Coverage for pygeodesy/ltp.py: 96%

419 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2023-08-07 07:28 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''I{Local Tangent Plane} (LTP) and I{local} cartesian coordinates. 

5 

6I{Local cartesian} and I{local tangent plane} classes L{LocalCartesian}, approximations L{ChLVa} 

7and L{ChLVe} and L{Ltp}, L{ChLV}, L{LocalError}, L{Attitude} and L{Frustum}. 

8 

9@see: U{Local tangent plane coordinates<https://WikiPedia.org/wiki/Local_tangent_plane_coordinates>} 

10 and class L{LocalCartesian}, transcoded from I{Charles Karney}'s C++ classU{LocalCartesian 

11 <https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1LocalCartesian.html>}. 

12''' 

13# make sure int/int division yields float quotient, see .basics 

14from __future__ import division as _; del _ # PYCHOK semicolon 

15 

16from pygeodesy.basics import isscalar, issubclassof, map1, _xargs_names 

17from pygeodesy.constants import EPS, INT0, _umod_360, _0_0, _0_01, _0_5, _1_0, \ 

18 _2_0, _60_0, _90_0, _100_0, _180_0, _3600_0, \ 

19 _N_1_0 # PYCHOK used! 

20from pygeodesy.datums import _WGS84, _xinstanceof 

21from pygeodesy.ecef import _EcefBase, EcefKarney, _llhn4, _xyzn4 

22from pygeodesy.errors import _NotImplementedError, _TypesError, _ValueError, \ 

23 _xattr, _xkwds, _xkwds_get 

24from pygeodesy.fmath import fabs, fdot, Fhorner 

25from pygeodesy.fsums import _floor, Fsum, fsumf_, fsum1f_ 

26from pygeodesy.interns import NN, _0_, _COMMASPACE_, _DOT_, _ecef_, _height_, \ 

27 _invalid_, _lat0_, _lon0_, _ltp_, _M_, _name_, _too_ 

28# from pygeodesy.lazily import _ALL_LAZY # from vector3d 

29from pygeodesy.ltpTuples import Attitude4Tuple, ChLVEN2Tuple, ChLV9Tuple, \ 

30 ChLVYX2Tuple, Footprint5Tuple, Local9Tuple, \ 

31 ChLVyx2Tuple, _XyzLocals4, _XyzLocals5, Xyz4Tuple 

32from pygeodesy.named import _NamedBase, notOverloaded 

33from pygeodesy.namedTuples import LatLon3Tuple, LatLon4Tuple, Vector3Tuple 

34from pygeodesy.props import Property, Property_RO, property_doc_, property_RO, \ 

35 _update_all 

36from pygeodesy.streprs import Fmt, strs, unstr 

37from pygeodesy.units import Bearing, Degrees, Meter 

38from pygeodesy.utily import cotd, sincos2d, sincos2d_, tand, tand_, wrap180, wrap360 

39from pygeodesy.vector3d import _ALL_LAZY, Vector3d 

40 

41# from math import fabs, floor as _floor # from .fmath, .fsums 

42 

43__all__ = _ALL_LAZY.ltp 

44__version__ = '23.08.06' 

45 

46_height0_ = _height_ + _0_ 

47_narrow_ = 'narrow' 

48_wide_ = 'wide' 

49_Xyz_ = 'Xyz' 

50 

51 

52def _fov_2(**fov): 

53 # Half a field-of-view angle in C{degrees}. 

54 f = Degrees(Error=LocalError, **fov) * _0_5 

55 if EPS < f < _90_0: 

56 return f 

57 t = _invalid_ if f < 0 else _too_(_wide_ if f > EPS else _narrow_) 

58 raise LocalError(txt=t, **fov) 

59 

60 

61class Attitude(_NamedBase): 

62 '''The orientation of a plane or camera in space. 

63 ''' 

64 _alt = Meter( alt =_0_0) 

65 _roll = Degrees(roll=_0_0) 

66 _tilt = Degrees(tilt=_0_0) 

67 _yaw = Bearing(yaw =_0_0) 

68 

69 def __init__(self, alt_attitude=INT0, tilt=INT0, yaw=INT0, roll=INT0, name=NN): 

70 '''New L{Attitude}. 

71 

72 @kwarg alt_attitude: An altitude (C{meter}) above earth or an attitude 

73 (L{Attitude} or L{Attitude4Tuple}) with the 

74 C{B{alt}itude}, B{C{tilt}}, B{C{yaw}} and B{C{roll}}. 

75 @kwarg tilt: Pitch, elevation from horizontal (C{degrees180}), negative down 

76 (clockwise rotation along and around the x- or East axis). 

77 @kwarg yaw: Bearing, heading (compass C{degrees360}), clockwise from North 

78 (counter-clockwise rotation along and around the z- or Up axis). 

79 @kwarg roll: Roll, bank (C{degrees180}), positive to the right and down 

80 (clockwise rotation along and around the y- or North axis). 

81 @kwarg name: Optional name C{str}). 

82 

83 @raise AttitudeError: Invalid B{C{alt_attitude}}, B{C{tilt}}, B{C{yaw}} or 

84 B{C{roll}}. 

85 

86 @see: U{Principal axes<https://WikiPedia.org/wiki/Aircraft_principal_axes>} and 

87 U{Yaw, pitch, and roll rotations<http://MSL.CS.UIUC.edu/planning/node102.html>}. 

88 ''' 

89 if isscalar(alt_attitude): 

90 t = Attitude4Tuple(alt_attitude, tilt, yaw, roll) 

91 else: 

92 try: 

93 t = alt_attitude.atyr 

94 except AttributeError: 

95 raise AttitudeError(alt=alt_attitude, tilt=tilt, yaw=yaw, rol=roll) 

96 for n, v in t.items(): 

97 if v: 

98 setattr(self, n, v) 

99 n = name or t.name 

100 if n: 

101 self.name = n 

102 

103 @property_doc_(' altitude above earth in C{meter}.') 

104 def alt(self): 

105 return self._alt 

106 

107 @alt.setter # PYCHOK setter! 

108 def alt(self, alt): # PYCHOK no cover 

109 a = Meter(alt=alt, Error=AttitudeError) 

110 if self._alt != a: 

111 _update_all(self) 

112 self._alt = a 

113 

114 altitude = alt 

115 

116 @Property_RO 

117 def atyr(self): 

118 '''Return this attitude's alt[itude], tilt, yaw and roll as an L{Attitude4Tuple}. 

119 ''' 

120 return Attitude4Tuple(self.alt, self.tilt, self.yaw, self.roll, name=self.name) 

121 

122 @Property_RO 

123 def matrix(self): 

124 '''Get the 3x3 rotation matrix C{R(yaw)·R(tilt)·R(roll)}, aka I{ZYX} (C{float}, row-order). 

125 

126 @see: The matrix M of case 10 in U{Appendix A 

127 <https://ntrs.NASA.gov/api/citations/19770019231/downloads/19770019231.pdf>}. 

128 ''' 

129 def _5to3(x, y, _y, z, _z): 

130 return x, fsum1f_(y, _y), fsum1f_(z, _z) 

131 

132 r0, r1, r2 = self._rows3 

133 return _5to3(*r0), _5to3(*r1), r2 

134 

135 @property_doc_(' roll/bank in C{degrees180}, positive to the right and down.') 

136 def roll(self): 

137 return self._roll 

138 

139 @roll.setter # PYCHOK setter! 

140 def roll(self, roll): 

141 r = Degrees(roll=roll, wrap=wrap180, Error=AttitudeError) 

142 if self._roll != r: 

143 _update_all(self) 

144 self._roll = r 

145 

146 bank = roll 

147 

148 @Property_RO 

149 def _rows3(self): 

150 # to follow the definitions of rotation angles alpha, beta and gamma: 

151 # negate yaw since yaw is counter-clockwise around the z-axis, swap 

152 # tilt and roll since tilt is around the x- and roll around the y-axis 

153 sa, ca, sb, cb, sg, cg = sincos2d_(-self.yaw, self.roll, self.tilt) 

154 return ((ca * cb, ca * sb * sg, -sa * cg, ca * sb * cg, sa * sg), 

155 (sa * cb, sa * sb * sg, ca * cg, sa * sb * cg, -ca * sg), 

156 ( -sb, cb * sg, cb * cg)) 

157 

158 def rotate(self, x_xyz, y=None, z=None, Vector=None, **Vector_kwds): 

159 '''Transform a (local) cartesian by this attitude's matrix. 

160 

161 @arg x_xyz: X component of vector (C{scalar}) or (3-D) vector 

162 (C{Cartesian}, L{Vector3d} or L{Vector3Tuple}). 

163 @kwarg y: Y component of vector (C{scalar}), same units as B{C{x}}. 

164 @kwarg z: Z component of vector (C{scalar}), same units as B{C{x}}. 

165 @kwarg Vector: Class to return transformed point (C{Cartesian}, 

166 L{Vector3d} or C{Vector3Tuple}) or C{None}. 

167 @kwarg Vector_kwds: Optional, additional B{C{Vector}} keyword arguments, 

168 ignored if C{B{Vector} is None}. 

169 

170 @return: A B{C{Vector}} instance or a L{Vector3Tuple}C{(x, y, z)} if 

171 C{B{Vector}=None}. 

172 

173 @raise AttitudeError: Invalid B{C{x_xyz}}, B{C{y}} or B{C{z}}. 

174 

175 @see: U{Yaw, pitch, and roll rotations<http://MSL.CS.UIUC.edu/planning/node102.html>}. 

176 ''' 

177 try: 

178 try: 

179 x, y, z = map( float, x_xyz.xyz) 

180 except AttributeError: 

181 x, y, z = map1(float, x_xyz, y, z) 

182 except (TypeError, ValueError) as x: 

183 raise AttitudeError(x_xyz=x_xyz, y=y, z=z, cause=x) 

184 

185 X, Y, Z = self._rows3 

186 X = fdot(X, x, y, y, z, z) 

187 Y = fdot(Y, x, y, y, z, z) 

188 Z = fdot(Z, x, y, z) 

189 return Vector3Tuple(X, Y, Z, name=self.name) if Vector is None else \ 

190 Vector(X, Y, Z, **_xkwds(Vector_kwds, name=self.name)) 

191 

192 @property_doc_(' tilt/pitch/elevation from horizontal in C{degrees180}, negative down.') 

193 def tilt(self): 

194 return self._tilt 

195 

196 @tilt.setter # PYCHOK setter! 

197 def tilt(self, tilt): 

198 t = Degrees(tilt=tilt, wrap=wrap180, Error=AttitudeError) 

199 if self._tilt != t: 

200 _update_all(self) 

201 self._tilt = t 

202 

203 elevation = pitch = tilt 

204 

205 def toStr(self, prec=6, sep=_COMMASPACE_, **unused): # PYCHOK signature 

206 '''Format this attitude as string. 

207 

208 @kwarg prec: The C{float} precision, number of decimal digits (0..9). 

209 Trailing zero decimals are stripped for B{C{prec}} values 

210 of 1 and above, but kept for negative B{C{prec}} values. 

211 @kwarg sep: Separator to join (C{str}). 

212 

213 @return: This attitude (C{str}). 

214 ''' 

215 return self.atyr.toStr(prec=prec, sep=sep) 

216 

217 @Property_RO 

218 def tyr3d(self): 

219 '''Get this attitude's (3-D) directional vector (L{Vector3d}). 

220 

221 @see: U{Yaw, pitch, and roll rotations<http://MSL.CS.UIUC.edu/planning/node102.html>}. 

222 ''' 

223 def _r2d(r): 

224 return fsumf_(_N_1_0, *r) 

225 

226 return Vector3d(*map(_r2d, self._rows3), name=tyr3d.__name__) 

227 

228 @property_doc_(' yaw/bearing/heading in compass C{degrees360}, clockwise from North.') 

229 def yaw(self): 

230 return self._yaw 

231 

232 @yaw.setter # PYCHOK setter! 

233 def yaw(self, yaw): 

234 y = Bearing(yaw=yaw, Error=AttitudeError) 

235 if self._yaw != y: 

236 _update_all(self) 

237 self._yaw = y 

238 

239 bearing = heading = yaw 

240 

241 

242class AttitudeError(_ValueError): 

243 '''An L{Attitude} or L{Attitude4Tuple} issue. 

244 ''' 

245 pass 

246 

247 

248class Frustum(_NamedBase): 

249 '''A rectangular pyramid, typically representing a camera's I{field-of-view} 

250 (fov) and the intersection with (or projection to) a I{local tangent plane}. 

251 

252 @see: U{Viewing frustum<https://WikiPedia.org/wiki/Viewing_frustum>}. 

253 ''' 

254 _h_2 = _0_0 # half hfov in degrees 

255 _ltp = None # local tangent plane 

256 _tan_h_2 = _0_0 # tan(_h_2) 

257 _v_2 = _0_0 # half vfov in degrees 

258 

259 def __init__(self, hfov, vfov, ltp=None): 

260 '''New L{Frustum}. 

261 

262 @arg hfov: Horizontal field-of-view (C{degrees180}). 

263 @arg vfov: Vertical field-of-view (C{degrees180}). 

264 @kwarg ltp: Optional I{local tangent plane} (L{Ltp}). 

265 

266 @raise LocalError: Invalid B{C{hfov}} or B{C{vfov}}. 

267 ''' 

268 self._h_2 = h = _fov_2(hfov=hfov) 

269 self._v_2 = _fov_2(vfov=vfov) 

270 

271 self._tan_h_2 = tand(h, fov_2=h) 

272 

273 if ltp: 

274 self._ltp = _xLtp(ltp) 

275 

276 def footprint5(self, alt_attitude, tilt=0, yaw=0, roll=0, z=_0_0, ltp=None): # MCCABE 15 

277 '''Compute the center and corners of the intersection with (or projection 

278 to) the I{local tangent plane} (LTP). 

279 

280 @arg alt_attitude: An altitude (C{meter}) above I{local tangent plane} or 

281 an attitude (L{Attitude} or L{Attitude4Tuple}) with the 

282 C{B{alt}itude}, B{C{tilt}}, B{C{yaw}} and B{C{roll}}. 

283 @kwarg tilt: Pitch, elevation from horizontal (C{degrees}), negative down 

284 (clockwise rotation along and around the x- or East axis). 

285 @kwarg yaw: Bearing, heading (compass C{degrees}), clockwise from North 

286 (counter-clockwise rotation along and around the z- or Up axis). 

287 @kwarg roll: Roll, bank (C{degrees}), positive to the right and down 

288 (clockwise rotation along and around the y- or North axis). 

289 @kwarg z: Optional height of the footprint (C{meter}) above I{local tangent plane}. 

290 @kwarg ltp: The I{local tangent plane} (L{Ltp}), overriding this 

291 frustum's C{ltp}. 

292 

293 @return: A L{Footprint5Tuple}C{(center, upperleft, upperight, loweright, 

294 lowerleft)} with the C{center} and 4 corners, each an L{Xyz4Tuple}. 

295 

296 @raise TypeError: Invalid B{C{ltp}}. 

297 

298 @raise UnitError: Invalid B{C{altitude}}, B{C{tilt}}, B{C{roll}} or B{C{z}}. 

299 

300 @raise ValueError: If B{C{altitude}} too low, B{C{z}} too high or B{C{tilt}} 

301 or B{C{roll}} -including B{C{vfov}} respectively B{C{hfov}}- 

302 over the horizon. 

303 

304 @see: U{Principal axes<https://WikiPedia.org/wiki/Aircraft_principal_axes>}. 

305 ''' 

306 def _xy2(a, e, h_2, tan_h_2, r): 

307 # left and right corners, or swapped 

308 if r < EPS: # no roll 

309 r = a * tan_h_2 

310 l = -r # PYCHOK l is ell 

311 else: # roll 

312 r, l = tand_(r - h_2, r + h_2, roll_hfov=r) # PYCHOK l is ell 

313 r *= -a # negate right positive 

314 l *= -a # PYCHOK l is ell 

315 y = a * cotd(e, tilt_vfov=e) 

316 return (l, y), (r, y) 

317 

318 def _xyz5(b, xy5, z, ltp): 

319 # rotate (x, y)'s by bearing, clockwise 

320 s, c = sincos2d(b) 

321 for x, y in xy5: 

322 yield Xyz4Tuple(fsum1f_(x * c, y * s), 

323 fsum1f_(y * c, -x * s), z, ltp) 

324 

325 try: 

326 a, t, y, r = alt_attitude.atyr 

327 except AttributeError: 

328 a, t, y, r = alt_attitude, tilt, yaw, roll 

329 

330 a = Meter(altitude=a) 

331 if a < EPS: # too low 

332 raise _ValueError(altitude=a) 

333 if z: # PYCHOK no cover 

334 z = Meter(z=z) 

335 a -= z 

336 if a < EPS: # z above a 

337 raise _ValueError(altitude_z=a) 

338 else: 

339 z = _0_0 

340 

341 b = Degrees(yaw=y, wrap=wrap360) # bearing 

342 e = -Degrees(tilt=t, wrap=wrap180) # elevation, pitch 

343 if not EPS < e < _180_0: 

344 raise _ValueError(tilt=t) 

345 if e > _90_0: 

346 e = _180_0 - e 

347 b = _umod_360(b + _180_0) 

348 

349 r = Degrees(roll=r, wrap=wrap180) # roll center 

350 x = (-a * tand(r, roll=r)) if r else _0_0 

351 y = a * cotd(e, tilt=t) # ground range 

352 if fabs(y) < EPS: 

353 y = _0_0 

354 

355 # center and corners, clockwise from upperleft, rolled 

356 xy5 = ((x, y),) + _xy2(a, e - self._v_2, self._h_2, self._tan_h_2, r) \ 

357 + _xy2(a, e + self._v_2, -self._h_2, -self._tan_h_2, r) # swapped 

358 # turn center and corners by yaw, clockwise 

359 p = self.ltp if ltp is None else ltp # None OK 

360 return Footprint5Tuple(_xyz5(b, xy5, z, p)) # *_xyz5 

361 

362 @Property_RO 

363 def hfov(self): 

364 '''Get the horizontal C{fov} (C{degrees}). 

365 ''' 

366 return Degrees(hfov=self._h_2 * _2_0) 

367 

368 @Property_RO 

369 def ltp(self): 

370 '''Get the I{local tangent plane} (L{Ltp}) or C{None}. 

371 ''' 

372 return self._ltp 

373 

374 def toStr(self, prec=3, fmt=Fmt.F, sep=_COMMASPACE_): # PYCHOK signature 

375 '''Convert this frustum to a "hfov, vfov, ltp" string. 

376 

377 @kwarg prec: Number of (decimal) digits, unstripped (0..8 or C{None}). 

378 @kwarg fmt: Optional, C{float} format (C{str}). 

379 @kwarg sep: Separator to join (C{str}). 

380 

381 @return: Frustum in the specified form (C{str}). 

382 ''' 

383 t = self.hfov, self.vfov 

384 if self.ltp: 

385 t += self.ltp, 

386 t = strs(t, prec=prec, fmt=fmt) 

387 return sep.join(t) if sep else t 

388 

389 @Property_RO 

390 def vfov(self): 

391 '''Get the vertical C{fov} (C{degrees}). 

392 ''' 

393 return Degrees(vfov=self._v_2 * _2_0) 

394 

395 

396class LocalError(_ValueError): 

397 '''A L{LocalCartesian} or L{Ltp} related issue. 

398 ''' 

399 pass 

400 

401 

402class LocalCartesian(_NamedBase): 

403 '''Conversion between geodetic C{(lat, lon, height)} and I{local 

404 cartesian} C{(x, y, z)} coordinates with I{geodetic} origin 

405 C{(lat0, lon0, height0)}, transcoded from I{Karney}'s C++ class 

406 U{LocalCartesian<https://GeographicLib.SourceForge.io/C++/doc/ 

407 classGeographicLib_1_1LocalCartesian.html>}. 

408 

409 The C{z} axis is normal to the ellipsoid, the C{y} axis points due 

410 North. The plane C{z = -height0} is tangent to the ellipsoid. 

411 

412 The conversions all take place via geocentric coordinates using a 

413 geocentric L{EcefKarney}, by default the WGS84 datum/ellipsoid. 

414 

415 @see: Class L{Ltp}. 

416 ''' 

417 _ecef = EcefKarney(_WGS84) 

418 _EcefClass = EcefKarney 

419 _lon00 = INT0 # self.lon0 

420 _t0 = None # origin (..., lat0, lon0, height0, ...) L{Ecef9Tuple} 

421 _9Tuple = Local9Tuple 

422 

423 def __init__(self, latlonh0=INT0, lon0=INT0, height0=INT0, ecef=None, name=NN, **lon00): 

424 '''New L{LocalCartesian} converter. 

425 

426 @kwarg latlonh0: The (geodetic) origin (C{LatLon}, L{LatLon4Tuple}, L{Ltp} 

427 L{LocalCartesian} or L{Ecef9Tuple}) or the C{scalar} 

428 latitude of the (goedetic) origin (C{degrees}). 

429 @kwarg lon0: Longitude of the (goedetic) origin (C{degrees}) for C{scalar} 

430 B{C{latlonh0}}, ignored otherwise. 

431 @kwarg height0: Optional height (C{meter}, conventionally) at the (goedetic) 

432 origin perpendicular to and above (or below) the ellipsoid's 

433 surface and for C{scalar} B{C{latlonh0}}, ignored otherwise. 

434 @kwarg ecef: An ECEF converter (L{EcefKarney} I{only}) for C{scalar} 

435 B{C{latlonh0}}, ignored otherwise. 

436 @kwarg name: Optional name (C{str}). 

437 @kwarg lon00: An arbitrary, I{polar} longitude (C{degrees}), overriding 

438 the default C{B{lon00}=B{lon0}}, see method C{reverse}. 

439 

440 @raise LocalError: If B{C{latlonh0}} not C{LatLon}, L{LatLon4Tuple}, L{Ltp}, 

441 L{LocalCartesian} or L{Ecef9Tuple} or B{C{latlonh0}}, 

442 B{C{lon0}}, B{C{height0}} or B{C{lon00}} invalid. 

443 

444 @raise TypeError: Invalid B{C{ecef}} or not L{EcefKarney}. 

445 

446 @note: If BC{latlonh0} is an L{Ltp} or L{LocalCartesian}, only C{lat0}, C{lon0}, 

447 C{height0} and I{polar} C{lon00} are copied, I{not} the ECEF converter. 

448 ''' 

449 self.reset(latlonh0, lon0=lon0, height0=height0, ecef=ecef, name=name, **lon00) 

450 

451 def __eq__(self, other): 

452 '''Compare this and an other instance. 

453 

454 @arg other: The other ellipsoid (L{LocalCartesian} or L{Ltp}). 

455 

456 @return: C{True} if equal, C{False} otherwise. 

457 ''' 

458 return other is self or (isinstance(other, self.__class__) and 

459 other.ecef == self.ecef and 

460 other._t0 == self._t0) 

461 

462 @Property_RO 

463 def datum(self): 

464 '''Get the ECEF converter's datum (L{Datum}). 

465 ''' 

466 return self.ecef.datum 

467 

468 @Property_RO 

469 def ecef(self): 

470 '''Get the ECEF converter (L{EcefKarney}). 

471 ''' 

472 return self._ecef 

473 

474 def _ecef2local(self, ecef, Xyz, Xyz_kwds): 

475 '''(INTERNAL) Convert geocentric/geodetic to local, like I{forward}. 

476 

477 @arg ecef: Geocentric (and geodetic) (L{Ecef9Tuple}). 

478 @arg Xyz: An L{XyzLocal}, L{Enu} or L{Ned} I{class} or C{None}. 

479 @arg Xyz_kwds: B{C{Xyz}} keyword arguments, ignored if C{B{Xyz} is None}. 

480 

481 @return: An C{B{Xyz}(x, y, z, ltp, **B{Xyz_kwds}} instance or if 

482 C{B{Xyz} is None}, a L{Local9Tuple}C{(x, y, z, lat, lon, 

483 height, ltp, ecef, M)} with this C{ltp}, B{C{ecef}} 

484 (L{Ecef9Tuple}) converted to this C{datum} and C{M=None}, 

485 always. 

486 ''' 

487 ltp = self 

488 if ecef.datum != ltp.datum: 

489 ecef = ecef.toDatum(ltp.datum) 

490 x, y, z = self.M.rotate(ecef.xyz, *ltp._t0_xyz) 

491 r = Local9Tuple(x, y, z, ecef.lat, ecef.lon, ecef.height, 

492 ltp, ecef, None, name=ecef.name) 

493 if Xyz: 

494 if not issubclassof(Xyz, *_XyzLocals4): # Vector3d 

495 raise _TypesError(_Xyz_, Xyz, *_XyzLocals4) 

496 r = r.toXyz(Xyz=Xyz, **Xyz_kwds) 

497 return r 

498 

499 @Property_RO 

500 def ellipsoid(self): 

501 '''Get the ECEF converter's ellipsoid (L{Ellipsoid}). 

502 ''' 

503 return self.ecef.datum.ellipsoid 

504 

505 def forward(self, latlonh, lon=None, height=0, M=False, name=NN): 

506 '''Convert I{geodetic} C{(lat, lon, height)} to I{local} cartesian 

507 C{(x, y, z)}. 

508 

509 @arg latlonh: Either a C{LatLon}, L{Ltp}, L{Ecef9Tuple} or C{scalar} 

510 (geodetic) latitude (C{degrees}). 

511 @kwarg lon: Optional C{scalar} (geodetic) longitude for C{scalar} 

512 B{C{latlonh}} (C{degrees}). 

513 @kwarg height: Optional height (C{meter}, conventionally) perpendicular 

514 to and above (or below) the ellipsoid's surface. 

515 @kwarg M: Optionally, return the I{concatenated} rotation L{EcefMatrix}, 

516 iff available (C{bool}). 

517 @kwarg name: Optional name (C{str}). 

518 

519 @return: A L{Local9Tuple}C{(x, y, z, lat, lon, height, ltp, ecef, M)} 

520 with I{local} C{x}, C{y}, C{z}, I{geodetic} C{(lat}, C{lon}, 

521 C{height}, this C{ltp}, C{ecef} (L{Ecef9Tuple}) with 

522 I{geocentric} C{x}, C{y}, C{z} (and I{geodetic} C{lat}, 

523 C{lon}, C{height}) and the I{concatenated} rotation matrix 

524 C{M} (L{EcefMatrix}) if requested. 

525 

526 @raise LocalError: If B{C{latlonh}} not C{scalar}, C{LatLon}, L{Ltp}, 

527 L{Ecef9Tuple} or invalid or if B{C{lon}} not 

528 C{scalar} for C{scalar} B{C{latlonh}} or invalid 

529 or if B{C{height}} invalid. 

530 ''' 

531 lat, lon, h, n = _llhn4(latlonh, lon, height, Error=LocalError, name=name) 

532 t = self.ecef._forward(lat, lon, h, n, M=M) 

533 x, y, z = self.M.rotate(t.xyz, *self._t0_xyz) 

534 m = self.M.multiply(t.M) if M else None 

535 return self._9Tuple(x, y, z, lat, lon, h, self, t, m, name=n or self.name) 

536 

537 @Property_RO 

538 def height0(self): 

539 '''Get the origin's height (C{meter}). 

540 ''' 

541 return self._t0.height 

542 

543 @Property_RO 

544 def lat0(self): 

545 '''Get the origin's latitude (C{degrees}). 

546 ''' 

547 return self._t0.lat 

548 

549 @Property_RO 

550 def latlonheight0(self): 

551 '''Get the origin's lat-, longitude and height (L{LatLon3Tuple}C{(lat, lon, height)}). 

552 ''' 

553 return LatLon3Tuple(self.lat0, self.lon0, self.height0, name=self.name) 

554 

555 def _local2ecef(self, local, nine=False, M=False): 

556 '''(INTERNAL) Convert I{local} to geocentric/geodetic, like I{.reverse}. 

557 

558 @arg local: Local (L{XyzLocal}, L{Enu}, L{Ned}, L{Aer} or L{Local9Tuple}). 

559 @kwarg nine: Return 3- or 9-tuple (C{bool}). 

560 @kwarg M: Include the rotation matrix (C{bool}). 

561 

562 @return: A I{geocentric} 3-tuple C{(x, y, z)} or if C{B{nine}=True}, 

563 an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}, 

564 optionally including rotation matrix C{M} or C{None}. 

565 ''' 

566 t = self.M.unrotate(local.xyz, *self._t0_xyz) 

567 if nine: 

568 t = self.ecef.reverse(*t, M=M) 

569 return t 

570 

571 @Property_RO 

572 def lon0(self): 

573 '''Get the origin's longitude (C{degrees}). 

574 ''' 

575 return self._t0.lon 

576 

577 @Property 

578 def lon00(self): 

579 '''Get the arbitrary, I{polar} longitude (C{degrees}). 

580 ''' 

581 return self._lon00 

582 

583 @lon00.setter # PYCHOK setter! 

584 def lon00(self, lon00): 

585 '''Set the arbitrary, I{polar} longitude (C{degrees}). 

586 ''' 

587 # lon00 <https://GitHub.com/mrJean1/PyGeodesy/issues/77> 

588 self._lon00 = Degrees(lon00=lon00) 

589 

590 @Property_RO 

591 def M(self): 

592 '''Get the rotation matrix (C{EcefMatrix}). 

593 ''' 

594 return self._t0.M 

595 

596 def reset(self, latlonh0=INT0, lon0=INT0, height0=INT0, ecef=None, name=NN, **lon00): 

597 '''Reset this converter, see L{LocalCartesian.__init__} and L{Ltp.__init__} for more details. 

598 ''' 

599 if isinstance(latlonh0, LocalCartesian): 

600 if self._t0: 

601 _update_all(self) 

602 self._ecef = latlonh0.ecef 

603 self._lon00 = latlonh0.lon00 

604 self._t0 = latlonh0._t0 

605 n = name or latlonh0.name 

606 else: 

607 lat0, lon0, height0, n = _llhn4(latlonh0, lon0, height0, suffix=_0_, 

608 Error=LocalError, name=name or self.name) 

609 if ecef: # PYCHOK no cover 

610 _xinstanceof(self._EcefClass, ecef=ecef) 

611 _update_all(self) 

612 self._ecef = ecef 

613 elif self._t0: 

614 _update_all(self) 

615 self._t0 = self.ecef._forward(lat0, lon0, height0, n, M=True) 

616 self.lon00 = _xattr(latlonh0, lon00=_xkwds_get(lon00, lon00=lon0)) 

617 if n: 

618 self.rename(n) 

619 

620 def reverse(self, xyz, y=None, z=None, M=False, name=NN, **lon00): 

621 '''Convert I{local} C{(x, y, z)} to I{geodetic} C{(lat, lon, height)}. 

622 

623 @arg xyz: A I{local} (L{XyzLocal}, L{Enu}, L{Ned}, L{Aer}, L{Local9Tuple}) or 

624 local C{x} coordinate (C{scalar}). 

625 @kwarg y: Local C{y} coordinate for C{scalar} B{C{xyz}} and B{C{z}} (C{meter}). 

626 @kwarg z: Local C{z} coordinate for C{scalar} B{C{xyz}} and B{C{y}} (C{meter}). 

627 @kwarg M: Optionally, return the I{concatenated} rotation L{EcefMatrix}, iff 

628 available (C{bool}). 

629 @kwarg name: Optional name (C{str}). 

630 @kwarg lon00: An arbitrary, I{polar} longitude (C{degrees}), returned for local 

631 C{B{x}=0} and C{B{y}=0} at I{polar} latitudes C{abs(B{lat0}) == 90}, 

632 overriding property C{lon00} and default C{B{lon00}=B{lon0}}. 

633 

634 @return: An L{Local9Tuple}C{(x, y, z, lat, lon, height, ltp, ecef, M)} with 

635 I{local} C{x}, C{y}, C{z}, I{geodetic} C{lat}, C{lon}, C{height}, 

636 this C{ltp}, an C{ecef} (L{Ecef9Tuple}) with the I{geocentric} C{x}, 

637 C{y}, C{z} (and I{geodetic} C{lat}, C{lon}, C{height}) and the 

638 I{concatenated} rotation matrix C{M} (L{EcefMatrix}) if requested. 

639 

640 @raise LocalError: Invalid B{C{xyz}} or C{scalar} C{x} or B{C{y}} and/or B{C{z}} 

641 not C{scalar} for C{scalar} B{C{xyz}}. 

642 ''' 

643 x, y, z, n = _xyzn4(xyz, y, z, _XyzLocals5, Error=LocalError, name=name) 

644 c = self.M.unrotate((x, y, z), *self._t0_xyz) 

645 t = self.ecef.reverse(*c, M=M, lon00=_xkwds_get(lon00, lon00=self.lon00)) 

646 m = self.M.multiply(t.M) if M else None 

647 return self._9Tuple(x, y, z, t.lat, t.lon, t.height, self, t, m, name=n or self.name) 

648 

649 @Property_RO 

650 def _t0_xyz(self): 

651 '''(INTERNAL) Get C{(x0, y0, z0)} as L{Vector3Tuple}. 

652 ''' 

653 return self._t0.xyz 

654 

655 def toStr(self, prec=9, **unused): # PYCHOK signature 

656 '''Return this L{LocalCartesian} as a string. 

657 

658 @kwarg prec: Precision, number of (decimal) digits (0..9). 

659 

660 @return: This L{LocalCartesian} representation (C{str}). 

661 ''' 

662 return self.attrs(_lat0_, _lon0_, _height0_, _M_, _ecef_, _name_, prec=prec) 

663 

664 

665class Ltp(LocalCartesian): 

666 '''A I{local tangent plan} (LTP), a sub-class of C{LocalCartesian} with 

667 (re-)configurable ECEF converter. 

668 ''' 

669 _EcefClass = _EcefBase 

670 

671 def __init__(self, latlonh0=INT0, lon0=INT0, height0=INT0, ecef=None, name=NN, **lon00): 

672 '''New C{Ltp}, see L{LocalCartesian.__init__} for more details. 

673 

674 @kwarg ecef: Optional ECEF converter (L{EcefKarney}, L{EcefFarrell21}, 

675 L{EcefFarrell22}, L{EcefSudano}, L{EcefVeness} or 

676 L{EcefYou} I{instance}), overriding the default 

677 L{EcefKarney}C{(datum=Datums.WGS84)} for C{scalar}. 

678 

679 @raise TypeError: Invalid B{C{ecef}}. 

680 ''' 

681 LocalCartesian.reset(self, latlonh0, lon0=lon0, height0=height0, 

682 ecef=ecef, name=name, **lon00) 

683 

684 @Property 

685 def ecef(self): 

686 '''Get this LTP's ECEF converter (C{Ecef...} I{instance}). 

687 ''' 

688 return self._ecef 

689 

690 @ecef.setter # PYCHOK setter! 

691 def ecef(self, ecef): 

692 '''Set this LTP's ECEF converter (C{Ecef...} I{instance}). 

693 

694 @raise TypeError: Invalid B{C{ecef}}. 

695 ''' 

696 _xinstanceof(_EcefBase, ecef=ecef) 

697 if ecef != self._ecef: # PYCHOK no cover 

698 self.reset(self._t0) 

699 self._ecef = ecef 

700 

701 

702class _ChLV(object): 

703 '''(INTERNAL) Base class for C{ChLV*} classes. 

704 ''' 

705 _03_falsing = ChLVyx2Tuple(0.6e6, 0.2e6) 

706# _92_falsing = ChLVYX2Tuple(2.0e6, 1.0e6) # _95_ - _03_ 

707 _95_falsing = ChLVEN2Tuple(2.6e6, 1.2e6) 

708 

709 def _ChLV9Tuple(self, fw, M, name, *Y_X_h_lat_lon_h): 

710 '''(INTERNAL) Helper for C{ChLVa/e.forward} and C{.reverse}. 

711 ''' 

712 if bool(M): # PYCHOK no cover 

713 m = self.forward if fw else self.reverse # PYCHOK attr 

714 n = _DOT_(self.__class__.__name__, m.__name__) 

715 raise _NotImplementedError(unstr(n, M=M), txt=None) 

716 t = Y_X_h_lat_lon_h + (self, self._t0, None) # PYCHOK _t0 

717 return ChLV9Tuple(t, name=name) 

718 

719 @property_RO 

720 def _enh_n_h(self): 

721 '''(INTERNAL) Get C{ChLV*.reverse} args[1:4] names, I{once}. 

722 ''' 

723 t = _xargs_names(_ChLV.reverse)[1:4] 

724 _ChLV._enh_n_h = t # overwrite this property_RO 

725 # assert _xargs_names( ChLV.reverse)[1:4] == t 

726 # assert _xargs_names(ChLVa.reverse)[1:4] == t 

727 # assert _xargs_names(ChLVe.reverse)[1:4] == t 

728 return t 

729 

730 def forward(self, latlonh, lon=None, height=0, M=None, name=NN): # PYCHOK no cover 

731 '''Convert WGS84 geodetic to I{Swiss} projection coordinates. 

732 

733 @arg latlonh: Either a C{LatLon}, L{Ltp} or C{scalar} (geodetic) latitude (C{degrees}). 

734 @kwarg lon: Optional, C{scalar} (geodetic) longitude for C{scalar} B{C{latlonh}} (C{degrees}). 

735 @kwarg height: Optional, height, vertically above (or below) the surface of the ellipsoid 

736 (C{meter}) for C{scalar} B{C{latlonh}} and B{C{lon}}. 

737 @kwarg M: If C{True}, return the I{concatenated} rotation L{EcefMatrix} iff available 

738 for C{ChLV} only, C{None} otherwise (C{bool}). 

739 @kwarg name: Optional name (C{str}). 

740 

741 @return: A L{ChLV9Tuple}C{(Y, X, h_, lat, lon, height, ltp, ecef, M)} with the unfalsed 

742 I{Swiss Y, X} coordinates, I{Swiss h_} height, the given I{geodetic} C{lat}, 

743 C{lon} and C{height}, this C{ChLV*} instance and C{ecef} (L{Ecef9Tuple}) at 

744 I{Bern, Ch} and rotation matrix C{M}. The returned C{ltp} is this C{ChLV}, 

745 C{ChLVa} or C{ChLVe} instance. 

746 

747 @raise LocalError: Invalid or non-C{scalar} B{C{latlonh}}, B{C{lon}} or B{C{height}}. 

748 ''' 

749 notOverloaded(self, latlonh, lon=lon, height=height, M=M, name=name) 

750 

751 def reverse(self, enh_, n=None, h_=0, M=None, **name): # PYCHOK no cover 

752 '''Convert I{Swiss} projection to WGS84 geodetic coordinates. 

753 

754 @arg enh_: A Swiss projection (L{ChLV9Tuple}) or the C{scalar}, falsed I{Swiss E_LV95} 

755 or I{y_LV03} easting (C{meter}). 

756 @kwarg n: Falsed I{Swiss N_LV85} or I{x_LV03} northing for C{scalar} B{C{enh_}} and 

757 B{C{h_}} (C{meter}). 

758 @kwarg h_: I{Swiss h'} height for C{scalar} B{C{enh_}} and B{C{n}} (C{meter}). 

759 @kwarg M: If C{True}, return the I{concatenated} rotation L{EcefMatrix} iff available 

760 for C{ChLV} only, C{None} otherwise (C{bool}). 

761 @kwarg name: Optional name (C{str}). 

762 

763 @return: A L{ChLV9Tuple}C{(Y, X, h_, lat, lon, height, ltp, ecef, M)} with the unfalsed 

764 I{Swiss Y, X} coordinates, I{Swiss h_} height, the given I{geodetic} C{lat}, 

765 C{lon} and C{height}, this C{ChLV*} instance and C{ecef} (L{Ecef9Tuple}) at 

766 I{Bern, Ch} and rotation matrix C{M}. The returned C{ltp} is this C{ChLV}, 

767 C{ChLVa} or C{ChLVe} instance. 

768 

769 @raise LocalError: Invalid or non-C{scalar} B{C{enh_}}, B{C{n}} or B{C{h_}}. 

770 ''' 

771 notOverloaded(self, enh_, n=n, h_=h_, M=M, **name) 

772 

773 @staticmethod 

774 def _falsing2(LV95): 

775 '''(INTERNAL) Get the C{LV95} or C{LV03} falsing. 

776 ''' 

777 return _ChLV._95_falsing if LV95 in (True, 95) else ( 

778 _ChLV._03_falsing if LV95 in (False, 3) else ChLVYX2Tuple(0, 0)) 

779 

780 @staticmethod 

781 def _llh2abh_3(lat, lon, h): 

782 '''(INTERNAL) Helper for C{ChLVa/e.forward}. 

783 ''' 

784 def _deg2ab(deg, sLL): 

785 # convert degrees to arc-seconds 

786 def _dms(ds, p, q, swap): 

787 d = _floor(ds) 

788 t = (ds - d) * p 

789 m = _floor(t) 

790 s = (t - m) * p 

791 if swap: 

792 d, s = s, d 

793 return d + (m + s * q) * q 

794 

795 s = _dms(deg, _60_0, _0_01, False) # deg2sexag 

796 s = _dms( s, _100_0, _60_0, True) # sexag2asec 

797 return (s - sLL) / ChLV._s_ab 

798 

799 a = _deg2ab(lat, ChLV._sLat) # phi', lat_aux 

800 b = _deg2ab(lon, ChLV._sLon) # lam', lng_aux 

801 h_ = fsumf_(h, -ChLV.Bern.height, 2.73 * b, 6.94 * a) 

802 return a, b, h_ 

803 

804 @staticmethod 

805 def _YXh_2abh3(Y, X, h_): 

806 '''(INTERNAL) Helper for C{ChLVa/e.reverse}. 

807 ''' 

808 def _YX2ab(YX): 

809 return YX * ChLV._ab_m 

810 

811 a, b = map1(_YX2ab, Y, X) 

812 h = fsumf_(h_, ChLV.Bern.height, -12.6 * a, -22.64 * b) 

813 return a, b, h 

814 

815 def _YXh_n4(self, enh_, n, h_, **name): 

816 '''(INTERNAL) Helper for C{ChLV*.reverse}. 

817 ''' 

818 Y, X, h_, name = _xyzn4(enh_, n, h_, ChLV9Tuple, 

819 _xyz_y_z_names=self._enh_n_h, **name) 

820 if isinstance(enh_, ChLV9Tuple): 

821 Y, X = enh_.Y, enh_.X 

822 else: # isscalar(enh_) 

823 Y, X = ChLV.unfalse2(Y, X) # PYCHOK ChLVYX2Tuple 

824 return Y, X, h_, name 

825 

826 

827class ChLV(_ChLV, Ltp): 

828 '''Conversion between I{WGS84 geodetic} and I{Swiss} projection coordinates using 

829 L{pygeodesy.EcefKarney}'s Earth-Centered, Earth-Fixed (ECEF) methods. 

830 

831 @see: U{Swiss projection formulas<https://www.SwissTopo.admin.CH/en/maps-data-online/ 

832 calculation-services.html>}, page 7ff, U{NAVREF<https://www.SwissTopo.admin.CH/en/ 

833 maps-data-online/calculation-services/navref.html>}, U{REFRAME<https://www.SwissTopo.admin.CH/ 

834 en/maps-data-online/calculation-services/reframe.html>} and U{SwissTopo Scripts GPS WGS84 

835 <-> LV03<https://GitHub.com/ValentinMinder/Swisstopo-WGS84-LV03>}. 

836 ''' 

837 _9Tuple = ChLV9Tuple 

838 

839 _ab_d = 0.36 # a, b units per degree, ... 

840 _ab_m = 1.0e-6 # ... per meter and ... 

841 _ab_M = _1_0 # ... per 1,000 kilometer 

842 _s_d = _3600_0 # arc-seconds per degree ... 

843 _s_ab = _s_d / _ab_d # ... and per a, b unit 

844 _sLat = 169028.66 # Bern, Ch in ... 

845 _sLon = 26782.5 # ... arc-seconds ... 

846 # lat, lon, height == 46°57'08.66", 7°26'22.50", 49.55m ("new" 46°57'07.89", 7°26'22.335") 

847 Bern = LatLon4Tuple(_sLat / _s_d, _sLon / _s_d, 49.55, _WGS84, name='Bern') 

848 

849 def __init__(self, latlonh0=Bern, **other_Ltp_kwds): 

850 '''New ECEF-based I{WGS84-Swiss} L{ChLV} converter, centered at I{Bern, Ch}. 

851 

852 @kwarg latlonh0: The I{geodetic} origin and height, overriding C{Bern, Ch}. 

853 @kwarg other_Ltp_kwds: Optional, other L{Ltp.__init__} keyword arguments. 

854 

855 @see: L{Ltp.__init__} for more information. 

856 ''' 

857 Ltp.__init__(self, latlonh0, **_xkwds(other_Ltp_kwds, ecef=None, name=ChLV.Bern.name)) 

858 

859 def forward(self, latlonh, lon=None, height=0, M=None, name=NN): # PYCHOK unused M 

860 # overloaded for the _ChLV.forward.__doc__ 

861 return Ltp.forward(self, latlonh, lon=lon, height=height, M=M, name=name) 

862 

863 def reverse(self, enh_, n=None, h_=0, M=None, **name): # PYCHOK signature 

864 # overloaded for the _ChLV.reverse.__doc__ 

865 Y, X, h_, name = self._YXh_n4(enh_, n, h_, **name) 

866 return Ltp.reverse(self, Y, X, h_, M=M, name=name) 

867 

868 @staticmethod 

869 def false2(Y, X, LV95=True, name=NN): 

870 '''Add the I{Swiss LV95} or I{LV03} falsing. 

871 

872 @arg Y: Unfalsed I{Swiss Y} easting (C{meter}). 

873 @arg X: Unfalsed I{Swiss X} northing (C{meter}). 

874 @kwarg LV95: If C{True} add C{LV95} falsing, if C{False} add 

875 C{LV03} falsing, otherwise leave unfalsed. 

876 @kwarg name: Optional name (C{str}). 

877 

878 @return: A L{ChLVEN2Tuple}C{(E_LV95, N_LV95)} or a 

879 L{ChLVyx2Tuple}C{(y_LV03, x_LV03)} with falsed B{C{Y}} 

880 and B{C{X}}, otherwise a L{ChLVYX2Tuple}C{(Y, X)} 

881 with B{C{Y}} and B{C{X}} as-is. 

882 ''' 

883 e, n = t = _ChLV._falsing2(LV95) 

884 return t.classof(e + Y, n + X, name=name) 

885 

886 @staticmethod 

887 def isLV03(e, n): 

888 '''Is C{(B{e}, B{n})} a valid I{Swiss LV03} projection? 

889 

890 @arg e: Falsed (or unfalsed) I{Swiss} easting (C{meter}). 

891 @arg n: Falsed (or unfalsed) I{Swiss} northing (C{meter}). 

892 

893 @return: C{True} if C{(B{e}, B{n})} is a valid, falsed I{Swiss 

894 LV03}, projection C{False} otherwise. 

895 ''' 

896 # @see: U{Map<https://www.SwissTopo.admin.CH/en/knowledge-facts/ 

897 # surveying-geodesy/reference-frames/local/lv95.html>} 

898 return 400.0e3 < e < 900.0e3 and 40.0e3 < n < 400.0e3 

899 

900 @staticmethod 

901 def isLV95(e, n, raiser=True): 

902 '''Is C{(B{e}, B{n})} a valid I{Swiss LV95} or I{LV03} projection? 

903 

904 @arg e: Falsed (or unfalsed) I{Swiss} easting (C{meter}). 

905 @arg n: Falsed (or unfalsed) I{Swiss} northing (C{meter}). 

906 @kwarg raiser: If C{True}, throw a L{LocalError} if B{C{e}} and 

907 B{C{n}} are invalid I{Swiss LV95} nor I{LV03}. 

908 

909 @return: C{True} or C{False} if C{(B{e}, B{n})} is a valid I{Swiss 

910 LV95} respectively I{LV03} projection, C{None} otherwise. 

911 ''' 

912 if ChLV.isLV03(e, n): 

913 return False 

914 elif ChLV.isLV03(e - 2.0e6, n - 1.0e6): # _92_falsing = _95_ - _03_ 

915 return True 

916 elif raiser: # PYCHOK no cover 

917 raise LocalError(unstr(ChLV.isLV95, e=e, n=n)) 

918 return None 

919 

920 @staticmethod 

921 def unfalse2(e, n, LV95=None, name=NN): 

922 '''Remove the I{Swiss LV95} or I{LV03} falsing. 

923 

924 @arg e: Falsed I{Swiss E_LV95} or I{y_LV03} easting (C{meter}). 

925 @arg n: Falsed I{Swiss N_LV95} or I{x_LV03} northing (C{meter}). 

926 @kwarg LV95: If C{True} remove I{LV95} falsing, if C{False} remove 

927 I{LV03} falsing, otherwise use method C{isLV95(B{e}, 

928 B{n})}. 

929 @kwarg name: Optional name (C{str}). 

930 

931 @return: A L{ChLVYX2Tuple}C{(Y, X)} with the unfalsed B{C{e}} 

932 respectively B{C{n}}. 

933 ''' 

934 Y, X = _ChLV._falsing2(ChLV.isLV95(e, n) if LV95 is None else LV95) 

935 return ChLVYX2Tuple(e - Y, n - X, name=name) 

936 

937 

938class ChLVa(_ChLV, LocalCartesian): 

939 '''Conversion between I{WGS84 geodetic} and I{Swiss} projection coordinates 

940 using the U{Approximate<https://www.SwissTopo.admin.CH/en/maps-data-online/ 

941 calculation-services.html>} formulas, page 13. 

942 

943 @see: Older U{references<https://GitHub.com/alphasldiallo/Swisstopo-WGS84-LV03>}. 

944 ''' 

945 def __init__(self, name=ChLV.Bern.name): 

946 '''New I{Approximate WGS84-Swiss} L{ChLVa} converter, centered at I{Bern, Ch}. 

947 

948 @kwarg name: Optional name (C{str}), overriding C{Bern.name}. 

949 ''' 

950 LocalCartesian.__init__(self, latlonh0=ChLV.Bern, name=name) 

951 

952 def forward(self, latlonh, lon=None, height=0, M=None, name=NN): 

953 # overloaded for the _ChLV.forward.__doc__ 

954 lat, lon, h, name = _llhn4(latlonh, lon, height, name=name) 

955 a, b, h_ = _ChLV._llh2abh_3(lat, lon, h) 

956 a2, b2 = a**2, b**2 

957 

958 Y = fsumf_( 72.37, 211455.93 * b, 

959 -10938.51 * b * a, 

960 -0.36 * b * a2, 

961 -44.54 * b * b2) # + 600_000 

962 X = fsumf_(147.07, 308807.95 * a, 

963 3745.25 * b2, 

964 76.63 * a2, 

965 -194.56 * b2 * a, 

966 119.79 * a2 * a) # + 200_000 

967 return self._ChLV9Tuple(True, M, name, Y, X, h_, lat, lon, h) 

968 

969 def reverse(self, enh_, n=None, h_=0, M=None, **name): # PYCHOK signature 

970 # overloaded for the _ChLV.reverse.__doc__ 

971 Y, X, h_, name = self._YXh_n4(enh_, n, h_, **name) 

972 a, b, h = _ChLV._YXh_2abh3(Y, X, h_) 

973 ab_d, a2, b2 = ChLV._ab_d, a**2, b**2 

974 

975 lat = Fsum(16.9023892, 3.238272 * b, 

976 -0.270978 * a2, 

977 -0.002528 * b2, 

978 -0.0447 * a2 * b, 

979 -0.014 * b2 * b).fover(ab_d) 

980 lon = Fsum( 2.6779094, 4.728982 * a, 

981 0.791484 * a * b, 

982 0.1306 * a * b2, 

983 -0.0436 * a * a2).fover(ab_d) 

984 return self._ChLV9Tuple(False, M, name, Y, X, h_, lat, lon, h) 

985 

986 

987class ChLVe(_ChLV, LocalCartesian): 

988 '''Conversion between I{WGS84 geodetic} and I{Swiss} projection coordinates 

989 using the U{Ellipsoidal approximate<https://www.SwissTopo.admin.CH/en/ 

990 maps-data-online/calculation-services.html>} formulas, pp 10-11 and U{Bolliger, 

991 J.<https://eMuseum.GGGS.CH/literatur-lv/liste-Dateien/1967_Bolliger_a.pdf>} 

992 pp 148-151 (also U{GGGS<https://eMuseum.GGGS.CH/literatur-lv/liste.htm>}). 

993 

994 @note: Methods L{ChLVe.forward} and L{ChLVe.reverse} have an additional keyword 

995 argument C{B{gamma}=False} to approximate the I{meridian convergence}. 

996 If C{B{gamma}=True} a 2-tuple C{(t, gamma)} is returned with C{t} the 

997 usual result (C{ChLV9Tuple}) and C{gamma}, the I{meridian convergence} 

998 (decimal C{degrees}). To convert C{gamma} to C{grades} or C{gons}, 

999 use function L{pygeodesy.degrees2grades}. 

1000 

1001 @see: Older U{references<https://GitHub.com/alphasldiallo/Swisstopo-WGS84-LV03>}. 

1002 ''' 

1003 def __init__(self, name=ChLV.Bern.name): 

1004 '''New I{Approximate WGS84-Swiss} L{ChLVe} converter, centered at I{Bern, Ch}. 

1005 

1006 @kwarg name: Optional name (C{str}), overriding C{Bern.name}. 

1007 ''' 

1008 LocalCartesian.__init__(self, latlonh0=ChLV.Bern, name=name) 

1009 

1010 def forward(self, latlonh, lon=None, height=0, M=None, name=NN, gamma=False): # PYCHOK gamma 

1011 # overloaded for the _ChLV.forward.__doc__ 

1012 lat, lon, h, name = _llhn4(latlonh, lon, height, name=name) 

1013 a, b, h_ = _ChLV._llh2abh_3(lat, lon, h) 

1014 ab_M, z, _F = ChLV._ab_M, 0, Fhorner 

1015 

1016 B1 = _F(a, 211428.533991, -10939.608605, -2.658213, -8.539078, -0.00345, -0.007992) 

1017 B3 = _F(a, -44.232717, 4.291740, -0.309883, 0.013924) 

1018 B5 = _F(a, 0.019784, -0.004277) 

1019 Y = _F(b, z, B1, z, B3, z, B5).fover(ab_M) # 1,000 Km! 

1020 

1021 B0 = _F(a, z, 308770.746371, 75.028131, 120.435227, 0.009488, 0.070332, -0.00001) 

1022 B2 = _F(a, 3745.408911, -193.792705, 4.340858, -0.376174, 0.004053) 

1023 B4 = _F(a, -0.734684, 0.144466, -0.011842) 

1024 B6 = 0.000488 

1025 X = _F(b, B0, z, B2, z, B4, z, B6).fover(ab_M) # 1,000 Km! 

1026 

1027 t = self._ChLV9Tuple(True, M, name, Y, X, h_, lat, lon, h) 

1028 if gamma: 

1029 U1 = _F(a, 2255515.207166, 2642.456961, 1.284180, 2.577486, 0.001165) 

1030 U3 = _F(a, -412.991934, 64.106344, -2.679566, 0.123833) 

1031 U5 = _F(a, 0.204129, -0.037725) 

1032 g = _F(b, z, U1, z, U3, z, U5).fover(ChLV._ab_m) # * ChLV._ab_d degrees? 

1033 t = t, g 

1034 return t 

1035 

1036 def reverse(self, enh_, n=None, h_=0, M=None, name=NN, gamma=False): # PYCHOK gamma 

1037 # overloaded for the _ChLV.reverse.__doc__ 

1038 Y, X, h_, name = self._YXh_n4(enh_, n, h_, name=name) 

1039 a, b, h = _ChLV._YXh_2abh3(Y, X, h_) 

1040 s_d, _F, z = ChLV._s_d, Fhorner, 0 

1041 

1042 A0 = _F(b, ChLV._sLat, 32386.4877666, -25.486822, -132.457771, 0.48747, 0.81305, -0.0069) 

1043 A2 = _F(b, -2713.537919, -450.442705, -75.53194, -14.63049, -2.7604) 

1044 A4 = _F(b, 24.42786, 13.20703, 4.7476) 

1045 A6 = -0.4249 

1046 lat = _F(a, A0, z, A2, z, A4, z, A6).fover(s_d) 

1047 

1048 A1 = _F(b, 47297.3056722, 7925.714783, 1328.129667, 255.02202, 48.17474, 9.0243) 

1049 A3 = _F(b, -442.709889, -255.02202, -96.34947, -30.0808) 

1050 A5 = _F(b, 9.63495, 9.0243) 

1051 lon = _F(a, ChLV._sLon, A1, z, A3, z, A5).fover(s_d) 

1052 # == (ChLV._sLon + a * (A1 + a**2 * (A3 + a**2 * A5))) / s_d 

1053 

1054 t = self._ChLV9Tuple(False, M, name, Y, X, h_, lat, lon, h) 

1055 if gamma: 

1056 U1 = _F(b, 106679.792202, 17876.57022, 4306.5241, 794.87772, 148.1545, 27.8725) 

1057 U3 = _F(b, -1435.508, -794.8777, -296.309, -92.908) 

1058 U5 = _F(b, 29.631, 27.873) 

1059 g = _F(a, z, U1, z, U3, z, U5).fover(ChLV._s_ab) # degrees 

1060 t = t, g 

1061 return t 

1062 

1063 

1064def tyr3d(tilt=INT0, yaw=INT0, roll=INT0, Vector=Vector3d, **Vector_kwds): 

1065 '''Convert an attitude oriention into a (3-D) direction vector. 

1066 

1067 @kwarg tilt: Pitch, elevation from horizontal (C{degrees}), negative down 

1068 (clockwise rotation along and around the x-axis). 

1069 @kwarg yaw: Bearing, heading (compass C{degrees360}), clockwise from North 

1070 (counter-clockwise rotation along and around the z-axis). 

1071 @kwarg roll: Roll, bank (C{degrees}), positive to the right and down 

1072 (clockwise rotation along and around the y-axis). 

1073 

1074 @return: A named B{C{Vector}} instance or if B{C{Vector}} is C{None}, 

1075 a named L{Vector3Tuple}C{(x, y, z)}. 

1076 

1077 @see: U{Yaw, pitch, and roll rotations<http://MSL.CS.UIUC.edu/planning/node102.html>} 

1078 and function L{pygeodesy.hartzell} argument C{los}. 

1079 ''' 

1080 d = Attitude4Tuple(_0_0, tilt, yaw, roll).tyr3d 

1081 return d if Vector is type(d) else ( 

1082 Vector3Tuple(d.x, d.y, d.z, name=d.name) if Vector is None else 

1083 Vector(d.x, d.y, d.z, **_xkwds(Vector_kwds, name=d.name))) # PYCHOK indent 

1084 

1085 

1086def _xLtp(ltp, *dflt): 

1087 '''(INTERNAL) Validate B{C{ltp}}. 

1088 ''' 

1089 if dflt and ltp is None: 

1090 ltp = dflt[0] 

1091 if isinstance(ltp, (LocalCartesian, Ltp)): 

1092 return ltp 

1093 raise _TypesError(_ltp_, ltp, Ltp, LocalCartesian) 

1094 

1095# **) MIT License 

1096# 

1097# Copyright (C) 2016-2023 -- mrJean1 at Gmail -- All Rights Reserved. 

1098# 

1099# Permission is hereby granted, free of charge, to any person obtaining a 

1100# copy of this software and associated documentation files (the "Software"), 

1101# to deal in the Software without restriction, including without limitation 

1102# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

1103# and/or sell copies of the Software, and to permit persons to whom the 

1104# Software is furnished to do so, subject to the following conditions: 

1105# 

1106# The above copyright notice and this permission notice shall be included 

1107# in all copies or substantial portions of the Software. 

1108# 

1109# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

1110# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

1111# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

1112# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

1113# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

1114# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

1115# OTHER DEALINGS IN THE SOFTWARE.