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Torres Codeço (Fiocruz-PROCC).



Preface

T
he emergence and re-emergence of infectious diseases and the evolution
of resistant pathogens pose a great challenge for Public Health world-

wide. Brazil, in particular, is facing increasing problems with the expansion,
to urban centers, of diseases previously rural (leishmaniosis), increasing mor-
tality caused by previously benign diseases (dengue), potencial emergence
of new diseases, and reduction of efficacy of traditional treatment protocols
(tuberculosis, malaria, leprosy).

To deal with this situation, it is necessary to think strategically. How
can we use our limited resources the best way possible? In other words, how
to define public health policies for the use of chemicals and vaccines that
optimize their impact in the short and long term? To develop such strategies,
it is necessary to consider, and integrate, information from different sources,
including biological information regarding host-parasite interaction, parasite
response to chemicals or other control element, identification of risk situations
for the population under study, identification of alternative control strategies,
quantification of available resources, etc. The integration of all these data is
often done in an incomplete way, resulting in sub-optimal decision making.

In EpiGrass, the georefered space is the background for simulating in-
tervention scenarios. Computer simulations are more and more used for
evaluations of risk and formulations of disease control strategies (Casman
et al., 2000). These models are useful for determining, among other things,
the expected number of cases in an epidemic (and the required medical cost),
compare alternative control strategies (mass vaccination x localized vaccina-
tion, for example), for example. The integration of mathematical models to
georefered data is strategic as it increases the applicability of mathematical
models.

EpiGrass is a simulator which implements transmission models in a net-
work where disease transmission occurs in the nodes (that may represent
cities, neighborhoods or households) and spatial spread occurs via edges (that
represent transportation routes or other elements of contact networks). Ex-
amples of application of this approach can be found in (Barrett et al., 2005;
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Meyers et al., 2005).
EpiGrass is not a part of the GRASS GIS system (http://grass.itc.

it), though it can read GRASS’s ascii vector format to import maps which
will serve as background for its graphical display of simulations. EpiGrass
also makes use of the R statistical package. Statistical analysis in EpiGrass
is done in R. The ’R data analysis programming language and environment’
is an open source system for statistical computing and graphics (http://
www.r-project.org/). R consists of a base package and a set of modules
for data handling and storage, calculations on arrays, several methods for
data analysis, graphical facilities. It also has a well-developed programming
language which includes conditionals, loops, user-defined recursive functions
and input and output facilities.

EpiGrass is an opensource software. The financial support for EpiGrass
comes from the Brazilian Research Council (CNPq), as part of a nation-
wide initiative by the federal government http://www.iti.br/, to develop
and use free/opensource software as the standard computational platform
throughout the country.

EpiGrass is the product of a colaboration between researchers from many
disciplines: Flávio Coelho, Cláudia Codeço and Oswaldo Gonçalves Cruz are
epidemiological modellers at the Oswaldo Cruz Foundation (Rio de Janeiro
- Brazil); Maria Goreti Rosa Freitas is an entomologist and epidemiologist
working on spatial processes associated to Dengue Fever, at Oswaldo Cruz
Foundation; Alexios Zavras is an expert in software development and an
advocate of the Free Source Movement in Greece; Pantelis Tsouris is an
engineer specialized in hardware development. We hope that, with this first
release, this small community will grow and prosper.
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Chapter 1

Overview of the EpiGrass

E
piGrass is a platform for network epidemiological simulation and anal-
ysis. It enables researchers to perform comprehensive spatio-temporal

simulations incorporating epidemiological data and models for disease trans-
mission and control in order to create sophisticated scenario analyses.

1.1 Components

The EpiGrass system is composed of 4 components, The EpiGrass simulator,
the EpiGrass database, EpiGrass visualization module, and the report gen-
erator. They are all accessed via EpiGrass’ graphical user interface (GUI).

1.2 Modeling Approach

The geographical networks over which epidemiological processes take place
can be very straightforwardly represented in a object-oriented framework.
In such a framework, the nodes and edges of the geographical networks are
objects with their own attributes and methods.

Once the archetypal node and edge objects are defined with appropriate
attributes and methods, then a code representation of the real system can be
constructed, where cities (or other geographical localities) and transportation
routes are instances of the node and edge objects, respectively. The whole
network is also an object with a whole collection of attributes and methods.

This framework leads to a compact and hierarchical computational model
consisting of a network object containing a variable number of node and edge
objects. This framework also do not pose limitations to encapsulation, po-
tentially allowing for networks within networks if desirable (not yet imple-
mented).

1
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For the end user this framework is transparent since it mimics the natural
structure of the real system. Even after the model is converted into a code
object, all of its component objects remain accessible internally, facilitating
the exchange of information between all levels of the model.

1.3 Geographical Network Models

EpiGrass’ geo-referenced models are built from two basic sources of data:
Two comma-separated-values files containing information about nodes and
edges, which are provided by the user. This files represent the network of
interest.

If the user has a vectorial representation (map) for the geographical area
where the network is located, this file can be passed to visualization module
to be used as a backdrop to the network dynamics animation.

1.3.1 Defining Nodes

A graph has nodes and edges. Nodes can be cities or other localities de-
pending on the model being constructed. The definition of nodes require the
setting of several attributes as listed below. besides, these nodes will have
many more attributes defined at run-time which will depend on other aspects
of the model. These will be discussed later.

The data required, at build time, to create nodes come from a CSV
(comma-separated-values) ASCII-text file, with the following attributes, (in
this order. See demos):

Latitude, Longitude This attribute will be used to geo reference the node.
The coordinate system must match those used in the cartographic base
imported from GRASS. Coordinates can be coded in either decimal or
sexagesimal format.

Name Used for identification purposes only. It can be a city name, for
instance.

Population Since the simulation models will all be of a populational nature.
Population size must be specified at build time.

Geocode A Unique Geocode (a integer number) is required. It will be used
as a label/index to facilitate reference to specific nodes.

These files can be easily put together in a spreadsheet and then saved in
CSV format.
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1.3.2 Defining Edges

In EpiGrass’ graphs, edges represent transportation routes. Similarly to
nodes, edges are defined at build-time with a minimum set of attributes which
will be extended at run-time. EpiGrass also expects to get these attributes
from a CSV file (See demos for format details):

Source The name of the source node. The edges are bi-directional, but the
nodes are labeled source and destination for reference purposes.

Destination The name of the destination node.

Forward migration Migration rate from source to destination, in number
of persons per unit of time.

Backward migration Migration rate from destination to source, in number
of persons per unit of time.

Length distance in kilometers (or another unit) from source to destination
via the particular route (not straight line distance).

Source’s geocode This is the unique numerical identifier used in the sites
file.

Destination’s geocode This is the unique numerical identifier used in the
sites file.

1.3.3 Defining models

The word model in EpiGrass can mean two distinct objects: The network
model and the node’s epidemic model.

Node objects, in an EpiGrass model, contain well-mixed population dy-
namic models within them. These models determine the dynamics of epi-
demics within the particular environments of each node. EpiGrass comes
with a few standard epidemiological models to choose from1 when setting
up your network. Currently, Epigrass comes with a small set of predefined
model types but users can easily define their own. The building of custom
models is discussed in detail in chapter 4.

Network models are specified in a ASCII-text script file (see appendix A).
EpiGrass comes with a few demo network models for the users to play with
until they are confident enough to build their own. Even then, it is advisable
to use the demo scripts provided as templates to minimize syntax errors.

1See chapter 2
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The script on the appendix A specifies a network model with an stochastic
SEIR (see chapter 2) epidemic model in its nodes. The user should study this
model and play with its parameters to understand the features of EpiGrass.
A step-by-step tutorial on how to edit the model script can be found on
chapter 4.

1.4 The Simulation

A simulation run in EpiGrass consists of a series of tasks performed at each
time step2.

Calculate migration For all edges in the network, the number of persons
traveling each way is determined for the current time-step.

Run epidemic models For each node in the network the epidemic demo-
graphics are updated based on the local number of infected and sus-
ceptible individuals which have been updated by the transportation
system.

All aspects of the simulation such as number of passengers traveling on
each edge, number of infected/susceptible on each node and etc., are recorded
in a step-by-step basis. This complete record allows for the model to be ana-
lyzed after the simulation has been completed without having to recalculate
it.

1.4.1 Output

The output of a simulation in EpiGrass consists of several csv formatted
files with some global results from the simulation, a (optional) written PDF
report, and two database tables containing the simulated time series of many
variables for each node and edge.

Graphical display

After the simulation is completed, user-selected epidemiological variables can
be animated in a 3-dimensional rendering over the map of the region con-
taining the network (if one is available).

2The number of time steps is defined in the model script
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Report Generation

The report contains a detailed analysis of the network model and the simu-
lations ran with it. The report generates a LATEXsource file and compiles it
to a PDF document for visualization.

Three types of report are currently available:

Report = 1 Returns a set of descriptors of the network, described in chap-
ter 5

Report = 2 Returns a set of basic epidemiological measures and plots of
the time series.

Report = 3 Report 1 + Report 2

Report Generation is an optional3, though recommended, step done at
the end of the simulation. For the report, descriptive statistics are generated
for the network. These have to do with network topology and properties.
Additional sections can be added to the report with basic statistical analyses
of the output of pre-selected nodes4.

Database output

Time series from simulations, are stored in a MySQL database named epi-
grass . The results of each individual simulation is stored in two tables
named after the model’s script name, the date and time the simulation has
been run. For instance, suppose you run a simulation of a model stored
in a file named script.epg, then at the end of the simulation, two new
tables in the epigrass database will be created with the following name:
script Wed Jan 26 154411 2005 and script Wed Jan 26 154411 2005e. The
first table contains the simulated time series associated with the nodes. The
second table (ending with an e) contains time-series associated with the
connections of the networks. Results of multiple runs of the same model are
stored independently.

3CAUTION! For large networks, the calculation of the statistics for the report may
take a very long time!

4Listed in the siteRep variable at the script
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Chapter 2

Epidemic Models

2.1 Introduction

E
pidemiological models are implemented in the EpiGrass environment
as a tool to predict, understand and develop strategies to control the

spread of infectious diseases at different time/spatial scales. In this context,
there are two direct potential applications. One is to model the spread of
new diseases through an entirely susceptible population (ecological invasion).
The velocity of spread of new diseases in a network of susceptible popula-
tions depends on their spatial distribution, size, susceptibility and patterns
of contact. In a spatial scale, climate and environment may also impact the
dynamics of geographical spread as it introduces temporal and spatial het-
erogeneity. Understanding and predicting the direction and velocity of an
invasion wave is key for emergency preparedness.

Besides invasion, network epidemiological models can also be used to
understand patterns of geographical spread of endemic diseases. Many in-
fectious diseases can only be maintained in a endemic state in cities with
population size above a threshold, or under appropriate environmental con-
ditions (climate, availability of a reservoir, vectors, etc). The variables and
the magnitudes associated with endemicity threshold depends on the natu-
ral history of the disease (Keeling and Grenfell, 1997). Theses magnitudes
may vary from place to place as it depends on the contact structure of the
individuals. Predicting which cities are sources for the endemicity and under-
standing the path of recurrent traveling waves may help us to design optimal
surveillance and control strategies. For measles, for example, models suggest
that geographical spread tend to follow a hierarchical pattern, starting in big
cities (core) and then spreading to smaller neighborhood cities (satellites)
(Grenfell et al., 2001).

7
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EpiGrass implements a series of epidemiological models which, integrated
with a set of analytical and visualization tools, may give us clues about the
overall pattern of diseases spread in the geographical space. Besides, it can
be used for scenario analysis to compare alternative intervention scenarios.

2.2 Disease models

Models of disease dynamics are quite diverse, ranging from caricatures to
very detailed simulations. Traditional models of spread of diseases are based
on the mean field assumption, i.e., that individuals interact randomly at
a certain rate. Important references to the subject are (Diekmann and
Heesterbeek, 2000; Daley et al., 2001; Isham and Medley, 1996; Anderson
et al., 1992). These models are expressed mathematically as difference equa-
tions (discrete time) or differential equations (continuous time). In the sim-
plest form, these models do not take into consideration either individual
heterogeneity or the local nature of transmission events. Increased realism
is achieved by structuring the population according to age, risk behavior,
sex, susceptibility, or other category associated with different risk of getting
or transmitting the disease. Within each sub-population, however, the as-
sumption of well mixing must hold. When other species are involved in the
transmission process (non-human hosts and vectors), these are also consid-
ered as compartments that may be sub-divided as well according to covariates
associated with the risk of acquiring or transmitting the disease.

In this context, epidemiological models take the form of multi-compartmental
models where each compartment is a well-mixed homogeneous population.
The model describes the transition of the individuals in this population
through a sequence of disease-related stages. These stages could be Sus-
ceptible, Infected, Recovered, for example. And the transitions could be

Susceptible −→ Infected

Infected −→ Recovered

If only these transitions are allowed, then individuals in the recovered
class never become susceptible again (lifelong immunity). If, on the other
hand, immunity is only temporary (as in pertussis), then another transition
should be included:

Susceptible −→ Infected

Infected −→ Recovered

Recovered −→ Susceptible
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One way to visualize these models is using state-flow diagrams, where
boxes represent states (compartments) and arrows indicate the transitions.
It is the state identity together with the transitions allowed that define the
type of model in use.

2.2.1 Dispersal of infected individuals

A key feature of EpiGrass is to allow the simulation of geographical spread of
infection from one locality to others. Dispersal of infection is modeled as in a
’forest fire’ model (Grenfell et al., 2001). An infected individual, traveling to
another city, acts as a spark that may trigger an epidemic in the new locality.
This approach is based on the assumption that individuals commute between
localities and contribute temporarily to the number of infected in the new
locality, but not to its demography. Further details about this approach can
be found in Grenfell et al (2001).

In all models presented below, new infections in locality i arise from
the contact between Susceptibles in i and Infectious individuals. Infectious
individuals are of two types: those residents in i (It) and those visiting i (θ).
Mathematically, this is written as:

Lt+1 = βSt
(It + θ)α

Nt + nt

where Lt+1 is the number of new cases, β is the contact rate between
Susceptibles and Infectious individuals, St is the number of susceptibles, It is
the number of infectious individuals resident in the locality, θ is the number
of infectious individuals visiting the locality, Nt is the population residing in
the locality and nt is the total number of individuals visiting the locality. α is
a mixing parameter. α = 1 corresponds to homogeneous mixing (Finkenstadt
and Grenfell, 2000).

2.2.2 Typology of infectious diseases and correspond-
ing models

Here we present a brief description of the typology of infectious diseases mod-
els based on the main route of transmission, and type of immunity resulting
from infection. These models correspond to the types of models built into
EpiGrass.
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Figure 2.1: SIR-like models

SIR-like models

The natural history of many directly transmitted infectious diseases can be
appropriately described by a SIR-like model. SIR stands for Susceptible (S),
Infected (I) and Recovered (R). Archetypal SIRs are measles or chicken-
pox, i.e., diseases that confer lifelong immunity (but see (Glass and Grenfell,
2004)). An individual starts his life in the S state and may progress to the I
state. The rate of progression of individuals from S to I is called the incidence
rate or force of infection (λ) which is a function of contact rate, probability
of transmission per contact and density of infectious individuals. Individuals
stay in the infectious period for a certain time and then move to the recovered
state where they become immune to new infections. Generally, the removal
rate from the infectious class is the inverse of the infectious period (i.e., it is
assumed that the duration of infection is exponentially distributed).

Variations of this model allow cases where infected individuals do not
acquire immunity after infection, thus returning to the susceptible pool (SIS
model). Another variation is the inclusion of a latent stage to hold individuals
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that are infected but not infectious to others yet (incubation period). These
are the SEIR (with immunity) and SEIS (no immunity) models.

Next, we describe in more detail each one of these models in their deter-
ministic and stochastic versions, as used by EpiGrass.

SIR models Examples of diseases represented by SIR models are measles,
chickenpox. Some diseases that do not confer lifelong immunity may
be represented by this model if only short term dynamics is of interest.
In the scale of a year, influenza and pertussis, for example, could be
described using SIR. The SIR model is implemented in EpiGrass as
a system of four difference equations. Besides the three equations de-
scribing the dynamics of S, I and R, a fourth equation explicitly defines
the number of new cases per time step, L(t) (i.e., the incidence). In
general, this quantity is embedded in the I equation (prevalence), but
it is important to keep track of the incidence if one wishes to compare
prediction with notification data.

Lt+1 = βSt
(It + θ)α

Nt + nt

It+1 = Lt+1 + (1− r)It

St+1 = St + B − Lt+1

Rt+1 = Nt − (St+1 + It+1) (2.1)

This model can be easily extended to include diseases without recovery,
for example AIDS, the so called SI models. Basically, the recovery rate
is set to 0.

SIS models In the SIS model, individuals do not acquire immunity after
the infection. They return directly to the susceptible class.

The only difference between SIS and SIR models is the absence of R
and the flow of recovered individuals to the susceptible stage:

Lt+1 = βSt
(It + θ)α

Nt + nt

It+1 = Lt+1 + (1− r)It

St+1 = St + B − Lt+1 + rIt+1 (2.2)
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Table 2.1: Symbols used in the models and their meaning

Symbol Meaning.
Lt number of newly infected individuals at time t
E number of exposed but not infectious individuals at time t
I number of infectious individuals at time t
R number of recovered individuals at time t
β contact rate (t−1)
θ number of infectious visitors
α mixing parameter (α = 1 means homogeneous mixing)
n number of visitors
N population (S + E + I + R)
B susceptible pool replenishment
r fraction of I recovering from infection per unit of time ([0, 1])
e fraction of E becoming infectious per unit of time ([0, 1])
δ probability of acquiring immunity ([0, 1])
w probability of losing immunity([0, 1])
p probability of recovered individual acquiring infection, given exposure ([0, 1])

SEIR models These models have an extra compartment for those individu-
als who have acquired the infection but are still not infectious to others.
This is the latent period and it is often parameterized as the inverse of
the incubation period. Note, however, that for many diseases, initia-
tion of infectiousness does not necessarily coincides with symptoms. In
principle, any disease described by the SIR model can also be described
by the SEIR model. The decision regarding the use of one or another
depends on the magnitude of the latent period in relation to the time
frame of other events in the simulation. The model has the form:

Lt+1 = βSt
(It + θ)α

Nt + nt

Et+1 = (1− e)Et + Lt+1

It+1 = eEt + (1− r)It

St+1 = St + B − Lt+1

Rt+1 = Nt − (St+1 + It+1 + Et+1) (2.3)
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Figure 2.2: SIpR-like models.

SEIS models These are SIS models with the inclusion of the latent stage.

Lt+1 = βSt
(It + θ)α

Nt + nt

Et+1 = (1− e)Et + Lt+1

It+1 = eEt + (1− r)It

St+1 = St + B − Lt+1 + rIt (2.4)

SIpR-like models

These are SIR models with immunity intermediary between full (SIR) and
null (SIS ). Some possibilities arise here: 1) Infection confers full immunity to
a fraction of the individuals and the remaining ones return to the susceptible
class again, after infection. (SIpRpS ); 2) Infection provides only partial
immunity and recovered individuals are partially susceptible to new infection
(SIpR); 3) Immunity is full right after infection but wanes with time (SIRS ).
Each model is presented below. Figure 2.2 illustrates them diagrammatically.
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Related models, that included the latent state E are: SEIpRpS, SEIpR,
SEIRS.

SIpRpS model This model assumes that a fraction δ of infectious individ-
uals acquire full immunity while the remaining (1 − δ) returns to the
susceptible stage. The model is:

Lt+1 = βSt
(It + θ)α

Nt + nt

It+1 = Lt+1 + (1− r)It

St+1 = St + B − Lt+1 + (1− δ)rIt

Rt+1 = Nt − (St+1 + It+1) (2.5)

SIpR model This model assumes that immunity is only partial and recov-
ered individuals may acquire infection again (at a lower rate pλ, where
0 ≤ p ≤ 1). Two equations calculate the number of new infections. LS

calculates the number of susceptibles that become infected at t+1. LR

calculates the number of recovered that become infected at t + 1. The
latter are less susceptible to the disease when compared to susceptibles.
The model is:

LS,t+1 = βSt
(It + θ)α

Nt + nt

LR,t+1 = pβRt
(It + θ)α

Nt + nt

It+1 = LS,t+1 + LR,t+1 + (1− r)It

St+1 = St + B − LS,t+1

Rt+1 = Nt − (St+1 + It+1) (2.6)

SIRS model Here, the immunity acquired by infection wanes with time.
Pertussis is an example of this dynamic.

LS,t+1 = βSt
(It + θ)α

Nt + nt

It+1 = LS,t+1 + LR,t+1 + (1− r)It

St+1 = St + B − LS,t+1 + wRt

Rt+1 = Nt − (St+1 + It+1) (2.7)
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SnInRn-like models

These are models with more than one compartment for susceptibles, infected
and recovered stages. They are used when infection involves more than one
distinct populations. Vector borne diseases are classical examples where a
SIR model is used to describe infection in humans and another SIR-like
model is used to describe infection in the vector (and/or the reservoir(s)).
Dengue fever and yellow fever are examples. Sexually transmitted diseases
may also be modeled with SnInRn models if male and female populations are
distinguished. These models can be define by the user as a custom model.

2.2.3 Stochastic models

All models described so far are deterministic. EpiGrass allows simulation of
stochastic processes. This is done by assuming that Lt+1 is a random vari-
able with expected value given by the expressions found in the deterministic
models. The user may choose the probability distribution for Lt+1 between
Poisson or Negative Binomial to draw realizations of Lt+1:

lt+1 ∼ Poisson(Lt+1)

or

lt+1 ∼ NegBin(It,
It

It + Lt+1

)

The Poisson distribution assumes independent events while the negative
Binomial assume clustering of transmission events.

2.3 Network transportation models

The transmission models describe the dynamics of infection in a well-mixed
population. EpiGrass allows the user to model the movement of infectious
individuals between well-mixed populations, thus simulating the spread of
disease through space. EpiGrass represents geographical space as a network
where cities or localities are nodes and transportation routes are edges. The
term network refers to the framework of routes within a system of locations,
identified as nodes or sites. An edge is a single link between two sites (a
road, a railroad, an air route or a river/sea corridor).

Transportation networks, like many networks, are generally embodied as
set of locations and a set of links representing connections between those
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locations. The arrangement and connectivity of a network is known as its
topology. Major types of topology are illustrated in figure 4.4.2. Velocity and
direction of disease spread depend on the topology and weight of the edges of
the transport network and there are many properties of networks that may
useful when analyzing the spread of diseases. EpiGrass calculates a set of
these properties as described in chapter 5.

In a transportation network, each edge (or link) is characterized by a
variable flow which states the number of passengers that travel through
that link per unit time. EpiGrass uses this information to calculate the
number of passengers arriving at each city, per time step. For example,
consider node N1 in figure 2.3. At each time step, it receives 10 passengers
from N2, 5 from N5, 1 from N4. Now suppose that, at this time step, 10%
of the population within each site is infectious (I state), according to the
epidemic model. Thus, a total of 10% × 10 + 10% × 5 + 10% × 1 = 1.6
infectious individuals are visiting site N1. In the epidemic model embedded
in N1, EpiGrass sets n = 16 and θ = 1.6. This calculation of θ is based
on a deterministic argument. The other possibility, allowed by Epigrass,
is to define θ as a random variable, that follows a binomial distribution
with parameters n,p, where n is as given in the deterministic version and
p is the proportion of infectious individuals in the source population. From
version 1.4 on, EpiGrass can also take into account the specific delays of each
connection. When the average speed of the transportation system is set to
a value greater than zero, epigrass calculates the time required to complete
each trip and attributes this delay (in units of time) to the parameter δ.
So, the number of infectious passengers arriving at any given city, at time t
corresponds to the number of infectious passengers that left the city of origin
at time t− δ.

Deterministic:

Θt = n× It−δ

N

Stochastic:

Θt ∼ Binomial(N,
It−δ

N
)
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Figure 2.3: A simple transportation network
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Chapter 3

Building and Installing

T
his chapter will walk through all aspects of EpiGrass installation. From
obtaining, building and installing the prerequisites to the installation of

EpiGrass itself.

Most of the steps will be quite simple and similar since they will make use
of standard tools for package installation on two very popular GNU/Linux
distributions: Debian (and derivatives), and Gentoo. If you use a different
distribution, you should check its documentation for package installation
instructions.

If, on your distribution, a package is not available for the required ver-
sion, you can try to obtain an updated version of the package at the web-sites
provided. On the rare cases where pre-built packages are not available, in-
structions on how to build the software from source should also be available
from its web-site.

3.1 Required Packages

Python

Web-site: http://www.python.org

Version required: ≥ 2.3

Python is a simple but powerful object-orientated language. Its simplicity
makes it easy to learn, but its power means that large and complex applica-
tions can be created. Its interpreted nature means that Python programmers
are every productive because there is no edit/compile/link/run development
cycle.

19
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Python is probably installed automatically by your GNU/Linux distribu-
tion (it is on Gentoo). If not, it is best to use your distribution’s standard
tools for package installation. On Debian for example:

Listing 3.1: Installation of Python in a Debian-based Gnu/Linux distribu-
tion.

1 # apt−ge t i n s t a l l python
2 # apt−ge t i n s t a l l python2 .3−dev

On Debian it is also necessary to install the development package of python
whose name may vary depending on the version of python you have installed.

Numeric Python

Web-site: http://www.numpy.org

Version required: ≥ 23.0

Numeric Python is a module for fast numeric computations in Python. On-
Debiann there are several packages, one for each version of python supported.
make sure you install all python related packages for the correct version num-
ber.

Example installations:

Listing 3.2: Installing Numeric python on Gentoo GNU/Linux

1 # emerge numeric

Listing 3.3: Installing Numeric python on Debian GNU/Linux

1 # apt−ge t i n s t a l l python2 .3−numeric
2 # apt−ge t i n s t a l l python2 .3−numeric−ex t

Matplotlib

Web-site: http://matplotlib.sourceforge.net

Version required: ≥ 0.80.0

Matplotlib is a Module that provides plotting capabilities to Python.

Listing 3.4: Installing Matplotlib on Gentoo GNU/Linux

1 # emerge ma t p l o t l i b
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Before using apt-get to install matplotlib, add these lines to your /etc/apt/sources.list:

Listing 3.5: Adding specific sources to apt-get.

1 deb http :// anakonda . a l t e r v i s t a . org /debian packages /
2 deb−s r c http :// anakonda . a l t e r v i s t a . org /debian sourc e s /

Listing 3.6: Installing Matplotlib on Debian GNU/Linux

1 # apt−ge t update
2 # apt−ge t i n s t a l l python−ma t p l o t l i b python−matp l o t l i b−

doc

PyQt

Web-site: http://www.riverbankcomputing.co.uk/pyqt/index.php

Version required: ≥ 3.13

PyQt is a set of Python bindings for the Qt toolkit. PyQt combines all the
advantages of Qt and Python. A programmer has all the power of Qt, but
is able to exploit it with the simplicity of Python.

PyQt depends on the Qt libraries to run. This dependency will be taken
care by the package installation tools of most distributions, which will auto-
matically install the required version of Qt.

Example installations:

Listing 3.7: Installing PyQt python on Gentoo GNU/Linux

1 # emerge pyq t

Listing 3.8: Installing PyQt python on Debian GNU/Linux

1 # apt−ge t i n s t a l l python2 .3− q t3

MySQL

Web-site: http://www.mysql.com

Version required: ≥ 4.0

MySQL is a fast, multi-threaded, multi-user SQL database server. If you
have a MySQL server available in your LAN, you may skip this step after
making sure you have permission to access and use it to store your data.

Example installations:
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Listing 3.9: Installing MySQL on Gentoo GNU/Linux

1 # emerge mysql

Listing 3.10: Installing MySQL on Debian GNU/Linux

1 # apt−ge t i n s t a l l mysql−s e r v e r
2 # apt−ge t i n s t a l l mysql−c l i e n t

Post-install configuration: MySQL requires a few extra configuration
steps that must be completed after the installation described above. These
steps must be performed by the root user. If you already have a MySQL
server installed you will need to know the root password to configure EpiGrass
later.

Listing 3.11: Post-install configuration of mysql on Gentoo

1 # / e t c / i n i t . d/mysql s t a r t
2 # my s q l i n s t a l l d b
3 # mysqladmin −u root password new−password
4 # rc−update add mysql d e f a u l t

In the mysqladmin line, replace new-password with a password of your own.

Listing 3.12: Post-install configuration of mysql on Debian

1 # my s q l i n s t a l l d b
2 # sa fe mysq l d &
3 # / e t c / i n i t . d/mysql s t a r t
4 # mysqladmin −u root password new−password

MySQL-python

Web-site: http://sourceforge.net/projects/mysql-python/

Version required: ≥ 1.2.1

This package is a MySQL module for Python.
Example installations:

Listing 3.13: Installing MySQL-python on Gentoo GNU/Linux

1 # emerge mysql−python

Listing 3.14: Installing MySQL-python on Debian GNU/Linux

1 # apt−ge t i n s t a l l python2 .3−mysqldb
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R

Web-site: http://www.r-project.org

Version required: ≥ 2.0

Example installations:

Listing 3.15: Installing R on Gentoo GNU/Linux

1 # emerge R

Listing 3.16: Installing R on Debian GNU/Linux

1 # apt−ge t i n s t a l l r−base

Post-install configuration: You have to install a few packages from within
R afterward.

Listing 3.17: Installing aditional packages from within R

1 > i n s t a l l . packages ( ’RMySQL’ )
2 > i n s t a l l . packages ( ’DBI ’ )
3 > i n s t a l l . packages ( ’ l a t t i c e ’ )

RPy

Web-site: http://rpy.sourceforge.net/

Version required: ≥ 0.4.6

RPy is a very simple, yet robust, Python interface to the R Programming
Language. It can manage all kinds of R objects and can execute arbitrary R
functions (including the graphic functions). Example installations:

Listing 3.18: Installing RPy on Gentoo GNU/Linux

1 # emerge rpy

If the rpy package on Gentoo is masked1, Build and install it from source as
described below.

Listing 3.19: Installing RPy on Debian GNU/Linux

1 # apt−ge t i n s t a l l python2 .3− rpy

1Meaning that it can’t be installed normally.
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Depending on the Version of R installed, The installation of Rpy may not
be successful. To test rpy, open a Python shell and type:

Listing 3.20: Testing the installation of RPy

1 >>> from rpy import ∗
2 >>> r . p l o t ( [ 1 , 2 , 3 ] )

You should see a plot of three points generated by R. If instead, you get
some error messages,you must install RPy from source. Download the RPy
source tarball, unpack it, cd to the directory to which you unpacked it and
type:

Listing 3.21: Installing RPy from source on GNU/Linux

1 # python se tup . py i n s t a l l

RPy depends on R having been compiled with the option --enable-R-shlib.
This is the default on Gentoo. If this installation fails on your system, you
may have to get the latest version from rpy from its website and install from
source by following these steps:

1. First of all, you must check that you have built R with the configure
option ’–enable-R-shlib’, in order to make R as a shared library. If not,
the following steps should be enough:

Listing 3.22: Building R from source

1 <go to the R source d i r e c to ry >
2 # make d i s t c l e a n
3 # ./ con f i gu r e −−enab le−R−s h l i b
4 # make
5 # sudo make i n s t a l l

2. Then, configure the path to the R library. For this, make a link to
RHOME/bin/libR.so in /usr/local/lib or /usr/lib, then run ldconfig,
(substitute RHOME with the path where R is installed, usually usrlocallibR):

1 # sudo ln −s / usr / l o c a l / l i b /R/ l i b / l i bR . so /usr / l i b / l i bR . so

3. Ensure that you have the necessary header files for the version of R
you are compiling against. You can check the version of R by running:

1 # R −−ve r s i on
2 R 2 . 0 . 1 (2004−11−15) .
3 Copyright (C) 2004 R Development Core Team
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4

5 R i s f r e e so f tware and comes with
6 ABSOLUTELY NO WARRANTY.
7 You are welcome to r e d i s t r i b u t e i t under
8 the terms o f the GNU General Publ ic L i cense .
9 For more in fo rmat ion about these matters ,

10 s ee http ://www. gnu . org / c opy l e f t / gpl . html .

There should be a subdirectory of the Rpy package with the name
R-<version>.For the example above, R-2.0.1

If the correct version directory does not exist, you may have to go back
to a version of R supported by rpy.

4. Now, just type:

1 # python se tup . py i n s t a l l

and that’s all!

GRASS GIS

Web-site: http://grass.itc.it/

Version required: ≥ 5.0.3

Listing 3.23: Installing GRASS on Gentoo GNU/Linux

1 # emerge gras s

Listing 3.24: Installing GRASS on Debian GNU/Linux

1 # apt−ge t i n s t a l l g ra s s
2 # apt−ge t i n s t a l l grass−doc

LATEX

Web-site: http://www.tug.org/teTeX/

Version required: ≥ 2.0

EpiGrass uses PDFLATEX to generate a report with a summary analysis of
your network and simulation model. Thus, it is necessary to have the Tetex
package installed.
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Listing 3.25: Installing LATEXand PDFLATEXon Gentoo GNU/Linux

1 # emerge t e t e x

Listing 3.26: Installing LATEXand PDFLATEXon Debian GNU/Linux

1 # apt−ge t i n s t a l l t e t e x−base

Installing VPython

Web-site: http://www.vpython.org

Version required: ≥ 3.1.1

VPython is a library for the visualization of 3D objects in Python. Its re-
quired for the visualization module of EpiGrass.

Listing 3.27: Installing Vpython pre-requisites on Gentoo GNU/Linux

1 # emerge boos t

Listing 3.28: Installing Vpython pre-requisites on Debian GNU/Linux

1 # apt−ge t i n s t a l l l i b b o o s t−dev
2 # apt−ge t i n s t a l l l i b b o o s t−python1 . 32 . 0
3 # apt−ge t i n s t a l l l i b b o o s t−python−dev
4 # apt−ge t i n s t a l l g t k g l a r ea5−dev

On Both distributions, after installing the boost libraries, you need to build
Vpython from sources. Please refer to VPython’s web site for instructions.
After your are done installing it, You can test it from a python shell (see
listing 3.29)

Listing 3.29: Testing Vpython

1 >>> import v i s u a l
2 >>> sphere ( )

Installing EpiGrass

If you got through all the steps above, it will be an easy task to install
EpiGrass:
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Listing 3.30: Intalling EpiGrass

1 # python se tup . py i n s t a l l

We have written an ebuild for installingEpiGrasss on Gentoo. If it is
unmasked at the time you decide to installEpiGrasss, you don’t need to
worry about the dependencies above and only need to type the following
command:

Listing 3.31: Installing EpiGrass on Gentoo GNU/Linux

1 # emerge ep i g r a s s
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Chapter 4

Using Epigrass

T
o simulate an epidemic process in EpiGrass, the user needs to have in
hand three files: Two files containing the site and edge data and a third

file which is a script that defines what it is to be done. In this chapter, we
go through each one of them in detail. At the end part of this chapter, there
is a step-by step guide the Graphical User Interface (GUI).

After a fresh installation of EpiGrass, a few example scripts and data
sets are installed to the directory /usr/share/epigrass/demos. In order
to be able to play with these demos, copy the contents of that directory to
a directory on which you have write permission(e.g., any you create inside
your home directory), open a shell window, go to that directory and invoke
EpiGrass from there. The reason for that is that the reports of the simula-
tions are written to the same directory epigrass was invoked from. It is also
a good idea to keep the various simulation projects you develop inside their
own separate directory so that the results from different simulations don’t
get mixed up.

4.1 Data

4.1.1 Site data file

See below an example of the content of a site file for a network of 10 cities.
Each line corresponds to a site (except the first line which is the title). For
each site, it is required that you declare the following variables, in this order:
its spatial location in the form of a pair of coordinates ([X,Y]); a site name
to be used in the output; the site’s population; the site geocode (an arbitrary
unique number which is used internally by EpiGrass).

Listing 4.1: Defining sites.

29
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1 X,Y, City , Pop , Geocode
2 1 ,4 ,N1,1000000 ,1
3 2 ,4 ,N2,100000 ,2
4 3 ,4 ,N3,1000 ,3
5 4 ,4 ,N4,1000 ,4
6 5 ,4 ,N5,1000 ,5
7 1 ,3 ,N6,100000 ,6
8 2 ,3 ,N7,1000 ,7
9 3 ,3 ,N8,100000 ,8

10 4 ,3 ,N9,100000 ,9
11 5 ,3 ,N10 ,1000 ,10
12 1 ,2 ,N11 ,1000 ,11

In this example, the first site is located at [X, Y ] = [1, 4], it is named
N1, its population is 1000000 and its geocode is 1. This is the minimum
configuration of a site data file and it must contains this information in
exactly this order.

In some situations, the user may want to add other attributes to the sites
(different transmission parameters, or vaccine coverage or initial conditions
for simulations). This information is provided by adding new columns to the
minimum file. For example, if one wishes to add information on the vaccine
coverage in cities N1 to N10 (vac) as well as information about average
temperature (which hypothetically affects the transmission of the disease),
the file becomes:

Listing 4.2: Adding extra variables to the sites file.

1 X,Y, City , Pop , Geocode , Vac ,Temp
2 1 ,4 ,N1,1000000 , 1 , 0 . 9 , 32
3 2 ,4 ,N2,100000 , 2 , 0 . 88 , 29
4 3 ,4 ,N3, 1000 , 3 , 0 . 7 , 25
5 4 ,4 ,N4, 1000 , 4 , 0 . 2 , 34
6 5 ,4 ,N5,1000 ,5 , 0 , 26
7 1 ,3 ,N6,100000 ,6 ,0 ,27
8 2 ,3 ,N7,1000 ,7 , 0 , 31
9 3 ,3 ,N8,100000 ,8 ,0 ,30

10 4 ,3 ,N9,100000 ,9 ,0 ,24
11 5 ,3 ,N10 ,1000 ,10 ,0 ,31

During the simulation, each site object receives these informations and
store them in appropriate variables that can be used later during model
specification. Population is stored in the variable N ; while the extra columns
(those beyond the geocode) are stored in a tuple named values. For example,
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for the city N1, we have N = 1000000 and values = [0.9, 32]. During model
specification, we may use N to indicate the population size, use values[0]
to indicate the level of vaccination of that city and values[1] to indicate the
temperature.

It is up to the user, to know the meaning of the elements in the tuple
values (Note that the first element of the tuple has index 0,the second one
has index 1 and so on).

When using real data, one may wish to use actual geocodes and coor-
dinates. For example, for a network of Brazilian cities, one may build the
following file:

Listing 4.3: Sites defined from real localities and their data.

1 l a t i t ude , long i tude , l o c a l , pop , geocode
2 −16:19:41 ,−48:57:10 ,ANAPOLIS,280164 ,520110805
3 −10:54:32 ,−37:04:03 ,ARACAJU,461534 ,280030805
4 −21:12:27 ,−50:26:24 ,ARACATUBA,164449 ,350280405
5 −18:38:44 ,−48:11:36 ,ARAGUARI,92748 ,310350405
6 −21:13:17 ,−43:46:12 ,BARBACENA,103669 ,310560805
7 −22:32:53 ,−44:10:30 ,BARRA MANSA,165134 ,330040705
8 −20:33:11 ,−48:34:11 ,BARRETOS,98860 ,350550005
9 −26:54:55 ,−49:04:15 ,BLUMENAU,241943 ,420240405

10 −22:57:09 ,−46:32:30 ,B.PAULISTA,111091 ,350760505

In this example, the coordinates are the actual geographical latitude and
longitude coordinates. This information is important when using EpiGrass
integrated with Grass GIS. The geocode is also the official geocode of these
localities. Despite the cumbersome size of the number, it may be worth using
it because demographic official databases are often linked by this number.
The site coordinates may be in sexagesimal or decimal format.

4.1.2 Edge data file

The edge data file contains all the direct links between sites. Each line in
the file (except the first) corresponds to an edge. For each edge (or link)
one must specify (in this order): the names of the sites connected by that
edge; the number of individuals traveling from source to destination; the
number of individuals traveling from destination to source per time step; the
distance or length of the edge. At last, the file must contain, in the fifth and
sixth columns, the geocodes of the source and destination sites. This is very
important as the graph is built internally connecting sites through edges and
this is done based on geocode info.
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IMPORTANT: It is required that the order of columns is kept
the same

See below the list of the 8 edges connecting the sites N1 to N10. Let’s look
the first one, as an example. It links N1 to N2. Through this link passes 11
individuals backwards and forwards per time step (a day, for example). This
edge has length 1. The last two columns show the geocode of N1 (geocode
1) and the geocode of N2 (geocode 2).

Listing 4.4: Defining edges.

1 Source , Dest , flowSD , flowDS , Distance , geoSource , geoDest
2 N1 ,N2,11 , 11 , 1 , 1 , 2
3 N2 ,N4 , 0 . 0 2 , 0 . 0 2 , 1 , 3 , 4
4 N3 ,N8 , 1 . 0 1 , 1 . 0 1 , 1 , 3 , 8
5 N4 ,N9 , 1 . 0 1 , 1 . 0 1 , 1 , 4 , 9
6 N5 , N10 , 0 . 0 2 , 0 . 0 2 , 1 , 5 , 1 0
7 N6 ,N5 , 1 . 0 1 , 1 . 0 1 , 1 , 7 , 8
8 N7 , N10 , 1 . 0 1 , 1 . 0 1 , 1 , 7 , 8
9 N9 , N10 , 1 . 0 1 , 1 . 0 1 , 1 , 9 , 1 0

Note that it doesn’t matter which site is considered a Source and which
one is considered a Destination, i.e., if there is a link between A and B, one
may either named A as source and B as destination, or the other way around.

If the edge represents a road or a river, one may use the actual metric
distance as length. If the edge links arbitrary localities, one may opt to use
Euclidean distance, calculated from the x and y coordinates.

4.2 Specifying a Simulation: the .epg script

Once the user has specified the two data files, the next step is to define the
details of th simulation to be executed. This is done in the .epg script file.
The .epg script is a text file and can be edited with any text editor (not a
word processor!). This script must be prepared with care.

The best way to write down your own .epg is to edit an already existing
.epg file. So, open EpiGrass, choose an .epg file and click on the Edit
button. Your favorite editor will open and you can start editing. Don’t
forget to save it as a new file in your working directory. Of course, there is
an infinite number of possibilities regarding the elaboration of the script. It
all depends on the goals of the user.
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For the beginner, we suggest him/her to take a look at the .epg files in the
demo directory. They are all commented and may help the user in getting
used with Epigrass language and capabilities.

Some hints to be successful when editing your .epg:

• All comments in the script are preceded by the symbol #. These com-
ments may be edited by the user as he/she wishes and new lines may
be added at will. Don’t forget, however, to place the symbol # in every
line corresponding to a comment.

• The script is divided into a few parts. These parts have capital letter
titles within brackets. Don’t touch them!

• Don’t remove any line that is not a comment. See below how to ap-
propriately edit these command lines.

Let’s take a look now at each part of a script (this is the script.epg demo
file):

4.2.1 PART 1: THE WORLD

The first section of the script is titled: THE WORLD. An example of its
content is shown:

Listing 4.5: declaring sites and edges files on “THE WORLD” section of the
.epg file.

1 #=========================================================#
2 [THE WORLD]
3 #=========================================================#
4

5 s i t e s = s i t i o s 2 . csv
6 edges = edgesout . csv

where

sites: this is the name of the .CSV file containing the list of sites and their
attributes.

edges: this is the name of the .CSV file containing the list of edges and their
attributes.
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Table 4.1: Type of models implemented in EpiGrass
Model Deterministic Stochastic.
Susceptible-Infected-Recovered SIR SIR s

Susceptible-Exposed-Infected-Recovered SEIR SEIR s

Susceptible-Infected-Susceptible SIS SIS s

Susceptible-Exposed-Infected-Susceptible SEIS SEIS s

SIR with fraction with full immunity SIpRpS SIpRpS s

SEIR with fraction with full immunity SEIpRpS SEIpRpS s

SIR with partial immunity for all SIpR SIpR s

SEIR with partial immunity for all SEIpR SEIpR s

SIR with immunity wane SIRS SIRS s

Example Influenza model Not available Influenza

User defined model Custom Custom

4.2.2 PART 2: EPIDEMIOLOGICAL MODEL

This is the main part of the script. It defines the epidemiological model to
be run. The script reads:

Listing 4.6: Choosing model type.

1 #=========================================================#
2 [EPIDEMIOLOGICAL MODEL]
3 #=========================================================#
4 #model t ype s a v a i l a b l e : SIS , SIS s ,SIR , SIR s , SEIS , SEIS s ,

SEIR , SEIR s ,
5 # SIpRpS , SIpRpS s , SIpR , SIpR s , In f luenza , Custom ( see

documentation f o r d e s c r i p t i o n )
6 modtype = SIR

Here, the type of epidemiological model is defined, in this case is a deter-
ministic SIR model. EpiGrass has some built-in models:

A description of these models can be found in section 2. The stochastic
models use Poisson distribution as default for the the number of new cases
(Lt+1).

The keyword Custom means that the user will provide a custom epidemi-
ological model. A detailed discussion on how to create user-defined models
can be found below (section 4.3).

Following the script, we find:

Listing 4.7: Defining model parameters

1 #==============================================================#
2 [MODEL PARAMETERS]
3 #==============================================================#
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4

5 # They can be s p e c i f i e d as cons tan t s or as f unc t i on s o f g l o b a l
or

6 # s i t e−s p e c i f i c v a r i a b l e s . t h e s e s i t e−s p e c i f i c v a r i a b l e s , are
prov ided

7 # in the s i t e s f i l e . A l l the numbers g iven a f t e r the geocode (4
th column )

8 # are c o l l e c t e d in t o the va l u e s t u p l e .
9 # Examples :

10 # beta = 0.001
11 # beta=va lue s [ 0 ] #as s i gn s the f i r s t e lement o f va l u e s to be ta
12 # beta =0.001∗ va l u e s [ 1 ]
13

14 beta = 0 .4 #transmiss ion c o e f f i c i e n t ( con tac t ra t e ∗
t r a n sm i s s i b i l i t y )

15 alpha = 1 # clumping parameter
16 e = 1 # inve r s e o f incuba t i on per iod
17 r = 0 .1 # inve r s e o f i n f e c t i o u s per iod
18 de l t a = 1 # p r o b a b i l i t y o f a cqu i r ing f u l l immunity [ 0 , 1 ]
19 B = 0 # Birth ra t e
20 w = 0 # p r o b a b i l i t y o f immunity waning [ 0 , 1 ]
21 p = 0 #

These are the model parameters, as described in table 2.1. Not all pa-
rameters are necessary for all models. For example, e is only required for
SEIR-like models. Don’t remove the line, however, because that will cause
a syntax error. We recommend that, if the parameter is not necessary, just
add a comment after it as a reminder that it is not being used by the model.
If you are running a custom model, You may add new parameters as needed.

In some cases, one may wish to assign site-specific parameters. For exam-
ple, transmission rate may be different between localities that are very distant
and are exposed to different climate. In this case site specific variables can
be added as new columns to the site file. All columns after the geocode are
packed into a tuple named values and can be referenced as shown in listing
4.7. I.e., the first element of the tuple is values[0], the second element is
values[1], the third element is values[2] and so on.

In the next part of the script, the initial conditions are defined. Here,
the number of individuals in each epidemiological state, at the start of the
simulation, is specified.The script reads:

Listing 4.8: Setting initial conditions.

1 [ INITIAL CONDITIONS]
2

3 # Here , the number o f i n d i v i d u a l s in each ep i d em io l o g i c a l
4 # s t a t e (SEI ) i s s p e c i f i e d . They can be s p e c i f i e d in a b s o l u t e
5 # or r e l a t i v e numbers .
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6 # N i s the popu la t i on s i z e o f each s i t e .
7 # The ru l e de f ined here w i l l be app l i e d e q u a l l y to a l l s i t e s .
8 # For s i t e−s p e c i f i c d e f i n i t i o n s , use EVENTS ( below )
9 # Examples :

10 # S ,E, I = 0.8∗N, 10 , 0.5∗N
11 # S ,E, I = 0.5∗N, 0.01∗N, 0.05∗N
12 # S ,E, I = N−1, 1 , 0
13 S = N
14 E = 0
15 I = 0

Here, N is the total population in a site (as specified in the sites file). In
this example, we set all localities to the same initial conditions (all individuals
susceptible) and use an event (see below) to introduce an infectious individual
in a locality. The number of recovered individuals is implicit, as R = N −
(S + E + I)

Another possibility is to define initial conditions that are different for
each site. For this, the data must be available as extra columns in the site
datafile and these columns are referenced to using the values tuple explained
above.

If you are running a custom model, You may add new variables as needed.

The next step is to define events that will occur during the simulation.
These events may be epidemiological (arrival of an infected individual, for
example) or a public health action (vaccination campaign, for example):

Listing 4.9: Defining epidemic events

1 #=============================================================#
2 [EPIDEMIC EVENTS]
3 #=============================================================#
4 # Spec i f y i s o l a t e d even t s .
5 # Lo c a l i t i e s where the even t s are to take p l ace shou ld be

I d e n t i f i e d by the geocode , which
6 # comes a f t e r popu la t i on s i z e on the s i t e s data f i l e .
7 # Al l coverages must be a number between 0 and 1 .
8 # Seed : [ ( ’ l o c a l i t y 1 ’ s geocode ’ , v a r i a b l e , n) , ( ’ l o c a l i t y 2 ’ s

geocode ’ , v a r i a b l e , n) ] .
9 # N in f e c t e d cases w i l l be added to l o c a l i t y a t time 0 .

10 # Vaccinate : [ ( ’ l o c a l i t y 1 ’ s geocode ’ , [ t1 , t2 ] , [ cov1 , cov2 ] ) , ( ’
l o c a l i t y 2 ’ s geocode ’ , [ t1 , t2 ] , [ cov1 , cov2 ] ) ]

11 # Mul t i p l e vacc ina t i on campaigns wi th s p e c i f i c coverages can be
s p e c i f i e d as l i s t s ( see manual )

12 # Quarantine : [ ( l o c a l i t y 1 ’ s geocode , time , coverage ) , ( l o c a l i t y 2 ’
s geocode , time , coverage ) ]

13 # Keywords may be used in s t ead o f the geocode in the vacc ina t e
v a r i a b l e :

14 # ’ a l l ’ : Apply the same va l u e s to a l l s i t e s
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15 seed = [(355030800 , ’ I ’ , 1 ) ] #Sao Paulo
16 Vaccinate = [ ]
17 Quarantine = [ ]

The events currently implemented are:

seed One infected individual is introduced into a site(s) at the beginning of
the simulation. The notation for a single event is:

seed = [(geocode, variable, n)]

For example, seed = [(2, I, 1)] programs the arrival of one infectious (I)
individual at site geocode 2, at time 1. For several events, the notation
is:

seed = [(geocode1, variable, n), (geocode2, variable, n), (geocode3, variable, n)]

There is no limit to the number of events that can be included in this
list.

Vaccinate Implements a campaign that vaccinates a fraction of the popu-
lation in a site, at pre-defined times. For a single vaccination event,
the notation is:

[(geocode1, [time], [coverage])]

where the first element is the geocode of the city, the second element
is a list of the times when the campaign is carried on, and the third
element is a list with the coverages for each vaccination campaign,
respectively. For example, the event [(2, [10], [0.7])] means that city 2,
at time 10, has 70% of its population vaccinated. Mathematically, it
means (in the model), the removal of individuals from a susceptible to
a recovered state (built-in models). In custom models (user defined),
the user defines in the model what the effects of the vaccination should
be. Multiple, independent vaccination campaigns may be specified. For
example, we may have simultaneous vaccinations at two sites:

V accinate = [(1, [31], [0.9]), (2, [31], [0.9])]

or subsequent campaigns in one site (at different times and with differ-
ent coverages), plus a single campaign on another:

V accinate = [(1, [31, 61], [0.2, 0.3]), (2, [61], [0.3])]

If we want to vaccinate all cities at the same time we can replace the
geocode number by the keyword “all”:

V accinate = [(′all′, [31], [0.2])]
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Quarantine Prevent individuals from leaving a site, starting at t with a
certain efficacy. The notation is:

Quarantine = [(geocode1, t, efficacy), (geocode2, t, efficacy)]

As an example, a quarantine in locality 2, that starts at day 10 is noted:
Quarantine = [(2, 10, 0.7)]

4.2.3 PART 3: TRANSPORTATION MODEL

Here, there are three options regarding the movement of infected individuals
from site to site (through the edges). The parameter doTransp controls
wether or not the transportation will be calculated. On most models it will
be set to 1.

The parameter stochastic refers to how the number of people traveling
is calculated. If stochastic = 0, the process is simulated deterministically,
that is, the number of infected passengers commuting through an edge is
given by the number of passengers (as given in the edges file) times the
proportion of infected individuals in the source population. If stochastic = 1,
the number of infectious passengers is drawn from a binomial distribution
with parameters p = I

N
, where I is the number of infectious individuals in

the population of size N , and n is the total number of passengers as above.
The parameter speed correspond to the speed of the transportation sys-

tem in unit of distance per units of time. The user must be careful to make
the units in this file agree with the one on the edges file.

The transportation speed, when set to a value greater than zero, will
cause a delay in the transportation of passengers across edges, proportional
to the edge length (as explained in 2.3).

Listing 4.10: Transportation parameters

1 #=========================================================#
2 [TRANSPORTATION MODEL]
3 #=========================================================#
4 # I f doTransp = 1 the t r an spo r t a t i on dynamics w i l l be
5 # inc luded . Use 0 here on ly f o r debugg ing purposes .
6 doTransp = 1
7

8 # Mechanism can be s t o c h a s t i c (1) or d e t e rm in i s t i c (0) .
9 s t o c h a s t i c = 1

10

11 #Average speed o f t r an spo r t a t i on system in km per time s t ep .
Enter 0 f o r ins tan taneous t r a v e l .

12 #Distance un i t must be the same s p e c i f i e d in edges f i l e s
13 speed =1440 # km/day −− e q u i v a l e n t to 60 km/h
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That ends the definition of the model.

4.2.4 SIMULATION AND OUTPUT

Now it is time to define some final operational variables for the simulation:

Listing 4.11: Simulation and output section

1 #=========================================================#
2 [SIMULATION AND OUTPUT]
3 #=========================================================#
4

5 # Number o f s t e p s
6 s t ep s = 200
7

8 # Output d i r . Must be a f u l l path . I f empty the output w i l l be
generated on the

9 # outdata−<date> sub−d i r e c t o r y o f same path as the model s c r i p t .
10 outd i r =
11

12

13 # Database Output
14 # MySQLout can be 0 (no database output ) or 1
15 MySQLout = 1
16

17

18 # Report Generation
19 # The v a r i a b l e r epor t can take the f o l l ow i n g va l u e s :
20 # 0 − No repor t i s genera ted .
21 # 1 − A network ana l y s i s r epor t i s genera ted in PDF Format .
22 # 2 − An ep i d em io l o g i c a l r epor t i s genera ted in PDF Format .
23 # 3 − A f u l l r epor t i s genera ted in PDF Format .
24 # si teRep i s a l i s t wi th s i t e geocodes . For each s i t e in t h i s

l i s t , a d e t a i l e d repor t i s appended to the main repor t .
25 r epo r t = 0
26 s i teRep = [230440005 ,355030800 ]
27

28 #Rep l i ca t e runs
29 #I f r e p l i c a s i s s e t to an i n t e g e r (n) l a r g e r than zero , the model

w i l l be run n t imes and the r e s u l t s w i l l be con−
30 #so l i d a t e d b e f o r e s t o r i n g .
31 # i f RandSeed i s s e t to 1 the seed w i l l be randomized on each

r e p l i c a t e
32 #Rep l i ca t e mode au t oma t i c a l l y turn o f f r epor t and batch op t i ons .
33 Rep l i ca s = 0
34 RandSeed = 0
35

36

37 #Batch Run
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38 # l i s t o ther s c r i p t s to be run in a f t e r t h i s one . don ’ t f o r g e t
the ex t ens ion . epg

39 # model s c r i p t s must be in the same d i r e c t o r y as t h i s f i l e or
prov ide f u l l path .

40 # Example : Batch = [ ’ model2 . epg ’ , ’ model3 . epg ’ , ’/ home/ j o s e /
model4 . epg ’ ]

41 Batch = [ ]

where

step Number of time steps for the simulation.

outdir Directory for data output. In this directory, several datasets useful
to posterior analyses, are saved. Currently, the adjacency matrix, the
shortest path matrix and the shortest path distance matrix are being
saved. In addition, tables with network-wide epidemiological statistics
and site statistics are also put in this directory. If not specifically
named, outdir defaults to outdata-<date/time>.

MySQLout Use MySQLout = 1 if simulated time series are to be stored in
the MySQL database. Time series of all of the models’ variables, for
every site, are stored in a MySQL database named epigrass. The results
of each individual simulation is stored in a different table named after
the model’s script name, the date and time the simulation has been
run. For instance, suppose you run a simulation of a model stored in
a file named script.epg, then at the end of the simulation, a new
table in the epigrass database will be created with the following name:
script Wed Jan 26 154411 2005. Thus, the results of multiple runs
from the same model get stored independently. Time series for traffic
though the edges are also saved on a table with the same name but
with an e appended at the end.

report Three types of report are currently available: Report = 1 returns a
set of descriptors of the network, described in 5; Report = 2 returns
a set of basic epidemiological measures and plots of the time series;
Report = 3 is Report1 + Report2. Report Generation is optional,
though recommended, step done at the end of the simulation. For the
report, descriptive statistics are generated for the network. These have
to do with network topology and properties. Additional sections can
be added to the report with basic statistical analyses of the output of
pre-selected nodes, listed in the siteRep variable at the script.

siteRep=[ ] List of nodes for which network and epidemiological measures
are to be calculated and included in the report.
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Replicas The model can be run in replicate mode. This mode turns off the
report and batch options. A separate database table is generated for
each of the replicate runs.

RandSeed If this parameter is set to one, a random seeding site is selected
for each run.

Batch=[ ] script files included in this list are executed after the currently
file is finished.

4.3 User defined models

Starting with release 1.4.0, Epigrass allows the user to define his/her own
epidemiological models, instead of using the built-in models. Naturally these
models have to follow some convention regarding input and output data,
but apart from this, the user is free to do anything. To use custom models,
besides writing the model the user must select the type custom in the the
model type parameter in the .epg file.

4.3.1 Starting from the example template

In the demo directory of your Epigrass installation, you will find a file named
CustomModel.py (listing 4.12. This file contains a replica of the built-in
model SIR. We will analyze this file to understand how it is written, an how
it can be modified. Custom models are written in the Python language,
which is a very easy to grasp language with a very clean syntax.

Epigrass expects to find a file named CustomModel.py in the directory
from where it was started (where all the other required model definition files
also reside). Custom models must always be on a file named CustomModel.py

and contain at least a function named Model. Everything in this file is case
sensitive, including the file name, so be careful.

Listing 4.12: Template custom model
1 # This i s a custom model to used in p lace o f Epigrass ’ b u i l t −in models .

Custom
2 # models must always be on a f i l e named CustomModel . py and contain at l e a s t
3 # a func t ion named Model . Both the F i l e name and the func t i on Names are case

−s en s i t i v e ,
4 # so be c a r e f u l . Please r e f e r to the manual f o r i n t r u c t i on s on how to wr i t e

your
5 # own custom models .
6

7 def Model ( s e l f , vars , par , theta =0, npass=0) :
8 ”””
9 Ca l cu l a t e s the model SIR , and return i t s va lue s .
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10 − i n i t s = (E, I , S )
11 − par = (Beta , alpha , E, r , de l ta ,B, w, p) s ee docs .
12 − theta = i n f e c t i o u s i n d i v i d u a l s from neighbor s i t e s
13 ”””
14 #I n i t i a l i z i n g
15 i f s e l f . pa r en tS i t e . parentGraph . s imstep == 1 : #get i n i t i a l va lue s
16 E, I , S = ( s e l f . b i [ ’ e ’ ] , s e l f . b i [ ’ i ’ ] , s e l f . b i [ ’ s ’ ] )
17 else :
18 E, I , S = vars
19 N = s e l f . pa r en tS i t e . totpop
20 beta , alpha , e , r , de l ta ,B,w, p = par
21 #Vacination event ( op t i ona l )
22 i f s e l f . pa r en tS i t e . vaccineNow :
23 S −= s e l f . pa r en tS i t e . vaccov∗S
24

25 Lpos = beta ∗S ∗ ( ( I+theta ) /(N+npass ) ) ∗∗ alpha #Number o f new cases
26 s e l f . pa r en tS i t e . t o t a l c a s e s += Lpos #update number o f cases
27 # Model
28 Ipos = (1− r ) ∗ I + Lpos
29 Spos = S + B − Lpos
30 Rpos = N−(Spos+Ipos )
31 # Updating s t a t s
32 s e l f . pa r en tS i t e . i n c i d enc e . append ( Lpos )
33 # Raises s i t e i n f e c t e d f l a g and adds parent s i t e to the epidemic

h i s t o r y l i s t .
34 i f not s e l f . pa r en tS i t e . i n f e c t e d :
35 i f Lpos > 0 :
36 #i f not s e l f . pa ren tS i t e . i n f e c t e d :
37 s e l f . pa r en tS i t e . i n f e c t e d = s e l f . pa r en tS i t e . parentGraph .

s imstep
38 s e l f . pa r en tS i t e . parentGraph . ep ipath . append ( ( s e l f . pa r en tS i t e .

parentGraph . simstep , s e l f . parentS i t e , s e l f . pa r en tS i t e .
i n f e c t o r ) )

39 #Migrat ing i n f e c c t i o u s
40 s e l f . pa r en tS i t e . migInf . append ( Ipos )
41

42 return [ 0 , Ipos , Spos ]

The first thing we need to do before we start editing the template file, is to
copy it to a work directory to which you have write permission. This directory
should naturally be the one you intend to contain all the files concerning your
custom simulation model: sites and edges files, .epg files, etc.

In the beginning of the file, preceded by the symbol #, is a comment.
This comment can be completely removed or modified to include whatever
information the user wants to add.

At line 7, we have the beginning of the obligatory Model Function. Be-
tween the parentheses are the input arguments to the function. These cannot
be changed since they correspond to the arguments passed by Epigrass to all
model functions.

From line 8 to 13, we have the function’s docstring. This is optional and
corresponds to documentation specific to the Model function.

Lines 14-20, cannot be removed but must be adapted to reflect the vari-
ables of the model. These lines set the values of the state variables of the
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model, which receive their initial values (specified in the .epg file and stored
in the self.bi dictionary) at the the first time step of the simulation and the
values of the last simulation step (vars) subsequently. The general structure
of the if/else clause cannot be changed, only variables can be added or
removed as needed.

Now come the optional lines regarding vaccination. If you plan to simu-
late vaccination scenarios using your models you must include these lines to
determine what will be the effects of the vaccination.

The following lines up to line 30 are the equations of the model itself.
These should be replaced by the user’s formulation. Care should be taken
that variables Lpos(number of new cases) and Ipos(number of infectious
individuals) are later stored in the incidence and migInf lists, respectively.
If these variables names are changed, References to them in the following
lines should be updated as well.

The rest of the function should not be altered except for the possibly
necessary replacement of Lpos and Ipos by new names and, on the last line,
return [...] where the list returned must contain the variables of the
model on the exact same order in which they are received in lines 16 and 18.

4.4 Using Epigrass for specific tasks

Here we describe some things you could do with epigrass and some specific
hints:

4.4.1 Describing a network

A user wants to obtain the topological properties of a network. Reasons for
this could be: 1) learn how to interpret these measures, 2) describe a air
transportation or a road transportation network. To do that, you need:

Set steps = 1 . If no model of disease is needed, then most of the .epg
script can be ignored. Don’t remove anything, however, from the script.
Note that Epigrass requires a model in order to work properly, even if
the user does not want it. One solution to reduce the run time, in this
case, is to set steps to 1 (steps = number of steps in the simulation).

Set MySQLout = 0 . Network measures are not sent to database.

Set report = 1 . Report 1 calculates network measures and save them in
a .pdf file.



44 CHAPTER 4. USING EPIGRASS

Specify siteRep . If siteRep = [], only global network measures are in-
cluded in the report. If site-specific measures are needed, include their
geocodes in the list siteRep. For example, to calculate site stats for all
nodes, mesh1.epg has:

report = 1

siteRep = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Script mesh1.epg is configured this way. Run it and take a look at the
report.

4.4.2 Comparing networks

A user wants to compare the properties of a set of networks. Reasons for this
could be: 1) learn how to interpret these measures, 2) describe/compare a
air transportation to a road transportation network, 3) analyse how network
topology changes by adding/removing specific nodes or edges.

If there are four graphs, then four .epg files must be created. They all
must set report = 1 and siteRep to the desired specification (as above). Each
file must be executed and each one will provide a report.

To speed thinks a little bit, the script allows the user to choose one of
the files as a master file. In the option BatchRun, one may list the other
scripts to be run after this one. They all must be in the same directory as
the master file (or you may provide full path).

For example, suppose you want to compare the topologies of the four
networks displayed in 4.4.2.
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We created four files (mesh2.epg, star2.epg, lin2.epg, tree2.epg) and used
one of them as master (mesh2.epg). The four files are exactly the same,
except for the name of the edge file and the Batch specification. I.e., in
mesh2.epg we specify:

Batch = [’star2.epg’,’lin2.epg’,’tree2.epg’]

Now, mesh2.epg is run. One report will be delivered for each script (In future
version of Epigrass, a more integrated result is planned). From the reports,
we get network measures for the four graphs. These network measures are
explained in chapter 5).

4.4.3 Simulate disease spread from a single site

The user specifies a network (let’s say, a tree network) and wishes to simulate
disease spread in this network. The graph is disease-free at time 0. At time
1, an infected person arrives at site N1. No control measures are introduced.
The model chosen is SipRpS. The script file tree3.epg was built following
these guidelines:

Initial conditions All individuals are initially susceptible, i.e., S = N .

Epidemic events An infected individual arrives at time 1 in N1.

steps=200 This may be increased or reduced, depending on the parameters.
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Report = 2 . Report 2 returns only the epidemiological results.

Specify siteRep . If site-specific measures are needed, include their geocodes
in the list siteRep. For example, to calculate site stats for three nodes,
tree3.epg has:

report = 2

siteRep = [1,12,14]

Run this script and take a look at the report. A suggestion: change
the script and seed the disease in a more central node. See how this
affect the velocity of disease propagation.

4.4.4 Simulating vaccination campaigns

Vaccination may be simulated in different ways, using the section Epidemic
Events in the script. These are some examples:

A single, local campaign . In site N1, exactly at time 10, with coverage
0.5

Vaccinate = [(1,10,0.5)]

Simultaneous campaigns in three sites . In sites N1, N4 and N6, ex-
actly at time 10, with coverage 0.5

Vaccinate = [(1,10,0.5),(4,10,0.5),(6,10,0.5)]

Campaign with a time span . In site N1, a campaign that occurs from
day 10 to day 15, with daily coverage of 0.1.

Vaccinate = [(1,10,0.1),(1,11,0.1),(1,12,0.1),(1,13,0.1),

(1,14,0.1),(1,15,0.1)]

4.4.5 Simulating quarantines

Quarantines are simulated similarly to vaccinations, but once they are initi-
ated, they last until the end of the simulation:

Quarantine in a single place . In site N1, starting at time 10, with cov-
erage 0.2
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Quarantine = [(1,10,0.2)]

Quarantine in two places . In sites N1 and N3, at times 10 and 12, re-
spectively, with coverage 0.5

Quarantine = [(1,10,0.5),(3,12,0.5)]

Quarantine with a time span . In site N1, a quarantine that starts at
day 10 and ends at time 30, with daily coverage of 0.75.

Quarantine = [(1,10,0.75),(1,30,0)]

4.4.6 Comparing strategies

One goal of modeling diseases is to compare alternative control measures in
terms of number of cases prevented. A set of scripts may be prepared to
compare six alternative strategies for controlling the spread of an epidemic
in the star graph, that was initiated at time 4 in site N1. For example:

Strategy vac1 Vaccinate site N1, at time 7, with coverage 0.8 .

Strategy vac2 Vaccinate sites N1, N12 and N14, at time 7, with coverage
0.8. N12 and N14 are central nodes of the star network and are natural
candidates for vaccination.

Strategy mixed Strategy vac1 + quarantine in sites N12 and N14, cover-
age of 0.7.

Strategy quar Quarantine in sites N1, N12 and N14, coverage of 0.7.

4.5 The Graphical User Interface(GUI)

Epigrass comes with a simple but effective GUI(figure 4.1), that allows the
user to control some aspects of the run-time behavior of the system. The
GUI can be invoked by typing epigrass.py in prompt of a console. EpiGrass
should be started from the same directory where his/her model definition is
located (.csv and .epg files).

All the information that is entered via the GUI gets stored in a hidden
file called .epigrassrc stored in the home folder of the user. Every time
the GUI is invoked, the data stored in the .epigrassrc file is used to fill the
forms in the GUI. The GUI is designed as a tabbed notebook with four tabs
(Run Options, Settings, Utilities, and Visualization).
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Figure 4.1: First tab of the EpiGrass GUI.

At the bottom of the GUI there are three buttons Help, Start and Exit.
Their functions will be explained below. Immediately above the Run and
Exit buttons, there is a small numeric display that will display the simulation
progress after it has been started.

4.5.1 Run Options

The first tab of the GUI(figure 4.1), contains a number of variables that,
with the exception of the model script filename, should remain the same for
most simulations you are going to run.

On the top of the first tab is a text box to enter the file name of the
model script (something.epg). By clicking on the Choose button at the
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right of this box, you get a file selection dialog to select your script file. If
you need you can click on the Edit button below to edit the script file with
your favorite text editor.

Below, you can enter details about the MySQL database that will store
the output of your simulations. Here you can enter the server IP, port, user
and password. On the first time you run the GUI these input boxes will be
filled with the default values for these variables (server on localhost, port
3306, user epigrass and password epigrass)

4.5.2 Settings

On the settings page(figure 4.2), you can enter personal details such as user
name (To be used in the simulation report), preferred text editor and pre-
ferred PDF reader. The preferred text editor will be used to open your script
from the GUI, when you click on the edit button in the first tab. The PDF
reader specified, will be used to open the report file, when requested (Utilities
tab) and the user manual, when the user clicks on the help button on the
bottom-left corner of the GUI.

On this tab, the language of the GUI can also be selected from a list of
available translations. The effects of language changes will only take place
when the next time the GUI is started.

4.5.3 Utilities

In the Utilities tab(figure 4.3), you can get feed back from the simulator. Es-
pecially during long simulation runs, it is good to know how it is progressing.
During the simulation, text messages regarding the status of the simulation
are written to the text box on the left.

On the right, there is a button for backing up the data base and another
for opening the report generated by the last simulation. Since report PDFs
ar stored in folder directly below the ones on which the simulation is started,
older reports should still be accessible and can be opened directly by selecting
the desired report using the operating system’s file manager.

4.5.4 Visualization

The fourth tab of the GUI is the visualization Tab. This tab was designed
for playing animations of any simulation data that is stored in the database.
Pressing the Scan DB button, causes the available tables in the epigrass
database to be listed in the Simulations stored combo box. The user
can then select one of these simulations to visualize.
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Figure 4.2: Second tab of the GUI.
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Figure 4.3: Third tab of the GUI
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Figure 4.4: Fourth tab of the GUI
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Once the Start animation button is pressed, a graphical display window
pops up, and the simulation is replayed at a speed given by the frame rate set
by the user or the maximum speed of the computer (whichever is smaller).
In the animation, the nodes of the network are represented by boxes whose
volume is given by the number of infected at each node. The node colors are
as following: Green for uninfected nodes, and red to blue for infected nodes.
bright red for for first infected node with the nodes becoming infected later
assuming a color with progressively more blue.

Maps can also be selected from the Maps available combo box to be
used as background for the network display. The maps must be in the GRASS
ascii vectorial format and have coordinates compatible with those given to
the nodes of the simulation.

4.5.5 Operation

After all the information has been entered and checked on the GUI, you can
press the Run button to start the simulation or the Exit button. When the
Run button is pressed, the .epigrassrc file is updated with all the infor-
mation entered in the GUI. If the Exit button is pressed, all information
entered since the last time the Run button was pressed is lost.
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Chapter 5

Interpreting the output

T
he outputs of EpiGrass simulations were designed to be as flexible as
possible. Beside the automated report generation which serves as an

overview of the model and its results, raw data is also made available for
ready utilization from other softwares such as R and Grass.

5.1 Visualization

On the graphical user interface, There is a visualization tab. On this tab
the user can choose the simulation dataset, a variable and a map to compose
the visualization. When the visualization is started, a display will pop up,
and plot the network on the map (if a map is available). As the simulation
progresses, the nodes change color from green to red as the localities become
infected. Localities that get infected later are assigned a different shades of
red which will tend to become blue as the time progresses. This way the
sequence of infection remains visible throughout the simulation by means of
this color scale.

The visualization module is to be invoked independently of the simulation
to review the dynamics of simulation data stored on the database. This way,
any previous simulation can be reviewed at any time. It is also recommended
that simulataneous visualization be turned off to speed up calculations.

Currently, the visualization module displays only the temporal dynamics
of infection with the number of infected individuals in each infected locality
is represented by the size of the node object in the network plot.

55
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5.2 Database

The simulated time series are stored in a MySQL table in the database epi-
grass: E, I, S, incidence (L), together with time, geocode, coordinates and
site name. The table is named after the filename of the script and date and
time of the simulation.

Epigrass provides an R script for importing the data into R for further
analysis and display 1.

5.3 Epidemiological descriptors

At the end of the simulation, Epigrass calculates a set of epidemiological
stats. These stats are presented to the user in two ways: as a .csv table
that can be imported by R or any other statistical package; and as a written
(PDF format) report. Stats include descriptors of the epidemic dynamics at
the whole graph level and also node-specific stats:

Graph-level stats:

Epidemic pop size Total number of cases in the whole graph during the
simulation.

Epidemic size Total number of cities that had authoctonous transmission
during the simulation.

Mean epidemic speed Average number of new localities infected per time
step.

Epidemic Duration Time between the first and last case.

Median survival Time to reach 50% of the cities.

Vaccinated Total number of vaccinated individuals.

Quarantined Total number of quarantined individuals.

At the site scale, the report returns for each site i:

Incidence Accumulated number of new cases per time step

Local epidemic size Total number of cases that occurred in the site during
the simulation.

Infectious arriving Number of infected individuals arriving per time step

1see appendix C
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5.4 Network Descriptive Statistics

EpiGrass automatically calculates and displays descriptive statistics about
the network structure in Reports 1 and 3.

Basic Numbers

Order (Number of Nodes): The Number of localities the network is com-
posed of.

Size (Number of Edges): The number of transportation routes connect-
ing any pair of nodes.

Eulerian: Can be Yes or No, depending on if the network graph is eulerian
or not. An Eulerian graph contains a circuit (Eulerian circuit) which
includes all nodes an edges of the graph.

Traversable: Can be Yes or No, depending on if the network graph contains
an Eulerian trail, i.e. a trail tht includes all the nodes an edges of the
graph.

Hamiltonian Can be Yes or Possibly, depending on if there is a circuit
that contains all nodes of the graph (Hamiltonian circuit). This is not
the result of an exhautive search for Hamiltonian circuits on the graph
(Since this would take a very long time for large graphs). This answer
reflects the following theorem:

If the order O of a graph G is at least 3, and its nodes
orders are at least O/2 for every node in G, then the graph
contains a hamiltonian circuit.

Shortest-path Distribution

In a network there are frequently more than one path from locality A to
locality B. Of these possible routes, the shortest path is the most important
when dealing with epidemic processes over networks.

A network distance matrix can be calculated whose elements represent the
number of edges separating any pair of nodes via the shortest path between
them. From this matrix, a histogram of the shortest path lengths can be
generated which gives us an idea of give us an idea of how fast an epidemic
would spread in our network, if distance was the only factor.
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Figure 5.1: Shortest path distribution for the mesh graph (see demo).

Adjacency Matrix

The most basic measure of accessibility involves network connectivity where
a network is represented as a connectivity matrix(figure 5.2), which expresses
the connectivity of each node with its adjacent nodes.

The number of columns and rows in this matrix is equal to the number
of nodes in the network and a value of 1 is given to each cell representing
a directly connected pair and a value of 0 to each cell representing an un-
connected pair. The summation of this matrix, along its rows or collumns,
provides a very basic measure of node accessibility, also known as the degree
of a node.

indices = r”””

Number of Cycles

A cycle is a circular path, meaning that it ends where it started, and does
not repeat an edge. The index presented here is the maximum number of
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Figure 5.2: Adjacency matrix of a simple mesh network (see demo)

independent cycles in a network.
This number (u) is estimated by knowing the number of nodes (v), links

(e) and of sub-graphs (p);
Trees and simple networks will have a value of 0 since they have no cycles.

The more complex a network is, the higher the value of u, so it can be used
as an indicator of the level of development of a transport system.

u = e− v + p

Wiener Distance (DW )

The Wiener distance is the sum of all the shortest distances in the network.

DW =
v∑

i=1

i∑
j=1

Dij

where D is the Shortest distance matrix.
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Mean Distance(D̄)

The mean distance of a network is the mean of the set of shortest paths,
excluding the 0-length paths.

D̄ =
1

v

v∑
i=1

i∑
j=1

Dij ∀ Dij 6= 0

Network Diameter

The diameter of a network is the longest element of the shortest paths set.

Length of the Network (L)

The length of a network is the sum in metric units (e.g., km) of all the edges
in the network.

Weight of the Network(W )

The weight of a network is the weight of all nodes in the graph (W ), which is
the summation of each node’s order (o) multiplied by 2 for all orders above
1.

W = 2
∑

i

oi ∀o > 1

Iota Index(ι)

The Iota index measures the ratio between the network and its weighed
vertices. It considers the structure, the length and the function of a network
and it is mainly used when data about traffic is not available.

It divides the length of a network (L) by its weight (W ). The lower its
value, the more efficient the network is. This measure is based on the fact
that an intersection (represented as a node) of a high order is able to handle
large amounts of traffic.

ι =
L

W
=
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Pi Index(Π)

The Pi index represents the relationship between the total length of the
network L and the distance along the diameter D.

It is labeled as Pi because of its similarity with the trigonometric Π (3.14),
which is expressing the ratio between the circumference and the diameter of
a circle.

A high index shows a developed network. It is a measure of distance per
units of diameter and an indicator of the shape of a network.

Π =
L

D

Beta (β) Index

The Beta index measures the level of connectivity in a network and is ex-
pressed by the relationship between the number of edges (e) over the number
of nodes (v).

Trees and simple networks have Beta value of less than one. A connected
network with one cycle has a value of 1. More complex networks have a
value greater than 1. In a network with a fixed number of nodes, the higher
the number of links, the higher the number of paths possible in the network.
Complex networks have a high value of Beta.

β =
e

v

5.5 Site Oriented Statistics

Centrality: Also known as closeness. A measure of global centrality, is the
inverse of the sum of the shortest paths to all other nodes in the graph.

Degree: The order (degree) of a node is the number of its attached links
and is a simple, but effective measure of nodal importance.

The higher its value, the more a node is important in a graph as many
links converge to it. Hub nodes have a high order, while terminal points
have an order that can be as low as 1.

A perfect hub would have its order equal to the summation of all the
orders of the other nodes in the graph and a perfect spoke would have
an order of 1.
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Theta Index: Measures the function of a node, that is the average amount
of traffic per intersection. The higher theta is, the greater the load of
the network.

Betweeness: Is the number of times any node figures in the the shortest
path between any other pair of nodes.



Appendices

63





Appendix A

Example of Model Definition
Script

1 ################################################################
2 #
3 # EPIGRASS −Model De f i n i t i on
4 # This s c r i p t d e s c r i b e s model and parameters s p e c i f i e d
5 # by the user .
6 # I t can be ed i t e d by the user d i r e c t l y , by means o f a t e x t

e d i t o r .
7 # WARNING: No v a r i a b l e s may be removed , even i f not used by the

chosen model .
8 # Any comments added by the user must be preceeded by the

symbol #
9 #

10 ################################################################
11 ################################################################
12

13 #==============================================================#
14 [THE WORLD]
15 #==============================================================#
16 # Here you add in format ion about the f i l e s t h a t d e s c r i b ed the

world the model i s enc lo sed
17 # ” s i t e s ” and ” edges ” are the f i l e s t h a t d e s c r i b e the t opo l o gy

o f the network ( see Documentation )
18

19 s i t e s = s i t i o s 2 . csv
20 edges = edgesout . csv
21

22 #==============================================================#
23 [EPIDEMIOLOGICAL MODEL]
24 #==============================================================#
25 #model t ype s a v a i l a b l e : SIS , SIS s ,SIR , SIR s , SEIS , SEIS s ,

SEIR , SEIR s ,

65



66 APPENDIX A. EXAMPLE OF MODEL DEFINITION SCRIPT

26 # SIpRpS , SIpRpS s , SIpR , SIpR s , In f l u en za or Custom ( see
documentation f o r d e s c r i p t i o n ) .

27 modtype = SIR
28

29 #==============================================================#
30 [MODEL PARAMETERS]
31 #==============================================================#
32

33 # They can be s p e c i f i e d as cons tan t s or as f unc t i on s o f g l o b a l
or

34 # s i t e−s p e c i f i c v a r i a b l e s . t h e s e s i t e−s p e c i f i c v a r i a b l e s , are
prov ided

35 # in the s i t e s f i l e . A l l the numbers g iven a f t e r the geocode (4
th column )

36 # are c o l l e c t e d in t o the va l u e s t u p l e .
37 # Examples :
38 # beta = 0.001
39 # beta=va lue s [ 0 ] #as s i gn s the f i r s t e lement o f va l u e s to be ta
40 # beta =0.001∗ va l u e s [ 1 ]
41

42 beta = 0 .6 #transmiss ion c o e f f i c i e n t L i p s i t c h 2003 f o r R0 = 3
43 alpha = 1 # clumping parameter
44 e = 1 # inve r s e o f incuba t i on per iod
45 r = 0 .1 # inve r s e o f i n f e c t i o u s per iod
46 de l t a = 1 # p r o b a b i l i t y o f a cqu i r ing f u l l immunity [ 0 , 1 ]
47 B = 0 # Birth ra t e
48 w = 0 # p r o b a b i l i t y o f immunity waning [ 0 , 1 ]
49 p = 0 # Pro b a b i l i t y o f a recovered become i n f e c t e d per

time s t ep [ 0 , 1 ]
50

51

52 #==============================================================#
53 [ INITIAL CONDITIONS]
54 #==============================================================#
55 # Here , the number o f i n d i v i d u a l s in each ep i d em io l o g i c a l
56 # s t a t e (SEI ) i s s p e c i f i e d . They can be s p e c i f i e d in a b s o l u t e
57 # or r e l a t i v e numbers .
58 # N i s the popu la t i on s i z e o f each s i t e .
59 # The ru l e de f ined here w i l l be app l i e d e q u a l l y to a l l s i t e s .
60 # For s i t e−s p e c i f i c d e f i n i t i o n s , use EVENTS ( below )
61 # Examples :
62 # S ,E, I = 0.8∗N, 10 , 0.5∗E
63 # S ,E, I = 0.5∗N, 0.01∗N, 0.05∗N
64 # S ,E, I = N−1, 1 , 0
65 S = N
66 E = 0
67 I = 0
68

69 #=============================================================#
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70 [EPIDEMIC EVENTS]
71 #=============================================================#
72 # Spec i f y i s o l a t e d even t s .
73 # Lo c a l i t i e s where the even t s are to take p l ace shou ld be

I d e n t i f i e d by the geocode , which
74 # comes a f t e r popu la t i on s i z e on the s i t e s data f i l e .
75 # Al l coverages must be a number between 0 and 1 .
76 # Seed : [ ( ’ l o c a l i t y 1 ’ s geocode ’ , v a r i a b l e , n) , ( ’ l o c a l i t y 2 ’ s

geocode ’ , v a r i a b l e , n) ] .
77 # N in f e c t e d cases w i l l be added to l o c a l i t y a t time 0 .
78 # Vaccinate : [ ( ’ l o c a l i t y 1 ’ s geocode ’ , time , coverage ) , ( ’

l o c a l i t y 2 ’ s geocode ’ , time , coverage ) ]
79 # Quarantine : [ ( l o c a l i t y 1 ’ s geocode , time , coverage ) , ( l o c a l i t y 2 ’

s geocode , time , coverage ) ]
80 # Keywords may be used in s t ead o f the geocode in the vac ina t e

v a r i a b l e :
81 # a l l : Apply the same va l u e s to a l l s i t e s
82 seed = [(355030800 , ’ I ’ , 1 ) ] #Sao Paulo
83 Vaccinate = [ ]
84 Quarantine = [ ]
85

86 # The f o l l ow i n g even t s have not ye t been implemented
87 #Screening = ( l o c a l i t y , time , coverage ) #screen ing f o r s i c k

peop l e on a i p o r t s bus s t a t i o n s
88 #Vec to r con t ro l = ( l o c a l i t y , time , coverage )
89 #Prophy lax i s = ( l o c a l i t y , time , t a r ge t , coverage , e f i c a c y )
90

91 # In t e r v en t i on ac t s reduc ing prog re s s i on between ep i d em io l o g i c a l
s t a t e s

92 # ta r g e t i s the name o f the modi f ied parameter
93 # One may s p e c i f y as many trea tments as necessary
94 #
95 #In t e r v en t i on = ( l o c a l i t y , time , t a r ge t , coverage , e f i c a c y )
96 #In t e r v en t i on = [ ( ’ a l l ’ , 0 , ’ pp1 ’ , 0 .3 , 0 .5 ) , ( ’ a l l ’ , 0 , ’ pp2 ’ ,

0 .3 , 0 . 5 ) ]
97

98

99

100 #==============================================================#
101 [TRANSPORTATION MODEL]
102 #==============================================================#
103 # I f doTransp = 1 the t r an spo r t a t i on dinamics w i l l be inc luded .

Use 0 here on ly f o r debugg ing purposes .
104 doTransp = 1
105

106 # Mechanism can be s t o c h a t i c (1) or d e t e rm in i s t i c (0) .
107 s t o c h a s t i c = 1
108
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109 #Average speed o f t r an spo r t a t i on system in km per time s t ep .
Enter 0 f o r ins tan taneous t r a v e l .

110 #Distance un i t must be the same s p e c i f i e d in edges f i l e s
111 speed =0 #1440 km/day −− e q u i v a l e n t to 60 km/h
112

113 #==============================================================#
114 [SIMULATION AND OUTPUT]
115 #==============================================================#
116

117 # Number o f s t e p s
118 s t ep s = 100
119

120 # Output d i r . Must be a f u l l path . I f empty the output w i l l be
generated on the

121 # outdata−<date> sub−d i r e c t o r y o f same path as the model s c r i p t .
122 outd i r =
123

124

125 # Database Output
126 # MySQLout can be 0 (no database output ) or 1
127 MySQLout = 1
128

129

130 # Report Generation
131 # The v a r i a b l e r epor t can take the f o l l ow i n g va l u e s :
132 # 0 − No repor t i s genera ted .
133 # 1 − A network ana l y s i s r epor t i s genera ted in PDF Format .
134 # 2 − An ep i d em io l o g i c a l r epor t i s genera ted in PDF Format .
135 # 3 − A f u l l r epor t i s genera ted in PDF Format .
136 # si teRep i s a l i s t wi th s i t e geocodes . For each s i t e in t h i s

l i s t , a d e t a i l e d repor t i s apended to the main repor t .
137 r epo r t = 0
138 s i teRep = [230440005 ,355030800 ]
139

140 #Rep l i ca t e runs
141 #I f r e p l i c a s i s s e t to an i n t e g e r (n) l a r g e r than zero , the model

w i l l be run n t imes and the r e s u l t s w i l l be con−
142 #so l i d a t e d b e f o r e s t o r i n g .
143 # i f RandSeed i s s e t to 1 the seed w i l l be randomized on each

r e p l i c a t e
144 #Rep l i ca t e mode au t oma t i c a l l y turn o f f r epor t and batch op t i ons .
145 Rep l i ca s = 0
146 RandSeed = 0
147 #Batch Run
148 # l i s t o ther s c r i p t s to be run in a f t e r t h i s one . don ’ t f o r g e t

the ex t ens ion . epg
149 # model s c r i p t s must be in the same d i r e c t o r y as t h i s f i l e or

prov ide f u l l path .
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150 # Example : Batch = [ ’ model2 . epg ’ , ’ model3 . epg ’ , ’/ home/ j o s e /
model4 . epg ’ ]

151 Batch = [ ]
152

153 ################################################################
154 ################################################################
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Appendix B

Useful GRASS Commands

In this appendix, a few GRASS commands will be introduced based on their
usefulness for the average EpiGrass user.

All the tasks presented in this chapter will be done using the GRASS
command line interface. However most of them can also be done through the
GRASS GUI. We leave to the user to find out how to perform these tasks
using the GUI.

B.1 Exporting a GRASS Vector Layer

Like in any GIS, in GRASS maps are stored as vectorial objects. however
these object are stored in binary formats that can’t be read by EpiGrass. To
be able to use maps from a given GRASS Location dataset in EpiGrass, we
must export the vector layers to an ASCII file. Fortunately, the GRASS GIS
provides us with the means to do that.

To be able to follow this example, you must have GRASS installed and
a Location dataset available on your disk. Once you start GRASS you will
be asked to select the location dataset to open. Once you open the desired
dataset you will be able to explore your map collection and choose which
layers to export.

Listing B.1: Listing vector layers.

1 GRASS 6.0.0˜/ > g . l i s t vect

Listing B.1, shows how to obtain a list of the available vector layers. Once
you identify a layer that looks like the on you want to use as a background for
your EpiGrass simulations take note of its name. You may want to visualize
it before exporting.
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Listing B.2: Visualizing a vector layer

1 GRASS 6.0.0˜/ > dmon x0
2 GRASS 6.0.0˜/ > d . vect Layer name

The commands on listing B.2 will plot the chosen vector layer. the first
command will open a display window, and the second will plot the layer we
chose.

Once we are certain that is the map we want, we can proceed to exporting
it.

Listing B.3: Exporting a vector layer to an ascii file

1 GRASS 6.0.0˜/ > v . out . a s c i i input=Layer name output=
f i l ename .map format=standard

It is important that we add the extension .map to the file we generate, so
that EpiGrass visualization module will recognize it.

The map file generated here must be put in the working directory of your
EpiGrass model to be used.



Appendix C

Using R to Analyze EpiGrass’
Data

Depending on the size of your network or the number of scenarios being
simulated on a given network within EpiGrass, A large amount of data is
generated as output. This data is stored, by default on a MySQL database
named epigrass.

On this appendix, we illustrate how to access this data on the MySQL
server and do some simple analysis using the statistical package R. The R
statistical package (http://www.r-project.org) is an incredibly resourceful
environment for data management and analysis.

C.1 Accessing The MySQL server

Before we can access the database and retrieve our data there are some
preliminary steps that must be performed. First and foremost, we need to
learn how to start the R system. Just open a console window and type R as
shown on listing C.1.

Listing C.1: Starting R

1 $ R
2 R : Copyright 2004 , The R Foundation for S t a t i s t i c a l Computing
3 Vers ion 2 . 0 . 1 (2004−11−15) , ISBN 3−900051−07−0
4

5 R i s f r e e so f tware and comes with ABSOLUTELY NO WARRANTY.
6 You are welcome to r e d i s t r i b u t e i t under c e r t a i n cond i t i on s .
7 Type ’ l i c e n s e ( ) ’ or ’ l i c e n c e ( ) ’ for d i s t r i b u t i o n d e t a i l s .
8

9 R i s a c o l l a b o r a t i v e p r o j e c t with many con t r i bu t o r s .
10 Type ’ c on t r i bu t o r s ( ) ’ for more in fo rmat ion and
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11 ’ c i t a t i o n ( ) ’ on how to c i t e R or R packages in pub l i c a t i o n s .
12

13 Type ’demo ( ) ’ for some demos , ’ he lp ( ) ’ for on−l i n e help , or
14 ’ he lp . s t a r t ( ) ’ for a HTML browser i n t e r f a c e to he lp .
15 Type ’ q ( ) ’ to qu i t R.
16

17 >

Very well, Now you are running R. R has a modular architecture that
allows the user to specify the tools he/she desires to use on a given session.
In order to access the MySQL database server and retrieve our data, we
will need some special tools from R’s vast collection of modules (also called
packages). Listing C.2, shows how to load the packages needed.

Listing C.2: Loading required packages.

1 > l ibrary (DBI)
2 > l ibrary (RMySQL)

To connect to a database server we need to tell R the type of server we
will be connecting to, and open a connection to it (listing C.3).

Listing C.3: Specifying the type of server and opening a connection.

1 > drv <− dbDriver ( ”MySQL” )
2 > con <− dbConnect ( drv , username=’ ep i g r a s s ’ , password=’ ep i g r a s s ’ ,

host=’ l o c a l h o s t ’ ,dbname=’ ep i g r a s s ’ )

Once we have a connection to the database it works as a two-way com-
munications pipeline between R and the MySQL server. Through this con-
nection we can send SQL commands to the Server and retrieve the results of
these commands.

Fortunately, the RMySQL package has many common SQL statements
packed into easy to remember commands. Listing C.4 shows us how to
find out the tables available at the epigrass database. This is a very useful
command for us because the results of each simulation completed in EpiGrass
is stored in a separate table whose title is contains a reference to when it was
ran. So, after running a few simulations with the demo model mesh, we will
end up with a list of tables similar to the one shown on listing C.4.

Listing C.4: Listing existing tables.

1 > t ab l e s<−dbListTables ( con )
2 > t ab l e s
3 [ 1 ] ”mesh Mon Feb 14 110816 2005” ”mesh Mon Feb 14 111026 2005

”
4 [ 3 ] ”mesh Tue Feb 15 144139 2005” ”mesh Tue Feb 15 171743 2005

”
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5 [ 5 ] ”mesh Tue Feb 15 172037 2005” ”mesh Tue Feb 15 172134 2005
”

After we identify which set of data(table) we want to work with, we can
read it into a data frame, a very versatile data structure of R.

1 > r e s u l t s<− dbReadTable ( con , t ab l e s [ 2 ] )
2 > names ( r e s u l t s )
3 [ 1 ] ” geocode ” ” time” ”name” ” l a t ” ” l o n g i t ”

”E”
4 [ 7 ] ” I ” ”S” ” in c i d enc e ”

On line 1 of listing C.1, we read the second table of our database into a
data frame object called results. The names command, lists the names of
the variables contained in that data frame.

C.2 Visualizing the Data

Once we have have the data inside R there countless ways in which we can
manipulate and visualize it. For the first plot we will need to load another
package called lattice.

1 > l ibrary ( l a t t i c e )
2 > xyplot ( I+E+S˜time | name , type=” l ” ,data=r e s u l t s )
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