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Designing advanced DSP applications on the 
Kinetis ARM Cortex-M4 MCU—Part 1 
 

1 Introduction 
 
Signal processing needs in low cost MCUs are increasing. The microcontroller domain tackles many 
control applications in the analog and regulator domain like AC motor control and PID regulator designs. 
The lack of DSP processing power in current MCU devices has severely limited the possibility to 
perform high speed complex DSP algorithms in low cost designs. The latest ARM Cortex-M4 is targeted 
as a solution to these needs as it comes with an extensive set of DSP instructions. 
 
This article introduces the basics behind DSP technology and discusses how advanced algorithms like 
digital filters, FFT's and control loops can be efficiently implemented without having to go into low level 
assembly programming. In part 2, the design of a motor control application using a sensorless vector 
control algorithm is discussed. 
 
 
2 Cortex-M4 MCU introduction 
 
Cortex-M4 is the latest embedded core by ARM. The ARM Cortex-M4 core retains all the advantages of 
the ARM Cortex-M3 core and adds new digital signal processing capability in the form of DSP 
extensions, a single cycle MAC unit and an optional single precision floating point unit. Cortex-M4 is 
using the ARMv7E-M instruction set. Figure 2-1 lists the main architectural features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-1. Cortex-M4 architecture 

• 32-bit Harvard bus architecture 
• 3-stage pipeline (fetch-decode-

execute) 
• Branch speculation 
• Single-cycle multiply & MAC 
• Hardware divide 
• 13 universal registers 
• Thumb-2 instruction set support 

(allows to mix 16 and 32 bit 
instructions - higher code 
density) 

• Up to 4 GB address memory 
space 

 

ARMv7E-M 

 

 
 
 
 
 

 

Cortex-M4 
 

ARMv

 

Debug  & 
Trace 

Interrupts Memory 
protection unit 

Internal BUS matrix 

FPU DSP 



  Page 2 
 
 
 
 

 

3 DSP lecture lite 
 
3.1 Saturating arithmetic’s 
Saturating arithmetic is the most important requirement for digital signal processing. The term 
“saturating” comes from analog electronics, in which an amplifier output will be limited (clipped), 
between fixed values when a large input is applied. Audio, graphics, video and control loops all behave 
reasonable well if overflow conditions limit the signal to min and max instead of wrapping around to 
some unexpected value. A graphics pixel is a good example; adding a large value to an almost white 
pixel using saturating arithmetic will give a maximum white pixel. Doing the same operation with 
standard CPU arithmetic could give any color as the result of the wrap around. The saturating behavior 
is clearly the preferred choice here. 
 
To illustrate the difference between saturating arithmetic and standard CPU arithmetic we take a sine 
wave as shown in Figure 3-1. The sine wave is scaled to fit within the 16-bit signed range of -32768 to 
32767. Processing the sine wave by scaling it by a factor 1.5 will cause overflow, the resulting waveform 
for standard CPU arithmetic is shown in figure 3-2, and for saturating arithmetic in Figure 3-3. In both 
overflow cases, the scaled waveforms show wrong behavior, but whereas Figure 3-3 is merely 
clipped/distorted, the waveform in Figure 3-2 is completely incorrect. Saturating arithmetic will preserve 
the characteristics of a waveform when overdriven; the resulting system will be robust to large signals. 
The effect is similar to turning the volume knob to high on a stereo amplifier, the sound quality will 
decrease but the music will still be discernible. 
 

   
  Figure 3-1.  No overflow   Figure 3-2.  Overflow – 

  standard CPU arithmetic 
  Figure 3-3.  Overflow – 
  saturating arithmetic 

 
 
3.2 Data types 
DSP operations can use either floating-point or fixed-point format. The Cortex-M4 core has optional 
hardware support for 32-bit floating-point, but is not optimized for DSP algorithms and too slow for most 
DSP applications. Available fixed-point data sizes in Cortex-M4 are 8, 16, 32 and 64 bits. Saturating 
arithmetic is supported on 8, 16 and 32 bits. 
 
The fixed-point format can be integer, fractional or a mix of integer and fractional. The notation used to 
describe the format of a fixed point number is Qm.f, where m is the number of integer bits and f is the 
number of fractional bits. Q3.12 for example denotes a fixed point data type with 3 integer bits and 12 
fractional bits, it will fit in a 16-bit register with the remaining bit as a sign bit. The most common format 
used for DSP operations is Q0.15 and Q0.31, with only fractional bits to represent numbers between -
1.0 and + 1.0. It is common to omit the leading ‘0.’ and simply write Q15 and Q31. The representation of 
a Q15 number is: 
 
𝑣𝑎𝑙𝑢𝑒 = 𝑏14 ∗ 2−1 + 𝑏13 ∗ 2−2 + ⋯+  𝑏1 ∗ 2−14 + 𝑏0 ∗ 2−15 
 
For example the number 0.5 will be encoded in Q15 as 0x4000. 
 
Integer arithmetic (saturating and non-saturating) instructions can be used on Qm.f numbers for addition 
and subtraction. For multiplication and division, scaling is needed, for example multiplying Qm.f with 
Qn.g will result in a Q(m+n).(f+g) number. 
 
 
3.3 DSP instructions 
The Cortex-M4 has a number of instructions to support DSP algorithms in an efficient way. Let’s take 
look at the most important ones. 
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3.3.1 Saturating instructions 
A set of instructions are available for saturating addition and subtraction of 8, 16 and 32-bit values; 
QADD8, QSUB8, QADD16, QSUB16, QADD and QSUB. 
The SSAT instruction is available to scale and saturate a value to any bit width that fits a 32-bit value. 
 
3.3.2 MAC instructions 
Most DSP algorithms rely heavily on accumulating the result of long series of multiplications. This is the 
case for FIR and IIR filters, but also for complex algorithms like FFT and DCT. Performing the 
multiplication and accumulation by a single cycle instruction is key to high performance. Some of the 
Cortex-M4 MAC instructions are: 

• SMLA – is used for Q15 calculations; it performs the operation 32 += 16*16 (multiplies two 16-
bit values and adds the result to a 32-bit register) 

• SMLAL – is used for Q31 calculations; it performs the operation 64 += 32*32. There is also a 
variant of the SMLAL instruction to perform the operation 64 += 16*16 

 
3.3.3 SIMD instructions 
The availability of suitable instructions for implementing DSP algorithms is a real advantage of the 
Cortex-M4. To increase performance even more it would be nice to perform several operations in 
parallel. As discussed above, the MAC instructions performs a multiply and an addition in a single cycle. 
On top of that there is SIMD (Single Instruction Multiple Data) to perform multiple identical operations in 
a single cycle instruction. Some of the available SIMD instructions are: 

• QADD8 – performs four 8-bit saturating additions 
• QADD16 – performs two 16-bit saturating additions 
• SMLAD – performs a dual MAC operation 32 += 16*16 + 16*16 
• SMLALD – performs a dual MAC operation 64 += 16*16 + 16*16 
• SSAT16 – performs two scale and saturate operations 

 
 
3.4 Algorithms 
 
3.4.1 Filters 
The two most common digital filters are FIR (Finite Impulse Response) and IIR (Infinite Impulse 
Response). 
 

• FIR filters use no feedback and are therefore inherently stable. In the FIR equation below 𝑥 is 
the input samples vector, 𝑦 is the output vector, 𝑁 is the filter order, and 𝑏 is the filter 
coefficients. 

𝑦[𝑛] =�𝑏𝑖𝑥[𝑛 − 𝑖]
𝑁

𝑖=0

 

 
• IIR filters use feedback and can show instability if not designed properly. IIR filter can be used 

to implement the well know analog filter types Butterworth, Chebyshev, Bessel and others. In 
the IIR equation below, 𝑥 is the input samples vector, 𝑦 is the output vector, 𝑃 is the 
feedforward filter order, 𝑄 is the feedback filter order, and 𝑎/𝑏 are the filter coefficients. 

𝑦[𝑛] =
1
𝑎0
�𝑏𝑖𝑥[𝑛 − 𝑖]
𝑃

𝑖=0

−
1
𝑎0
�𝑎𝑗𝑦[𝑛 − 𝑗]
𝑄

𝑗=0

 

 
3.4.2 Transforms 
A transform is a function that maps data from its original domain into another domain. Typical examples 
of transforms are FFT (Fast Fourier Transform) and DCT (Discrete Cosine Transform). Bothe the FFT 
and DCT can map data from the time domain to the frequency domain, and vice versa. 
 
In our motor control example in section 5 we will use the Clarke and Park transforms. Combined they 
will transform the motor rotating 3-phase field current to a rotor magnetizing flux and torque component. 
 
Transforms are computational intensive, especially for large input vectors/matrixes. Considerable 
performance gains can be obtained using the Cortex-M4 DSP specific instructions. 
 
3.4.3 Control loops 
Motor control requires fast and stable control loops as will be more discussed in section 5. An example 
of a common control loop is the PID controller. 
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4. DSP application development support 

 
4.1 Development tool requirements 
To help you use the features on the Cortex-M4 core, there is a multitude of support from the 
development tools domain. Complex hardware needs to be easy to program and easy-to-use tools are 
very important. Executions speed is very essential in DSP applications and that puts requirements on 
the build chain. The compiler must be very good at optimizing the code for speed.  
 
Software development costs and time-to-market requirements are other important factors in all projects. 
Development tools therefor must comply and support both software standards and programming 
standards. To reuse and port code, compiler extensions like intrinsic functions need to follow a standard. 
 
4.1.1 CMSIS 
The ARM® Cortex™ Microcontroller Software Interface Standard (CMSIS) is a vendor-independent 
hardware abstraction layer for all Cortex-M processor based devices. CMSIS has been developed by 
ARM in conjunction with silicon, tools and middleware partners. The idea behind CMSIS is to provide a 
consistent and simple software interfaces to the processor for interface peripherals, real-time operating 
systems, and middleware, simplifying software re-use, reducing the learning curve for new 
microcontroller developers and reducing the time to market for new devices. 
 
Every CMSIS-compliant C compiler supports the Cortex-M4 extensions defined by ARM. This means for 
example that if you use a CMSIS-compliant compiler, the DSP related intrinsic functions are named 
according to the standard and your code will be portable between different compilers. 
 
 
4.2 DSP algorithm implementation 
 
4.2.1 Assembler 
One way of implementing DSP functions is of course to write the algorithms in assembler. This can 
result in a very high performance when it comes to fast and efficient execution, but assembly 
optimization is hard work and extends the development time. 
 
4.2.2 Intrinsic functions 
Another alternative is to implement DSP algorithms in C or C++. The Cortex-M4 processors can be fully 
programmed in C and code written in C is easy to write, maintain, and can easily be ported. 
 
The C language does not have any built-in specific support for expressing saturating arithmetic, such 
that INT_MAX + n =INT_ MAX and INT_MIN – n = INT_MIN. The operation can be expressed as: 
 

uint16_t saturating_16bit_add(uint16_t a, uint16_t b) 
{ 
  uint16_t result = a + b; 
  if (((a ^ b) & 0x8000) == 0) 
  { 
    if ((result ^ a) & 0x8000) 
    { 
      result = (a < 0) ? 0x8000 : 0x7fff; 
    } 
  } 
  return result; 
} 

 
The compiler could be designed to recognize this construct and generate the proper Cortex-M4 
saturating instruction for those C statements. Even then, the source code is clumsy, error prone and 
difficult to read. 
 
We somehow need to be able to access DSP instructions in a direct and transparent way. This can be 
done with the use of intrinsic functions which is a predefined set of functions available in the compiler. 
The intrinsic functions provide direct access to low-level processor operations and compile into inline 
code, either as a single instruction or as a short sequence of instructions. To make code portable, the 
intrinsic functions provided by the tool vendor must conform to a standard, for example CMSIS. 
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Using Cortex-M4 intrinsic functions, the function above can us the intrinsic function __QADD16 and be 
re-written as: 
 

uint16_t saturating_16bit_add(uint16_t a, uint16_t b) 
{ 
  return __QADD16(a, b); 
} 

 
 
4.3 DSP library 
 
4.3.1 Overview 
The alternative to writing your own DSP implementation is to use a DSP library. Most DSP libraries are 
supplied by the chip vendor and are targeted to a specific architecture. These libraries are often written 
in assembler to get the best performance and are by that not portable to a different architecture. 
 
There are also both commercial and public domain DSP libraries available that are written in C or C++, 
like FFTW, SigLib and others. These libraries are portable and optimized for speed. 
 
ARM has recently launched a standardized DSP Library with highly optimized signal processing 
functions for Cortex-M4 processor-based systems. The library is CMSIS-compliant and is designed to 
make DSP programs easy to develop for MCU users. It includes general functions for math, 
trigonometric, and control functions as well as digital filter algorithms for filter design utilities and DSP 
toolkits: 
 

• Basic math – vector and matrix mathematics 
• Fast math – sin, cos, sqrt etc. 
• Interpolation – linear, bilinear 
• Complex math 
• Statistics – max, min, RMS etc. 
• Filtering – IIR, FIR, LMS etc. 
• Transforms – FFT(real and complex), DCT (cosine transform) etc. 
• PID Controller, Clarke and Park transforms 
• Support functions – copy/fill arrays, data type conversions etc. 

 
4.3.2 Performance 
The performance varies widely depending on the adaptation/optimization of the DSP algorithm to the 
actual instruction set. In table 4-1 two fixed-point FFT’s are compared for execution time. The general 
purpose fix_fft is compared to the ARM specific FFT. The ARM specific FFT have been specifically 
tuned for the Cortex-M4 DSP instructions and executes the 1024-point FFT in 5 ms, the same library 
optimized for Cortex-M3 executes in twice the time; 11.9 ms. The general purpose fix_fft executes 
another factor two slower; 20.1 ms at the highest compiler speed optimization level. 
 
 
1024-point FFT Cortex-M3 @ 25MHz 

IAR compiler 
(no optimization) 

Cortex-M4 @ 25MHz 
IAR compiler 
(no optimization) 

Cortex-M4 @ 25MHz 
IAR compiler 
(speed optimization) 

fix_fft1) 35.7 ms 35.7 ms 20.1 ms 
arm_cfft_radix4_q152) 11.9 ms 5.0 ms 5.0 ms 
 
Table 4-1 

1) written by Tom Roberts (1989), Malcolm Slaney (1994), Dimitrios P. Bouras (2006) 
2) part of ARM CMSIS 2.0 
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4.4 Debugging 
 
Debugging is an important and time consuming task of the development cycle that all software 
developers will have to perform. Cortex-M4 has a very powerful debug architecture that for example 
allows live access to the core when the application is running, which makes it possible to read and write 
memory and set/clear breakpoints on a running application. Full trace is provided via the Embedded 
Trace Macrocell (ETM) in combination with a 4-bit trace port and a low bandwidth instrumentation trace 
is provided from the Instrumentation Trace Macrocell (ITM) via the SWO pin. 
 

 
 
Figure 4-1. Cortex-M4 debug architecture 
 
4.4.1 DSP-specific debugging support 
When debugging a DSP application the real time aspect is very important. Single stepping through a 
motor control application is not possible because it will interfere with the control loops. The trace 
possibilities on Cortex-M4 in combination with advanced breakpoint conditions and trace filters is a 
much better solution.  
 
The four watchpoints in the DWT module also provides great possibilities for debugging in real time. It is 
possible to log accesses to up to four different memory locations or areas, including time information. 
 
A debugger that simulates the complete instruction set including the DSP instructions can be very useful 
for unit testing of the DSP algorithms before the hardware is available. 
 
4.4.2 Performance analysis 
Debugging tools can also be used during design and development for instrumentation, analysis, and 
performance evaluation of DSP systems. A debugger that utilizes the debugging and trace possibilities 
on Cortex-M4 can provide a range of useful features.  
 
The PC sampling feature in the DWT module can be used to provide useful statistical information in a 
debugger, for example, function profiling and statistical data on instruction usage. The profiling 
information can help you find the functions where most time is spent during execution, for a given 
stimulus. Those functions are the parts to focus on when spending time and effort on optimizing code. 
This can be a great tool when optimizing time critical parts of the DSP application. 
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