
System Description

The purpose of this project is to connect the user, via a graphical user interface (GUI), to an API on a micro-
controller. The name of the application is MGTron GUI. The application will be functional on Windows 10,
Windows 11, Debian, Red Hat, and Arch based operating systems. The application will be a single executable that
is expected to work across the previously listed operating systems. The deployment method allows for versatile
deployment. The MGTron GUI front-end expectation will be provided in an image later within this document.
The purpose of the image is to provide the expectation of what the GUI should look like to a user, to include
colors.

The GUI should have, but not be limited to, the following features and characteristics:

• Configurable configurations for up to eight devices.

• Save a configuration file for the given input of frequency, power, and

bandwidth.

• Easily installable to most operating systems.

• Choose a specific device based on its serial number.

• Easy one-click to turn off a generating channel.

• Send to all channels at once or individually.

• Set the frequency, power, and bandwidth of each of the eight channels.

• Configurable mission buttons.

• Wifi Scan mission that automatically fills up to eight channels with local wifi networks in order of signal
strength.

• Establish a serial connection to a Teensy 4.1 microcontroller

• Stateful

• Update user on current state of selected devices

• Display, in the GUI window, CellAntenna in the upper right left hand corner. (At least on Linux)

• The version, starting at 3.0.0, will be displayed in the bottom right hand corner

• If the wifi scanner does not fill all of the fields then set the power level to zero on non-results

Detailed front-end description

The GUI will be 1250 x 735, initially. The window will be resizable and all elements within will scale accordingly.
There will be a log file that overwrites itself everytime the GUI is launched. The code will be commented heavily,
but not as often as every line. The Python source code will be provided. The image of the GUI shows plus and
minus buttons, remove all of the plus and minus buttons. The primary method of input will be a human interface
device (HID) such as a keyboard or a numpad. The GUI will be deployed on a computer connected, via HDMI, to
a touch screen display. Again, the primary input will be an HID. Other than the plus and minus buttons next to
the float and integer inputs, the GUI is expected to resemble the provided image of the present implementation of
the GUI.

• Configurable configurations for up to eight devices

1



– The GUI will allow a user to save a default configuration linked to a serial number that loads when the
requisite device is selected. The default values to be saved are frequency (3 significant figures), power
(int), and bandwidth (int).

• Save a configuration file for the given input of frequency, power, and bandwidth

– Use the "SAVE CONFIG" button to pop-up an input that will allow a user to type the name of the
save file. The save config file will consist of the values that are presently in the input fields of the
frequency, power, and bandwidth of each of the eight channels. The values in the input fields are to
remain untouched during and after the save process.

• Easily installable to most operating systems

– The final product will be a single executable. The only external dependency will be the database. The
code will internally handle platform checking and switch from COM ports to file paths according to the
operating system.

• Choose a specific device based on its serial number

– The upper drop down labled Device Config display the connected devices’ serial number. The serial
device must be checked to ensure it is a Teensy 4.1 before the serial number can be displayed. The
serial numbers should be kept in a locally referential data structure to be used in another feature.

• Easy one-click to turn off a generating channel

– One button will set the power level to zero for every channel of the selected serial device.

• Send to all channels at once or individually

– Give the user the ability to send the values presently in the input fields individually or send every value
in every input field for every channel at once. This applies to the presently selected card only. It is
accepted that there exist the state in which a serial device has been set then de-selected; the settings
are still set but no state of the card is tracked.

• Set the frequency, power, and bandwidth of each of the eight channels

– Set the frequency between 50 and 6400, power 0 to 63, and bandwidth 0 to 100. The user input will be
an HID. The frequency inputs can be floating point values, power inputs are integers, and bandwidth
inputs are integers. Input fields will be provided for each of the eight channels and each frequency,
power, and bandwidth.

• Configurable mission buttons

– Make the MISSION buttons execute a saved file if the saved file has the identical name as the button.
If more than one save file has the save name then the particular button in question will, essentially, load
the latest save name file by date and time of save.

• Wifi Scan

– Use the host computers wireless card to scan for wifi SSIDs and the SSID’s RSSI. The units of the RSSI
will be in dBm and be, most likely, negative. The more negative the RSSI the weaker the signal strength
the respective SSID. The fastest method is to use an API to leverage the host systems wifi card.

• Establish a serial connection

– The serial device is a Teensy 4.1. The serial device is expected to have a proprietary firnware. The
firmware has an API with which makes keeping state possible. An example of the type of response is
included later in this document. The serial device controls, based on user input, a signal generator. The
signal generator is capable of producing frequencies from 50 MHz to 6400 MHz. The API documentation
will be included.

2



Back-end

The back-end will, in part, save user configurations, store the saved configurations per serial number, and allow
a user to name a saved configuration at the time of saving via an input popup. The back-end is also responsible
for processing the user-input to be in a format suitable for consumption by the firmware API. The back-end is not
limited to the preceding listed items.

The back-end is expected to process the user inputs via the press of the buttons presented on the GUI. The
back-end is also expected to be state-aware. The API of the serial device allows for feedback. This feedback is to be
reflected, in real-time, via the user-facing interface after a refresh button is pressed. The present implementation
employs a JSON database for all storage needs. This may be a limiting factor and is to be replaced with a suitable
solution. The wifi scanner leverages the a Linux command nmcli to scan the presently transmitted wifi frequencies.
The results are processed in the back-end and transformed into a format digestable for the front-end. A Windows
solution has not been researched. The scanner will list the scan results in frequency strength order starting with
the strongest result in channel one.

Serial Device

The serial device is a Teensy 4.1. There is a custom API on the serial device which allows communication between
any application and the firmware on the serial device. The only feedback the serial device returns is in the following
format:

Serial Command Received
Command: ’s’

-Channel 1 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

-Channel 2 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

-Channel 3 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

-Channel 4 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

-Channel 5 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

-Channel 6 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

3



-Channel 7 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

-Channel 8 Status-
Frequency: 2400.00MHz
Power: 0
Bandwidth: 0.00%

New command: $

Front-end

Auto-fill

The AUTO-FILL button has different functionality for FREQUENCY as opposed to the POWER and BAND-
WIDTH fields. Under FREQUENCY, the AUTO-FILL button takes the difference of the second and first inputs
and increments the remaining inputs the value of the resulting difference.

4


