP is also not chi-square, but if the time spacing is 
not too bad it may be treated as approximately so. In addition 
to compensating for fluctuations in the data density, the 
DWP has the virtue that it is uniformly scaled for easy sta- 
tistical evaluation. 

3.3 Response of the DWT to a Pure Sinusoid 

For an ideal time sampling, and ignoring edge effects, the 
DWT squared modulus for a pure sinusoidal signal at fre- 
quency o)q , of (real semi-) amplitude A is (Appendix D) 

|wf= 
77  A.e-((ü-Mo)2/(2c(Q2)’ 
4c(o (3-13) 

The first thing to note is that the response is inversely pro- 
portional to the frequency. As a result, it peaks not at the 
signal frequency a>0 but 

In the continuum limit, in which 2a—>f pdt, the local data 
number n turns out to be independent of the position and 
inversely proportional to the frequency 

n(o),r) = o) lp (3-9) 

For irregular sampling, we will define the (position- and 
frequency-dependent) data density as 

ic ic~ N 

p(o),t) = ù) \ —n(a),r) = a) \j— 2 
>77 > 77 a=l 

(3-10) 

The expected value of the squared modulus of the DWT is 
(Appendix C) 

{\W\2) = o-2(on(\f2o),T) = o-2p(^l2a),r) "y —. (3-11) 

Note the factor ^2 in the frequency arguments of the func- 
tions n and p of (3.11). However, for irregular time spacing 

2This is not quite the correct null hypothesis. We should assume the data 
have unknown mean jul, and that we have subtracted from the data the 
average value; see Appendix C. 

^max 
2a>0 

1 + \[\ +4c 
~a>0(l-c). (3-14) 

For c = 0.0125 this causes a 1 1/4% shift in the peak fre- 
quency. Also note that the response is asymmetric. More 
important, the response is exaggerated at low frequencies 
and suppressed at high ones. This is no surprise; for higher 
frequencies the wavelet function is narrower, so we effec- 
tively sample fewer data points. Figure 2(a) shows the re- 
sponse of the DWT to a pure sinusoid with even time spac- 
ing. It was computed with a position grid size of 100 days 
and a frequency grid size of 0.0001 cycle/day. As expected, 
it is asymmetric in frequency, peaked slightly below the sig- 
nal frequency, and shows significant edge effects almost 
three whole periods from either end of the time span. 

For any constant location r, we can use the peak fre- 
quency of the DWT to determine the period. For this com- 
putation we used a position grid size of 100 days and a 
frequency grid size of 0.00001 cycle/day, for greater preci- 
sion. We not only note that this period is 1 1/4% higher than 
the signal period, we also detect spurious time evolution of 
the period due to edge effects [Fig. 6(a)]. Nonetheless, the 
response is constant far from the edges, and the 1 1/4% fre- 
quency shift can be compensated easily enough. Likewise, if 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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(a) 

Fig. 2. DWT for test data, (a) Set 

we use the wavelet modulus (the DWT) at the peak fre- 
quency as an indication of the signal amplitude, we detect 
spurious amplitude modulation, again entirely from edge 
effects. 

For an irregular time spacing, the response of the DWT to 
a pure sinusoid (Appendix D) depends so strongly on the 
irregularities of the data density that we will have a very hard 
time indeed extracting the physical parameters of a fluctua- 
tion (frequency, amplitude, phase) from the DWT. Figures 
2(b)-2(d) show the DWT for pure sinusoidal signals with 
irregular sampling. The peak period varies with time, indi- 
cating that it will be difficult to deduce period evolution from 
the DWT. Still, for mildly irregular time spacing [Fig. 6(c)] 
the fluctuations are less than 1% above and below the mean 

(V 

1. (b) Set 2. (c) Set 3. (d) Set 4. 

value (more near the edges). For very bad sampling the 
DWT is a very bad period indicator; with a high-frequency 
signal [Fig. 6(e)] the fluctuations in peak period are nearly 
±20%, and for a low-frequency signal [Fig. 6(g)] the DWT 
indicates a sizeable spurious trend. 

The fluctuations in modulus due to varying data density 
are blatant, making it next to impossible to extract from the 
DWT alone any information about the time-dependence of 
the amplitude of these signals. For data set 2 we again see 
fluctuations, this time about ±10% (larger near the edges). 
For data set 3, the DWT drops to near zero in the gaps 
between observing seasons, causing us severely to underes- 
timate the amplitude. And for data set 4, we again find a 
spurious trend, the DWT modulus quadrupling from mini- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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Fig. 3. DWP for test data, (a) Set 1. (b) Set 2. (c) Set 3. (d) Set 4. 

mum to maximum. These problems are confirmed by expe- 
rience in applying the DWT to irregularly sampled variable 
star light curves (Szatmary & Vinko 1992; Szatmary 1994) 
and to artificial signals with artificial irregular sampling 
(Szatmary et al. 1994). 

We could, of course, estimate the signal frequency by 
locating the peak of the DWP rather than the DWT. Figure 3 
shows the DWP for our test data sets. Note that it is indeed 
an improved indicator of statistical significance, suppressing 
the high-frequency noise. But it is no better at locating the 
precise signal frequency than the DWT. Again, even for per- 
fect time spacing [Fig. 6(a)] the peak frequency is too low 
(peak period too high), and edge effects are visible nearly 

three periods from the edge, both in peak period and magni- 
tude of the DWP. For irregular time sampling [Figs. 6(c), 
6(e), 6(g)], the performance of the DWP is little different 
from that of the DWT. 

3.4 Discrete Wavelet Amplitude (DWA) 

Another problem with the DWT and DWP which is not 
illustrated by these test data sets is that their response to pure 
sinusoids is explicitly frequency-dependent. If we have a 
truly multiperiodic signal, then unless we compensate for the 
frequency-dependence we can’t even tell the relative ampli- 
tudes of the various components. We can, however, define a 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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Fig. 4. DWA for test data, (a) Set 1. (b) Set 2. (c) Set 3. (d) Set 4. 

function whose response to a pure sinusoid is better behaved. 
Define the discrete wavelet amplitude (DWA) as 

DWA = w|2 e~cal2(',~T)2e~iu>(t~T)\=^[co\W(w,T)\. 

(3-15) 

For a sinusoidal signal and ideal time spacing [Fig. 4(a)], the 
DWA peaks at the signal frequency, with peak value propor- 
tional to the amplitude and independent of frequency (except 
for edge effects). If we use the peak of the DWA (for con- 
stant r) to determine the signal frequency, we get the correct 
value [Fig. 6(a)]. Unfortunately, for random noise the DWA 
is not so well behaved; the noise level grows with increasing 

frequency. This bad statistical behavior is apparent in the 
DWA of unevenly sampled test data [Figs. 4(b)-4(d)]; espe- 
cially in Figs. 4(c) and 4(d) showing many large spurious 
peaks at high frequencies. If we ignore the spurious peaks, 
and use the real ones to determine the period and amplitude 
(Fig. 6), we find that the DWA shows about the same false 
time evolution as the DWT and DWP. 

3.5 Wavelet Amplitude Function (WAF) 

Even if we know the exact true frequency of a periodic 
fluctuation, we cannot get the amplitude of that signal com- 
ponent unless we properly rescale the DWT. For this purpose 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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Fig. 5. WAF for test data, (a) Set 1. (b) Set 2. (c) Set 3. (d) Set 4. 

we define the Wavelet Amplitude Function (WAF) 

\w\ [ÄTZ 
WAF= . —\  . (3-16) 

p{(x),T) y TT 

If the signal is a pure sinusoid with amplitude A , then for 
even time spacing, and ignoring edge effects, the WAF is 
equal to that amplitude at the true signal frequency. Figure 5 
shows the WAF for test data sets 1-4. For even time spacing 
[Fig. 5(a)], the WAF is well-behaved. But for uneven sam- 
pling, the WAF turns out to be a good estimate of the am- 
plitude only when evaluated at the signal frequency; it is a 
dreadful statistical measure of the likelihood of periodic fluc- 
tuation in the data, or of the location of the signal frequency. 

In fact, especially in the gaps between observations, the 
WAF can take on ridiculously huge values. The tall thin 
peaks in Figs. 5(c), 5(d) occur not in the observing seasons, 
but in the large gaps between them. This is essentially due to 
the shape of the abbreviated Morlet wavelet. Figure 7 shows 
the real part of the wavelet (1.4), together with data which 
can fool the WAF. Note that in order for the wavelet func- 
tion to have any appreciable value at its extremities (where 
the data are to be found), it must be immensely tall in the gap 
between data clusters—hence the enormous value of the 
WAF. 

This is indicative of a more general problem with the 
DWT, namely that the shape of the abbreviated Morlet 
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wavelet does not closely resemble the signal shape we’re 
looking for. Because the wavelet transform in many ways 
behaves as a projection, we are projecting onto essentially 
the wrong trial functions. To search for subtle changes in 
period and amplitude of an oscillation, we should use trial 
functions which do not decay with time. Even if we are 
looking for transient fluctuations, the Morlet wavelet does 
not resemble the sought-after signal unless we fine-tune the 
constant c to mimic the correct decay rate (in which case we 
should treat c not as a constant but as a variable parameter). 

Hence we must bear in mind that the WAF is to be used 
only to find the amplitude of a periodic fluctuation, after we 
have determined the period by some other method, and even 
at that, it is only to be trusted in the observing seasons. We 
might, for instance, locate the peak of the DWT, DWP, or 
DWA to determine the period, then use the WAF to find its 
amplitude. Figure 6 shows the time evolution of the period 
and amplitude of our test data (which of course have con- 
stant period and amplitude), when determining the period by 
DWT, DWP, or DWA, and the amplitude from the WAF. 
Clearly, for bad time sampling all these wavelet transforms 
are unsatisfactory for tracking either period or amplitude. 

ing the constant function in the analysis. Not doing so 
amounts to assuming that either the zero point of the signal is 
the data average (when for irregularly sampled data they are 
almost always significantly different), or that the trial func- 
tions all have average value zero (likewise a rare occur- 
rence). Even with lots of data and a very long time span, this 
can still be a major problem (Foster 1995). Wavelets are 
especially vulnerable to this; for high frequencies the mother 
wavelet narrows, we effectively sample fewer data points, so 
the likelihood rises dramatically that the Morlet wavelet no 
longer has average value zero, and our data average deviates 
from the signal’s zero point. 

Projection computes the coefficients ya of a set of r trial 
functions (¡)a{t),a = 1,2,... ,r for which the model function 

y(t) = '2j Valait), (4-1) 

best fits the data (in the sense that it minimizes the sum of 
the squared residuals). We can compute the projection by 
defining the inner product of two functions f(t) and g(t) as 

4. DATE COMPENSATION BY PROJECTION 

The poor performance of these transforms reflects the fact 
that for uneven time sampling, the expression (3.4) is a naive 
approximation to the continuous integral (1.1). Furthermore, 
we should bear in mind that the continuous integral (1.1) 
itself is only one (of many) means to an end; what we really 
seek is to discover is whether our analyzing wavelet, when 
optimally scaled in time and magnitude, bears any statisti- 
cally significant resemblance to the data. If so, we can con- 
clude that it also bears a resemblance to the signal, in addi- 
tion to concluding that a signal actually exists, i.e., the data 
are not simply noise. 

We must, therefore, undertake date compensation, i.e., 
find the optimal match of analyzing wavelet to data, account- 
ing for the times of observation. Adopting the usual defini- 
tion of goodness-of-fit in terms of a sum of squared residu- 
als, the direct solution is by least-squared regression. An 
equivalent approach is to treat the analysis as a projection 
(Foster 1996a, 1996b). In my opinion, this method has many 
benefits; it gives us powerful mathematical tools to apply, a 
very concise notation, and a good intuitive insight into the 
operations we apply. 

For Fourier analysis, for example, we perform a projec- 
tion onto the two trial functions sin(wi) and cos(cof). This 
leads to the modified periodo gram (Scargle 1982; Foster 
1996a), and essentially solves the problem that with irregular 
time spacing, the Fourier transform is no longer properly 
normalized. We reap further improvement by including a 
third trial function, the constant function l(i)=l for all t, 
which produces the date-compensated discrete Fourier 
transform (DCDFT) (Ferraz-Mello 1981; Foster 1996a). It 
solves the problem that with irregular time spacing, the func- 
tions sine and cosine no longer have average value zero, 
causing an error in determining the zero point of the signal. 

It is difficult to overemphasize the importance of includ- 

(/b>= (4-2) 

where wa is the statistical weight assigned to data point a (in 
most cases the data points have equal statistical weights). We 
then compute the S-matrix, which is the matrix of inner prod- 
ucts of the trial functions 

Sab={(f>a\(t>b)- (4-3) 

We determine the best-fit coefficients of our trial functions 
by multiplying the inverse of the S-matrix by the vector of 
inner products of the trial functions with the data 

ya
=S Sab

l(cl>b\x). b 
(4-4) 

For the Fourier transform, these coefficients will be different 
from those determined by the simple DFT; they are much 
better estimates of the actual amplitude of a physical fluctua- 
tion. 

We define the power (which we use to evaluate the pro- 
jection statistically) not as the squared modulus of a projec- 
tion as in (3.2), but by (Foster 1996a) 

P= S~a¿{<t>a\x){<í>b\x)-(\\x)2^, (4-5) 

where N is the number, and s1 the estimated variance of the 
data. P is a chi-square statistic with r - 1 degrees of freedom 
and expected value 1 (a more usual scaling for a chi-square 
statistic is (r — 1)P, having expected value =r — 1). 
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37000 42000 47000 37000 42000 47000 

(g) (h) 

Fig. 6. Period from maximum of the DWT (triangles), DWP (squares), and DWA (asterisks), with amplitude determined by the WAF at those frequencies 
(plotted using the same symbols). Dashed lines: actual periods, amplitudes, (a) Set 1, period, (b) Set 1, amplitude, (c) Set 2, period, (d) Set 2, amplitude, (e) 
Set 3, period, (f) Set 3, amplitude, (g) Set 4, period, (h) Set 4, amplitude. 

The natural choice would be to use as trial functions the 
constant function 

<Mi) = l(f)=l, (4-6) 

and the wavelet functions 

<f>2(t) = e-C0lli,~T)2œs(ü>t), (4-7) 

4>i(t) = e-ca2(-,-T)2sm(œt). (4-8) 

However, we will still have the problem illustrated by Fig. 7; 
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Fig. 7. Real part of the abbreviated Morlet wavelet (solid line), together 
with data which can cause a high value of the WAF (plus signs). 

essentially, we are projecting onto trial functions which do 
not resemble the signal shape we hope to detect. We would 
prefer to use trial functions which do not decay with time, 

_ 2 
and to keep the decay term e cz so we can focus on a 
limited time span (which is why we adopted wavelets in the 
first place). Fortunately, there is a way to do both. 

5. WEIGHTED PROJECTION 

When treating the wavelet transform (3.4) as a projection, 
we have two possible interpretations. One is that it is a pro- 
jection onto the complex trial function 

^(í) = eía,((-T)-eW
2(í-T)2> (5-J) 

But we can also adopt the viewpoint that it is a weighted 
projection onto the trial function 

<t>{t) = eia{t-T\ (5-2) 

with statistical weights chosen as 

wa=e~C(t)2(ta~T)2. (5-3) 

Although (3.4) is the same in both cases, the projection co- 
efficients (4.4), statistical significance (4.5), and physical pa- 
rameters determined by the two approaches will be very dif- 
ferent. 

By using the weighted definition of the inner product 
(4.2), we can compute the projection according to the pre- 
scription of Sec. 4. A modification imposed by a weighted 
projection is that in the definition of the power (4.5) we must 
replace the number of data points N by the effective number 
(Foster 1996a, 1996b) 

_(Ewa)2 [2e“c“2(,“T)2]2^ 
yVeff_ (2w2) _ 2e-2c<,2(<-T)2 ~ 

5.1 Weighted Wavelet Transform (WWT) 

Therefore we perform a weighted projection 
three trial functions 

(f)2(t) = COS((x)(t—t)), 

(5-4) 

onto the 

(5-5) 

(5-6) 

03(í) = sin((o(í-T)), (5-7) 

with statistical weights assigned according to (5.3). We 
evaluate the response by computing the power according to 
equation (4.5), using the effective number of data points 
(5.4). However, in (4.5) for the variance in the dominator we 
use the weighted estimated variance 

NeffVX 

Ne{f-V 
(5-8) 

where Vx is the weighted variation of the data 

^aWaXitJ 
= (x\x)-{l\x)2. (5-9) 

We can define the weighted variation of the model function 
similarly 

T  (^a) 
2XWX 

^ (x^ c¿y(t a) 
= (y\y)-(l\y)2. 

(5-10) 

We can then define the weighted wavelet transform (WWT) 
as 

WWT= 
(^eff-l)V, 

2V, 
(5-11) 

For fixed parameters to and r, the WWT may be treated as a 
chi-square statistic with two degrees of freedom and ex- 
pected value 1. 

5.2 Weighted Wavelet Z-Transform (WWZ) 

Of course, the above expected values for the WWT only 
hold when the data are random noise. For a sinusoidal signal, 
we might expect the WWT to peak at the signal frequency, 
but instead it tends to peak at a lower frequency, due to an 
effect which strongly impacts the WWT. At lower frequen- 
cies, our “window” is wider, so we effectively sample more 
data points; the effective number Aeff is larger. This can 
make the WWT increase with decreasing co, even ’though 
the fit to the data is poorer, simply because the factor Aeff in 
(5.11) increases. We would get a better estimate of the fre- 
quency of a significant peak if we had a test statistic which 
was less sensitive to the effective number of data. Fortu- 
nately, there is such a statistic for projections: we apply the 
Z-statistic of Foster (1996a) which we dub the weighted 
wavelet Z-transform (WWZ) 

(Veff-3)V, 
2(VX-Vy) ■ (5-12) 

It follows the F-distribution with A^ff- 3 and 2 degrees of 
freedom, and expected value 1. 

The last sentence is nonsense; because the effective num- 
ber Ntif is not an integer, there is no F-distribution with 
Neif— 3 and 2 degrees of freedom (although we can construct 
it by analytic continuation). The statistical behavior (5.12) is 
derived for a projection where the statistical weights are in- 
versely proportional to the variances of the data, not chosen 
for convenience of the analysis. The implication is that this 
purely theoretical approach to estimating the statistical be- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
96

A
J 

 1
12

.1
70

9F
 

1720 G. FOSTER: PERIOD ANALYSIS 1720 

Fig. 8. WWZ for test data, (a) Set 1. (b) Set 2. (c) Set 3. (d) Set 4. 

havior of the WWZ calls for a heavy dose of caution (see 
also Sec. 6). 

Figure 8 shows the WWZ for our test data. Except for 
data set 4 [Fig. 8(d)], which shows a false overtone fre- 
quency, spurious peaks have been entirely eliminated. Con- 
sidering the abysmal time sampling (especially for test data 
sets 3 and 4), this is a powerful testimony to the effective- 
ness of the WWZ. If we use the peak of the WWZ (for 
constant r) to determine the period [Figs. 9(a), 9(c), 9(e), 
9(g)], we find stunning agreement with the true period (Fig. 
9 is plotted on the exact same scale as Fig. 6, for direct 
comparison of the WWZ with the DWT, DWP, and DWA). 

If we take the ratio of the WWZ to the WWT, we get 

Z (jVeff-3)V^ 
(WWZ) (Nefi-l)(Vx-Vy) 

(iVeff-3) 
iveff-l) 

(1 +(S/N)), 

(5-13) 

where S/N is the estimated signal-to-noise ratio. When S/N 
is much less than 1, the WWZ therefore is little different 
from the WWT, even in the limit of large data size N. There- 
fore at low S/N, the WWZ shares the drawbacks of the 
WWT. But for S/N even moderate (^1), the WWZ is a 
significant improvement on the WWT. 
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(g) (h) 

Fig. 9. Period from peak of the WWZ, amplitude from the WWA. The dashed lines, indicating the actual periods and amplitudes, are invisible in many of the 
graphs because the WWZ/WWA estimates are nearly identical to the true values, (a) Set 1, period, (b) Set 1, amplitude, (c) Set 2, period, (d) Set 2, amplitude, 
(e) Set 3, period, (f) Set 3, amplitude, (g) Set 4, period, (h) Set 4, amplitude. 

5.3 Weighted Wavelet Amplitude (WWA) 

Although the WWZ may be an excellent locator of the 
signal frequency, it is a poor measure of amplitude. With a 
projection it is easy to define the amplitude of the corre- 
sponding periodic fluctuation: it is the square root of the sum 

of the squares of the expansion coefficients for the sine and 
cosine functions, which I call the weighted wavelet ampli- 
tude (WWA) 

wa=V(7¡F+(77F (5-14) 

Therefore the weighted wavelet transform enables us to 
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46500 47000 47500 48000 48500 49000 49500 50000 

Fig. 10. Visual light curve of R Aquilae. 

compute the amplitude by the WWA, after we have deter- 
mined the period from the WWZ. Figures 9(b), 9(d), 9(f), 
9(h) show the time evolution of amplitude, as determined by 
the WWZ/WWA, for the test data sets. It is readily apparent 
that this method is vastly superior to its wavelet rivals (Fig. 
6) for identifying the true nature of these test signals, despite 
their highly undesirable time samplings. Hence with the 
WWZ/WWA combination, we have a wavelet analysis tech- 
nique which performs well for pure signals, even with very 
bad time sampling. We may therefore have a new and more 
powerful weapon in the battle against unevenly spaced data. 

6. FORMAL ERRORS 

The problem of computing the formal errors of period and 
amplitude as computed by the WWZ/WWA, is an extraordi- 

narily complex one. However, an estimate is available (Fos- 
ter 1996a, 1996b). Having located the peak frequency co, and 
determined the constant, cosine, and sine coefficients 
y 1^2’73’ we define four trial functions 
cf>A, A = l ,2,3,4 as 

<£i(i) = l(i), (6-1) 

<^2(0 = cos(<>;(f—r)), (6-2) 

</>3(í) = sin(co(¿—r)), (6-3) 

04(O = (i-/?')[73cos(w(i“^))_72sin(a;(f-r))]. (6-4) 

We then compute the sup er-S-matrix, which is the matrix of 
inner products of these trial functions 

= (6"5) 
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Fig. 11. WWZ of R Aql. 

using the weighted inner product. We also compute the esti- 
mated residual variance 

(a) Period 

(b) Amplitude 

2 =AlflOV1vz) 
res N eff — 3 

Fig. 12. Period and amplitude of R Aql, as determined by the WWZ (plus 
signs), CLEANEST Fourier spectrum (dashed line), and times and magni- 
tudes of maxima and minima (solid line), (a) Period, (b) Amplitude. 

Then the variances of the projection coefficients are propor- 
tional to the diagonal elements of the inverse of the super-S- 
matrix 

yar{yA) = N;(¡al^~A
l

A, (6-7) 

and the variance of the estimated frequency is given by the 
same equation, letting the index A = 4. If, for example, this 
procedure is applied to Fourier analysis with even time sam- 
pling, it reproduces the usual formulas for uncertainty in fre- 
quency and amplitude (Foster 1996a). 

However, the purely formal errors so computed are not to 
be trusted for the WWZ, for several important reasons. First, 
the WWZ (like Fourier analysis) is a parametric projection, 
i.e., the trial functions depend on a variable parameter, the 
frequency. In this case the exact statistical behavior cannot 
be deduced (the same is true for Fourier analysis of unevenly 
sampled data, Foster 1996a). Second, (6.7) was derived for a 
standard projection, in which the statistical weights are in- 
versely proportional to the variances of the data. For a 
weighted projection, (6.7) is only an approximation, a good 
one if the effective number Aeff is large, not so good if it is 
small. Third, the entire derivation is predicated on the usual 
null hypothesis, that the data are a pure sinusoidal signal 
with constant frequency and amplitude, plus random noise. 
We know that this null hypothesis is false; if the signal were 
a pure sinusoid, we would not need wavelet analysis. In light 
of these difficulties, perhaps the most trustworthy method to 

estimate uncertainties for the coefficients and parameters 
would be Monte Carlo simulations. 

7. R AQUILAE 

Figure 10 shows the visual light curve of R Aquilae. The 
most obvious feature is a consistent oscillation with period, 
according to the GCVS, of 284.2 days. The GCVS also lists 
the range as 5.5 to 12.0. Fourier analysis using the date- 
compensated discrete Fourier transform (DCDFT, Ferraz- 
Mello 1981) identifies the oscillation as having period 283.3 
days, amplitude 1.9011 mag. However, the period of R Aql 
is clearly not constant. Use of the CLEANEST Fourier spec- 
trum, together with the method of complex amplitude recon- 
struction (Foster 1995), establishes that the period exhibits a 
trend, and provides estimates of the period and amplitude as 
functions of time. In addition, we have direct estimates of the 
times and magnitudes of maxima and minima for R Aql 
(Campbell 1926, Campbell 1955, Mattéi et al. 1990), en- 
abling us to compute individual periods as the time from one 
maximum to the next, and amplitudes as the magnitude 
change from maximum to minimum, or from minimum to 
maximum. 

Figure 12 compares the period and amplitude of R Aql as 
determined by the times and magnitudes of maxima and 
minima, to those determined by the CLEANEST spectrum. 
The agreement between period from these two methods is as 
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49000 50000 

Fig. 13. Photoelectric photometry of FS Comae. 

good as could be expected [Fig. 12(a)]. We see that the pe- 
riods determined by the MAX/min data exhibit considerable 
scatter. Much of the scatter is due to errors in determining 
the times of maxima; however, there are genuine cycle-to- 
cycle fluctuations. Regardless of the scatter, we have a good 
picture of the time evolution of the period. 

Unfortunately, the two methods do not agree on ampli- 
tude; the amplitudes from CLEANEST are consistently 
about 0.2 magnitudes less than those determined from MAX/ 
min magnitudes. Close inspection of the visual light curve 
reveals the reason; the shape of the oscillation is distinctly 
non-sinusoidal, with very sharp maxima and minima. Thus 
the amplitude, as defined by half the difference between 
maximum and minimum brightness, will necessarily be con- 
sistently greater than the amplitude as defined by the size of 

a best-fit sinusoid. Even accounting for this offset due to 
different definitions of amplitude, we see no real correlation 
between the amplitudes from MAX/min and those from 
CLEANEST. It is difficult to trust CLEANEST when so 
much experience demonstrates that Fourier methods in gen- 
eral are more precise indicators of period than of amplitude, 
and my experience is that CLEANEST is a superior tracker 
of period evolution but a poorer indicator of amplitude evo- 
lution. It is also difficult to trust the MAX/min amplitudes, 
due to significant scatter in the determination of magnitudes 
at maximum and minimum, although in my opinion they are 
a better indicator of amplitude evolution than CLEANEST. 
We expect the WWZ to yield amplitudes on the same scale 
as CLEANEST, because wavelet methods are, after all, 
cousin to Fourier analysis. 
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Fig. 14. WWZ of FS Comae. 

Figure 11 shows the WWZ computed from the R Aql 
data. Using the peak, for a constant location r, to determine 
the period and amplitude (Fig. 12), we see that the WWZ 
detects essentially the same trend in period as indicated by 
CLEANEST and MAX/min. The small deviations of the 
WWZ period from that of CLEANEST correlate with 
the MAX/min periods; it seems that the WWZ is better 
at tracking period evolution than CLEANEST. Figure 12(b) 
compares the amplitude from the WWA, to that from 
CLEANEST and the amplitudes from MAX/min. We see 
only weak correlation with the amplitude as determined by 
CLEANEST, but a hint of correlation with the amplitude 
from MAX/min. The peaks in WWA amplitude, for instance, 
at MJD 39500 and MJD 43100, correspond (roughly) to the 
occurrence of a consecutive pair of high-amplitude cycles. 
Still, the agreement is rough at best, and considering the 
errors inherent in all the methods, it is difficult to choose 
which one to believe. 

8. FS COMAE 

In Fig. 13 we see the photoelectric light curve of FS Co- 
mae. The (approximately) 58-day period is plainly visible, 
but it is also evident that the period and amplitude of this 
fluctuation are highly variable. Furthermore, the annual gaps 
in the data are much longer than this period; hence we can- 
not expect to draw reliable conclusions about the main fluc- 
tuation during these unobserved gaps. CLEANEST analysis 
does not paint a realistic picture of the time evolution of 
period and amplitude for FS Com; neither are MAX/min data 
available to establish the true behavior of this star. Therefore 
I have analyzed each year’s data separately by the DCDFT, 
to establish the average period and amplitude for each ob- 
serving season. Nonetheless, these estimates are far from 
ideal, since in several cases significant changes in period 
and (especially) amplitude are visible within a single 
observing season. 

(a) Period 

(b) Amplitude 

Fig. 15. Period and amplitude of FS Com, as determined by the WWZ (x’s), 
and Fourier analysis of each observing season (circles joined by solid line), 
(a) Period, (b) Amplitude. 

Figure 14 shows the WWZ of FS Com. The main period- 
icity is evident, but it is also clear that the period is not 
constant. Using the WWZ to estimate the period and ampli- 
tude of the main fluctuation, we get highly variable results 
(Fig. 15). However, we note that there is excellent agreement 
between the WWZ and DCDFT, both for period and ampli- 
tude, during the observing seasons. In fact the WWZ is to be 
preferred, since it allows for changing period and amplitude 
within a single observing season. In the unobserved gaps, the 
amplitude and (especially) period show large fluctuations, 
confirming what we knew all along: that we cannot expect to 
draw conclusions about the period or amplitude of a cycle 
when the gap in the data is longer than the period of fluctua- 
tion. 

9. CONCLUSION 

The wavelet transform is known to be an excellent period 
analysis method for evenly sampled time series. For uneven 
sampling, although the DWT is very susceptible to false 
fluctuations, the WWZ is highly resistant to such spurious 
response. Our preliminary investigation indicates that it per- 
forms better than other methods for determining period and 
amplitude of unevenly sampled time series. Indeed, consid- 
erable practical experience between the first writing of this 
paper and its revision, bears out the remarkable utility of the 
WWZ/WWA with only modestly good data density and 
signal-to-noise ratio. 
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Furthermore, it has a significant advantage over such 
methods as CLEANEST and estimating maxima and 
minima: it is very simple and fast to apply. In particular, it is 
much faster than CLEANEST, which can take a very long 
time due to a large number of iterations. Despite its superb 
performance most of the time, these investigations confirm 
that any attempt to quantify period and amplitude during a 
gap in the data which is longer than the period in question, is 
folly. 

The WWZ/WWA turns out to be especially good at dis- 
cerning the time evolution of period and amplitude from vi- 
sual observations of long-period variables (LPVs). Most 
LPVs for which AAVSO has visual data have moderate to 
high signal-to-noise ratio, good but uneven data density (of- 
ten with sizeable periodic gaps), and exhibit considerable 
fluctuations in their period and amplitude from one cycle to 
the next. In fact, recent results indicate that for LPVs with 
good data coverage, there is advantage in experimenting with 
lower values for the decay constant c, so as to focus atten- 
tion on not a small number of cycles, but a single cycle. 

One other thing is clear: the wavelet transform in general 
is a remarkably versatile tool for extracting information from 
time series, even with uneven time sampling. The Morlet 
wavelet is only one of many choices, and it is likely that 
several different techniques for compensating an irregular 
time sampling remain to be discovered. This paper has ex- 
plored only one tiny aspect of the application of wavelets to 
time series; we can look forward to much ingenuity yet to 
come in this field. 

I am very grateful to Dr. Janet A. Mattel, who first 
pointed me in the direction of wavelets. I am also most grate- 
ful to the army of amateur variable star observers, whose 
unevenly sampled time series have frustrated many analysis 
methods while acting as a spur to much invention on my 
part. 

APPENDIX A: TENSOR FORMULATION OF THE DWT 

We will treat the wavelet transform as a projection, ac- 
cording to the tensor treatment of Foster 1996b. I caution the 
reader strongly that the notation used in these appendixes is 
markedly different from that of the main body of the paper. 
A particular source of possible confusion is the fact that 
some symbols have one meaning in the body of the paper, 
and another quite different meaning in the appendixes. For 
example, the symbols y0, in the body of the paper, refer to 
the expansion coefficients for the trial functions, as in equa- 
tion (4-1). But, in the appendixes they refer to the covariant 
components of the projected data vector; the expansion co- 
efficients are given by the contravariant components, which 

in the notation of the appendixes is ya. There are many such 
pitfalls in the change of notation, but the notation of the 
appendix is a natural adaptation to tensor analysis of the 
notation in the main body of the paper. I strongly urge those 
interested in these appendixes to consult Foster 1996b 
for details of the notation and conventions used from here on 
out. 

Hence the data x(ta), define an 
V-dimensional contravariant vector in sampling space as 

xa=[x(t1),x(h)’---MtN)]- (Al) 

We give geometrical structure to this vector space by defin- 
ing the metric tensor as 

§ aß 
wa/(2 vv) if a = ß 

0 otherwise 
(A2) 

where wa is the statistical weight applied to data point a. In 
most cases the data have equal statistical weights, in which 
case the metric tensor is 

gaß='N~XÖaß, (A3) 

where N is the number of data points. We will adopt the 
Einstein summation convention, that any repeated index is to 
be summed over all possible values. 

The DWT corresponds (roughly) to a projection onto the 
two trial functions (real and imaginary parts of the Morlet 
wavelet) 01(O-^~cw2(i_r)2cos(a)(i-r)) and </>2(0 
_ g cto (r-r) r))4 Therefore we have the two trial 

vectors 

^=e-CÍ»2((a-T)2cos(tü(fa_T))) (A4) 

0“=e-^
2(^-r)2sin(w(ia_T)^ (A5) 

The inner products of the trial vectors with the data vector 
give the covariant promotion coefficients 

ya = {<t>a\x)=<t>aclX
a = N ‘X a)x{ta). (A6) 

a 

Note that because we are now using tensor notation, these 
are not the same as the expansion coefficients for the model 
function defined in (4.1). The S-matrix is the matrix of inner 
products of the trial functions 

Sab={<l>a\4>b)='N ‘2 « 
a 

2cm2{ta- r)2 COS2(ü)(ta-T)) 

sin(co(ia— r))cos(io(ia— r)) 

sin(o)(ia- r))cos(o)(iQ,- r)) 

síiAco^-t)) 
(A7) 

and is the covariant form of the metric tensor for the subspace spanned by the trial functions. It can be put in the form 
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2c(ti2{ta-T)2 l+cos(2o)(ta- t)) 

sin(2(ù(ta— r)) 

sin(2cü(ia— r)) 

1 —cos(2a>(ta— r)) ' 
(A8) 

r 

For convenience I will define the local data number, 
which depends on the parameters co and r, as e-C(02(t-T)2 cos{a)(t— r)) 

sin(o)(t— r)) 

n(io,r) = 2 e C(s)2^a T) ? a 

and the local data density as 

(A9) 

p{oJ, t) = ÙJ n(o),r) = a)\[—^j e C0)2{ta r)2. 
' IT ’ 77 sy 

(A10) 

I will also define the modified cosine and sine factors 

C(ío,t)= 1= 2 e~2co>2{ta~r)2cos(2o)(ta-r)), 
n(y2o),r) & 

(All) 

B(ù),t) = —p 2 e~2c(°2('ta~T>>2sm(2œ(ta- r)). 
n(y2a),r) « 

(A 12) 

Now the 5-matrix may be written 

1 + C(íü,t) B((o,r) 

B(o),t) 1 —C(co,r) 
s

ab=^
n(j2<o,r) (A 13) 

= N 1n((o,r) 
C(co,t) 

B(co,t) 
(A 18) 

which serves to define the (wranodified) cosine and sine fac- 
tors 

C(w,t)=— ^ C0l2{t t)2cos(ío(7-t)), (A 19) 
n{o),T) t 

B(co,t)= -1 .S e"c"2(,_T)2sin(íü(í-r)). (A20) 
n((o,T) t 

The wavelet transform is not actually treated as a projec- 
tion onto the trial vectors (A.4) and (A.5). Instead we define 
the complex wavelet transform as 

W=N(tiU2(yl-iy2), (A21) 

and we evaluate the strength of the transform by computing 
its squared norm 

\W\2=N2a)[(yl)
2 + (y2)2]=N2(üôabyayb. (A22) 

The squared norm can be referred to as the wavelet power, 
while the (unsquared) norm | Wj is called the wavelet modu- 
lus. 

Note that the 5-matrix satisfies 
APPENDIX B: CONTINUUM LIMIT 

SabSa^N-^ e-2c“2('a-F = Ar-iM(^WjT). (A14) 
a 

Finally, note that the contravariant form of the metric is the 
matrix inverse of the S-matrix 

[1 - C2(a),T)-B2(o),r)]n(^]2o),T) 

\ — C((x),t) —B(a),r) 
X ~ ~ 

~B(o),t) l + C(co,r) 
(A 15) 

The contravariant form of the 5-matrix defines the contra- 
variant projection coefficients in terms of their covariant 
counterparts 

ya = sabyb, (A16) 

and these are the expansion coefficients of Eq. (4.1), defin- 
ing the model function 

y(t)=ya</>a(t). (A17) 

Of fundamental importance is the constant vector Ia, de- 
fined to take the value 1 everywhere. la is the covariant 
representation of the projection of the constant vector Ia, 
i.e., 

As important as it is to understand the quirks of the wave- 
let transform due to irregular time spacing, we must also 
establish its behavior for an ideal time spacing. Hence I con- 
sider the continuum limit, in which we replace by 
j^oopdt (where p is the data density). This corresponds to a 
large number of data with even time spacing, which we 
might call the “ideal time sampling limit.” Noting that fac- 
tors of the form e~CÍO (t~T) have a “width” proportional to 
co-1, we see that in the continuum limit the local number 
n will also be proportional to co-1 (and will be independent 
of r). Also in the continuum limit, the sine factors B and 
B vanish (they become integrals of odd functions), but the 
cosine factors C and C do not; rather they approach con- 
stants which depend only on the constant c, not on the pa- 
rameters o) and r. We can evaluate these factors using the 
identity 

f + 0° ? 2 /tt 
e~cz cos(Xz)dz:=e~K /4c (Bl) 

J —00 ’ C 

In the continuum limit we have 

(B2) 

As already said, the sine factors vanish 
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(B4) 

ß->0, £->0, (B 3) 

while the cosine factors approach 

C—>e~l/4c, C-*e-l,2c. 

APPENDIX C: RESPONSE OF THE DWT TO PURE NOISE 

If the data are random noise with mean 0 and variance 
a-2, then the expected value of the product of two projection 
coefficients ya and yb is3 (Foster 1996b) 

{yayb)=N~lo2sab, (ci) 

so the expected value of the squared norm of the wavelet 
transform is 

(\W\1) = N1 u>ôabN~' (T2S ab 

= <t2ö>2 e~2c,o2{,-T)2 = a2(on(yl2(o,T) 

= cr2p( t) 
2c‘ 

(C2) 

It is more usual that the data do not have mean value zero. 
Then we assume that they have unknown mean ¡jl and vari- 
ance or2, and we subtract the average value from the input 
data, applying the DWT not to the data vector xa but to the 
zeroed data vector 

za=xa— la\ßxß. (C3) 

Then the expected value of the product of two projection 
coefficients is (Foster 1996b) 

(C4) 

(C5) 

x« =—,4 (£ + *'( + 0)+ £ ~ "O'a + 0)) . (D2) 

Note that defined by (D.2) is most definitely real ; we 
cannot simply model a periodic fluctuation as a complex 
signal x=Ael(<0>Qt+e\ The wavelet transform is thus 

w= « 
2 t 

-C0)2{t-T)2^ei{{0)Q-0))(t-T)+d+OiQT) 

(D3) 

+ e~ + <a)(t- t)+ 6+ 

= -Aei(a)vr+e',\[ä) 2 e_cw2(í_T)2[^/("0“íu)(í_'r) 
2 t 

+ e-i((ü>0+(o)(t-T) + 2d+2(1)0T)-^ 

Its squared norm is therefore 

\W\2=l-A2J\ 2 e-c“2(í-F(cos[(íü_Wo)(í_T)] 
IL' T9 

+ cos(2<w0T+2#)cos[(a> + cü0)(¿— t)]) 

+ 2 £_Cío2(r_T)2sin(2w0T+2#)sin[(cü + cüoX^ 

r)] (D4) 

This motivates me to define the major and minor response 
functions, the M-function and the m-function, as 

{yayb)=N l(T2(sab-iaib), 

so the expected value of the DWT is 

(\W\2) = N2œSabN-la2(Sab-laïb) 

= Af (72 co[ A/~1 ft ( >/2 , t) — Af ~ 2n 2 ( co, t) 

X[C2(to,r) + 52(to,T)]] (C6) 

= cr2to[ft(>/2to,T) —A-1ft2(to,r) 

X[C2(to,r) + 52(to,r)]]. (C7) 

In the continuum limit, these extra terms are negligible, but 
with highly irregular time sampling they can be quite signifi- 
cant. 

M(to,n,r) = 2 
t 

ft2(to,il,T) = 2 1 

cos[íl(¿— t)], 

-íú,2(<-Fsin|-a(í_T)-|_ 

I note that 

M(to,0, r) = ft(to,r), 

M(to,to,r) = ft(to,r)C(to,r), 

ft2(to,to,T) = ft(to,T)Z?(to,T), 

M( V2to,2to,r) = ft( V2to,T)C(to,r), 

m( V2 to,2co, r) = ft ( V2 co, t) . 

Now we can write the squared modulus as 

I W|2==—A2to{[M(to,co — to0 ,t)+ cos(2to0T 

+ 20)M(to,to+ to0,T)]2 + sin2(2tooT 

(D5) 

(D6) 

(D7) 

(D8) 

(D9) 

(DIO) 

(Dll) 

APPENDIX D: RESPONSE OF THE DWT TO A PURE SINUSOID 

If the data are a pure sinusoid of frequency co0, amplitude 
A, and phase 6, 

xa=Acos((o0ta+0), (Dl) 

then we can compute the wavelet transform most easily by 
using the complex form 

3Here is a fine example of possible confusion due to switching notation from 
body to appendix. The contravariant form is {yayb} = N~l(T2Sab, which in 
the notation of the main body of the paper becomes (yayb) = N~la2Sjj . 

+ 20)fti2(to,to+too,r)}, (D12) 

which gives the response of the DWT to a pure sinusoid. 
In the continuum limit, the major and minor response 

functions converge to 

M((û,CL,T)^w-ipyJ^e-iî2,{licù>2\ (Dl 3) 

ftî(to,fl,T)—>0. (D14) 

In most astronomical applications, c is chosen small enough, 
and to restricted to low enough frequencies that the product 
to_1p is >>1, in which case the term M(to,to+to0,r) is 
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negligible. Then the response of the DWT to a pure sinusoid 
is approximately 

|W|2~^A2coM2(«,to-coo>T) 

= ^A2ft>(w“2p2i7c“1e"(“,““'o)2/(2^2)) 

H_l_ -(w-w0)2/(2ca)2) 
4co) (D15) 

Therefore the wavelet modulus, for ideal time sampling, 
plenty of data, and small enough constant c, is 

|W|=Ap — (to—6Jo)2/(4cid2) (Dl 6) 

which is the formula usually given for the response of the 
DWT (Goupil et al. 1991). 
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