A package for the
management of NMR data

Author:
Francesco Bruno

Major contributors:
Letizia Fiorucci

Version: 0.4a.7

Documentation release date:
November 11, 2024

Contents

1 Introduction

2 User guide

2.1 [Imitialize the package
2.1.1 Extra variableso
2.2 Processing of a 'raw'lD spectrum oL Lo
2.2.1 Theclass pSpectrum_1Do
2.3 Processing of a 'raw'2D spectrum Lo
2.3.1 Computing projectionso
2.4 Simulating data
24.1 Simulate ID data
2.4.2 Simulate 2D data Lo
2.5 ThePseudo_2D class L
2.6 Deconvolution of 1D datasets
2.7 Example scripts L
2.7.1 Reading and processing of 1D spectra L.
2.7.2 Fit 1D spectrum
2.7.3 Read and process 2D spectrum

3 List of modules and functions

;1 MISC package

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16
3.1.17
3.1.18
3.1.19
3.1.20

misc.avg_antidiago
misc.binomial triangle oo
misc.calcres L
misc.cmap2list L L.
misc.data2wav
misc.edit checkboxes oo
misc.extend taq
misc.find mnearesto
misc.freq2ppm L.
misc.get trace L
misc.get ylimo Lo
misc.hankelo
misc.hz2pt
MISC.ANZPX . . v . v v e e e e e
misc.load ser
misc.makeacqus 1Do
misc.makeacqus 1D jeolo
misc.makeacqus 1D oxford o oL
misc.makeacqus 1D spinsolve
misc.makeacqus 1D varian

i

3.2

1l

3.1.21 misc.makeacqus 2D oL oo 39
3.1.22 misc.mathformato 40
3.1.23 misc.merge dict Lo 41
3.1.24 miscamolfrac L 42
3.1.25 misc.noise_std 43
3.1.26 misc.nuc_formato 44
3.1.27 misc.polyn 45
3.1.28 misc.ppm2freq 46
3.1.29 misc.ppmfindo 47
3.1.30 misc.pretty scaleo 48
3.1.31 misc.print_dict 49
3.1.32 misc.print_list Lo 50
3.1.33 misc.procpar e o1
3.1.34 misc.pX2In 52
3.1.35 misc.readlistfile o 53
3.1.36 misc.select for integration oL 54
3.1.37 misc.select traces. %)
3.1.38 misc.set fontsizes L 56
3.1.39 misc.set _ylimo 0oL 57
3.1.40 misc.show cmap L o8
3.1.41 misc.snr ..o e 29
3.1.42 misc.snr 2D . Lo Lo Lo 60
3.1.43 misc.split_acqus 2Do oL 61
3.1.44 misc.split_procs 2D . .. Lo Lo 62
3.1.45 misc.trim_data 63
3.1.46 misc.trim_data 2Do 64
3.1.47 misc.unhankelo oL 65
3.1.48 misc.write _acqus 1Do oo 66
3.1.49 misc.write _acqus 2Do 67
3.1.00 misc.write_helpo 68
3.1.51 misc.write sero L 69
3.1.52 miSc.Zero__CrosSINg o . ..o e 70
PROCESSING package 7l
3.2.1 processing.acme Lo o e e 71
3.2.2 processing.align Lo 72
3.2.3 processing.baseline _correctiono 73
3.24 processing.blp 74
3.2.5 processing.blp ng 5
3.2.6 processing.cadzow Lo 76
3.2.7 processing.cadzow 2Do 7
3.2.8 processing.calc_ nc Lo L 78
3.2.9 processing.calibration 0oL 79
3.2.10 processing.convdta 80
3.2.11 processing.convolveo 81
3.2.12 processing.eaeo L 82
3.2.13 processing.em e 83
3.2.14 processing.fp 84
3.2.15 processing.ft 85
3.2.16 processing.gml e 86
3.2.17 processing.gmb Lo 87
3.2.18 processing.hilberto 88

3.3

v

3.2.19 processing.ift 89
3.2.20 processing.integralo Lo 90
3.2.21 processing.integral 2Do 0oL 91
3.2.22 processing.integrate Lo 92
3.2.23 processing.interactive _basl windowso o 0oL 93
3.2.24 processing.interactive _echo paramo 94
3.2.25 processing.interactive fpo oL 95
3.2.26 processing.interactive _phase 1D 00000 96
3.2.27 processing.interactive _phase 2Do L0000 97
3.2.28 processing.interactive qgfilo o oo 98
3.2.29 processing.interactive _xftbo 99
3.2.30 processing.inv_convolve 100
3.2.31 processing.inv_fp L 101
3.2.32 processing.inv_xfbo 102
3.2.33 processing.iterCadzow 103
3.2.34 processing.load baselineo Lo 104
3.2.35 processing.Ip 105
3.2.36 processing.Irdo 106
3.2.37 processing.make polynomion baseline 000 107
3.2.38 processing.make scale oL 108
3.2.39 Processing.INCrt i e 109
3.2.40 processing.mcr_als 110
3.2.41 processing.mcr _stack Lo Lo 111
3.2.42 processing.mer_unpack oL Lo 112
3.2.43 processing.pknl 113
3.2.44 Processing.PS . . . v oo i e 114
3.2.45 processing.qfilo 115
3.2.46 processing.qpol 116
3.2.47 processing.qsin Lo 117
3.248 processing.quad 118
3.2.49 processing.repack 2Do oL 119
3.2.00 Processing.rev i e e 120
3.2.51 processing.rpbc Lo 121
3.2.52 processing.simplismao 123
3.2.03 Processing.sino e 124
3.2.54 processing.split_echo traino 125
3.2.55 processing.stack _fids oL 126
3.2.56 processing.sum_echo train Lo 127
3.2.57 processing.td _eff 128
3.2.08 processing.tp_hyper 129
3.2.59 processing.unpack 2D 130
3.2.60 processing.whittaker smoother o000 131
3.2.61 processing.write basl info. 0000000 132
3.2.62 processing.xftb 133
3.2.63 processing.zf 134
FIGURES package 135
3.3.1 figures.ax1D oL 135
3.3.2 figures.ax2D Lo 137
3.3.3 figures.ax _heatmapo 139
3.3.4 figures.dotmd L 140
3.3.5 figures.dotmd 2Do 141

3.4

3.5

3.3.6 figures.figurelDo 142
3.3.7 figures.figurelD multi 143
3.3.8 figures.figure2D 144
3.3.9 figures.figure2D multi o 146
3.3.10 figures.fitfigureo 148
3.3.11 figures.heatmap 149
3.3.12 figures.ongoing fit 150
3.3.13 figures.plot fid 151
3.3.14 figures.plot _fid re 152
3.3.15 figures.redraw contourso 153
3.3.16 figures.sns _heatmapo 154
3.3.17 figures.stacked ploto oo 155
SIM package. 156
3.4.1 sim.calc_splittingo 156
3.4.2 SIM.CTON L L Lo e 157
3.4.3 simf gaussian L 158
344 simf lorentzian 159
3.4.5 simf _pvoigh.o 160
3.4.6 sim.gaussian filter Lo Lo 161
3.4.7 sim.oad sim 1Do 162
3.4.8 simdoad sim 2Do Lo 163
3.4.9 simmult noise 164
3.4.10 sim.multiplet 165
3.4.11 SIMNoISegen 166
3.4.12 sim.sim 1D . .00 167
3.4.13 simssim_ 2D .00 0oL o 168
3.4.14 sim.t_2Dgaussiano 169
3.4.15 sim.t_2Dlorentzian oL 170
3.4.16 sim.t 2Dpvoigt L 171
3.4.17 sim.t 2Dvoigt 172
3.4.18 sim.t_gaussian L.l o e 173
3.4.19 sim.t_lorentziano 174
3.4.20 sim.t_ pvoigt L 175
3.4.21 sim.t_voight . ..o 176
3.4.22 sim.water7o L 177
FIT package 178
3.5.1 fit.CostFunc 178
3.5.2 fittPeak 181
3.5.3 fit.SINC ObjFunc 183
3.5.4 fit.Voigt Fito 185
3.5.5 fit.Voigt Fit P2D 190
3.5.6 fit.ax_histogram 194
3.5.7 fithin data 195
3.5.8 fitbuild 2D sgn 196
3.5.9 fit.build baselineo 197
3.5.10 fit.cale R2 o oo 198
3.5.11 fit.cale _fit lines L 199
3.5.12 fitdic2mato 200
3.5.13 fitfit int ..o Lo 201
3.5.14 fit.gaussian fito 202

3.6

vi

3.5.15 fit.gen iguess 203
3.5.16 fit.gen iguess 2Do 204
3.5.17 fit.get _region 205
3.5.18 fit.histogram 206
3.5.19 fitintegrate L 207
3.5.20 fit.integrate 2Do L 208
3.5.21 fit.interactive smoothing oL Lo oL 209
3.5.22 fitjoin_par 210
3.5.23 fitdr . . L 211
3.5.24 fitdsp. . . oL 212
3.5.25 fit.make iguess 213
3.5.26 fit.make iguess P2Do Lo 214
3.5.27 fit.make iguess auto 215
3.5.28 fit.tmake signal 216
3.5.29 fit.peak pick 217
3.5.30 fit.plot fit 218
3.5.31 fit.plot fit P2Do 220
3.5.32 fit.polyn _basl 222
3.5.33 fit.print_par. L 223
3.5.34 fitread par 224
3.5.35 fitread vE. . ..o 225
3.5.36 fitread vt P2D oL 226
3.5.37 fit.sinc _phaseo 227
3.5.38 fit.smooth spl 228
3.5.39 fit.test _correl 229
3.5.40 fittest ks . ..o oL 230
3.5.41 fit.test randomsign Lo 231
3.5.42 fit.test residuals Lo 232
3.5.43 fitvoigt fito 233
3.5.44 fitvoigt fit 2D . . . Lo 234
3.5.45 fitvoigt fit P2Do 236
3.5.46 fit.voigt fit indepo 237
3.5.47 fit.write log Lo 238
3.5.48 fit.write _par 239
3.5.49 fitwrite _vE ..o o 240
3.5.50 fitwrite vf P2Do 241
SPECTRA package 242
3.6.1 Spectra.Pseudo 2D 242
3.6.2 Spectra.Spectrum 1Do 251
3.6.3 Spectra.Spectrum_ 2Do 258
3.6.4 Spectra.pSpectrum 1D oL 266
3.6.5 Spectra.pSpectrum 2Do 273

1. Introduction

KLASSEZ is a python package written to handle 1D and 2D NMR data. The aim of the project is
to provide a toolkit, consisting of 'black-box' functions organized in modules, that could be used to
read, process and analyze such data in a flexible manner, so to adapt to the needs of the individual
users. However, the open-source nature of the package grants the user the chance to open the lid of
these black-boxes and understand the gears that stand behind the function call.

The development of the toolkit started with python 3.8 and therefore it is compatible with that
version. Nevertheless, the use of python 3.10 is advised.

The key objects provided by KLASSEZ are the classes Spectrum_1D and Spectrum_2D, that are
able to fulfil the aims of the package with a few lines of code. The classes are able to read both
simulated (i.e. generated with a custom-made input file) and experimental datasets. The latter
feature was tested with Bruker data after the removal of the digital filter (run command convdta
in TopSpin), but should be compatible with other kind of spectrometers, thanks to the remarkable
work made by J. J. Helmus and coworkers with their nmrglue package!. Either the FID or the
spectrum processed with external solver can be read from KLASSEZ by using the classes Spectrum_nD
or pSpectrum_nD, respectively.

The processing module, besides the classical functions used for the processing of NMR data
(window functions, Fourier transform, etc.), includes denoising algorithms based on Multivariate
Curve Resolution? and on Cadzow method®. Details are illustrated in the description of the functions.

Functions to show and analyze data in real time are provided, with dedicated GUIs. However, it
is better to rely on the standalone functions, enclosed in the single modules, to save the figures. In
fact, the figures module offers a wide plethora of functions (all based on matplotlib) to plot the
data with a high degree of customization for the appearance.

The fitting functions use 1lmfit to build the initial guess and to minimize the difference between
the experimental data and the model, generated with a Voigt profile in the time domain and then
Fourier-transformed, in the least-square sense (employing the Levenberg-Marquardt algorithm im-
plemented in scipy). For this purpose, the class Voigt_fit of the fit module includes attribute
functions to construct an initial guess interactively, fit the data, and save the parameters in dedicated
files.

Regarding the development of the package, I would like to acknowledge Letizia Fiorucci for her
contribution in the design and the implementation of several functions, and for the alpha-testing.

lhttps://www.nmrglue.com/
2Multivariate Curve Resolution: 50 years addressing the mixture analysis problem - A review
3Denoising NMR. time-domain signal by singular-value decomposition accelerated by graphics processing units

https://www.nmrglue.com/
https://www.sciencedirect.com/science/article/pii/S0003267020310771
https://www.sciencedirect.com/science/article/pii/S0926204014000356?via%3Dihub

2. User guide

2.1 Initialize the package

KLASSEZ can be installed from PyPI through:

pip install klassez

The required dependencies are sorted out automatically.
Initialize the package by writing, at the top of your file:

from klassez import *

This line executes the following code:

import os

import sys

import numpy as np

from numpy import linalg
from scipy import stats
import matplotlib

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import seaborn as sns

from copy import deepcopy
from pprint import pprint

from . import fit, misc, sim, figures, processing
from .Spectra import Spectrum_1D, pSpectrum_1D, Spectrum_2D, pSpectrum_2D, Pseudo_2D

Use seaborn’s colormaps and save it to a dictionary
from .config import CM, CM_2D, COLORS, cron

This means these can be not imported in your code, as KLASSEZ already does it for you.
An alternative, safer version to prevent overwriting of custom functions is:

import klassez as kz

In this case, additional packages for the main script must be declared explicitely.

2.1.1 Extra variables

Initializing KLASSEZ also grants access to CM and COLORS.
CM is a dictionary of colormaps taken from seaborn and saved in a dictionary whose keys are
their names, so that also matplotlib can use them. You can inspect the keys through:

print (CM.keys())

There is a restricted list of colormaps, CM_2D, that should be used for visualizing 2D spectra.
COLORS is:

colors = [’tab:blue’, ’tab:red’, ’tab:green’, ’tab:orange’, ’tab:cyan’, ’tab:purple’,
’tab:pink’, ’tab:gray’, ’tab:brown’, ’tab:olive’, ’salmon’, ’indigo’, ’m’, ’c’, ’g’,
)r), JbJ’)k),]

repeated cyclically ten times and stored as tuple.

Other two 'quality of life' variables are figures.figsize_small and figures.figsize_large,
which correspond to figure panel sizes of 3.59 x 2.56 inches and 15 x 8 inches, respectively. The
former suits well for saving figures of spectra with font sizes of about 10 pt, whereas the latter are
best for GUIs and withstand font sizes of about 14 pt.

For NMR: the variable sim.gamma is a dictionary containing the gyromagnetic ratio, in MHz/T,
of all the magnetically-active nuclei. For instance:

print(sim.gamma[’13C’])
>>> 10.70611

A decorator function called cron is defined in the top-level script config, and imported by
__init__, so that you can use it after writing:

——

from klassez import cron

This decorator allows to measure the runtime of a function, and print it on standard output once it
ended.

2.2 Processing of a 'raw' 1D spectrum

Let us say that your spectrum is saved in the folder /home/myself/spectra/mydataset/1/. Initialize
the spectrum object through:

Path = "/home/myself/spectra/mydataset/1/"
s = Spectrum_1D(Path)

This command will do three main tasks:
e read the binary FID of your spectrum and store it in a complex array s.fid;

e load the acquisition parameters, read the interesting keys and store them in a dictionary
s.acqus;

e initialize a dictionary s.procs which contains the processing parameters.

KLASSEZ is able to read also Varian and Spinsolve (Magritek) data, by specifying the option
'spect’.

A detailed description of acqus and procs is shown in table 2.1 and table 2.2.

Please note that reading the spectrum causes the program to save a file called 'mame.procs’, where
'name' is the path name.

To make the Fourier transform of the FID to obtain the spectrum, you must invoke the process
method, which reads the procs dictionary to get the instructions on the processing you want to
make on your spectrum. For instance, if you want to obtain a final spectrum of 8% points with an
exponential broadening of 25 Hz:

s.procs["wf"] ["mode"] = "em"
s.procs["wf"] ["1b"] = 25

s.procs["zf"] = 8192
s.process()
s.pknl() # Tries to remove the digital filter through a first-order phase correction

Calling the process method generates new attributes of the class:
e freq: the frequency scale, in Hz;

e ppm: the ppm scale;

e r: the real part of the spectrum;

e i: the imaginary part of the spectrum;

e S: the complex spectrum (S = r +i1).

After the Fourier transform, the process method applies the phase correction and the calibration

using the phase angles and the calibration value saved in the procs dictionary automatically. This

allows the user to not phase their spectra every time, as well as keeping a record of the processing.
If the spectrum requires phase correction, you can perform it interactively:

s.adjph()

or by passing the phase angles, in degrees, to adjph. Example, if you know you need to phase your
spectrum with 30 degrees of ¢ and —55 degrees of ¢! with the pivot set at 7.32 ppm:

s.adjph(p0=30, pl=-55, pv=7.32)

In both cases, the phase angles are updated in the procs dictionary.
The spectrum can be calibrated using a dedicated GUI:

s.cal()

or specifying the shift value in ppm or in Hz (in this case, be sure to set the isHz keyword to True).

s.cal(-3) # Shift of -3 ppm
s.cal (1000, isHz=True) # Shift of +1 kHz

Both ppm and freq are updated according to the given values.

2.2.1 The class pSpectrum_1D

The class Spectrum_1D does not work if you want to read the processed data directly from TopSpin
(or whatever software you used to acquire and process them). Instead, you should use the class
pSpectrum_1D, which is designed to perform exactly this task. It inherits most of the attributes and
methods of the Spectrum_1D class, therefore its usage closely resembles the example reported in the
previous section.

Table 2.1: Description of the acqus dictionary of a Spectrum_1D object.

Key Explanation

BO Magnetic field strength /T
BYTORDA Endianness of binary data: 0 little endian, 1 big endian
DTYPA Binary data type: 0 int32, 2 float64
GRPDLY Number of points of the digital filter

nuc Observed nucleus
olp Carrier frequency i.e. center of the spectrum, in ppm
ol Same as olp, but in Hz

SWp Sweep width, in ppm
Sw Sweep width, in Hz
SFO1 Larmor frequency of the observed nucleus at field BO
D Number of sampled complex points
dw Dwell time, i.e. the sampling interval, in seconds
AQ Time duration of the FID
t1 Acquisition timescale

Table 2.2: Description of the procs dictionary of a Spectrum_1D object.

Key Explanation

wf Window function. This is a dictionary itself:
e 'mode': choose function between

— 'no': no apodization

— 'em': exponential

— 'sin': sine

— 'gsin': squared sine

— 'gm': mixed lorentzian-gaussian

— 'gmb': mixed lorentzian-gaussian, Bruker style
e '1b': Exponential line-broadening. Read by em and gm
e 'lb_gm': Exponential line-broadening. Read by gm
e 'gb': Gaussian line-broadening. Read by gmb
e 'gb_gm': Gaussian line-broadening. Read by gm
e 'gc': Center of the gaussian € [0, 1]. Read by gm
e 'ssb': Shift of the sine bell. Read by sin and gsin

e 'sw': Sweep width. Automatically set according to
acqus['SW']

zf Zero-filling. Set the final number of points!
tdeff Number of points to be used for processing
fcor Scaling factor for the first point of the FID before Fourier transform

pO Frequency-independent phase correction /degrees
pl First order phase correction /degrees
pv Pivot point for the first order phase correction /ppm

basl_c Set of coefficients of a polynomion to be used as baseline, starting from
the 0-order coefficient
cal Offset, in ppm, to be added to the frequency and ppm scales for cali-
bration

2.3 Processing of a 'raw' 2D spectrum

Let us say that your spectrum is saved in the folder /home/myself/spectra/mydataset/21,/. Initialize
the spectrum object through:

Path = "/home/myself/spectra/mydataset/21/"
s = Spectrum_2D(Path)

The generated acqus and procs dictionaries include informations on both dimensions.

Table 2.3: Description of the acqus dictionary of a Spectrum_2D object.

Key Explanation

BO Magnetic field strength /T
BYTORDA Endianness of binary data: 0 little endian, 1 big endian
DTYPA Binary data type: 0 int32, 2 float64
GRPDLY Number of points of the digital filter

nucl Observed nucleus in the indirect dimension
nuc?2 Observed nucleus in the direct dimension
olp Carrier frequency i.e. center of the indirect dimension, in ppm
o2p Carrier frequency i.e. center of the direct dimension, in ppm
ol Same as olp, but in Hz
02 Same as o2p, but in Hz

SWip Sweep width of the indirect dimension, in ppm

SW2p Sweep width of the direct dimension, in ppm

Swi Sweep width of the indirect dimension, in Hz

Sw2 Sweep width of the indirect dimension, in Hz

SFO1 Larmor frequency of the observed nucleus in F1 at field BO
SF02 Larmor frequency of the observed nucleus in F2 at field BO

TD1 Number of t;-increments

TD2 Number of sampled complex points

dwil t; increments, in seconds

dw2 Dwell time, i.e. the sampling interval, in seconds
AQ1 Sampled timescale of the indirect dimension

AQ2 Time duration of the FID

t1 Evolution timescale

t2 Acquisition timescale

Then, the sequence of commands resembles the ones of the 1D spectra.

[4)]

.process()

.pknl() # Remove the digital filter

Also in this case, phase correction and calibration are performed automatically with
the wvalues in procs

.adjph()

.plot)

H 0

n n

The keys for adjph are of the kind: pXY, where X is the order of the phase correction (0 or 1) and Y
is the dimension on which to apply it (1 or 2). Explicative table below:

Table 2.4: Description of the procs dictionary of a Spectrum_2D object. Each of these dictionary entry is a list of
two elements: the first one (index 0) is the processing to apply on the indirect dimension, the second (index 1) on the
direct dimension. For instance, procs[tdeff] = [64, 1024] means to truncate the indirect evolutions to 64 points
and the FIDs to 1024 points.

Key Explanation

wi Window function. This is a dictionary itself:
e 'mode’': choose function between

— 'no': no apodization

— 'em': exponential

— 'sin': sine

— 'gsin': squared sine

— 'gm': mixed lorentzian-gaussian

— 'gmb': mixed lorentzian-gaussian, Bruker style
e '1b': Exponential line-broadening. Read by em and gmb
e 'lb_gm': Exponential line-broadening. Read by gm
e 'gb': Gaussian line-broadening. Read by gmb
e 'gb_gm': Gaussian line-broadening. Read by gm
e 'gc': Center of the gaussian € [0, 1]. Read by gm
e 'ssb': Shift of the sine bell. Read by sin and gsin

e 'sw': Sweep width. Automatically set according to
acqus['SW']

zf Zero-filling. Set the final number of points!

tdeff Number of points to be used for processing

fcor Scaling factor for the first point of the FID before Fourier transform
p02 Frequency-independent phase correction /degrees, direct dimension
pl2 First order phase correction /degrees, direct dimension

pv2 Pivot point for the first order phase correction /ppm, direct dimension
p01 Frequency-independent phase correction /degrees, indirect dimension
pll First order phase correction /degrees, indirect dimension

pvl Pivot point for the first order phase correction /ppm, indirect dimen-

sion
cal_1 Calibration offset for F1 /ppm
cal_2 Calibration offset for F2 /ppm

F1 F2

»© p0o1 p02
o p11 pi2
pivot pvl pv2

For further information, rely on the help python builtin function.
To read the processed data, use the pSpectrum_2D class instead.

2.3.1 Computing projections

While the 2D spectra give an overall look on the whole experiment, the user might want to extract
projection of the direct or the indirect dimension, to focus onto particular features in the spectrum.
In order to do so, klassez offers two commands: projfl and projf2, which compute the sum
projections on the indirect or on the direct dimension, respectively, and store the result in dictionaries
called trf1 and trf2, whose keys are the ppm values correspondant to the projections. Actually, the
capitalized versions of the two dictionaries (with the same keys), i.e. Trfl and Trf2, can be more
useful, as they are instances of the pSpectrum_1D class and therefore are initialized with ppm scales
and other parameters.
Example:

Supposed to have a 1H-15N HSQC spectrum

Exztract the direct dimension trace at 115 ppm, 15N scale
s.projf2(115)

Access to it through

Proj_115 = s.Trf2[’115°]

Extract the indirect dimension trace from 6 to 8 ppm, 1H scale
s.projf1(6, 8)
Proj_indim = s.Trf1[’6:8’]

You can plot them:
Proj_115.plot()
Proj_indim.plot()

2.4 Simulating data

The classes Spectrum_1D and Spectrum_2D are also able to generate simulated data by reading a
custom-written input file. The functions they use are sim.sim_1D and sim.sim_2D.

2.4.1 Simulate 1D data

The input file you have to write must have the following keys:
e BO: Magnetic field strength /T;
e nuc: Observed nucleus (e.g. 13C);
e olp: Carrier frequency i.e. centre of the spectrum /ppm;

e SWp: Sweep width /ppm. The spectrum will cover the range [o1p — SWp/2, 01p + SWp/2];

10

e TD: Number of sampled (complex) points;

e shifts: sequence of peak positions /ppm;

e fwhm: Full-width at half-maximum of the peaks /Hz;
e amplitudes: Intensity of the peaks in the FID;

e beta: Fraction of gaussianity. § =0 = pure Lorentzian peak, § =1 = pure Gaussian
peak;

and can have the following keys:
e phases: phases of the peaks /degrees. Default: all zeros;
e mult: fine structures of the peaks (e.g. doublets of triplets: dt). Default: all singlets;

e Jconst: coupling constants of the fine structures /Hz. If more of one coupling is expected,
provide them as a sequence. Default: not used as the peaks are all singlets.

Key and value must be separated by a tab character. You are allowed to leave empty rows to
improve the readibility and to insert comments using the # character.
Example:

BO 16.4 # 700 MHz 1H
nuc 1H

olp 4.7

SWp 40

TD 8192

shifts 1, 3, 5, 7

fwhm [10 for k in range(4)]
amplitudes 10, 20, 15, 10
beta 0, 0.4, 0.6, 1

phases 5, 0, 10, O

mult s, t, dt, ddd
Jconst 0, 15, [12, 9.5], [25, 15, 10]

This input file generates the spectrum in Figure 2.1.
Code:

#! /usr/bin/env python3
from klassez import *

s = Spectrum_1D(’sim_in_1D’, isexp=False)
s.process()

figures.figurelD(s.ppm, s.r, name=’test_1D’, X_label=’$\delta\, ~1$H /ppm’,
Y_label=’Intensity /a.u.’)

11

2.4.2 Simulate 2D data

The same procedure can be followed to simulate 2D spectra. The input file to write is very similar
to the one for 1D data, except for the quantities that clearly span over two dimensions. As in NMR
textbook, the direct and indirect dimensions will be named F2 and F2 respectively, and dimension-
specific quantities will feature the 1 or 2 labels accordingly.

BO: Magnetic field strength /T;

nucl: Observed nucleus in F1(e.g. 13C);
nuc2: Observed nucleus in F2(e.g. 1H);

olp: Carrier frequency i.e. centre of F1 /ppm;
o2p: Carrier frequency i.e. centre of F2 /ppm;

SWip: Sweep width /ppm. The indirect dimension will cover the range [olp — SWip/2,01p +
SWip/2];

SW2p: Sweep width /ppm. The direct dimension will cover the range [02p — SW2p/2, 02p +
Sw2p/2];

TD1: Number of sampled (complex) points in F1;

TD2: Number of sampled (complex) points in F2;

shifts_f1: sequence of peak positions in F1 /ppm,;
shifts_f2: sequence of peak positions in F2 /ppm;

fwhm_£1: Full-width at half-maximum of the peaks in F1 /Hz;
fwhm_£2: Full-width at half-maximum of the peaks in F2 /Hz;
amplitudes: Intensity of the peaks in the FID;

beta: Fraction of gaussianity. § = 0 = pure Lorentzian peak, § =1 = pure Gaussian
peak;

Phase distortions and fine structures are not allowed for multidimensional spectra. The indirect
dimension will be generated employing the States-TPPI sampling scheme.
Example:

BO 28.2

nucl
nuc?2

15N
1H

olp 115

o2p 5

SWip
SW2p

40
20

TD1 512
TD2 8192

shifts_f1 130.0, 105.0, 120.0, 1.25e2, 130.0, 105.0
shifts_f2 0.0, 0.0, 4.0, 7.0, 1.1el, 10.5

fwhm_f1 100, 100, 100, 100, 100, 100

fwhm_£f2 50, 50, 50, 50, 50, 50

amplitudes 10, 20, 10, 20, 10, 10

beta

0.0, 0.2, 0.4, 0.6, 0.8, 1.0

This input file generates the spectrum in Figure 2.2.
Code:

12

#! /usr/bin/env python3
from klassez import *

s = Spectrum_2D(’sim_in_2D’, isexp=False)
s.process()

figures.figure2D(s.ppm_f2, s.ppm_f1l, s.rr, 1v1=0.005, name=’test_2D’, X_label=’$\delta\,
~1$H /ppm’, Y_label=’$\delta\, ~{15}$N /ppm’)

Intensity /a.u.

6 °N /ppm

x103

3.2 -
2.8
2.4 3
2.0 3
1.6
12
0.8
0.4 3

J Jl

0.0

6'H /ppm

Figure 2.1: Example of a simulated 1D spectrum.

8 7 6 5 4 3 2

96
100 -
104 3
108

112 3
116
120 3
124 3
128
132 3

14

12 10 8 6 4 2 0
6'H /ppm

Figure 2.2: Example of a simulated 2D spectrum.

13

14

2.5 The Pseudo_2D class

Sometimes, the spectroscopist might find interesting to acquire a series of 1D experiments in which
one (or more) parameters are changed according to a certain schedule. This kind of experiments are
2D in principle, but their processing and analysis resemble the one of 1D spectra. Therefore, they lie
somewhere in between 1D spectra and 2D spectra, hence they are often referred to as pseudo 2D.

Also in this case, klassez offers a specific class to deal with this kind of data: Pseudo_2D.
Pseudo_2D is a subclass of Spectrum_2D; however, many functions have been adapted to resemble
the 1D version.

Pseudo_2D does not encode for a routine to automatically simulate data. If you want to, you
should give a 1D-like input file (just like the one in section 2.4.1), and replace the attribute fid
with your FID by using the method mount, generated as you wish. With a real dataset this is not
required, as it is able to read everything automatically.

path_to_pseudo = "/home/myself/spectra/mydataset/899/"
s = Pseudo_2D(path_to_pseudo)

The process() function applies apodization, zero-filling and Fourier transform only on the di-
rect dimension, reading the parameters from a procs dictionary like the one of Spectrum_1D. The
attributes freq_f1 and ppm_£f1 are initialized with np.arange(/N), where N is the number of ex-
periments that your FID comprises of.

The phase adjustment is performed on a reference spectrum, then applied on the whole 2D matrix.
By default, the chosen spectrum is the first one, but you can choose the one that fits the most your
needs.

s.process()
s.pknl() # Tries to remove the digital filter
s.adjph(expno = 10) # Calls interactive_phase_1D on the 10th experiment

The method plot shows the 2D contour map of the spectrum, just like the one of Spectrum_2D.
However, this is not always the most intelligent way to plot the data in order to gather information.
This is the reason why this class features two unique additional methods that plot data: plot_md
and plot_stacked. Both rely on the parameter which, that is a string of code (i.e. it should be
interpreted by eval) that identifies which experiment to show by pointing at their index. which =
'all' results in pointing at all spectra.

]

.plot() # 2D contour map
.plot_md(which="3, 5, 11") # Plot the 3rd, the 5th and the 11th spectrum, superimposed
.plot_stacked(which="np.arange(0,100,5)") # Makes a stacked plot with a spectrum every 5

n n

The method integrate differs a little bit from the one coded in Spectrum_1D.

s.integrate (which=2) # Interactive panel on the 3rd spectrum

Even if you select the integration limits on a single spectrum, the method integrate will compute
the integrals throughout the whole range of experiment. This means that each entry of integrals
will be an array as long as the number of experiment.

2.6 Deconvolution of 1D datasets

The class fit.Voigt_Fit in KLASSEZ offers a very convenient interface to deconvolve a spectrum
by fitting. A shortcut to the class, which initializes the parameters automatically, is implemented in
the attribute F of Spectrum_1D.

15

To generate the input guess for the fit, you have to call the method iguess of the class. This
can work in two different modes: the default one, which allows to build the guess peak-by-peak, and
with auto=True, that features a peak-picker for the selection. The former is more precise, the second
is much faster.

Whatever the employed method, the building of the initial guess is a two-stage process. First, you
must zoom in with the matplotlib interactive viewer on the region of the spectrum you are interested
in. Then, you can build the guess following the instructions in the GUI. When you press 'SAVE',
your guess is stored, and the spectrum returns to the original view.

The information on the peaks is saved in a .vf file, which can be imported with the function
fit.read_vf. There are two kind of .vf file: .ivf, that marks initial guesses, and .fvf, for the
results of the fit. However, this is a human-only distinction, as the structure of the files is the same.

An example of .vf file is shown here:

! Initial guess computed by francesco on 11/11/2024 at 15:48:44

193.317:168.041; 8.08246575e+00

#; U, fwhm; Rel. I.; Phase; Beta,; Group
1; 179.94060191; 172.500000; 1.000000; -10.000; 0.00000; 0
Region; Intensity

59.936:6.662; 5.02908980e+01

#; U, fwhm; Rel. I.; Phase; Beta,; Group
2; 40.29851786; 150.000000; 0.214286; 0.000; 0.00000; 0
3; 24 .98695246; 140.000000; 0.785714; 10.000; 0.00000; 0

The header line, that starts with a !, is a comment, and acts as a separator between different
attempts of the fit. In fact, .vf files are never overwritten: working again on the same file appends
the information at the bottom. Hence, there is a parameter n in the fit.read_vf function that
allows to select which attempt to read.

Then, a series of blocks follow. Each block marks a region of selection: the keys 'Region' and
'Intensity' mark the limits of the fitting window, and the total intensity of the peaks. Under this
line, there is a table that collects the peak parameters. The end of the block is marked with a line
of '=".

The method iguess automatically search for the existing input file. If it finds it, it is automati-
cally loaded. Otherwise, the GUI for the computation of the initial guess opens up.

The fit can be performed by calling the method dofit. The behavior of the fit can be customized
by setting the parameters of the method (see examples or the dedicated page of the manual). The
fit goes region-by-region, and the results are saved in a .fvf file.

A .fvf file can be loaded using the method load_fit.

Either the initial guess or the result of the fit can be conveniently visualized by using the method

plot. Alternatively, the arrays of the model can be retrieved by calling calc_fit_lines.

2.7 Example scripts

2.7.1 Reading and processing of 1D spectra

#! /usr/bin/env python3
from klassez import *

Be aware that this ts a BASIC processing
Read the documentation of the functions to see the full powers

if 1:
This example ts for the simulated data
s = Spectrum_1D(’acqus_1D’, isexp=False)
s.to_vE() # You can convert info on peaks to .ivf for fitting
else:
Use the following to read experimentals:
spect = ’bruker’, ’jeol’, ’varian’, ’magritek’, ’oxford’ # One of these
s = Spectrum_1D(path_to_dataset, spect=spect)

Setup the processing
Apodization
Follow the table in the user manual to see what reads what
.procs[’wf’] [’mode’] = ’em’
.procs[’wf’] [’1b’] = 5
Zero-filling
.procs[’zf’] = 2*x14

0N % 0 0 H* R R

Apply processing and do FT
.process()
Remove the digital filter
.pknl)
Phase correction
.adjph()
Plot the data
.plot)

N N H 0 ¥ 0 #

2.7.2 Fit 1D spectrum

The beginning of the script is the same of the reading example.

s.F 15 a fit.Voigt_Fit object

filename = ’test_1D_fit’ # base filename for everything fit-related
Compute the initial guess

auto = False # True for peak-picker, False for manual
s.F.iguess(filename=filename, auto=auto)

if 0: # Do the fit
s.F.dofit(# Parameters of the fitting
u_lim=5, # movement for chemical shift /ppm

f_lim=50,
k_1lim=(0, 3),
vary_phase=True,
vary_b=True,
method=’leastsq’,

movement for linewidth /Hz

limits for intenstity

optimize the phase of the peak

optimize the lineshape (L/G ratio)

optimization method

itermax=10000, maz. number of iterations

fit_tol=1le-10, arrest criterion threshold (see lmfit for detatls)
filename=filename, # filename for the .fuf file

)

HOW R R W™ R W

else:
Load an existing .fuf file
s.F.load_fit(filename=filename)

Plot the results

s.F.plot(what="result’, # what=’iguess’ for initial guess
show_total=True, # Show the total trace or mot
show_res=True, # Show the residuals
res_offset=0.1, # Displacement of the restduals (plots residuals - res_offset)
labels=None, # Labels for the peaks
filename=filename, # Ftilename for the figures
ext=’png’, # format of the figure
dpi=300, # Resolution of the figure
)

Compute histogram of the restduals
s.F.res_histogram(what=’result’,
nbins=500, # Number of bins of the histogram
density=True, # Normalize them
f_lims=None, # Limits for x azis
xlabel=’Residuals’, # Guess what!
x_symm=True, # Symmetrize the z-scale
barcolor="tab:green’, # Color of the bars
fontsize=20, # Guess what!
filename=filename, ext=’png’, dpi=300)

Convert the tables of numbers in arrays
peaks, total, limits = s.F.get_fit_lines(what=’result’)

17

2.7.3 Read and process 2D spectrum

#! /usr/bin/env python3
from klassez import *

Be aware that this ts a BASIC processing
Read the documentation of the functions to see the full powers

if 1:
This example is for the simulated data
s = Spectrum_2D(’acqus_2D’, isexp=False)
else:
For experimentals, at verston 0.4a.7 klassez reads only 2D bruker
s = Spectrum_2D(path_to_dataset)

Setup the processing
Apodization
Follow the table in the user manual to see what reads what
REMEMBER: index 0 s F1, aindexr 1 is F2, for procs
.procs[’wf’] [1] [’mode’] = ’em’
.procs[’wf’]1[1]1[’1b’] =5
.procs[’wf’] [0] [’mode’] = ’gsin’
.procs[’wf’]1[0] [’ssb’] = 2
Zero-filling
.procs[’zf’] = 512, 2048

N % 0 0 0 0N H % "

Apply processing and do FT
.process()
Remove the digital filter
.pknl()
Phase correction
.adjph()
Plot the data
.plot

N H 0 % O 3 0

Extract projections

ppm_£f2 = 180

ppm_f1 = 10

s.projfi(ppm_£f2) # Ezxtract F! trace @ ppm_f2 ppm

f1 = s. Trf1[f’>{ppm_£2:.2f}°] # Call %t back: it <s a Spectrum_1D object!
f1.plot O

s.projf2(ppm_£f1) # Eztract F2 trace @ ppm_f1 ppm

£2 = s. Trf2[f’{ppm_£f1:.2f}°] # Call %t back: it is a Spectrum_1D object!
£2.plot O

19

3. List of modules and functions

3.1 MISC package

This package contains miscellaneous functions for the calculation of several properties, and generally
for the handling of NMR spectra.

3.1.1 misc.avg antidiag(X)
Given a matrix X without any specific structure, finds the closest Hankel matrix in the Frobenius
norm sense by averaging the antidiagonals.
Parameters:
o X: 2darray
Input matrix
Returns:

o Xp: 2darray
Hankel matrix obtained from X

20

3.1.2 misc.binomial triangle(n)

Calculates the n-th row of the binomial triangle. The first row is n=1, not 0. Example:

In: > binomial_triangle(4)
>1331

Parameters:
e n: int
Row index
Returns:

e row: Idarray
The n-th row of binomial triangle.

21

3.1.3 misc.calcres(fgscale)

Calculates the frequency resolution of an axis scale, i.e. how many Hz is a 'tick'.

Parameters:
e fqgscale : 1darray
Scale to be processed
Returns:

e res: float
The resolution of the scale

P

3.1.4 misc.cmap2list(cmap, N=10, start=0, end=1)

Extract the colors from a colormap and return it as a list.

Parameters:

e cmap: matplotlib. Colormap Object
The colormap from which you want to extract the list of colors

e N: int
Number of samples to extract

e start: float
Start point of the sampling. 0 = beginning of the cmap; 1 = end of the cmap.

e end: float
End point of the sampling. 0 = beginning of the cmap; 1 = end of the cmap.
Returns:

e colors: list
List of the extracted colors.

23

3.1.5 misc.data2wav(data, filename="'audiofile', cutoff=None, rate=44100)
Converts an array of data in a .wav file. The data are converted in float32 format, then normalized
to fit the (-1, 1) interval

Parameters:

e data: ndarray
Data to listen to

e filename: str
Filename for the .wav file, without extension

e cutoff: float or None
Clipping borders for the audio. If None, no clipping is performed

e rate: int
Sample rate in samples/sec

24

3.1.6 misc.edit checkboxes(checkbox, xadj=0, yadj=0, dim=100, color=None)
Edit the size of the box to be checked, and adjust the lines accordingly.

Parameters:

e checkbox: matplotlib.widgets. CheckBox Object
The checkbox to edit

e xadj: float
modifier value for bottom left corner x-coordinate of the rectangle, in checkbox.ax coordinates

e yadj: float
modifier value for bottom left corner y-coordinate of the rectangle, in checkbox.ax coordinates

e dim: float
Area of the square, in pixels. Default value is 25

e color: str or list or None
If it is not None, change color to the lines

25

3.1.7 misc.extend taq(old taq, newsize=None)

Extend the acquisition timescale to a longer size, using the same dwell time

Parameters:

e old taq: Idarray
Old timescale

e newsize: nt
New size of acqusition timescale, in points
Returns:

e new _taq: Idarray
Extended timescale

3.1.8 misc.find nearest(array, value)

Finds the value in array which is the nearest to value .

Parameters:

e array : Idarray
Self-explanatory

e value : float
Value to be found
Returns:

e val : float
The closest value in array tovalue

26

3.1.9 misc.freq2ppm(x, B0=701.125, o1p=0)

Converts xfrom Hz to ppm.

Parameters:

e x : float
Value to be converted

e BO : float
Field frequency, in MHz. Default: 700 MHz

e olp : float
Carrier frequency, in ppm. Default: 0.

Returns:

e vy : float
The converted value

27

28

3.1.10 misc.get trace(data, ppm {2, ppm f1, a, b=None, column=True)

Takes as input a 2D dataset and the ppm scales of direct and indirect dimensions respectively.
Calculates the projection on the given axis summing from a (ppm) to b (ppm). Default: indirect
dimension projection (i.e. column=True), change it to 'False' for the direct dimension projection.

Parameters:

e data : 2darray
Spectrum of which to extract the projections

e ppm_ {2 : Idarray
ppm scale of the direct dimension

e ppm_fl: Idarray
ppm scale of the indirect dimension

e a: float
The ppm value from which to start extracting the projection.

e b : float, optional
If provided, the ppm value at which to stop extracting the projection. Otherwise, returns only
the 'a' trace.

e column : bool
If True, extracts the F1 projection. If False, extracts the F2 projection.
Returns:

e v : Ildarray
Computed projection

3.1.11 misc.get ylim(data inp)
Calculates the y-limits of ax as follows:
e Bottom: min(data) - 5% max(height)
e Top: max(data) + 5% max(height)

where height = max(data) - min(data)

Parameters:

e data_inp: ndarray or list

Input data. If it is a list, data_inp is converted to array.

Returns:

e lims: tuple
Bottom, Top

29

30

3.1.12 misc.hankel(data, n=None)

Computes a Hankel matrix from data. If data is a 1darray of length N, computes the correspondant
Hankel matrix of dimensions (N-n+1, n). If data id a 2darray, computes the closest Hankel matrix
in the Frobenius norm sense by averaging the values on the antidiagonals.

Parameters:

e data: Idarray
Vector to be Hankel-ized, of length N

e n: nt

Number of columns that the Hankel matrix will have

Returns:

o H: 2darray
Hankel matrix of dimensions (N-n-+1, n)

31

3.1.13 misc.hz2pt(fgscale, hz)

Converts hz from frequency units to points, on the basis of its scale.

Parameters:

e fqgscale : 1darray
Scale to be processed

e hz : float
Value to be converted

Returns:

e pt : float
The frequency value converted in points

3.1.14 misc.in2px(*in_args)

Converts a sequence of numbers from inches to pixels by multiplying times 96.

Parameters:
e *in args: sequence of floats
Values in inches to convert
Returns:

e px_args: tuple of ints
Values in pixels

32

33

3.1.15 misc.load ser(path, TD1=1, BYTORDA=0, DTYPA=0, cplx=True)

Reads a binary file and transforms it in an array. The parameters BYTORDA and DTYPA can be
found in the acqus file.

¢ BYTORDA = 1 — big endian — '>'
e BYTORDA = 0 — little endian — '<'
e DTYPA =0 — int32 — 'i4'

e DTYPA = 2 — float64 — 'f8'

Parameters:

e path : str
Path to the file to read

e TDI1: int
Number of experiments in the indirect dimension

e BYTORDA: nt
Endianness of data

e DTYPA: int
Data type format

e cplx: bool
If True, the input data are interpreted as complex, which means that in the direct dimension
there will be real and imaginary parts alternated.

Returns:

e data: 2darray
Array of data.

34

3.1.16 misc.makeacqus 1D(dic)

Given a NMRGLUE dictionary from a 1D spectrum (generated by ng.bruker.read), this function
builds the acqus file with only the 'important' parameters.

Parameters:
e dic: dict
NMRglue dictionary returned by ng.bruker.read

Returns:

e acqus : dict
Dictionary with only few parameters

35

3.1.17 misc.makeacqus 1D jeol(dic)

Given a dictionary from a 1D spectrum (generated by jeol parser.parse), this function builds the
acqus file with only the 'important' parameters.

Parameters:
e dic: dict
Dictionary generated with jeol parser.parse

Returns:

e acqus : dict
Dictionary with only few parameters

36

3.1.18 misc.makeacqus 1D oxford(dic)
Given a NMRGLUE dictionary from a 1D spectrum (generated by ng.jcampdx.read), this function
builds the acqus file with only the 'important' parameters.
Parameters:
e dic: dict
NMRglue dictionary returned by ng.jcampdx.read
Returns:

e acqus : dict
Dictionary with only few parameters

37

3.1.19 misc.makeacqus 1D spinsolve(dic)

Given a NMRGLUE dictionary from a 1D spectrum (generated by ng.spinsolve.read), this function
builds the acqus file with only the 'important' parameters. Be sure to get the info from all the
configuration files!

Parameters:
o dic: dict
NMRglue dictionary returned by ng.spinsolve.read

Returns:

e acqus : dict
Dictionary with only few parameters

38

3.1.20 misc.makeacqus 1D varian(dic)
Given a NMRGLUE dictionary from a 1D spectrum (generated by ng.varian.read), this function
builds the acqus file with only the 'important' parameters.
Parameters:
e dic: dict
NMRglue dictionary returned by ng.varian.read
Returns:

e acqus : dict
Dictionary with only few parameters

39

3.1.21 misc.makeacqus 2D(dic)

Given a NMRGLUE dictionary from a 2D spectrum (generated by ng.bruker.read), this function
builds the acqus file with only the 'important' parameters.

Parameters:
e dic: dict
NMRglue dictionary returned by ng.bruker.read

Returns:

e acqus : dict
Dictionary with only few parameters

40

3.1.22 misc.mathformat(ax, axis='y', limits=(-2, 2))

Apply exponential formatting to the given axis of the given figure panel. The offset text size is
uniformed to the tick labels' size.

Parameters:

o ax: matplotlib.Subplot Object
Panel of the figure to edit

e axis: str
'x', 'y' or 'both'.

e limits: tuple
tuple of ints that indicate the order of magnitude range outside which the exponential format
is applied.

3.1.23 misc.merge dict(*dics)

Merge a sequence of dictionaries in a single dictionary.

Parameters:
e dics: sequence of dict
Dictionaries to merge
Returns:

e merged dict: dict
Merged dictionary

41

42

3.1.24 misc.molfrac(n)

Computes the 'molar fraction' 'x' of the array 'n'. Also computes the total amount.

Parameters:

e n: list or 1darray
list of values

Returns:

e x: [ist or 1darray
molar fraction array

e N: float
sum of all the elements in 'n'

43

3.1.25 misc.noise std(y)

Calculates the standard deviation of the noise using the Bruker formula. Taken y as an array of r
points, and y[k| its k-th entry:

r—1 2 lr/2]—1
oy = (YIE]?) = - (ZWC]) + 3_ N > (k+D)WIlr/2) + k] =yllr/2) —k—1)

k=0
Parameters:
e v : Idarray
The spectral region you would like to use to calculate the standard deviation of the noise.

Returns:

e noisestd : float
The standard deviation of the noise.

3.1.26 misc.nuc_format(nuc)

Converts the 'nuc' key you may find in acqus in the formatted label, e.g. '13C" — '$~{13}$C'

Parameters:
e nuc: str
Unformatted string
Returns:

e fnuc: str
Formatted string.

44

3.1.27 misc.polyn(x, c)

Computes p(x), polynomion of degree n-1, where n is the number of provided coefficients.

Parameters:

e x: Idarray
Scale upon which to build the polynomion

e c: list or Idarray

Sequence of the polynomion coeffiecient, starting from the 0-th order coefficient

Returns:

e px : Idarray
Polynomion of degree n-1.

45

3.1.28 misc.ppm2freq(x, B0=701.125, o1p=0)

Converts xfrom ppm to Hz.

Parameters:

e x : float
Value to be converted

e BO : float
Field frequency, in MHz. Default: 700 MHz

e olp : float
Carrier frequency, in ppm. Default: 0.

Returns:

e vy : float
The converted value

46

3.1.29 misc.ppmfind(ppm _scale, value)

Finds the exact value in ppm _ scale.

Parameters:

e ppm_scale : Idarray
Self-explanatory

e value : float
The value to be found

Returns:

o]:int
The index correspondant to "V’ in 'ppm_ scale

b

o V: float
The closest value to 'value’ in 'ppm_ scale’

47

48

3.1.30 misc.pretty scale(ax, limits, axis='x', n_major ticks=10, *, mi-

This function computes a pretty scale for your plot. Calculates and sets a scale made of 'n_major_ticks

nor each=>5, fmt=None)

numbered ticks, spaced by 'minor each' unnumbered ticks. After that, the plot borders are trimmed
according to the given limits.

Parameters:

ax: matplotlib. AzesSubplot object
Panel of the figure of which to calculate the scale

limits: tuple
limits to apply of the given axis. (left, right)

axis: str
'x' for x-axis, 'y' fi —axis, 'z' for z-axi
, 'y for y-axis, 'z' for z-axis

n_major ticks: int
Number of numbered ticks in the final scale. An oculated choice gives very pleasant results.

minor each: int
Number of divisions for each interval between two major ticks

fmt: str
String-formatting for the numbers on the axis. Should be given as e.g. '.3f'

49

3.1.31 misc.print dict(mydict)

Prints a dictionary one entry per row, in the format key: value. Nested dictionaries are printed with
an indentation

Parameters:
e mydict: dict
The dictionary you want to print
Returns:

e outstring: str
The printed text formatted as single string

3.1.32 misc.print_list(mylist)

Prints a list, one entry per row.

Parameters:
e mylist: list
The list you want to print
Returns:

e outstring: str
The printed text formatted as single string

50

51

3.1.33 misc.procpar(txt)

Takes as input the path of a file containing a 'key' in the first column and a 'value' in the second
column. Returns the correspondant dictionary

Parameters:
e txt : sir
Path to a file that contains 'key' in first column and 'value' in the second
Returns:

e procpars : dict
Dictionary of shape 'key':'value'

3.1.34 misc.px2in(*px args)

Converts a sequence of numbers from inches to pixels by multiplying times 96.

Parameters:
° * . : t
px_args: sequence of ints
Values in pixels to convert
Returns:

e in_args: tuple of floats
Values in inches

52

93

3.1.35 misc.readlistfile(datafile)

Takes as input the path of a file containing one entry for each row. Returns a list of the aforementioned
entries.

Parameters:

o datafile: str
Path to a file that contains one entry for each row

Returns:

o files : list
List of the entries contained in the file

o4

3.1.36 misc.select for integration(ppm f1, ppm {2, data, Neg=True)

Select the peaks of a 2D spectrum to integrate. First, select the area where your peak is located by
dragging the red square. Then, select the center of the peak by right clicking. Finally, click "ADD'
to store the peak. Repeat the procedure for as many peaks as you want.

Parameters:

e ppm_f1: Idarray
ppm scale of the indirect dimension

e ppm_ {2 : Idarray
ppm scale of the direct dimension

e data : 2darray
Spectrum

e Neg : bool
Choose if to show the negative contours (True) or not (False)

Returns:

e peaks: list of dict
For each peak there are two keys, 'f1' and 'f2', whose meaning is obvious. For each of these
keys, you have 'u': center of the peak /ppm, and 'lim': the limits of the square you drew before.

95

3.1.37 misc.select traces(ppm_f1, ppm_ f2, data, Neg=True, grid=False)
Select traces from a 2D spectrum, save the coordinates in a list. Left click to select a point, right
click to remove it.

Parameters:

e ppm_fl : Idarray
ppm scale of the indirect dimension

e ppm_ {2 : Idarray
ppm scale of the direct dimension

e data : 2darray
Spectrum

e Neg : bool
Choose if to show the negative contours (True) or not (False)

e grid : bool
Choose if to display the grid (True) or not (False)
Returns:

e coord: [list
List containing the ’[x,y|” coordinates of the selected points.

3.1.38 misc.set fontsizes(ax, fontsize=10)

Automatically adjusts the fontsizes of all the figure elements. In particular:
o title = fontsize
e axis labels = fontsize - 2
e ticks labels = fontsize - 3

e legend entries = fontsize - 4

Parameters:

e ax: matplotlib.Subplot Object
Subplot of interest

o fontsize: float
Starting fontsize

96

3.1.39 misc.set ylim(ax, data_inp)

Set the limits on the y-axis on the ax subplot. The values are computed using misc.get ylim.

Parameters:

e ax: matplotlib.Subplot Object
Panel of the figure where to apply this scale

e data inp: ndarray or list
Input data. If it is a list, data_inp is converted to array.

o7

o8

3.1.40 misc.show cmap(cmap, N=10, start=0, end=1, filename=None)

Plot the colors extracted from a colormap.

Parameters:

e cmap: matplotlib. Colormap Object
The colormap from which you want to extract the list of colors

e N: int
Number of samples to extract

e start: float
Start point of the sampling. 0 = beginning of the cmap; 1 = end of the cmap.

e end: float
End point of the sampling. 0 = beginning of the cmap; 1 = end of the cmap.

e filename: str or None
Filename of the figure to be saved. The '.png' extension is added automatically. If None, the
figure is shown instead

99

3.1.41 misc.snr(data, signal=None, n _reg=None)

Computes the signal to noise ratio of a 1D spectrum.

Parameters:

e data : Idarray
The spectrum of which you want to compute the SNR

e signal : float, optional
If provided, uses this value as maximum signal. Otherwise, it is selected as the maximum value
in 'data’

e n_reg : list or tuple, optional
If provided, contains the points that delimit the noise region. Otherwise, the whole spectrum
is used.

Returns:

e snr : float
The SNR of the spectrum

60

3.1.42 misc.snr 2D(data, n _reg=None)

Computes the signal to noise ratio of a 2D spectrum.

Parameters:

e data : Idarray
The spectrum of which you want to compute the SNR

e n_reg : list or tuple
If provided, the points of F1 scale and F2 scale, respectively, of which to extract the projections.
Otherwise, opens the tool for interactive selection.

Returns:

e snr_fl: float
The SNR of the indirect dimension

e snr 2 : float
The SNR of the direct dimension

3.1.43 misc.split acqus 2D(acqus)

Split the acqus dictionary of a 2D spectrum into two separate 1D-like acqus dictionaries.

Parameters:
e acqus: dict
acqus dictionary of a 2D spectrum
Returns:

e acquls: dict
acqus dictionary of the indirect dimension

e acqu2s: dict
acqus dictionary of the direct dimension

61

3.1.44 misc.split procs 2D(procs)

Split the procs dictionary of a 2D spectrum into two separate 1D-like procs dictionaries.

Parameters:
e procs: dict
procs dictionary of a 2D spectrum
Returns:

e procls: dict
procs dictionary of the indirect dimension

e proc2s: dict
procs dictionary of the direct dimension

62

3.1.45 misc.trim data(ppm _scale, y, lims)

Trims the frequency scale and correspondant 1D dataset y from sx (ppm) to dx (ppm).

Parameters:

e ppm_scale : Idarray
ppm scale of the spectrum

e v : Idarray
spectrum

e lims: tuple
ppm values where to start and stop trimming
Returns:

e xtrim : Idarray
Trimmed ppm scale

e ytrim : Idarray
Trimmed spectrum

64

3.1.46 misc.trim data 2D(x_scale,y scale, data, xlim=None, ylim=None)
Trims data and the scales according to xlim and ylim. Returns the trimmed data and the correspon-
dant trimmed scales.

Parameters:

e x scale: Idarray
Scale for the rows of data

e vy scale: Idarray
Scale for the columns of data

e data: 2darray
Data to be trimmed

e xlim: tuple
Limits for x_scale (L, R)

e ylim: tuple
Limits for y_scale (L, R)
Returns:

e trimmed x: Idarray
Trimmed x_scale

e trimmed y: Idarray
Trimmed y_scale

e trimmed data: 2darray
Trimmed data

65

3.1.47 misc.unhankel(H)

Concatenates the first row and the last column of the matrix H, which should have Hankel-like
structure, so to build the array of independent parameters.

Parameters:
e H: 2darray
Hankel-like matrix
Returns:

e h: Idarray
First row and last column, concatenated

3.1.48 misc.write acqus_1D(acqus, path="'sim in 1D')

Writes the input file for a simulated spectrum, basing on a dictionary of parameters.

Parameters:

e acqus : dict
The dictionary containing the parameters for the simulation

e path : str, optional
Directory where the file will be saved.

66

3.1.49 misc.write acqus_2D(acqus, path="'sim in_ 2D')

Writes the input file for a simulated spectrum, basing on a dictionary of parameters.

Parameters:

e acqus : dict
The dictionary containing the parameters for the simulation

e path : str, optional
Directory where the file will be saved.

67

68

3.1.50 misc.write help(request, file=None)

Gets the documentation of request, and tries to save it in a text file.

Parameters:

e request: function or class or package
Whatever you need documentation of

o file: str or None or False
Name of the output documentation file. If it is None, a default name is given. If it is False,
the output is printed on screen.

69

3.1.51 misc.write ser(fid, path='./', BYTORDA=0, DTYPA=0, over-
write=True)

Writes the FID file in directory 'path', in a TopSpin-readable way (i.e. little endian, int32). The
binary file is named 'fid' if 1D, 'ser' if multiD.

BYTORDA = 1 — big endian — '>'

BYTORDA = 0 — little endian — '<'

DTYPA =0 — int32 — 'i4'

DTYPA = 2 — float64 — 'f8'

Parameters:

e fid : ndarray
FID array to be written

e path : str
Directory where to save the file

70

3.1.52 misc.zero_crossing(array, after=False)

Find the indices where the elements in the array change sign. The identified positions are the ones
before the sign changes. This behavior can be modified by setting 'after=True'.

Parameters:

e array: Idarray
Data to analyze

e after: bool
If True, returns the indices of the element after the sign change; if False, the indices before.
Returns:

e zerocross: ldarray
Position of the zero-crossing, according to 'before'

71

3.2 PROCESSING package

This package contains functions for the processing of NMR spectra, either in time domain or in
frequency domain, and the transition between the two domains.

3.2.1 processing.acme(data, m=1, a=5e-05)

Automated phase Correction based on Minimization of Entropy. This algorithm allows for automatic
phase correction by minimizing the entropy of the m-th derivative of the spectrum, as explained in
detail by L. Chen et.al. in Journal of Magnetic Resonance 158 (2002) 164-168.

Defined the entropy of h as:

$ == 2_hljm(h[j))

and

where
r = Re{spectrum e'*}

and r™ is the m-th derivative of r, the objective function to minimize is:
S+ P(r)

where P(r) is a penalty function for negative values of the spectrum.
The phase correction is applied using processing.ps. The values p0 and p1 are fitted using Nelder-
Mead algorithm.

Parameters:

e data: Idarray
Spectrum to be phased, complex

e m: int
Order of the derivative to be computed

e a: float
Weighting factor for the penalty function

Returns:

e pOf: float
Fitted zero-order phase correction, in degrees

e plf: float
Fitted first-order phase correction, in degrees

72

3.2.2 processing.align(ppm _scale, data, lims, u_off=0.5, ref idx=0)
Performs the calibration of a pseudo-2D experiment by circular-shifting the spectra of an appropriate
amount. The target function aims to minimize the superimposition between a reference spectrum
and the others using a brute-force method.

Parameters:

e ppm_scale: Idarray
ppm scale of the spectrum to calibrate

e data: 2darray
Complex-valued spectrum

e lims: tuple
(ppm sx, ppm dx) of the calibration region

e u_off: float
Maximum offset for the circular shift, in ppm

o ref idx: int
Index of the spectrum to be used as reference
Returns:

e data roll: 2darray
Calibrated data

e u_cal: list
Number of point of which the spectra have been circular-shifted

e u cal ppm: list
Correction for the ppm scale of each experiment

73

3.2.3 processing.baseline correction(ppm, data, basl file='spectrum.basl',
winlim=None)
Interactively corrects the baseline of a given spectrum and saves the parameters in a file. The program

starts with an interface to partition the spectrum in windows to correct separately. Then, for each
window, an interactive panel opens to allow the user to compute the baseline.

Parameters:

e ppm: Idarray
PPM scale of the spectrum

e data: Idarray
The spectrum of which to adjust the baseline

e basl file: str
Name for the baseline parameters file

e winlim: list or str or None
List of the breakpoints for the window. If it is str, indicates the location of a file to be read
with np.loadtxt. If it is None, the partitioning is done interactively.

74

3.2.4 processing.blp(data, pred=1, order=38)

Applies backward linear prediction by calling processing.lp with mode='b'.

Parameters:

e data: Idarray
FID to be linear-predicted

e pred: int
Number of points to predict

e order: int
Number of coefficients to use for the prediction
Returns:

e Ipdata: Idarray
FID with linear prediction applied.

75

3.2.5 processing.blp ng(data, pred=1, order=8, N=2048)

Performs backwards linear prediction on data. This function calls nmrglue.process.proc _lp.lp with
most of the parameters set automatically. The algorithm predicts 'pred' points of the FID using
'order' coefficient for the linear interpolation. Only the first N points of the FID are used in the LP
equation, because the computational cost scales with n**2, making the use of more than 8k points
not effective: using more points brings negligible contiribution to the final result. For Oxford spectra,
set 'pred' to half the value written in '"TDoff".

Parameters:

e data: ndarray
Data on which to perform the linear prediction. For 2d data, it is performed row-by-row

e pred: int
Number of points to be predicted

e order: int
Number of coefficients to be used for the prediction

o N: int
Number of points of the FID to be used in the calculation
Returns:

e datap: ndarray
Data with the predicted points appended at the beginning

76

3.2.6 processing.cadzow(data, n, nc, print head=True)

This functions performs Cadzow denoising on data, which is a 1D array of N points. The algorithm
works as follows:

1. Transform data in a Hankel matrix H of dimensions (N — n,n)

2. Make SVD on H = USVH

3. Keep only the first nc singular values, and put all the rest to 0 (S — &)

4. Rebuild H' = US'VH

5. Average the antidiagonals to rebuild the Hankel-type structure, then make 1D array
Parameters

e data: Idarray

Input data

e n: nt

Number of columns of the Hankel matrix.

e nc: nt

Number of singular values to keep.

e print head: bool

Set it to True to display the fancy heading.

Returns

e datap: Idarray

Denoised data

7

3.2.7 processing.cadzow 2D(data, n, nc, i=True, itermax=100, f=0.005,
print time=True)

Performs the Cadzow denoising method on a 2D spectrum, one transient at the time. This function

calls cadzow if i=False, or iterCadzow if i=True.

Parameters

e data: 2darray
Input data

e n: int
Number of columns of the Hankel matrix.

e nc: int
Number of singular values to keep.

e i: bool
Calls processing.cadzow if i=False, or processing.iterCadzow if i=True.

e itermax: int
Maximum number of iterations allowed.

o f: float
Factor for the arrest criterion.

e print time: bool
Set it to True to display the time spent.
Returns

e datap: 2darray
Denoised data

78

3.2.8 processing.calc _nc(data, s_n)

Calculates the optimal number of components, given the standard deviation of the noise. The
threshold value is calculated as stated in Theorem 1 of reference: https://arxiv.org/abs/1710.09787v2
Parameters:

e data: 2darray
Input data

e s n: float

Noise standard deviation

Returns:

e n c:nt
Number of components

79

3.2.9 processing.calibration(ppmscale, S)

Scroll the ppm scale of spectrum to make calibration. The interface offers two guidelines: the red
one, labelled 'reference signal' remains fixed, whereas the green one ('calibration value') moves with
the ppm scale. The ideal calibration procedure consists in placing the red line on the signal you want
to use as reference, and the green line on the ppm value that the reference signal must assume in the
calibrated spectrum. Then, scroll with the mouse until the two lines are superimposed.

Parameters:

e ppmscale: Idarray
The ppm scale to be calibrated

e S: Idarray
The spectrum to calibrate

Returns:

e offset: float
Difference between original scale and new scale. This must be summed up to the original ppm
scale to calibrate the spectrum.

80

3.2.10 processing.convdta(data, grpdly=0, scaling=1)

Removes the digital filtering to obtain a spectrum similar to the command CONVDTA performed
by TopSpin. However, they will differ a little bit because of the digitization. These differences are
not invisible to human's eye.

Parameters:

e data: ndarray
FID with digital filter

e grpdly: int
Number of points that the digital filter consists of. Key $GRPDLY in acqus file

e scaling: float
Scaling factor of the resulting FID. Needed to match TopSpin's intensities.
Returns:

e data_in: ndarray
FID without the digital filter. It will have grpdly points less than data.

81

3.2.11 processing.convolve(inl, in2)

Perform the convolution of the two array by multiplying their inverse Fourier transform. The two
arrays must have the same dimension.

Parameters:

e inl: ndarray
First array

e in2: ndarray

Second array

Returns:

e cuv: ndarray
Convolved array

82

3.2.12 processing.eae(data)

Shuffles data if the spectrum is acquired with FnMODE = Echo-Antiecho. NOTE: introduces -90°
phase shift in F1, to be corrected after the processing

pdata = np.zeros_like(data)
pdatal::2] = (datal::2].real - data[1::2].real) + 1j*(datal::2].imag - data[1::2].imag)
pdata[1::2] = -(data[::2].imag + data[1::2].imag) + 1j*(datal[::2].real + data[l::2].real)

3.2.13 processing.em(data, 1b, sw)

Exponential apodization

Parameters:

e data: ndarray
Input data

e 1b: float
Lorentzian broadening. It should be positive.

e sw: float
Spectral width /Hz

83

3.2.14 processing.fp(data, wf=None, zf=None, fcor=0.5, tdeff=0)
Performs the full processing of a 1D NMR FID (data).

Parameters:

e data: Idarray
Input data

o wi: dict
{'mode": function to be used, 'parameters': different from each function}

o zf: int
final size of spectrum

e fcor: float
weighting factor for the FID first point

o tdeff: int
number of points of the FID to be used for the processing.
Returns:

e datap: Idarray
Processed data

84

85

3.2.15 processing.ft(data0, alt=False, fcor=0.5)

Fourier transform in NMR sense. This means it returns the reversed spectrum.

Parameters:

e dataO: ndarray
Array to Fourier-transform

e alt: bool
negates the sign of the odd points, then take their complex conjugate. Required for States-TPPI
processing.

e fcor: float
weighting factor for FID 1st point. Default value (0.5) prevents baseline offset
Returns:

e dataft: ndarray
Transformed data

86

3.2.16 processing.gm(data, lb, gb, gc, sw)

Gaussian apodization. The parameter 'Ib' controls the sharpening factor of a rising exponential, and
behaves exactly as in processing.em. In contrast, 'gb' controls the gaussian decay factor. Apply this
function VERY CAREFULLY. Choose the right values through the interactive processing.

Parameters:

e data: ndarray
Input data

e 1b: float
Lorentzian sharpening /Hz. It should be negative.

e ¢b: float
Gaussian broadening. It should be positive.

e gc: float
Gaussian center, relatively to the FID length: 0 <= gc <=1

e sw: float
Spectral width /Hz
Returns:

e pdata: ndarray
Processed data

87

3.2.17 processing.gmb(data, 1b, gb, sw)

Bruker-style Gaussian apodization. Apply this function VERY CAREFULLY. Choose the right
values through the interactive processing.

Parameters:

e data: ndarray
Input data

e 1b: float
Lorentzian sharpening /Hz. It should be negative.

e ¢b: float
Gaussian broadening. It should be positive.

e sw: float
Spectral width /Hz
Returns:

e pdata: ndarray
Processed data

88

3.2.18 processing.hilbert(f)

Computes the Hilbert transform of real vector f in order to retrieve its imaginary part. Make sure
that the original spectrum was zero-filled to at least twice the original size of the FID. The algorithm
computes the convolution by means of FT, as follows:

e make IFT of f =«

compute h = [1j for x in range(N)if x<N/2 else -1j]

Compute b = ha

Build d = a +1ib

make FT of d = F

e replace Re(F') with f

Parameters:
o f: ndarray
Array of which you want to compute the imaginary part
Returns:

o f cplx: ndarray
Complex version of f

89

3.2.19 processing.ift(data0, alt=False, fcor=0.5)

Inverse Fourier transform in NMR sense. This means that the input dataset is reversed before to do
iFT.

Parameters:

e datal: ndarray
Array to Fourier-transform

e alt: bool
negates the sign of the odd points, then take their complex conjugate. Required for States-TPPI

processing.
e fcor: float
weighting factor for FID 1st point. Default value (0.5) prevents baseline offset
Returns:

e dataft: ndarray
Transformed data

90

3.2.20 processing.integral(fx, x=None, lims=None)

Calculates the primitive of fx. If fx is a multidimensional array, the integrals are computed along
the last dimension.

Parameters:

o fx: ndarray
Function (array) to integrate

e x: Idarray or None
Independent variable. Determines the integration step. If None, it is the point scale

e lims: tuple or None

Integration range. If None, the whole function is integrated.

Returns:

e Fx: ndarray
Integrated function.

91

3.2.21 processing.integral 2D(ppm_f1,t f1, SFO1, ppm_ f2,t f2, SFO2,
u_1=None, fwhm 1=200, utol 1=0.5,u_2=None, fwhm 2=200,
utol 2=0.5, plot result=False)

Calculate the integral of a 2D peak. The idea is to extract the traces correspondent to the peak

center and fit them with a gaussian function in each dimension. Then, once got the intensity of each

of the two gaussians, multiply them together in order to obtain the 2D integral. This procedure
should be equivalent to what CARA does.

Parameters:

e ppm_fl: Idarray
PPM scale of the indirect dimension

o t fl: Idarray
Trace of the indirect dimension, real part

e SFO1: float

Larmor frequency of the nucleus in the indirect dimension

e ppm_f2: Idarray
PPM scale of the direct dimension

o t f2: Idarray
Trace of the direct dimension, real part

e SFO2: float

Larmor frequency of the nucleus in the direct dimension

e u_1: float
Chemical shift in F1 /ppm. Defaults to the center of the scale

e fwhm 1: float
Starting FWHM /Hz in the indirect dimension

e utol 1: float
Allowed tolerance for u_ 1 during the fit. (u_1-utol 1, u 1+utol 1)

e u_2: float
Chemical shift in F2 /ppm. Defaults to the center of the scale

o fwhm 2: float
Starting FWHM /Hz in the direct dimension

e utol 2: float
Allowed tolerance for u_ 2 during the fit. (u_2-utol 2, u_2+utol 2)

e plot result: bool
True to show how the program fitted the traces.

Returns:

o [tot: float
Computed integral.

2

3.2.22 processing.integrate(fx, x=None, lims=None)

Calculates the definite integral of fx as I = F|-1] - F[0]. If fx is a multidimensional array, the integrals
are computed along the last dimension.

Parameters:

o fx: ndarray
Function (array) to integrate

e x: Idarray or None
Independent variable. Determines the integration step. If None, it is the point scale

e lims: tuple or None

Integration range. If None, the whole function is integrated.

Returns:

e I: float
Integrated function.

93

3.2.23 processing.interactive basl windows(ppm, data)

Allows for interactive partitioning of a spectrum in windows. Double left click to add a bar, double
right click to remove it. Returns the location of the red bars as a list.

Parameters:

e ppm: Idarray
PPM scale of the spectrum

e data: Idarray
Spectrum to be partitioned
Returns:

e coord: [ist
List containing the coordinates of the windows, plus ppm|0] and ppm|-1]

94

3.2.24 processing.interactive echo param(data0)

Interactive plot that allows to select the parameters needed to process a CPMG-like FID. Use the
TextBox or the arrow keys to adjust the values. You can call processing.sum _echo train or process-
ing.split _echo_train by starring the return statement of this function, i.e.:

processing.sum_echo_train(data0, *interactive_echo_train(data0))

as they are in the correct order to be used in this way.

Parameters:
e datal: ndarray
CPMG FID
Returns:

e n: nt
Distance between one echo and the next one

e n_ecchoes: int
Number of echoes to sum/split

e i p:nt
Offset points from the start of the FID

95

3.2.25 processing.interactive fp(fid0, acqus, procs)

Perform the processing of a 1D NMR spectrum interactively. The GUI offers the opportunity to test
different window functions, as well as different tdeff values and final sizes. The active parameters
appear as blue text.

Parameters:

e fid0: Idarray
FID to process

e acqus: dict
Dictionary of acquisition parameters

e procs: dict
Dictionary of processing parameters
Returns:

e pdata: Idarray
Processed spectrum

e procs: dict
Updated dictionary of processing parameters:

96

3.2.26 processing.interactive phase 1D(ppmscale, S)

This function allow to adjust the phase of 1D spectra interactively. Use the mouse scroll to regulate
the values.

Parameters:

e ppmscale: Idarray
ppm scale of the spectrum. Used to regulate the pivot position

e S: Idarray
Spectrum to be phased. Must be complex!
Returns:

e phased data: Idarray
Phased spectrum

97

3.2.27 processing.interactive phase 2D(ppm_fl, ppm_ {2, S, hyper=True)

Interactively adjust the phases of a 2D spectrum S must be complex or hypercomplex, so BEFORE
TO UNPACK

Parameters:

e ppm_ fl: Idarray
ppm scale of the indirect dimension

e ppm_ f2: Idarray
ppm scale of the direct dimension

e S: 2darray
Data to be phase-adjusted

e hyper: bool
True if S is hypercomplex, False if S is just complex
Returns:

e S: 2darray
Phased data

e final values fl: tuple
(p0_f1, p1_f1, pivot_ f1)

e final values f2: tuple
(p0_f2, p1 {2, pivot_{2)

98

3.2.28 processing.interactive qfil(ppm, data in)

Interactive function to design a gaussian filter with the aim of suppressing signals in the spectrum.
You can adjust position and width of the filter scrolling with the mouse.

Parameters:

e ppm: Idarray
Scale on which the filter will be built

e data_in: Idarray
Spectrum on which to apply the filter.

Returns:

e u: float
Position of the gaussian filter

e s: float
Width of the gaussian filter (Standard deviation)

99

3.2.29 processing.interactive xfb(fid0, acqus, procs, 1vl0=0.1, show cnt=True)

Perform the processing of a 2D NMR spectrum interactively. The GUI offers the opportunity to test
different window functions, as well as different tdeff values and final sizes. The active parameters
appear as blue text. When changing the parameters, give it some time to compute. The figure panel
is quite heavy.

Parameters:

e fid0: 2darray
FID to process

e acqus: dict
Dictionary of acquisition parameters

e procs: dict
Dictionary of processing parameters

e 1vIO: float
Starting level of the contours

e show cnt: bool
Choose if to display data using contours (True) or heatmap (False)
Returns:

e pdata: 2darray
Processed spectrum

e procs: dict
Updated dictionary of processing parameters

100

3.2.30 processing.inv_convolve(inl, in2)

Perform the inverse-convolution of the two array by dividing their inverse Fourier transform. The
two arrays must have the same dimension.

Parameters:

e inl: ndarray
First array

e in2: ndarray
Second array
Returns:

e cuv: ndarray
Convolved array

101

3.2.31 processing.inv_ fp(data, wf=None, size=None, fcor=0.5)

Performs the full inverse processing of a 1D NMR spectrum (data).

Parameters:

e data: Idarray
Spectrum

o wi: dict
{'mode": function to be used, 'parameters': different from each function}

e size: int
initial size of the FID

e fcor: float
weighting factor for the FID first point
Returns:

e pdata: Idarray
FID

102

3.2.32 processing.inv_xfb(data, wf=[None, None|, size=(None, None),
fcor=[0.5, 0.5], FnMODE="States-TPPI')

Reverts the full processing of a 2D NMR FID (data).

Parameters:

e data: 2darray
Input data, hypercomplex

o wi: [ist of dict
list of two entries [F1, F2|. Each entry is a dictionary of window functions

e size: list of int
Initial size of FID

e fcor: list of float
first fid point weighting factor [F1, F2]

e F'nMODE: str
Acquisition mode in F1
Returns:

e data: 2darray
Processed data

103

3.2.33 processing.iterCadzow(data, n, nc, itermax=100, f=0.005, print head="1
print time=True)

This functions performs Cadzow denoising on data, which is a 1D array of N points, in an iterative
manner. The algorithm works as follows:

1. Transform data in a Hankel matrix H of dimensions (N — n,n)

2. Make SVD on H = USV!

3. Keep only the first nc singular values, and put all the rest to 0 (S — &)

4. Rebuild H' = US'VT

5. Average the antidiagonals to rebuild the Hankel-type structure, then make 1D array

6. Check arrest criterion: if it is not reached, go to step 1, otherwise exit from the cycle and return
the processed data.

The arrest criterion is on the array of singular values S, which is the main diagonal of the matrix
S. At step k and Python indexing system:

SkE=Nnc — 1] B S®nc — 1] < fS(O) [nc — 1]
SE-D[0] S [0] SO1o]
Parameters

e data: Idarray
Input data

e n: int
Number of columns of the Hankel matrix.

e nc: int
Number of singular values to keep.

e itermax: nt
Maximum number of iterations allowed.

o f: float
Factor for the arrest criterion.

e print head: bool
Set it to True to display the fancy heading.

e print time: bool
Set it to True to display the time spent.
Returns

e datap: Idarray
Denoised data

104

3.2.34 processing.load baseline(filename, ppm, data)

Read the baseline parameters from a file and builds the baseline itself.

Parameters:

e filename: str
Location of the baseline file

e ppm: Idarray
PPM scale of the spectrum

e data: Idarray
Spectrum of which to correct the baseline
Returns:

e baseline: Idarray
Computed baseline

105

3.2.35 processing.lp(data, pred=1, order=8, mode='b')
Apply linear prediction on the dataset. This method solves the linear system

Da=d

where a is the array of Ip coefficients.

Parameters:

e data: Idarray
FID to be linear-predicted

e pred: int
Number of points to predict

e order: int
Number of coefficients to use for the prediction

e mode: sir
'f' for forward linear prediction, 'b' for backward linear prediction
Returns:

e newdata: Idarray
FID with linear prediction applied.

106

3.2.36 processing.lrd(data, nc)

Denoising method based on Low-Rank Decomposition. The algorithm performs a singular value
decomposition on data, then keeps only the first nc singular values while setting all the others to 0.
Finally, rebuilds the data matrix using the modified singular values.

Parameters:

e data: 2darray
Data to be denoised

e nc: int
Number of components, i.e. number of singular values to keep
Returns:

e data_ out: 2darray
Denoised data

107

3.2.37 processing.make polynomion baseline(ppm, data, limits)

Interactive baseline correction with 4th degree polynomion.

Parameters:

e ppm: Idarray
PPM scale of the spectrum

e data: Idarray
spectrum

e limits: tuple
Window limits (left, right).
Returns:

e mode: str
Baseline correction mode: 'polynomion' as default, 'spline' if you press the button

o C_f: Idarray or str
Baseline polynomion coefficients, or 'callintsmooth' if you press the spline button

108

3.2.38 processing.make scale(size, dw, rev=True)

Computes the frequency scale of the NMR spectrum, given the # of points and the employed dwell
time (the REAL one, not the TopSpin one!). 'rev'=True is required for the correct frequency ar-
rangement in the NMR sense.

Parameters:

e size: int
Number of points of the frequency scale

e dw : float
Time spacing in the time dimension

e rev: bool
Reverses the scale

Returns:

o fgscale: Idarray
The computed frequency scale.

109

3.2.39 processing.mcr(input_data, nc, f{=10, tol=1e-05, itermax=10000.0,
P="H', oncols=True)

This is an implementation of Multivariate Curve Resolution for the denoising of 2D NMR data. Let
us consider a matrix D, of dimensions m X n, where the starting data are stored. The final purpose
of MCR is to decompose the D matrix as follows:

D=CS+E

where C and S are matrices of dimension m x nc and nc X n, respectively, and E contains the part
of the data that are not reproduced by the factorization. Being D the FID of a NMR spectrum,
C will contain time evolutions of the indirect dimension, and S will contain transients in the direct
dimension.

The total MCR workflow can be separated in two parts: a first algorithm that produces an initial
guess for the three matrices C, S and E (simplisma), and an optimization step that aims at the
removal of the unwanted features of the data by iteratively filling the E matrix (MCR ALS). This
function returns the denoised datasets, CS, and the single C and S matrices.

Parameters:

e input data: 2darray or 3darray
a 3D array containing the set of 2D NMR datasets to be coprocessed stacked along the first
dimension. A single 2D array can be passed, if the denoising of a single dataset is desired.

e nc: nt
number of purest components to be looked for;

o f: float
percentage of allowed noise;

e tol: float
tolerance for the arrest criterion;

e itermax: int
maximum number of allowed iterations

e P: str or 2darray
'"H' for horizontal stacking, 'V' for vertical stacking, or custom matrix as explained in the
description of mer _stack

e oncols: bool
True to estimate S with processing.simplisma, False to estimate C.
Returns:

o CS f: 2darray or 3darray
Final denoised data matrix

o C _f: 2darray or 3darray
Final C matrix

e S f: 2darray or 3darray
Final S matrix

110

3.2.40 processing.mcr _als(D, C, S, itermax=10000, tol=1e-05)

Performs alternating least squares to get the final C and S matrices. Being the fundamental MCR
equation: D = CS + E At the k-th step of the iterative cycle:

1. C, = DS/,
2. S, =C/D
3. E, =D — C;Sy

Defined r¢ and rg as the Frobenius norm of the difference of C and S matrices between two subsequent
steps:

TC = ||Ck — Ck_1|| TS = ||Sk; — Sk_1||

The convergence is reached when: rC <= tol && rS <= tol

Parameters:

o D: 2darray
Input data, of dimensions m x n

o C: 2darray
Estimation of the C matrix, of dimensions m x nc.

e S: 2darray
Estimation of the S matrix, of dimensions nc x n.

e itermax: int
Maximum number of iterations

e tol: float
Threshold for the arrest criterion.
Returns:

o C: 2darray
Optimized C matrix, of dimensions m x nc.

e S: 2darray
Optimized S matrix, of dimensions nc x n.

111

3.2.41 processing.mcr_stack(input data, P='H")

Performs matrix augmentation by assembling input data according to the positioning matrix P. P
has two default modes: "H' = horizontal stacking; 'V' = vertical stacking. Otherwise, a custom P
matrix can be given as follows. The entries of the P matrix are the indices of the data in input_ data.
The shape of the matrix determines the final arrangement.

Example: if input data is [a, b, c, d, e, f], and one wants to obtain [[a, b], [d,c], [f,
el] the correspondant P matrix is:

P = [[0, 1], [3, 2], [5, 4]]

If each dataset in input_data has dimensions (m, n) and P has dimensions (u,v), then the returned
data matrix will have dimensions (mu, nv).

Parameters:

e input_ data: 3darray
Contains the spectra to be stacked together. The index that runs on the datasets must be the
first one.

o P: str or 2darray
'"H' for horizontal stacking, 'V' for vertical stacking, or custom matrix as explained in the
description

Returns:

e data: 2darray
Augmented data matrix.

112

3.2.42 processing.mcr unpack(C, S, nds, P="H")

Reverts matrix augmentation of mer stack. The denoised spectra can be calculated by matrix
multiplication: D[k] = C_f[k] S_f[k] #for k = 0,..., nds-1

Parameters:

o C: 2darray
MCR C matrix

e S: 2darray
MCR S matrix

e nds: int
number of experiments

o P: str or 2darray
'"H' for horizontal stacking, 'V' for vertical stacking, or custom matrix as explained in the
description of mcr stack

Returns:

o C_f: list of 2darray
Disassembled MCR C matrix

o S f: list of 2darray
Disassembled MCR C matrix

113

3.2.43 processing.pknl(data, grpdly=0, onfid=False)

Compensate for the Bruker group delay at the beginning of FID through a first-order phase correction
of pl = 360 * GRPDLY This should be applied after apodization and zero-filling.

Parameters:

e data: ndarray
Input data. Be sure it is complex!

e grpdly: int
Number of points that make the group delay.

e onfid: bool
If it is True, performs FT before to apply the phase correction, and IFT after.

Returns:

e datap: ndarray
Corrected data

114

3.2.44 processing.ps(data, ppmscale=None, p0=None, p1=None, pivot=None,

interactive=False)

Applies phase correction on the last dimension of data. The pivot is set at the center of the spectrum
by default. Missing parameters will be inserted interactively.

Parameters:

data: ndarray
Input data

ppmscale: I1darray or None
PPM scale of the spectrum. Required for pivot and interactive phase correction

p0: float

Zero-order phase correction angle /degrees

pl: float
First-order phase correction angle /degrees

pivot: float or None.
First-order phase correction pivot /ppm. If None, it is the center of the spectrum.

interactive: bool
If True, all the parameters will be ignored and the interactive phase correction panel will be
opened.

Returns:

datap: ndarray
Phased data

final wvalues: tuple
Employed values of the phase correction. (p0, pl, pivot)

3.2.45 processing.qfil(ppm, data, u, s)

Suppress signals in the spectrum using a gaussian filter.

Parameters:

e ppm: Idarray
Scale on which to build the filter

e data: ndarray
Data to be processed. The filter is applied on the last dimension

o u: float
Position of the filter

e s: float
Width of the filter (standard deviation)
Returns:

e pdata: ndarray
Filtered data

115

116

3.2.46 processing.qpol(fid)

Fits the FID with a 4-th degree polynomion, then subtracts it from the original FID. The real and
imaginary channels are treated separately.

Parameters:
e fid : ndarray
Self-explanatory.
Returns:

e fid corr : ndarray
Processed FID

117

3.2.47 processing.qgsin(data, ssb)

Sine-squared apodization.

Parameters:

e ssb: int
Sine bell shift.

118

3.2.48 processing.quad(fid)

Subtracts from the FID the arithmetic mean of its last quarter. The real and imaginary channels
are treated separately.

Parameters:
e fid : ndarray
Self-explanatory.
Returns:

e fid : ndarray
Processed FID.

119

3.2.49 processing.repack 2D(rr, ir, ri, ii)
Renconstruct hypercomplex 2D NMR data given the 4 ser files

Parameters:

o 11: 2darray
Real F2, Real F1

e ir: 2darray
Imaginary F2, Real F1

e ri: 2darray
Real F2, Imaginary F1

e ii: 2darray
Imaginary F2, Imaginary F1
Returns:

e data: 2darray
Hypecomplex matrix

120

3.2.50 processing.rev(data)

Reverse data over its last dimension

121

3.2.51 processing.rpbc(data, split imag=False, n=>5, basl method="'huber",
basl thresh=0.2, basl itermax=2000, **phase kws)

Reversed Phase and Baseline Correction. Allows for the automatic phase correction and baseline
subtraction of NMR spectra. It is called 'reversed' because the baseline is actually computed and
subtracted before to perform the phase correction.

The baseline is computed using a low-order polynomion, built on a scale that goes from -1 to 1,
whose coefficients are obtained minimizing a non-quadratic cost function. It is recommended to use
either 'tq' (truncated quadratic, much faster) or "huber' (Huber function, slower but sometimes more
accurate). The user is requested to choose between separating the real and imaginary channel in this
step. The order of the polynomion and the threshold value are the key parameters for obtaining a
good baseline. The used function is processing.polyn basl

The phase correction is computed on the baseline-subtracted complex data as described in the
SINC algorithm (ref.). The default parameters are generally fine, but in case of data with poor
SNR (approximately SNR < 10) better results can be obtained by increasing the value of the el
parameter. The employed function is processing.SINC phase

Parameters:

e data: Idarray
Data to be processed, complex-valued

e split _imag: bool
If True, computes the baseline on the real and imaginary part separately; else, the set of
polynomion coefficients are forced to be the same for both

e n: nt
Number of coefficients of the polynomion, i.e. it will be of degree n-1

e basl method: str
Cost function to be minimized for the baseline computation. Look for fit.CostFunc, 'method'
attribute

e basl thresh: float
Relative threshold value for the non-quadratic behaviour of the cost function. Look for fit.CostFunc,
's" attribute

e basl itermax: int
Maximun number of iterations allowed during the baseline fitting procedure

e phase kws: keyworded arguments
Optional arguments for the phase correction. Look for fit.SINC phase keyworded arguments
for details.

Returns:

o y: Idarray
Processed data

e p0: float
Zero-order phase correction angle, in degrees

e pl: float
First-order phase correction angle, in degrees

122

e c: Idarray
Set of coefficients to be used for the baseline computation, starting from the 0-order coefficient

123

3.2.52 processing.simplisma(D, nc, f=10, oncols=True)

Finds the first nc purest components of matrix D using the simplisma algorithm, proposed by Windig
and Guilment (DOI: 10.1021/ac00014a016). If oncols=True, this function estimates S with sim-
plisma, then calculates C = DS . If oncols—False, this function estimates C with simplisma, then
calculates S = CTD. f defines the percentage of allowed noise.

Parameters:

e D: 2darray
Input data, of dimensions m x n

e nc: nt
Number of components to be found. This determines the final size of the C and S matrices.

o f: float
Percentage of allowed noise.

e oncols: bool

If True, simplisma estimates the S matrix, otherwise estimates C.

Returns:

o C: 2darray
Estimation of the C matrix, of dimensions m x nc.

e S: 2darray
Estimation of the S matrix, of dimensions nc x n.

124

3.2.53 processing.sin(data, ssb)

Sine apodization.

Parameters:

e ssb: int
Sine bell shift.

125

3.2.54 processing.split echo train(datao, n, n _echoes, i p=0)

Separate a CPMG echo-train FID into echoes so to be processed separately. The first decay, i.e.
the native FID, is extracted, and corresponds to echo number 0. Then, for each echo, the left side
(reversed) is summed up to its right part.

Parameters:

e datao: ndarray
FID with an echo train on its last dimension

e n: int
number of points that separate one echo from the next

e 1n_echoes: int
number of echoes to extract. If it is 0, extracts only the first decay

e i p:nt
Number of offset points
Returns:

e data_p: (n+1)darray
Separated echoes

126

3.2.55 processing.stack fids(*fids, filename=None)

Stacks together FIDs in order to create a pseudo-2D experiment. This function can handle either
arrays or Spectrum_ 1D objects.

Parameters:

o fids: sequence of 1darrays or Spectrum_ 1D objects
Input data.

o filename: str
Location for a .npy file to be saved. If None, no file is created.
Returns:

e p2d: 2darray
Stacked FIDs.

127

3.2.56 processing.sum_echo train(datao, n, n _echoes, i p=0)

Sum up a CPMG echo-train FID into echoes so to be enchance the SNR. This function calls process-
ing.split _echo_train with the same parameters.

Parameters:

e datao: ndarray
FID with an echo train on its last dimension

e n: int
number of points that separate one echo from the next

e n_echoes: int
number of echoes to sum

e i p:int
Number of offset points
Returns:

e data p: ndarray
Summed echoes

128

3.2.57 processing.td eff(data, tdeff)

Uses only the first tdeff points of data. tdeff must be a list as long as the dimensions: tdeff = [F1,
F2, ..., Fn]

Parameters:

e data: ndarray
Data to be trimmed

o tdeff: [list of int
Number of points to be used in each dimension

129

3.2.58 processing.tp hyper(data)

Computes the hypercomplex transpose of data. Needed for the processing of data acquired in a
phase-sensitive manner in the indirect dimension.

3.2.59 processing.unpack 2D(data)

Separates hypercomplex data into 4 distinct ser files

Parameters:
e data: 2darray
Hypercomplex matrix
Returns:

o 11: 2darray
Real F2, Real F1

e ir: 2darray
Imaginary F2, Real F1

e 1i: 2darray
Real F2, Imaginary F1

e ii: 2darray
Imaginary F2, Imaginary F1

130

131

3.2.60 processing.whittaker smoother(data, n=2, s f=1, w=None)
Adapted from P.H.C. Eilers, Anal. Chem 2003, 75, 3631-3636. Implementation of the smoothing
algorithm proposed by Whittaker in 1923.

Parameters:

e data: Idarray
Data to be smoothed

e n: int
Order of the difference to be computed

e s f: float
Smoothing factor

e w: Idarray or None
Array of weights. If None, no weighting is applied.
Returns:

e 7: Idarray
Smoothed data

3.2.61 processing.write basl info(f, limits, mode, data)

Writes the baseline parameters of a certain window in a file.

Parameters:

o f: TextlO object
File where to write the parameters

e limits: tuple
Limits of the spectral window. (left, right)

e mode: str
Baseline correction mode: 'polynomion' or 'spline'

e data: float or 1darray
It can be either the spline smoothing factor or the polynomion coefficients

132

133

3.2.62 processing.xfb(data, wf=[None, None]|, zf=[None, None|, fcor=[0.5,
0.5], tdeff=[0, 0], u=True, FnMODE="'States-TPPI")

Performs the full processing of a 2D NMR FID (data). The returned values depend on u: it is True,
returns a sequence of 2darrays depending on FnMODE, otherwise just the complex/hypercomplex
data after F'T in both dimensions

Parameters:

e data: 2darray
Input data

o wi: sequence of dict
(F1, F2); {'mode": function to be used, 'parameters': different from each function}

o zf: sequence of int
final size of spectrum, (F1, F2)

e fcor: sequence of float
weighting factor for the FID first point, (F1, F2)

o tdeff: sequence of int
number of points of the FID to be used for the processing, (F1, F2)

e u: bool
choose if to unpack the hypercomplex spectrum into separate arrays or not

e F'nMODE: str
Acquisition mode in F1
Returns:

e datap: 2darray or tuple of 2darray
Processed data or tuple of 2darray

134

3.2.63 processing.zf(data, size)

Zero-filling of data up to size in its last dimension.

Parameters:

e data: ndarray
Array to be zero-filled

e size: int
Number of points of the last dimension after zero-filling
Returns:

e datazf: ndarray
Zero-filled data

135

3.3 FIGURES package

This package contains a series of functions to make plots of various nature.

3.3.1 figures.ax1D(ax, ppm, datax, norm=False, xlims=None, ylims=None,
c='"tab:blue', lw=0.5, X label=, Y label='Intensity /a.u.',n_xticks=10,
n_yticks=10, label=None, fontsize=10)

Makes the figure of a 1D NMR spectrum, placing it in a given figure panel. This allows the making

of modular figures.
The plot can be customized in a very flexible manner by setting the function keywords properly.

Parameters:

e ax: matplotlib.subplot Object
panel where to put the figure

e ppm: Idarray
ppm scale of the spectrum

e data: Idarray
spectrum to be plotted

e norm: bool
if True, normalizes the intensity to 1.

e xlims: list or tuple
Limits for the x-axis. If None, the whole scale is used.

e ylims: list or tuple
Limits for the y-axis. If None, the whole scale is used.

e C: str
Colour of the line.

o lw: float
linewidth

e X label: str
text of the x-axis label;

o Y label: str
text of the y-axis label;

e n_ xticks: int
Number of numbered ticks on the x-axis of the figure

e n_yticks: int
Number of numbered ticks on the x-axis of the figure

e label: str
label to be put in the legend.

e fontsize: float
Biggest font size in the figure.

136

Returns:

e line: Line2D Object
Line object returned by plt.plot.

137

3.3.2 figures.ax2D(ax, ppm_f2, ppm _fl, datax, xlims=None, ylims=None,
cmap='Greys r',c fac=1.4,1vl=0.1,lw=0.5, X label=, Y label=,
title=None, n xticks=10, n_yticks=10, fontsize=10)

Makes a 2D contour plot like the one in figures.figure2D, but in a specified panel. Allows for the
buildup of modular figures. The contours are drawn according to the formula:

cl = contour_start * contour_factor ** np.arange(contour_num)

where contour_start = np.max(data)* 1lvl, contour_num = 16 and contour_factor = c_fac. In-
creasing the value of ¢_fac will decrease the number of contour lines, whereas decreasing the value
of ¢_fac will increase the number of contour lines.

Parameters:

o ax: matplotlib.subplot Object
panel where to put the figure

e ppm_f2: Idarray
ppm scale of the direct dimension

e ppm_fl: Idarray
ppm scale of the indirect dimension

o datax: 2darray
the 2D NMR spectrum to be plotted

e xlims: tuple
limits for the x-axis (left, right). If None, the whole scale is used.

e ylims: tuple
limits for the y-axis (left, right). If None, the whole scale is used.

e cmap: stir
Colormap identifier for the contour

e c_fac: float
Contour factor parameter

o Ivl: float
height with respect to maximum at which the contour are computed

e X label: str
text of the x-axis label;

e Y label: str
text of the y-axis label;

o lw: float
linewidth of the contours

o title: str
Figure title.

e n_ xticks: int
Number of numbered ticks on the x-axis of the figure

138

e n_yticks: int
Number of numbered ticks on the x-axis of the figure

e fontsize: float
Biggest font size in the figure.
Returns:

e cnt: matplotlib. QuadContour object
Drawn contour lines

139

3.3.3 figures.ax heatmap(ax, data, zlim='auto', z_sym=True, cmap=None,
xscale=None, yscale=None, rev=(False, False), n xticks=10,n_yticks=1
n_zticks=10, fontsize=10)

Computes a heatmap of data on the given 'ax'

Parameters:

e ax: matplotlib.Subplot object
Panel where to draw the heatmap

e data: 2darray
Input data

e zlim: tuple or 'auto’ or 'abs’
Vertical limits of the heatmap, that determines the extent of the colorbar. 'auto' means
(min(data), max(data)), 'abs' means(min(|data|), max(|datal)).

e 7 sym: bool
True to symmetrize the vertical scale around 0.

e cmap: matplotlib.cm object
Colormap of the heatmap.

e xscale: Idarray or None
x-scale. None means np.arange(data.shape[l])

e yscale: Idarray or None
y-scale. None means np.arange(data.shape|0])

e rev: tuple of bool
Reverse scale (x, y).

e n_xticks: int
Number of ticks of the x axis

e n_yticks: int
Number of ticks of the y axis

e n_zticks: int
Number of ticks of the color bar

o fontsize: float
Biggest font size to apply to the figure.
Returns:

e im: matplotlib. AzesImage
The heatmap

e cax: figure panel where the colorbar is drawn

140

3.3.4 figures.dotmd(ppmscale, S, labels=None, lw=0.8, n xticks=10)
Interactive display of multiple 1D spectra.

Parameters:

e ppmscale: Idarray or list
ppm scale of the spectra. If only one scale is supplied, all the spectra are plotted using the
same scale. Otherwise, each spectrum is plotted using its scale.

o S: [ist
spectra to be plotted

e labels: list
labels to be put in the legend.

e n_xticks: int
Number of numbered ticks on the x-axis of the figure
Returns:

e scale factor: [list
Intensity of the spectra with respect to the original when the figure is closed

141

3.3.5 figures.dotmd 2D(ppm _f1, ppm_f2, SO, labels=None, name="'dotmd 21

X label='8$

delta

$ F2 /ppm', Y label='$
delta

$ F1 /ppm', n xticks=10, n_ yticks=10, Neg=False)

Interactive display of multiple 2D spectra. They have to share the same scales.

Parameters:

e ppm_fl: Idarray
ppm scale of the indirect dimension. If only one scale is supplied, all the spectra are plotted
using the same scale. Otherwise, each spectrum is plotted using its scale. There is a 1:1
correspondance between ppm_ f1 and S.

e ppm_f2: Idarray
ppm scale of the direct dimension. If only one scale is supplied, all the spectra are plotted
using the same scale. Otherwise, each spectrum is plotted using its scale. There is a 1:1
correspondance between ppm_ {2 and S.

o S: list
spectra to be plotted

e labels: list
labels to be put in the legend.

e name: Str
If you choose to save the figure, this is its filename.

e X label: str
text of the x-axis label;

e Y label: str
text of the y-axis label;

e n_ xticks: int
Number of numbered ticks on the x-axis of the figure

e n_yticks: int
Number of numbered ticks on the x-axis of the figure

e Neg: bool
If True, show the negative contours.
Returns:

o Ivl: list
Intensity factors when the figure is closed

142

3.3.6 figures.figurelD(ppm, datax, norm=False, xlims=None, ylims=None,
c='"tab:blue', lw=0.5, X label=, Y label='Intensity /a.u.',n_xticks=10,
n_yticks=10, fontsize=10, name=None, ext="tiff', dpi=600)

Makes the figure of a 1D NMR spectrum.
The plot can be customized in a very flexible manner by setting the function keywords properly.

Parameters:

e ppm: Idarray
ppm scale of the spectrum

e datax: Idarray
spectrum to be plotted

e norm: bool
if True, normalizes the intensity to 1.

e xlims: list or tuple
Limits for the x-axis. If None, the whole scale is used.

e ylims: list or tuple
Limits for the y-axis. If None, the whole scale is used.

e C: str
Colour of the line.

o lw: float
linewidth

e X label: str
text of the x-axis label;

e Y label: str
text of the y-axis label;

e n_ xticks: int
Number of numbered ticks on the x-axis of the figure

e n_yticks: int
Number of numbered ticks on the x-axis of the figure

o fontsize: float
Biggest font size in the figure.

e name: str or None
Filename for the figure to be saved. If None, the figure is shown instead.

e ext: sir
Format of the image

e dpi: int
Resolution of the image in dots per inches

143

3.3.7 figures.figurelD multi(ppmO0, data0, xlims=None, ylims=None, norm=Fz
c=None, X label=, Y label='Intensity /a.u.',n xticks=10,n_yticks=1
fontsize=10, labels=None, name=None, ext="tiff', dpi=600)

Creates the superimposed plot of a series of 1D NMR spectra.

Parameters:

e ppm0: sequence of 1darray or 1darray
ppm scale of the spectra. If only one scale is supplied, it is assumed to be the same for all the
spectra

e datal: sequence of 1darray
List containing the spectra to be plotted

e xlims: tuple or None
Limits for the x-axis. If None, the whole scale is used.

e ylims: tuple or None
Limits for the y-axis. If None, they are automatically set.

e norm: False or float or str
If it is False, it does nothing. If it is float, divides all spectra for that number. If it is str('#'),
normalizes all the spectra to the '#' spectrum (python numbering). If it is whatever else string,
normalizes all spectra to themselves.

e c: tuple or None
List of the colors to use for the traces. None uses the default ones.

o X label: str
text of the x-axis label

e Y label: str
text of the y-axis label

e n_ xticks: int
Number of numbered ticks on the x-axis of the figure

e n_yticks: int
Number of numbered ticks on the x-axis of the figure

e fontsize: float
Biggest fontsize in the picture

e labels: list or None or Fulse
List of the labels to be shown in the legend. If it is None, the default entries are used (i.e., '1,
2, 3,..."). If it is False, the legend is not shown.

e name: str or None
Filename of the figure, if it has to be saved. If it is None, the figure is shown instead.

e ext: sir
Format of the image
e dpi: int
Resolution of the image in dots per inches

144

3.3.8 figures.figure2D(ppm_f2, ppm_f1, datax, xlims=None, ylims=None,

cmap='Greys r',c fac=1.4,1vl=0.09, X label=, Y label=, Iw=0.5,
cmapneg—None, n _xticks=10, n yticks=10, fontsize=10, name—=None,
ext="tiff', dpi=600)

Makes a 2D contour plot. Allows for the buildup of modular figures. The contours are drawn

according to the formula: cl = contour start * contour factor

** np.arange(contour num) where

contour _start = np.max(data) * lvl, contour num = 16 and contour factor = ¢_fac. Increasing
the value of ¢_fac will decrease the number of contour lines, whereas decreasing the value of ¢_fac
will increase the number of contour lines.

Parameters:

ppm_ 2: Idarray
ppm scale of the direct dimension

ppm_fl: Idarray
ppm scale of the indirect dimension

datax: 2darray
the 2D NMR spectrum to be plotted

xlims: tuple
limits for the x-axis (left, right). If None, the whole scale is used.

ylims: tuple
limits for the y-axis (left, right). If None, the whole scale is used.

cmap: str
Colormap identifier for the contour

c_fac: float
Contour factor parameter

Ivl: float
height with respect to maximum at which the contour are computed

X label: str
text of the x-axis label;

Y label: str
text of the y-axis label;

lw: float
linewidth of the contours

cmapneg: str or None
Colormap identifier for the negative contour. If None, they are not computed at all

n_ xticks: nt
Number of numbered ticks on the x-axis of the figure

n_ yticks: int
Number of numbered ticks on the x-axis of the figure

145

fontsize: float
Biggest font size in the figure.

name: Sstr
Filename for the figure

ext: str

Format of the image

dpi: int

Resolution of the image in dots per inches

146

3.3.9 figures.figure2D multi(ppm {2, ppm_f1, datax, xlims=None, ylims=Noz1
lvl='default', ¢ fac=1.4, Negatives—=False, X label—, Y label=,
Ilw=0.5, n _xticks=10,n_yticks=10, labels—=None, name—=None, ext="tiff"'
dpi=600)

Generates the figure of multiple, superimposed spectra, using figures.ax2D.

Parameters:

e ppm_f2: Idarray
ppm scale of the direct dimension

e ppm_fl: Idarray
ppm scale of the indirect dimension

e datax: sequence of 2darray
the 2D NMR spectra to be plotted

e xlims: tuple
limits for the x-axis (left, right). If None, the whole scale is used.

e ylims: tuple
limits for the y-axis (left, right). If None, the whole scale is used.

o Ivl: 'default' or list
height with respect to maximum at which the contour are computed. If 'default', each spectrum
is at 10

e ¢ fac: float
Contour factor

e Negatives: bool
set it to True if you want to see the negative part of the spectrum

e X label: str

text of the x-axis label;

e Y label: str
text of the y-axis label;

o lw: float
linewidth of the contours

e n_ xticks: int
Number of numbered ticks on the x-axis of the figure

e n_ yticks: int
Number of numbered ticks on the x-axis of the figure

e labels: list
entries of the legend. If None, the spectra are numbered.

e name: Sstr
Filename for the figure. If None, it is shown instead of saved

e ext: str
Format of the image

147

e dpi: int
Resolution of the image in dots per inches

148

3.3.10 figures.fitfigure(S, ppm_scale,t AQ, V, C=False, SFO1=701.125,
olp=0, limits=None, s labels=None, X label=, n xticks=10,
name=None)

Makes the figure to show the result of a quantitative fit.

Parameters:

e S: Idarray
Spectrum to be fitted

e ppm_scale : Idarray
Self-explanatory

o V : 2darray
matrix (# signals, parameters)

e C: Idarray or False
Coefficients of the polynomion to be used as baseline correction. If the 'baseline' checkbox in
the interactive figure panel is not checked, C_f is False.

e limits : tuple or None
Trim limits for the spectrum (left, right). If None, the whole spectrum is used.

e s labels : list or None or False
Legend entries for the single components. If None, they are computed automatically as 1, 2, 3,
etc. If False, they are not shown in the legend.

e X label : str
label for the x-axis.

e n_xticks : int
number of numbered ticks that will appear in the ppm scale. An oculated choice can be very
satisfying.

e name : str or None
Name with which to save the figure. If None, the picture is shown instead of being saved.

149

3.3.11 figures.heatmap(data, zlim='auto', z_sym=True, cmap=None, xs-
cale=None, yscale=None, rev=(False, False), n xticks=10, n _yticks=1C
n_zticks=10, fontsize=10, name=None)

Computes a heatmap of data.

Parameters:

e data: 2darray
Input data

e zlim: tuple or 'auto’ or 'abs’
Vertical limits of the heatmap, that determines the extent of the colorbar. 'auto' means
(min(data), max(data)), 'abs' means(min(|data|), max(|datal)).

e 7z sym: bool
True to symmetrize the vertical scale around 0.

e cmap: matplotlib.cm object
Colormap of the heatmap.

e xscale: Idarray or None
x-scale. None means np.arange(data.shape[l])

e yscale: Idarray or None
y-scale. None means np.arange(data.shape|0])

e rev: tuple of bool
Reverse scale (x, y).

e n_xticks: int
Number of ticks of the x axis

e n_yticks: int
Number of ticks of the y axis

e n_zticks: int
Number of ticks of the color bar

e fontsize: float
Biggest font size to apply to the figure.

e name: str or None
Filename for the figure. Set to None to show the figure.

150

3.3.12 figures.ongoing fit(exp, calc, residual, ylims=None, filename=None,
dpi:100)

Makes a figure of an ongoing fit. It displays the experimental data and the model, and the residuals

in a separate window. The figure can be either saved or shown.

Parameters:

e exp: Idarray
Experimental data

e calc: Idarray
Current model

e residual: Idarray

Residuals of the fit

e ylims: tuple
Optional limits for y-axis

e filename: str or None
Filename of the figure to be saved. If None, the figure is shown instead

e dpi: int
Resolution of the figure in dots per inches

151

3.3.13 figures.plot fid(fid, name=None, ext="tiff', dpi=600)

Makes a two-panel figure that shows on the left the real part of the FID, on the right the imaginary
part. The x-scale and y-scale are automatically adjusted.

152

3.3.14 figures.plot fid re(fid, scale=None, c='b', ims=None, name=None,
ext="tiff', dpi=600)

Makes a single-panel figure that shows either the real or the imaginary part of the FID. The x-scale
and y-scale are automatically adjusted.
Parameters:

e fid: ndarray
FID to be plotted

e scale: Idarray or None
x-scale of the figure

e C: str

Color

e lims: tuple or None
Limits
e name: str

Name of the figure

e cxt: str
Format of the image

e dpi: int
Resolution of the image in dots per inches

153

3.3.15 figures.redraw contours(ax, ppm_f2, ppm_f1, S, lvl, cnt, Neg=False,
Ncnt=None, lw=0.5, cmap=|[None, None|)

Redraws the contours in interactive 2D visualizations.

Parameters:

o ax: matplotlib.Subplot Object
Panel of the figure where to draw the contours

e ppm_f2: Idarray
ppm scale of the direct dimension

e ppm_fl: Idarray
ppm scale of the indirect dimension

e S: 2darray
Spectrum

e Ivl: float
Level at which to draw the contours

e cnt: matplotlib. contour. QuadContourSet object
Pre-existing contours

e Neg: bool
Choose if to draw the negative contours (True) or not (False)

e Nent: matplotlib. contour. QuadContourSet object
Pre-existing negative contours

o lw: float
Linewidth

e cmap: [ist
Colour of the contours. [cmap -+, cmap -|
Returns:

e cnt: matplotlib. contour. QuadContourSet object
Updated contours

e Ncnt: matplotlib. contour. QuadContourSet object or None
Updated negative contours if Neg is True, None otherwise

154

3.3.16 figures.sns heatmap(data, name=None, ext="tiff', dpi=600)
Computes a heatmap of data, which is a matrix. This function employs the seaborn package. Specify
name if you want to save the figure.

Parameters:

e data: 2darray
Data of which to compute the heatmap. Make sure the entries are real numbers.

e name: str or None
Filename of the figure to be saved. If None, the figure is shown instead.

e cxt: sir
Format of the image
o dpi: int
Resolution of the image in dots per inches

155

3.3.17 figures.stacked plot(ppmscale, S, xlims=None, lw=0.5, X label=,
Y label='Normalized intensity /a.u.',n_xticks=10, labels=None,
name=None, ext="tiff', dpi=600)

Creates a stacked plot of all the spectra contained in the list S. Note that S MUST BE a list. All
the spectra must share the same scale.

Parameters:

e ppmscale: Idarray
ppm scale of the spectrum

e S: list
spectra to be plotted

e xlims: list or tuple
Limits for the x-axis. If None, the whole scale is used.

e lw: float
linewidth

e name: Sstr
filename of the figure, if it has to be saved;

e X label: str
text of the x-axis label;

e Y label: str
text of the y-axis label;

e n_xticks: int
Number of numbered ticks on the x-axis of the figure

e labels: list
labels to be put in the legend.

156

3.4 SIM package

This package contains function for the simulation of various features of NMR spectra, being them
monodimensional or bidimensional. Functions for the simulation of whole spectra are also provided.

3.4.1 sim.calc_splitting(u0, 10, m=1, J=0)

Calculate the frequency and the intensities of a NMR signal splitted by scalar coupling.

Parameters:

e u0: float
Frequency of the non-splitted signal (Hz)

e 10: float
Total intensity of the non-splitted signal.

e m: int
Multiplicity, i.e. number of expected signals after the splitting

e J: float
Scalar coupling constant (Hz)
Returns:

e u_s: Idarray
Frequencies of the splitted signal (Hz)

o [s: Idarray
Intensities of the splitted signal

157

3.4.2 sim.cron(func, *args, **kwargs)
L o tor] e of & functi

3.4.3 sim.f gaussian(x, u, s, A=1)

Gaussian function in the frequency domain:

Parameters:

e x: Idarray
Independent variable

e u: float
Peak position

e s: float
Standard deviation

o A: float
Intensity
Returns:

o f: Idarray
Gaussian function.

158

3.4.4 sim.f lorentzian(x, u, fwhm, A=1)

Lorentzian function in the time domain:

Parameters:

e x: Idarray
Independent variable

e u: float
Peak position

o fwhm: float
Full-width at half~-maximum

o A: float
Intensity
Returns:

o f: Idarray
Lorentzian function.

159

160

3.4.5 sim.f pvoigt(x, u, fwhm, A=1, b=0)

Pseudo-Voigt function in the frequency domain:

Parameters:

e x: Idarray
Independent variable

u: float
Peak position

fwhm: float
Full-width at half~-maximum

A: float
Intensity

b: float
Fraction of gaussianity
Returns:

e S: Ildarray
Pseudo-Voigt function.

161

3.4.6 sim.gaussian _filter(ppm, u, s)

Compute a gaussian filter to be used in order to suppress signals in the spectrum.

Parameters:

e ppm: Idarray
Scale on which to build the filter

e u: float
Position of the filter

e s: float
Width of the filter (standard deviation)
Returns:

o G: ldarray
Computed gaussian filter

162

3.4.7 sim.load sim_ 1D(File)

Creates a dictionary from the spectral parameters listed in the input file.

Parameters:

e File: str
Path to the input file location

Returns:

o dic: dict
Dictionary of the parameters, ready to be read from the simulation functions.

163

3.4.8 sim.load sim 2D(File, states=True)

Creates a dictionary from the spectral parameters listed in the input file.

Parameters:

e File: str
Path to the input file location

e states: bool

If FnMODE is States or States-TPPI, set it to True to get the correct timescale.

Returns:

o dic: dict
Dictionary of the parameters, ready to be read from the simulation functions.

164

3.4.9 sim.mult noise(data size, mean, s n)

Multiplicative noise model.

165

3.4.10 sim.multiplet(u, I, m="'s"', J=][|)

Split a given signal according to a scalar coupling pattern.

Parameters:

e u: float
Frequency of the non-splitted signal (Hz)

e [: float
Intensity of the non-splitted signal

e m: sir
Organic chemistry-like multiplet, i.e. s, d, dqt, etc.

e J: float or list
Scalar coupling constants. The number of constants should match the number of coupling
branches

Returns:

e u_in: [ist
List of the splitted frequencies (Hz)

o | in: list
Intensities of the splitted signal

166

3.4.11 sim.noisegen(size, 02, t2, s n=1)

Simulates additive noise in the time domain.

Parameters:

e size: int or tuple
Dimension of the noise matrix

e 02: float
Carrier frequency, in Hz.

o t2: Idarray
Time scale of the last temporal dimension.

e s n: float
Standard deviation of the noise.
Returns:

e noise: 2darray
Noise matrix, of dimensions size.

3.4.12 sim.sim 1D(File, pv=False)

Simulates a 1D NMR spectrum from the instructions written in File.

Parameters:

e File: str
Path to the input file location

e pv: bool

True for pseudo-Voigt model, False for Voigt model.

Returns:

e fid: Idarray
FID of the simulated spectrum.

167

168

3.4.13 sim.sim 2D(File, states=True, alt=True, pv=False)

Simulates a 2D NMR spectrum from the instructions written in File. The indirect dimension is
sampled with states-TPPI as default.

Parameters:

e File: str
Path to the input file location

e states: bool
Set it to True to allow for correct spectral arrangement in the indirect dimension.

e alt: bool
Set it to True to allow for correct spectral arrangement in the indirect dimension.

e pv: bool

True for pseudo-Voigt model, False for Voigt model.

Returns:

e fid: 2darray
FID of the simulated spectrum.

169

3.4.14 sim.t 2Dgaussian(t1, t2, v1, v2, sl, s2, A=1, states=True, alt=True)

Bidimensional gaussian function.

Parameters:

o t1: Idarray
Indirect evolution timescale

o t2: Idarray
Timescale of the direct dimension

o vl: float
Peak position in the indirect dimension, in Hz

o v2: float
Peak position in the direct dimension, in Hz

e sl: float
Standard deviation in the indirect dimension, in rad/s

e s2: float
Standard deviation in the direct dimension, in rad/s

o A: float
Intensity

e states: bool
Set to True for 'FnMODE':'States-TPPI

e alt: bool
Set to True for 'FnMODE':'States-TPPI
Returns:

e S: 2darray
Gaussian function.

170

3.4.15 sim.t 2Dlorentzian(tl, t2, vl, v2, fwhml, fwhm2, A=1, states=True,
alt=True)

Bidimensional lorentzian function.

Parameters:

o t1: Idarray
Indirect evolution timescale

o t2: Idarray
Timescale of the direct dimension

e v1: float
Peak position in the indirect dimension, in Hz

o v2: float
Peak position in the direct dimension, in Hz

e fwhml: float
Full-width at half maximum in the indirect dimension, in rad/s

e fwhm2: float
Full-width at half maximum in the direct dimension, in rad/s

e A: float
Intensity

e states: bool
Set to True for 'FnMODE':'States-TPPI

e alt: bool
Set to True for 'FnMODE':'States-TPPI
Returns:

e S: 2darray
Lorentzian function.

171

3.4.16 sim.t 2Dpvoigt(tl, t2, vl, v2, fwhml, fwhm2, A=1, b=0, states=True,
alt=True)

Generates a 2D pseudo-voigt signal in the time domain. b states for the fraction of gaussianity,
whereas A defines the overall amplitude of the total peak. Indexes 1’ and 2’ on the variables stand
for '’F1” and 'F2’, respectively.

Parameters:

o t1: Idarray
Indirect evolution timescale

o t2: Idarray
Timescale of the direct dimension

e vl: float
Peak position in the indirect dimension, in Hz

o v2: float
Peak position in the direct dimension, in Hz

e fwhml: float
Full-width at half maximum in the indirect dimension, in rad/s

o fwhm?2: float
Full-width at half maximum in the direct dimension, in rad/s

o A: float
Intensity

e b: float
Fraction of gaussianity

e states: bool
Set to True for 'FnMODE':'States-TPPI

e alt: bool
Set to True for 'FnMODE':'States-TPPI46

Returns:

o fid: 2darray
Pseudo-Voigt function.

172

3.4.17 sim.t 2Dvoigt(t1, t2, vl, v2, fwhml, fwhm2, A=1, b=0, states=True,
alt=True)

Generates a 2D Voigt signal in the time domain. b states for the fraction of gaussianity, whereas A
defines the overall amplitude of the total peak. Indexes 1’ and 2’ on the variables stand for 'F1’
and 'F2’, respectively.

Parameters:

o t1: Idarray
Indirect evolution timescale

o t2: Idarray
Timescale of the direct dimension

e vl: float
Peak position in the indirect dimension, in Hz

o v2: float
Peak position in the direct dimension, in Hz

e fwhml: float
Full-width at half maximum in the indirect dimension, in rad/s

o fwhm?2: float
Full-width at half maximum in the direct dimension, in rad/s

o A: float
Intensity

e b: float
Fraction of gaussianity

e states: bool
Set to True for 'FnMODE':'States-TPPI

e alt: bool
Set to True for 'FnMODE':'States-TPPI
Returns:

e S: 2darray
Voigt function.

173

3.4.18 sim.t gaussian(t, u, s, A=1, phi=0)

Gaussian function in the time domain.

Parameters:

e t: Idarray
Independent variable

u: float
Peak position, in Hz

s: float
Standard deviation, in rad/s

A: float
Intensity

phi: float
Phase, in radians
Returns:

e S: Ildarray
Gaussian function.

174

3.4.19 sim.t lorentzian(t, u, fwhm, A=1, phi=0)

Lorentzian function in the time domain.

Parameters:

e t: Idarray
Independent variable

u: float
Peak position, in Hz

fwhm: float
Full-width at half-maximum, in rad/s

A: float
Intensity

phi: float
Phase, in radians
Returns:

e S: Ildarray
Lorentzian function.

175

3.4.20 sim.t pvoigt(t, u, fwhm, A=1, b=0, phi=0)

Pseudo-Voigt function in the time domain:

Parameters:

e t: Idarray
Independent variable

e u: float
Peak position, in Hz

o fwhm: float
Full-width at half-maximum, in rad/s

o A: float
Intensity

e b: float

Fraction of gaussianity
e phi: float
Phase, in radians
Returns:

e S: Ildarray
Pseudo-Voigt function.

176

3.4.21 sim.t_voigt(t, u, fwhm, A=1, b=0, phi=0)

Voigt function in the time domain. The parameter b affects the linewidth of the lorentzian and
gaussian contributions.

Parameters:

o t: Idarray
Independent variable

o u: float
Peak position, in Hz

e fwhm: float
Full-width at half-maximum, in rad/s

o A: float
Intensity

e b: float

Fraction of gaussianity
e phi: float
Phase, in radians
Returns:

o S: Idarray
Voigt function.

177

3.4.22 sim.water7(N, t2, vW, fwhm=300, A=1, spread=701.125)

Simulates a feature like the water ridge in HSQC spectra, in the time domain.

Parameters:
o N: int

Number of transients

o t2: Idarray
Time scale of the last temporal dimension.

o vW: float

Nominal peak position, in Hz.

o fwhm: float
Nominal full-width at half maximum of the peak, in rad/s.

o A: float

Signal intensity.
e spread: float
Standard deviation of the peak position distribution, in Hz.
Returns:

e ridge: 2darray
Matrix of the ridge.

178

3.5 FIT package

Functions for performing fits.

3.5.1 fit.CostFunc class

Class that groups several ways to compute the target of the minimization in a fitting procedure. It
includes the classic squared sum of the residuals, as well as some other non-quadratic cost functions.
Let x be the residuals and s the chosen threshold value. Then the objective value R is computed as:

R=Y"_if(z_i)

where f(x) can be chosen between the following options:

e Quadratic:

flo) =a*

Truncated Quadratic:

f() = {xj if |z| <'s

s° otherwise

Huber function:

f(x):{m if |[2] <'s

2s|w| — s? otherwise

Asymmetric Truncated Quadratic:

2 ifr<
f(x):{a; T <Ss

s* otherwise

Asymmetric Huber function:

f(x):{xz i ifex<s

2sx — s* otherwise

Attributes:

e method: function
Function to be used for the computation of the objective value. It must take as input the array
of the residuals and the threshold, no matter if the latter is actually used or not.

e s: float
Threshold value

179

Methods:

___init __ (self, method='q', s=None)

Initialize the method according to your choice, then stores the threshold value in the attribute
. Allowed choices are:

e 'q": Quadratic
e 'tq": Truncated Quadratic

'huber': Huber function

'atq': Asymmetric Truncated Quadratic

'ahuber': Asymmetric Huber function

Parameters:

e method: str
Label for the method selection

e s: float
Threshold value

__call (self, x)

Computes the objective value according to the chosen method and the residuals array x.

Parameters:

o x: Idarray
Array of the residuals

Returns:

e R: Idarray
Modified residuals according to the chosen target function

asymm__huber(r, s)

Linear behaviour above s, penalizes negative entries

asymm _truncated quadratic(r, s)

Constant behaviour above s, penalizes negative entries

huber(r, s)

Linear behaviour above s

method selector(self, method)

Performs the selection of the method according to the identifier string.

Parameters:

e method: str
Method label

Returns:

o f: function
Selected model

180

squared sum(r, s=0)

Quadratic everywhere

truncated quadratic(r, s)

Constant. behaviour above s

181

3.5.2 fit.Peak class

Class to represent the characteristic parameters of an NMR peak, and to compute it.

Attributes:

o t: Idarray
Timescale for the FID

e SFO1: float
Nucleus Larmor frequency

e olp: float
Carrier position

o N: int
Number of points of the spectrum, i.e. after eventual zero-filling

e u: float
Chemical shift /ppm

o fwhm: float
Linewidth /Hz

e k: float
Intensity, relative

e b: float
Fraction of gaussianity (b=0 equals pure lorentzian)

e phi: float
Phase /degrees

e group: int
Identifier for the component of a multiplet

Methods:

__init __ (self, acqus, u=None, fwhm=5, k=1, b=0, phi=0, N=None, group=0)
Initialize the class with the configuration parameters, and with defauls values, if not given.

Parameters:

e acqus: dict
It should contain 't', 'SFO1', 'olp', and 'N'

e u: float
Chemical shift /ppm

e fwhm: float
Linewidth /Hz

o k: float
Intensity, relative

182

b: float
Fraction of gaussianity (b=0 equals pure lorentzian)

phi: float

Phase /degrees

e N: int

Number of points of the spectrum, i.e. after eventual zero-filling. None means to not zero-fill

e group: int
Identifier for the component of a multiplet

__call (self, A=1, cplx=False, get fid=False)

Generates a voigt signal on the basis of the stored attributes, in the time domain. Then, makes
the Fourier transform and returns it after the eventual zero-filling.

Parameters:

e A: float
Absolute intensity value

e cplx: bool
Returns the complex (True) or only the real part (False) of the signal

o get fid: bool
If True, returns the FID instead of the transformed signal

Returns:

e sgn : Idarray
generated signal in the frequency domain

get fid(self, A=1)
Compute and returns the FID encoding for that signal.

Parameters:

o A: float
Absolute intensity value

Returns:

e sgn : Idarray
generated signal in the time domain

par(self)
Creates a dictionary with the currently stored attributes and returns it.
Returns:

e dic: dict
Dictionary of parameters

183

3.5.3 fit.SINC ObjFunc class

Computes the objective function as explained in M. Sawall et al., Journal of Magnetic Resonance
289 (2018), 132-141. The cost function is computed as:

3
f(d) = Z Yigi(dle;)
i=1
where d is the real part of the NMR spectrum.

Attributes:

o gammal: float
Weighting factor for function g;

e gamma2: float
Weighting factor for function g

e gammad: float
Weighting factor for function g3

e cl: float
Tolerance value for function g,

e ¢2: float
Tolerance value for function g

Methods:

__init __ (self, gammal=10, gamma2=0.01, gamma3=0, e1=0, e2=0)
Initialize the coefficients used to weigh the objective function.

Parameters:

e gammal: float
Weighting factor for function gl

e gamma2: float
Weighting factor for function g2

e gammad: float
Weighting factor for function g3

e el: float
Tolerance value for function gl

e ¢2: float
Tolerance value for function g2

__call (self, d)

Computes the objective function f as explained in the paper

gl(d, e1=0)
Penalty function for negative entries of the spectrum

Parameters:

o d: Idarray
Spectrum

e el: float
Tolerance for negative entries

184

g2(d, e2=0)

Regularization function that favours the smallest integral.

Parameters:

o d: Idarray
Spectrum

e ¢2: float
Tolerance for ideal baseline

g3(d)

Regularization function for the smoothing.

Parameters:

o d: Idarray
Spectrum

185

3.5.4 fit.Voigt Fit class
This class offers an 'interface' to fit a 1D NMR spectrum.

Attributes:

e ppm_scale: Idarray
Self-explanatory

e S: Idarray
Spectrum to fit. Only real part

o t AQ: Idarray
acquisition timescale of the spectrum

e SW: float
Spectral width /Hz

e SFO1: float

Larmor frequency of the nucleus

e olp : float
Pulse carrier frequency

e filename: str
Root of the names of the files that will be saved

o X label: str
Label for the chemical shift axis in the figures

e i guess: [list
Initial guess for the fit, read by a .ivf file with fit.read vf

e result: [list
Result the fit, read by a .fvf file with fit.read vf

Methods:
__init _ (self, ppm_scale, S, t AQ, SFO1, olp, nuc=None, filename="fit')

Initialize the class with common values.

Parameters:

e ppm_scale: Idarray
ppm scale of the spectrum

e S: Idarray
Spectrum to be fitted

o t AQ: Idarray
Acquisition timescale

e SFO1: float
Larmor frequency of the observed nucleus, in MHz

186

e olp: float
Carrier position, in ppm

e nuc: str
Observed nucleus. Used to customize the x-scale of the figures.

e filename: str or None
Root of the name of the files that will be saved

dofit(self, indep=True, u_lim=1,f lim=10,k lim=(0, 3), vary phase=False, vary b=True,
itermax=10000, fit tol=1e-08, filename=None, method="'leastsq')

Perform a lineshape deconvolution fitting. The initial guess is read from the attribute self.i guess.
The components can be considered to be all independent from one to another by setting 'indep' to
True: this means that the fit will be done using fit.voigt fit indep. The indep=False option has
not been implemented yet.

Parameters:

e indep: bool
True to consider all the components to be independent

e u_lim: float
Determines the displacement of the chemical shift (in ppm) from the starting value.

o f lim: float
Determines the displacement of the linewidth (in Hz) from the starting value.

e k lim: float or tuple
If tuple, minimum and maximum allowed values for k during the fit. If float, maximum dis-
placement from the initial guess

e vary phase: bool
Allow the peaks to change phase (True) or not (False)

e vary b: bool
Allow the peaks to change Lorentzian/Gaussian ratio

e itermax: int
Maximum number of allowed iterations

o fit tol: float
Value of the target function to be set as x_tol and f tol

e filename: str
Path to the output file. If None, '<self .filename>.fvf' is used

e method: str
Method to use for the optimization (see lmfit)

get fit lines(self, what='result')

Calculates the components, and the total fit curve used as initial guess, or as fit results.. The
components will be returned as a list, not split by region.

187

Parameters:

e what: str
'iguess' or 'result'

Returns:

e signals: list of I1darray
Components used for the fit

e total: Idarray
Sum of all the signals

o limits list: list
List of region delimiters, in ppm

iguess(self, filename=None, n=-1, ext="ivf', auto=False)

Reads, or computes, the initial guess for the fit. If the file is there already, it just reads it with
fit.read vf. Otherwise, it calls fit.make iguess to make it.

Parameters:

e filename: str or None

Path to the input file. If None, '<self filename>.ivf' is used
e n: int

Index of the initial guess to be read (default: last one)

o ext: str
Extension of the file to be used

e auto: bool
If True, uses the GUI for automatic peak picking, if False, the manual one

load fit(self, filename=None, n=-1, ext="fv{")
Reads a file with fit.read vf and stores the result in self.result.

Parameters:

e filename: str

Path to the .fvf file to be read. If None, '<self.filename> .fvf' is used.
e n: nt

Index of the fit to be read (default: last one)

e ext: str
Extension of the file to be used

188

plot(self, what='result', show total=True, show res=False, res offset=0, labels=None,
filename=None, ext="tiff', dpi=600)

Plots either the initial guess or the result of the fit, and saves all the figures. Calls fit.plot _fit. The
figure <filename> full will show the whole model and the whole spectrum. The figures labelled with
_R<k> will depict a detail of the fit in the k-th fitting region. Optional labels for the components
can be given: in this case, the structure of 'labels' should match the structure of self.result (or
self.i guess). This means that the length of the outer list must be equal to the number of fitting
region, and the length of the inner lists must be equal to the number of peaks in that region.

Parameters:

e what: str
'iguess' to plot the initial guess, 'result' to plot the fitted data

e show total: bool
Show the total trace (i.e. sum of all the components) or not

e show res: bool
Show the plot of the residuals

e res_offset: float
Displacement of the residuals plot from 0, to be given as a fraction of the height of the experi-
mental spectrum. res_offset > 0 will move the residuals BELOW the zero-line!

e labels: list of list
Optional labels for the components. The structure of this parameter must match the structure
of self.result

e filename: str
Root of the name of the figures that will be saved. If None, <self filename> is used

e cxt: sir
Format of the saved figures
e dpi: int
Resolution of the figures, in dots per inches

res_histogram(self, what='result', nbins=500, density=True, f lims=None, xlabel='Residuals

x_s_ymm:True, barcolor="'tab:green', fontsize=20, filename=None, ext="tiff', dpi=300)

Computes the histogram of the residuals and saves it. Employs fit.histogram to make the figure.

Parameters:

e what: str
'iguess' or 'result'

e nbins : int
number of bins to be calculated

e density : bool
True for normalize data

f lims : tuple or None
limits for the x axis of the figure

xlabel : str or None
Text to be displayed under the x axis

X_symm : bool
set it to True to make symmetric x-axis with respect to 0

barcolor: str
Color of the bins

fontsize: float
Biggest fontsize in the figure

name : str
name for the figure to be saved

ext: str
Format of the image

dpi: int
Resolution of the image in dots per inches

189

190

3.5.5 fit.Voigt Fit P2D class
This class offers an 'interface' to fit a pseudo 2D NMR spectrum.

Attributes:

e ppm_scale: Idarray
Self-explanatory

e S: 2darray
Spectrum to fit. Only real part

o t AQ: Idarray
acquisition timescale of the spectrum

e SFOL1: float

Larmor frequency of the nucleus

e olp : float
Pulse carrier frequency

e filename: str
Root of the names of the files that will be saved

o X label: str
Label for the chemical shift axis in the figures

e i guess: [list
Initial guess for the fit, read by a .ivf file with fit.read vf P2D

o result: list
Result the fit, read by a .fvf file with fit.read vf P2D

Methods:
__init _ (self, ppm_scale, S, t AQ, SFO1, olp, nuc=None, filename="fit')

Initialize the class with common values.

Parameters:

e ppm_scale: Idarray
ppm scale of the spectrum

e S: 2darray
Spectrum to be fitted

o t AQ: Idarray
Acquisition timescale

e SFO1: float
Larmor frequency of the observed nucleus, in MHz

e olp: float
Carrier position, in ppm

191

e nuc: str

Observed nucleus. Used to customize the x-scale of the figures.

e filename: str or None

Root of the name of the files that will be saved

dofit(self, u_tol=1, f tol=10, vary phase=False, vary b=True, itermax=10000, file-
name=None)

Perform a lineshape deconvolution fitting by calling fit.voigt fit P2D. The initial guess is read

from the attribute self.i guess.

Parameters:

e u_tol: float

Determines the displacement of the chemical shift (in ppm) from the starting value.

f tol: float
Determines the displacement of the linewidth (in Hz) from the starting value.

vary _phase: bool
Allow the peaks to change phase (True) or not (False)

vary _b: bool
Allow the peaks to change Lorentzian/Gaussian ratio

itermax: int
Maximum number of allowed iterations

filename: str
Path to the output file. If None, '<self .filename>.fvf' is used

get

fit lines(self, what='result')

Calculates the components, and the total fit curve used as initial guess, or as fit results.. The

components will be returned as a list, not split by region.

Parameters:

e what: sir

'iguess' or 'result'

Returns:

e signals: list of list of 1darray

Components used for the fit

e total: 2darray

Sum of all the signals

e limits list: list

List of the region delimiters, in ppm

192

iguess(self, input file=None, expno=0, n=-1)

Reads, or computes, the initial guess for the fit. If the file is there already, it just reads it with
fit.read vf. Otherwise, it calls fit.make iguess to make it.

Parameters:

e input_file: str or None
Path to the input file. If None, '<self.filename>.ivf' is used

® expno: int

Number of the experiment on which to compute the initial guess, in python numbering
e n: int

Index of the initial guess to be read (default: last one)

load fit(self, output file=None, n=-1)
Reads a file with fit.read vf P2D and stores the result in self.result.

Parameters:

e output_file: str
Path to the .fvf file to be read. If None, '<self filename>.fvf' is used.

e n: int
Index of the fit to be read (default: last one)

plot(self, what="result', show total=True, show res=False, res offset=0, labels=None,
filename=None, ext="tiff', dpi=600)

Plots either the initial guess or the result of the fit, and saves all the figures. Calls fit.plot _fit P2D.
The figures <filename> full will show the whole model and the whole spectrum. The figures labelled
with R<k> will depict a detail of the fit in the k-th fitting region. Optional labels for the com-
ponents can be given: in this case, the structure of 'labels' should match the structure of self.result
(or self.i guess). This means that the length of the outer list must be equal to the number of fitting
region, and the length of the inner lists must be equal to the number of peaks in that region.

Parameters:

e what: str
'iguess' to plot the initial guess, 'result' to plot the fitted data

e show total: bool
Show the total trace (i.e. sum of all the components) or not

e show res: bool
Show the plot of the residuals

e res_offset: float
Displacement of the residuals plot from 0, to be given as a fraction of the height of the experi-
mental spectrum. res_offset > 0 will move the residuals BELOW the zero-line!

193

e labels: list of list
Optional labels for the components. The structure of this parameter must match the structure
of self.result

e filename: str
Root of the name of the figures that will be saved. If None, <self.filename> is used

e cxt: sir
Format of the saved figures
e dpi: int
Resolution of the figures, in dots per inches

res_histogram(self, what="'result', nbins=>500, density=True, f lims=None, xlabel='Residuals
x_symm=True, barcolor="tab:green', fontsize=20, filename=None, ext="tiff', dpi=300)

Computes the histogram of the residuals and saves it in the same folder of the fit figures. Employs
fit.histogram to make the figure.

Parameters:

e what: str
'iguess' or 'result'

e nbins : nt
number of bins to be calculated

e density : bool
True for normalize data

o f lims: tuple or None
limits for the x axis of the figure

e xlabel : str or None
Text to be displayed under the x axis

e X symm : bool
set it to True to make symmetric x-axis with respect to 0

e barcolor: str
Color of the bins

o fontsize: float
Biggest fontsize in the figure

e name : str
name for the figure to be saved

e ext: str
Format of the image

e dpi: int
Resolution of the image in dots per inches

194

3.5.6 fit.ax histogram(ax, data0, nbins=100, density=True, f lims=None,
xlabel=None, x symm=False, fitG=True, barcolor="'tab:blue’', font-
size=10)

Computes an histogram of 'data' and tries to fit it with a gaussian lineshape. The parameters of the
gaussian function are calculated analytically directly from 'data' using 'scipy.stats.norm'
Parameters:

e ax : matplotlib.subplot Object
panel of the figure where to put the histogram

e datal : ndarray
the data to be binned

e nbins : nt
number of bins to be calculated

e density : bool
True for normalize data

o f lims: tuple or None
limits for the x axis of the figure

e xlabel : str or None
Text to be displayed under the x axis

e X symm : bool
set it to True to make symmetric x-axis with respect to 0

o fitG: bool
Shows the gaussian approximation

e barcolor: str
Color of the bins

o fontsize: float
Biggest fontsize in the figure
Returns:

e m : float
Mean of data

e s: float
Standard deviation of data.

3.5.7 fit.bin data(data0, nbins=100, density=True, x symm=False)

Computes the histogram of data, sampling it into nbins bins.

Parameters:

e data : ndarray
the data to be binned

e nbins : int
number of bins to be calculated

e density : bool
True for normalize data

e X symm : bool
set it to True to make symmetric x-axis with respect to 0
Returns:

e hist: Idarray
The bin intensity

e bin scale: Idarray
Scale built with the mean value of the bin widths.

195

196

3.5.8 fit.build 2D sgn(parameters, acqus, N=None, procs=None)
Create a 2D signal according to the final parameters returned by make iguess 2D. Process it ac-
cording to procs.

Parameters:

e parameters: [ist or 2darray
sequence of the parameters: ul, u2, fwhml, fwhm2, I, b. Multiple components are allowed

e acqus: dict
2D-like acqus dictionary containing the acquisition timescales (keys t1 and t2)

o N: tuple of int
Zero-filling values (F1, F2). Read only if procs is None

e procs: dict
2D-like procs dictionary.
Returns:

e peak: 2darray
rr part of the generated signal

197

3.5.9 fit.build baseline(ppm scale, C, L=None)

Builds the baseline calculating the polynomion with the given coefficients, and summing up to the
right position.

Parameters:

e ppm_scale: Idarray
ppm scale of the spectrum

o C: list
Parameters coefficients. No baseline corresponds to False.

o L: list
List of window regions. If it is None, the baseline is built on the whole ppm_scale
Returns:

e baseline: Idarray
Self-explanatory.

3.5.10 fit.calc_ R2(y, y_c)

Computes the R-squared coefficient of a linear regression as:

2 _ 1 Z(y _ ymean)2
=l Z(y - yc)2

Parameters:

o y: Idarray
Experimental data

e y c: ldarray

Calculated data

Returns:

e R2: float
R-squared coefficient

198

199

3.5.11 fit.calc_fit lines(ppm scale, limits, t AQ, SFO1, olp, N, V, C=False)
Given the values extracted from a fit input/output file, calculates the signals, the total fit function,

and the baseline.

Parameters:

e ppm_scale: Idarray
PPM scale of the spectrum

e limits: tuple
(left, right) in ppm

e t AQ: Idarray
Acquisition timescale

e SFO1: float
Larmor frequency of the nucleus /ppm

e olp: float
Pulse carrier frequency /ppm

o N: int
Size of the final spectrum.

o V: 2darray
Matrix containing the values to build the signals.

o C: Idarray
Baseline polynomion coefficients. False to not use the baseline
Returns:

e sgn: list
Voigt signals built using V

e Total: 1darray
sum of all the sgn

e baseline: Idarray
Polynomion built using C. False if C is False.

200

3.5.12 fit.dic2mat(dic, peak names, ns, A=None)

This is used to make the matrix of the parameters starting from a dictionary like the one produced
by 1. The column of the total intensity is not added, unless the parameter 'A' is passed. In this
case, the third column (which is the one with the relative intesities) is corrected using the function
molfrac.

Parameters:

e dic : dict
input dictionary

e peak names : [ist
list of the parameter entries to be looked for

e ns : int
number of signals to unpack

e A : float or None
Total intensity.
Returns:

o V : 2darray
Matrix containing the parameters.

201

3.5.13 fit.fit int(y, y c, q=True)

Computes the optimal intensity and intercept of a linear model in the least squares sense. Let y be
the experimental data and y ¢ the model, and let <w> the mean of variable w. Then: A = (<y ¢
y>-<y ce<y>)/ (<y_2>-<y ¢>2)q=(<y c>2<y>-<y c><y cy>)/(<y 2>
- <y c>2)

Parameters:

o y: Idarray
Experimental data

e y c: ldarray
Model data

e : bool
If True, includes the offset in the calculation. If False, only the intensity factor is computed.

Returns:
o A: float
Optimized intensity

e q: float
Optimized intercept

202

3.5.14 fit.gaussian fit(x, y, s in=None)

|

Fit 'y' with a gaussian function, built using 'x' as independent variable

Parameters:

e x: Idarray
x-scale

e v : ldarray
data to be fitted

Returns:

e u: float
mean

e s: float
standard deviation

o A: float
Integral

203

3.5.15 fit.gen iguess(x, experimental, param, model, model args=||, sens0=1)

GUTI for the interactive setup of a Parameters object to be used in a fitting procedure. Once you
initialized the Parameters object with the name of the parameters and a dummy value, you are
allowed to set the value, minimum, maximum and vary status through the textboxes given in the
right column, and see their effects in real time. Upon closure of the figure, the Parameters object
with the updated entries is returned.

Keybinding:

e '>'": increase sensitivity

e '<": decrease sensitivity

e 'up': increase value

e 'down': decrease value

e 'left": change parameter

e 'right': change parameter
!

e 'v": change 'vary' status

e '<'": toggle automatic zoom adjustment

Parameters:

e x: Idarray
Independent variable

e cxperimental: Idarray
The objective values you are trying to fit

e param: [mfit. Parameters Object
Initialized parameters object

e model: function
Function to be used for the generation of the fit model. Param must be the first argument.

e model args: list
List of args to be passed to model, after param

e sensO: float
Default sensitivity for the change of the parameters with the mouse
Returns:

e param: [mfit. Parameters Object
Updated Parameters Object

204

3.5.16 fit.gen iguess 2D(ppm _fl, ppm {2, trl, tr2, ul, u2, acqus, fwhm0=100
procs=None)

Generate the initial guess for the fit of a 2D signal. The employes model is the one of a 2D Voigt
signal, acquired with the States-TPPI scheme in the indirect dimension (i.e. sim.t_ 2DVoigt). The
program allows for the inclusion of up to 10 components for the signal, in order to improve the fit.
The acqus dictionary must contain the following keys: > t1: acquisition timescale in the indirect
dimension (States) > t2: acquisition timescale in the direct dimension > SFO1: Larmor frequency
of the nucleus in the indirect dimension > SFO2: Larmor frequency of the nucleus in the direct
dimension > olp: carrier position in the indirect dimension /ppm > 02p: carrier position in the
direct dimension /ppm The signals will be processed according to the values in the procs dictionary,
if given; otherwise, they will be just zero-filled up to the data size (i.e. (len(ppm_f1), len(ppm _{2))

).
Parameters:

e ppm_fl: Idarray
ppm scale for the indirect dimension

e ppm_ f2: Idarray
ppm scale for the direct dimension

o trl: Idarray
Trace of the original 2D peak in the indirect dimension

o tr2: Idarray
Trace of the original 2D peak in the direct dimension

e ul: float
Chemical shift of the original 2D peak in the indirect dimension /ppm

e u2: float
Chemical shift of the original 2D peak in the direct dimension /ppm

e acqus: dict
Dictionary of acquisition parameters

o fwhmO: float
Initial value for FWHM in both dimensions

e procs: dict
Dictionary of processing parameters

Returns:

e final parameters: 2darray
Matrix of dimension (# signals, 6) that contains, for each row: v1(Hz), v2(Hz), fwhm1(Hz),
fwhm2(Hz), A, b

o fit interval: tuple of tuple
Fitting window. ((left_fl, right f1), (left {2, right {2))

3.5.17 fit.get region(ppmscale, S, rev=True)

Interactively select the spectral region to be fitted. Returns the border ppm values.

Parameters:

e ppmscale: Idarray
The ppm scale of the spectrum

e S: Ildarray
The spectrum to be trimmed

e rev: bool
Choose if to reverse the ppm scale and data (True) or not (False).

Returns:

o left: float
Left border of the selected spectral window

e right: float
Right border of the selected spectral window

205

206

3.5.18 fit.histogram(data, nbins=100, density=True, f lims=None, xla-
bel=None, x symm=False, fitG=True, barcolor="tab:blue’', font-
size=10, name=None, ext="tiff', dpi=600)

Computes an histogram of 'data' and tries to fit it with a gaussian lineshape. The parameters of the
gaussian function are calculated analytically directly from 'data' using 'scipy.stats.norm'
Parameters:

e data : ndarray
the data to be binned

e nbins : nt
number of bins to be calculated

e density : bool
True for normalize data

o f lims: tuple or None
limits for the x axis of the figure

e xlabel : str or None
Text to be displayed under the x axis

e x_symm : bool
set it to True to make symmetric x-axis with respect to 0

e fitG: bool
Shows the gaussian approximation

e barcolor: str
Color of the bins

e fontsize: float
Biggest fontsize in the figure

e name : str
name for the figure to be saved

e ext: str
Format of the image

e dpi: int
Resolution of the image in dots per inches
Returns:

e m : float
Mean of data

e s: float
Standard deviation of data.

207

3.5.19 fit.integrate(ppmO, data0, X label=)

Allows interactive integration of a NMR spectrum through a dedicated GUI. Returns the values as a
dictionary, where the keys are the selected regions truncated to the 2nd decimal figure. The returned
dictionary contains pre-defined keys, as follows:

e total: total integrated area

e ref pos: location of the reference peak /ppml:ppm2

e ref int: absolute integral of the reference peak

e ref val: for how many nuclei the reference peak integrates

The absolute integral of the x-th peak, I x, must be calculated according to the formula:

I_x = I_x(relative) * ref_int / ref_val

Parameters:

e ppm: Idarray
PPM scale of the spectrum

e data: Idarray
Spectrum to be integrated.

o X label: str
Label of the x-axis
Returns:

o f wvals: dict
Dictionary containing the values of the integrated peaks.

208

3.5.20 fit.integrate 2D(ppm_fl1, ppm_f2, data, SFO1, SFO2, fwhm 1=200,
fwhm 2=200, utol 1=0.5, utol 2=0.5, plot result=False)

Function to select and integrate 2D peaks of a spectrum, using dedicated GUIs. Calls integral 2D
to do the dirty job.

Parameters:

e ppm_fl: Idarray
PPM scale of the indirect dimension

e ppm_f2: Idarray
PPM scale of the direct dimension

e data: 2darray
real part of the spectrum

e SFO1: float

Larmor frequency of the nucleus in the indirect dimension

e SFO2: float

Larmor frequency of the nucleus in the direct dimension

e fwhm 1: float
Starting FWHM /Hz in the indirect dimension

e fwhm 2: float
Starting FWHM /Hz in the direct dimension

e utol 1: float
Allowed tolerance for u_ 1 during the fit. (u_1-utol 1, u 1+utol 1)

e utol 2: float
Allowed tolerance for u_ 2 during the fit. (u_2-utol 2, u_ 2-+utol 2)

e plot result: bool

True to show how the program fitted the traces.

Returns:

o [: dict
Computed integrals. The keys are '<ppm fl1>:<ppm 2>" with 2 decimal figures.

209

3.5.21 fit.interactive smoothing(x, y, cmap='RdBu')

Interpolate the given data with a 3rd-degree spline. Type the desired smoothing factor in the box
and see the outcome directly on the figure. When the panel is closed, the smoothed function is
returned.

Parameters:

e x: Idarray
Scale of the data

e yv: Idarray
Data to be smoothed

e cmap: stir
Name of the colormap to be used to represent the weights
Returns:

e sx: Idarray
Location of the spline points

e sy: Idarray
Smoothed y

e s f: float
Employed smoothing factor for the spline

e weights: Idarray
Weights vector

210

3.5.22 fit.join par(filenames, ppm _scale, joined name=None)

Load a series of parameters fit files. Join them together, returning a unique array of signal parameters,
a list of coefficients for the baseline, and a list of tuples for the regions. Also, uses the coefficients
and the regions to directly build the baseline according to the ppm windows.

Parameters:

e filenames: list
List of directories of the input files.

e ppm_scale: Idarray
ppm scale of the spectrum. Used to build the baseline

e joined name: str or None
If it is not None, concatenates the files in the list 'filenames' and saves them in a single file
named 'joined name'.

Returns:

o V: 2darray
Array of joined signal parameters

o C: list
Parameters coefficients. No baseline corresponds to False.

o L: list
List of window regions.

e baseline: Idarray
Baseline built from C and L.

211

3.5.23 fit.Ir(y, x=None, force intercept=False)

Performs a linear regression of y with a model y ¢ = mx + q.

Parameters:

o y: Idarray
Data to be fitted

e x: Idarray
Independent variable. If None, the point indexes are used.

e force intercept: bool
If True, forces the intercept to be zero.
Returns:

e y c: ldarray
Fitted trend

e values: tuple
(m, q)

212

3.5.24 fit.lsp(y, x, n=5)

Linear-System Polynomion Make a polynomial fit on the experimental data y by solving the linear
system

y=Tc
where T is the Vandermonde matrix of the x-scale and ¢ is the set of coefficients that minimize the
problem in the least-squares sense.
Parameters:

o y: Idarray
Experimental data

e x: Idarray
Independent variable (better if normalized)

e n: int
Order of the polynomion + 1, i.e. number of coefficients
Returns:

e c: Idarray
Set, of minimized coeflicients

213

3.5.25 fit.make iguess(S in, ppm_scale, t AQ, SFO1=701.125, o1p=0,
filename='i guess')

Creates the initial guess for a lineshape deconvolution fitting procedure, using a dedicated GUI. The
GUI displays the experimental spectrum in black and the total function in blue. First, select the
region of the spectrum you want to fit by focusing the zoom on it using the lens button. Then, use
the '+' button to add components to the spectrum. The black column of text under the textbox will
be colored with the same color of the active peak. Use the mouse scroll to adjust the parameters
of the active peak. Write a number in the 'Group' textbox to mark the components of the same
multiplet. Group 0 identifies independent peaks, not part of a multiplet (default). The sensitivity of
the mouse scroll can be regulated using the 'up arrow' and 'down arrow' buttons. The active peak
can be changed in any moment using the slider.

When you are satisfied with your fit, press 'SAVE' to write the information in the output file.
Then, the GUI is brought back to the initial situation, and the region you were working on will be
marked with a green rectangle. You can repeat the procedure as many times as you wish, to prepare
the guess on multiple spectral windows.

Keyboard shortcuts:

e 'increase sensitivity' : '>'
e 'decrease sensitivity' : '<'

e mouse scroll up: 'up arrow key'

e mouse scroll down: 'down arrow key'
e 'add a component': '+'

e 'remove the active component': '-'

e 'change component, forward': 'page up'

e 'change component, backward': 'page down'

Parameters:

e S in: Idarray
Experimental spectrum

e ppm_scale: Idarray
PPM scale of the spectrum

o t AQ: Idarray
Acquisition timescale

e SFO1: float

Nucleus Larmor frequency /MHz

e olp: float
Carrier frequency /ppm

e filename: str
Path to the filename where to save the information. The '.ivf' extension is added automatically.

214

3.5.26 fit.make iguess P2D(S in, ppm _scale, expno,t AQ, SFO1=701.125,
olp=0, filename="'i guess')

Creates the initial guess for a lineshape deconvolution fitting procedure of a pseudo-2D experiment,
using a dedicated GUIL. It will be donw on only one experiment of the whole pseudo-2D. The GUI
displays the experimental spectrum in black and the total function in blue. First, select the region
of the spectrum you want to fit by focusing the zoom on it using the lens button. Then, use the
'+' button to add components to the spectrum. The black column of text under the textbox will
be colored with the same color of the active peak. Use the mouse scroll to adjust the parameters
of the active peak. Write a number in the 'Group' textbox to mark the components of the same
multiplet. Group 0 identifies independent peaks, not part of a multiplet (default). The sensitivity of
the mouse scroll can be regulated using the 'up arrow' and 'down arrow' buttons. The active peak
can be changed in any moment using the slider.

When you are satisfied with your fit, press 'SAVE' to write the information in the output file.
Then, the GUI is brought back to the initial situation, and the region you were working on will be
marked with a green rectangle. You can repeat the procedure as many times as you wish, to prepare
the guess on multiple spectral windows.

Keyboard shortcuts:

e 'increase sensitivity' : '>'

e 'decrease sensitivity' : '<'

e mouse scroll up: 'up arrow key'

e mouse scroll down: 'down arrow key'
e 'add a component': '+'

e 'remove the active component': '-'

e 'change component, forward': 'page up'

e 'change component, backward': 'page down'

Parameters:

e S in: Idarray
Experimental spectrum

e ppm_scale: Idarray
PPM scale of the spectrum

® expno: int
Index of experiment of the pseudo 2D on which to compute the initial guess, in python num-
bering

o t AQ: Idarray
Acquisition timescale

e SFO1: float
Nucleus Larmor frequency /MHz

e olp: float
Carrier frequency /ppm

e filename: str
Path to the filename where to save the information. The '.ivf' extension is added automatically.

215

3.5.27 fit.make iguess auto(ppm, data, SW, SFO1, olp, filename="'iguess')

GUI to create a .ivf file, used as initial guess for Voigt Fit. The computation of the peak positions and
linewidths employs scipy.signal.find peaks and scipy.signal.peak widths, respectively. In addition,
peak features may be added manually by clicking with the left button twice. Unwanted features can
be removed with right clicks. If the FWHM of a peak cannot be computed automatically, a dummy
FWHM of 1 Hz is assigned automatically. The file <filename>.ivf is written upon pressing the SAVE
button. Press Z to activate/deactivate the cursor snap.

Parameters:

e ppm: Idarray
PPM scale of the spectrum

e data: Idarray
real part of the spectrum to fit

e SW: float
Spectral width /Hz

e SFO1: float
Nucleus Larmor Frequency /MHz

e olp: float
Carrier position /ppm

e filename: str
Path to the file where to save the initial guess. The .ivf extension is added automatically.

216

3.5.28 fit.make signal(t, u, s, k, b, phi, A, SFO1=701.125, o1p=0, N=None)
Generates a voigt signal on the basis of the passed parameters in the time domain. Then, makes the
Fourier transform and returns it.

Parameters:

e t: ndarray
acquisition timescale

u : float
chemical shift /ppm

e s: float
full-width at half-maximum /Hz

e k: float

relative intensity

e b: float

fraction of gaussianity

e phi: float
phase of the signal, in degrees

o A: float
total intensity

e SFO1 : float
Larmor frequency /MHz

e olp : float
pulse carrier frequency /ppm

e N :int or None
length of the final signal. If None, signal is not zero-filled before to be transformed.
Returns:

e sgn : Idarray
generated signal in the frequency domain

217

3.5.29 fit.peak pick(ppm fl1, ppm {2, data, coord filename="'coord.tmp')

Make interactive peak picking. The position of the selected signals are saved in coord filename. If
coord filename already exists, the new signals are appended at its bottom: nothing is overwritten.
Calls misc.select traces for the selection.

Parameters:

e ppm_fl: Idarray
ppm scale for the indirect dimension

e ppm_ f2: Idarray
ppm scale for the direct dimension

e data: 2darray
Spectrum to peak-pick. The dimension should match the scale sizes.

e coord filename: str

Path to the file where to save the peak coordinates

Returns:

e coord: list
List of (u2, ul) for each peak

218

3.5.30 fit.plot fit(S, ppm _scale, regions, t AQ, SFO1, olp, show total=False,
show res—=False, res offset=0, X label=, labels=None, filename="fit',
ext="tiff', dpi=600)

Plots either the initial guess or the result of the fit, and saves all the figures. Calls fit.plot fit. The
figure <filename> full will show the whole model and the whole spectrum. The figures labelled with
_ R<k> will depict a detail of the fit in the k-th fitting region. Optional labels for the components
can be given: in this case, the structure of 'labels' should match the structure of 'regions'. This
means that the length of the outer list must be equal to the number of fitting region, and the length
of the inner lists must be equal to the number of peaks in that region.

Parameters:

e S: Idarray
Spectrum to be fitted

e ppm_scale: Idarray
ppm scale of the spectrum

e regions: dict
Generated by fit.read vf

e t AQ: Idarray
Acquisition timescale

e SFO1: float
Larmor frequency of the observed nucleus, in MHz

e olp: float
Carrier position, in ppm

e nuc: Str
Observed nucleus. Used to customize the x-scale of the figures.

e show total: bool
Show the total trace (i.e. sum of all the components) or not

e show res: bool
Show the plot of the residuals

e res offset: float
Displacement of the residuals plot from 0, to be given as a fraction of the height of the experi-
mental spectrum. res_offset > 0 will move the residuals BELOW the zero-line!

o X label: str
Text to show as label for the chemical shift axis

e labels: list of list
Optional labels for the components. The structure of this parameter must match the structure
of self.result

e filename: str
Root of the name of the figures that will be saved. If None, <self.filename> is used

e ext: str
Format of the saved figures

219

e dpi: int
Resolution of the figures, in dots per inches

220

3.5.31 fit.plot fit P2D(S, ppm _scale, regions, t AQ, SFO1, olp, show total=
show res—=False, res offset=0, X label=, labels=None, filename="fit',
ext="tiff', dpi=600)

Plots either the initial guess or the result of the fit, and saves all the figures. A new folder named
<filename> _fit will be created. The figure <filename> full will show the whole model and the
whole spectrum. The figures labelled with _R<k> will depict a detail of the fit in the k-th fitting
region. Optional labels for the components can be given: in this case, the structure of 'labels' should
match the structure of 'regions'. This means that the length of the outer list must be equal to the
number of fitting region, and the length of the inner lists must be equal to the number of peaks in
that region.

Parameters:

e S: 2darray
Spectrum to be fitted

e ppm_scale: Idarray
ppm scale of the spectrum

e regions: list of dict
Generated by fit.read vf P2D

o t AQ: Idarray
Acquisition timescale

e SFO1: float
Larmor frequency of the observed nucleus, in MHz

e olp: float
Carrier position, in ppm

e nuc: Str
Observed nucleus. Used to customize the x-scale of the figures.

e show total: bool
Show the total trace (i.e. sum of all the components) or not

e show res: bool
Show the plot of the residuals

e res offset: float
Displacement of the residuals plot from 0, to be given as a fraction of the height of the experi-
mental spectrum. res_offset > 0 will move the residuals BELOW the zero-line!

e X label: str
Text to show as label for the chemical shift axis

e labels: list of list
Optional labels for the components. The structure of this parameter must match the structure
of self.result

e filename: str
Root of the name of the figures that will be saved.

221

e ext: sir
Format of the saved figures
o dpi: int
Resolution of the figures, in dots per inches

L2

3.5.32 fit.polyn basl(y, n=>5, method='huber', s=0.2, ¢ _i=None, iter-
max—1000)

Fit the baseline of a spectrum with a low-order polynomion using a non-quadratic objective function.
Let y be an array of N points. The polynomion is generated on a normalized scale that goes from -1
to 1 in N steps, and the coefficients are initialized either from outside through the parameter ¢ i or
with the ordinary least squares fit. Then, the guess is refined using the objective function of choice
employing the trust-region reflective least-squares algorithm.

Parameters:

o y: Idarray

Experimental data
e n: int

Order of the polynomion + 1, i.e. number of coefficients
e method: str

Objective function of choice. 'q'": quadratic, 'tq": truncated quadratic, 'huber': Huber, 'atq':
asymmetric truncated quadratic, 'ahuber': asymmetric huber

e s: float
Relative threshold value for the non-quadratic behaviour of the objective function

e c_i: sequence or None
Initial guess for the polynomion coefficient. If None, the least-squares fit is used

e itermax: int
Number of maximum iterations
Returns:

e px: ldarray
Fitted polynomion

e c: [list
Set of coefficients of the polynomion

223

3.5.33 fit.print par(V, C, limits=[None, None])

Prints on screen the same thing that write par writes in a file.

Parameters:

o V : 2darray
matrix (# signals, parameters)

e C: Idarray or False
Coefficients of the polynomion to be used as baseline correction. If the 'baseline' checkbox in
the interactive figure panel is not checked, C_f is False.

e limits : tuple or None
Trim limits for the spectrum (left, right). If None, the whole spectrum is used.

224

3.5.34 fit.read par(filename)

Reads the input file of the fit and returns the values.

Parameters:
e filename: str
directory and name of the input file to be read
Returns:

o V : 2darray
matrix (# signals, parameters)

e C: Idarray or False
Coefficients of the polynomion to be used as baseline correction. If the 'baseline' checkbox in
the interactive figure panel is not checked, C_f is False.

e limits : tuple or None
Trim limits for the spectrum (left, right). If None, the whole spectrum is used.

225

3.5.35 fit.read vf(filename, n=-1)

Reads a .ivf (initial guess) or .fvf (final fit) file, containing the parameters for a lineshape deconvo-
lution fitting procedure. The file is separated and unpacked into a list of dictionaries, each of which
contains the limits of the fitting window, the total intensity value, and a dictionary for each peak
with the characteristic values to compute it with a Voigt line.

Parameters:

e filename: str
Path to the filename to be read

e n: int
Number of performed fit to be read. Default: last one. The breakpoints are lines that start
with 'I'. For this reason, n=0 returns an empty dictionary, hence the first fit is n=1.
Returns:

e regions: [ist
List of dictionaries for running the fit.

226

3.5.36 fit.read vf P2D(filename, n—=-1)

Reads a .ivf (initial guess) or .fvf (final fit) file, containing the parameters for a lineshape deconvo-
lution fitting procedure. The file is separated and unpacked into a list of list of dictionaries, each of
which contains the limits of the fitting window, and a dictionary for each peak with the characteristic
values to compute it with a Voigt line.

Parameters:

e filename: str
Path to the filename to be read

e n: int
Number of performed fit to be read. Default: last one. The breakpoints are lines that start
with 'I'. For this reason, n=0 returns an empty dictionary, hence the first fit is n=1.
Returns:

e regions: [list of list of dict
List of dictionaries for running the fit.

227

3.5.37 fit.sinc_ phase(data, gammal=10, gamma2=0.01, gamma3=0, e1=0,
e2=0, **fit kws)
Perform automatic phase correction according to the SINC algorithm, as described in M. Sawall

et. al., Journal of Magnetic Resonance 289 (2018), 132-141. The fitting method defaults to
'least squares'.

Parameters:

e data: Idarray
Spectrum to phase-correct

e gammal: float
Weighting factor for function gl: non-negativity constraint

e gamma2: float
Weighting factor for function g2: smallest-integral constraint

e gammad: float
Weighting factor for function g3: smoothing constraint

e cl: float
Tolerance factor for function gl: adjustment for noise

e e2: float
Tolerance factor for function g2: adjustment for non-ideal baseline

o fit kws: keyworded arguments
additional parameters for the fit function. See Imfit.Minimizer.minimize for details. Do not
use 'leastsq' because the cost function returns a scalar value!

Returns:

e p0: float
Fitted zero-order phase correction angle, in degrees

e pl: float
Fitted first-order phase correction angle, in degrees

228

3.5.38 fit.smooth spl(x, y, s f=1, size=0, weights=None)

Fit the input data with a 3rd-order spline, given the smoothing factor to be applied.

Parameters:

e x: Idarray
Location of the experimental points

o y: Idarray
Input data to be fitted

e s f: float
Smoothing factor of the spline. 0=best straight line, 1=native spline.

e size: int
Size of the spline. If size=0, the same dimension as y is chosen.
Returns:

e x s: Idarray
Location of the spline data points.

o v s: Idarray
Spline that fits the data.

g

3.5.39 fit.test correl(data, subtract mean=True)

Tests an array of residuals for their correlation. It compares the unit-lag autocorrelation P of the
data (see below) with the theoretical value for non-correlated data Tp:

P=>"rli+1;Tp = (N -1)0.5)) rli?

If P < Tp, the residuals are not correlated, and the result is True.

Parameters:

e data: Idarray
Residuals to be test

e subtract mean: bool
If True, subtracts from the residuals their mean.
Returns:

e test: bool
True if the residuals are non correlated, False otherwise

230

3.5.40 fit.test ks(data, thresh=0.05)

Performs the Kolmogorov-Smirnov test on the residuals to check if they are drawn from a normal
distribution. The implementation is scipy.stats.kstest. The result is True if the residuals are Gaussian.

Parameters:

e data: Idarray
Residuals to test

e thresh: float
Significance level for the test. Default is 5
Returns:

e test: bool
True if the residuals are Gaussian, False otherwise

231

3.5.41 fit.test randomsign(data, thresh=1.96)

Test an array of residuals for the randomness of the sign changes. The result it True if the sequence
is recognized as random.

Parameters:

e data: Idarray
Residuals to test

e thresh: float
Significance level. The default is 1.96, which corresponds to 5
Returns:

e test: bool
True if the signs are random, False otherwise

232

3.5.42 fit.test residuals(res, alpha=0.05)

Tests an array of residuals for their randomness, correlation, and underlying distribution. To do this,
it uses the functions 'fit.test randomsign', 'fit.test correl', 'fit.test ks'. The results of the tests will
be print in standard output and returned.

Parameters:

e res: ndarray
Residuals to be tested

e alpha: float
Significance level
Returns:

e test random: bool
Randomness of the residuals (True = random)

e test correlation: bool
Correlation of the residuals (True = non-correlated)

e test gaussian: bool
Normal-distribution of the residuals (True = normally-distributed)

233

3.5.43 fit.voigt fit(S, ppm_scale, V,C,t AQ, limits=None, SFO1=701.125,
olp=0, utol=0.5, vary phi=False, vary xg—True, hist name—None,
write out='fit.out', test res=True)

Fits an NMR spectrum with a set of signals, whose parameters are specifed in the V matrix. There

is the possibility to use a baseline through the parameter C. The signals are computed in the time
domain and then Fourier transformed.

Parameters:

e S: Idarray
Spectrum to be fitted

e ppm_scale : Idarray
Self-explanatory

o V : 2darray
matrix (# signals, parameters)

e C: Idarray or False
Coefficients of the polynomion to be used as baseline correction. If it is False, the baseline
correction is not used.

ot AQ: Idarray
Acquisition timescale

e limits : tuple or None
Trim limits for the spectrum (left, right). If None, the whole spectrum is used.

e SFO1 : float
Larmor frequency /MHz

e olp: float
pulse carrier frequency /ppm

e utol : float
tolerance for the chemical shift. The peak center can move in the range [— utol, u + utol].

e vary xg: bool
If it is False, the parameter x_g cannot be varied during the fitting procedure. Useful when
fitting with pure Gaussians or pure Lorentzians.

e vary basl: bool
If it is False, the baseline is kept fixed at the initial parameters.
Returns:

e C f: [Idarray or False
Coefficients of the polynomion to be used as baseline correction, or just False if not used.

o V f: 2darray
matrix (# signals, parameters) after the fit

e result : Imfit.fit _result Object
container of all information on the fit

234

3.5.44 fit.voigt fit 2D(x scale,y scale, data, parameters, lim f1,lim f2,
acqus, N=None, procs=None, utol=(1,1), s1tol=(0,500), s2tol=(0,500),
vary xg=False, logfile=None)

Function that performs the fit of a 2D peak using multiple components. The program reads a
parameter matrix, that contains:

ul /ppm, u2 /ppm, fwhml /Hz, fwhm2 /Hz, I /a.u., x_g

in each row. The number of rows corresponds to the number of components used for the computation
of the final signal. The function returns the analogue version of the parameters matrix, but with the
optimized values.

Parameters:

e x scale: Idarray
ppm_ {2 of the spectrum, full

e v scale: Idarray
ppm_ fl of the spectrum, full

e data: 2darray
spectrum, full

e parameters: Idarray or 2darray
Matrix (# signals, 6). Read main caption.

o lim f2: tuple
Trimming limits for x_scale

o lim fl: tuple
Trimming limits for y_scale

e acqus: dict
Dictionary of acquisition parameters.

o N: tuple of ints
len(y_scale), len(x_scale). Used only if procs is None

e procs: dict
Dictionary of processing parameters.

e utol: tuple of floats
Tolerance for the chemical shifts (utol_f1, utol_£2). Values will be set to u;utol f1,us+
utol f2.

e sltol: tuple of floats
Range of variations for the fwhm in f1, in Hz

e s2tol: tuple of floats
Range of variations for the fwhm in {2, in Hz

e vary xg: bool
Choose if to fix the z, value or not

e logfile: str or None
Path to a file where to write the fit information. If it is None, they will be printed into standard
output.

235

Returns:

e out parameters: 2darray
parameters, but with the optimized values.

236

3.5.45 fit.voigt fit P2D(S, ppm _scale, regions, t AQ, SFO1, olp,u_tol=1,
f tol=10, vary phase=False, vary b=False, itermax—=10000, file-
name="fit")

Performs a lineshape deconvolution fit on a pseudo-2D experiment using a Voigt model. The initial

guess must be read from a .ivf file. All components are treated as independent, regardless from

the value of the 'group' attribute. The fitting procedure operates iteratively one window at the

time. During the fit routine, the peak positions and lineshapes will be varied consistently on all the
experiments; only the intensities are allowed to change in a different way.

Parameters:

e S: 2darray
Experimental spectrum

e ppm_scale: Idarray
PPM scale of the spectrum

e regions: dict
Generated by fit.read vf P2D

e t AQ: Idarray
Acquisition timescale

e SFO1: float
Nucleus Larmor frequency /MHz

e olp: float
Carrier frequency /ppm

e u_tol: float
Maximum allowed displacement of the chemical shift from the initial value /ppm

o f tol: float
Maximum allowed displacement of the linewidth from the initial value /ppm

e vary phase: bool
Allow the peaks to change phase

e vary b: bool
Allow the peaks to change Lorentzian/Gaussian ratio

e itermax: int
Maximum number of allowed iterations

o filename: str
Name of the file where the fitted values will be saved. The .fvf extension is added automatically

237

3.5.46 fit.voigt fit indep(S, ppm _scale, regions, t AQ, SFO1, olp, u_lim=1,
f lim=10, k lim=(0, 3), vary phase=False, vary b=True, iter-
max=10000, fit tol=1e-08, filename="fit', method='leastsq')

Performs a lineshape deconvolution fit using a Voigt model. The initial guess must be read from a .ivf
file. All components are treated as independent, regardless from the value of the 'group' attribute.
The fitting procedure operates iteratively one window at the time.

Parameters:

e S: Ildarray
Experimental spectrum

e ppm_scale: Idarray
PPM scale of the spectrum

e regions: dict
Generated by fit.read vf

o t AQ: Idarray
Acquisition timescale

e SFO1: float
Nucleus Larmor frequency /MHz

e olp: float
Carrier frequency /ppm

e u_lim: float
Maximum allowed displacement of the chemical shift from the initial value /ppm

o f lim: float
Maximum allowed displacement of the linewidth from the initial value /ppm

e k lim: float or tuple
If tuple, minimum and maximum allowed values for k during the fit. If float, maximum dis-
placement from the initial guess

e vary phase: bool
Allow the peaks to change phase

e vary b: bool
Allow the peaks to change Lorentzian/Gaussian ratio

e itermax: int
Maximum number of allowed iterations

o fit tol: float
Target value to be set for x _tol and f tol

e filename: str
Name of the file where the fitted values will be saved. The .fvf extension is added automatically

e method: str
Method to be used for the optimization. See lmfit for details.

238

3.5.47 fit.write log(input file, output file, limits, V_i, C i,V _f, C f,
result, runtime, test res=True, log file='fit.log')

Write a log file with all the information of the fit.

Parameters:

e input_file: str
Location and filename of the input file

e output file: str
Location and filename of the output file

e limits: tuple
Delimiters of the spectral region that was fitted. (left, right)

o V i 2darray
Initial parameters of the fit

e C _i: Idarray or Fulse
Coefficients of the starting polynomion used for baseline correction. If False, it was not used.

o V f: 2darray
Final parameters of the fit

o C_f: Idarray or False
Coefficients of the final polynomion used for baseline correction. If False, it was not used.

e result: Imfit. FitResult Object
Object returned by Imfit after the fit.

e runtime: datetime.datetime Object
Time taken for the fit

e test res: bool
Choose if to test the residual with the fit.test residual function (True) or not (False)

e log file: str
Filename of the log file to be saved.

239

3.5.48 fit.write par(V, C, limits, filename='i guess.inp')
Write the parameters of the fit, whether they are input or output.

Parameters:

o V : 2darray
matrix (# signals, parameters)

e C: Idarray or False
Coefficients of the polynomion to be used as baseline correction. If the 'baseline' checkbox in
the interactive figure panel is not checked, C_f is False.

e limits : tuple
Trim limits for the spectrum (left, right).

e filename: str
directory and name of the file to be written

240

3.5.49 fit.write vf(filename, peaks, lims, I, prev=0, header=False)

Write a section in a fit report file, which shows the fitting region and the parameters of the peaks to
feed into a Voigt lineshape model.

Parameters:

e filename: str
Path to the file to be written

e peaks: dict
Dictionary of fit.Peak objects

e lims: tuple
(left limit /ppm, right limit /ppm)

e [: float
Absolute intensity value

e prev: nt
Number of previous peaks already saved. Increases the peak index

e header: bool
If True, adds a '!' starting line to separate fit trials

241

3.5.50 fit.write vf P2D(filename, peaks, lims, prev=0)

Write a section in a fit report file, which shows the fitting region and the parameters of the peaks to
feed into a Voigt lineshape model.

Parameters:

e filename: str
Path to the file to be written

e peaks: list of dict
list of dictionares of fit.Peak objects, one per experiment

e lims: tuple
(left limit /ppm, right limit /ppm)

e prev: int
Number of previous peaks already saved. Increases the peak index

3.6

All the classes in the Spectra module are automatically imported together with klassez itself.

SPECTRA package

242

Refer to the examples reported in the User guide section to understand how to use them, or use

the functions help(), vars (), dir() to get detailed info on how they exactly work.

3.6.1 Spectra.Pseudo 2D

class

Subclass of Spectrum 2D to simulate and handle pseudo-2D experiments. Basically, they share
more or less the same attributes, but some methods were adapted in order to suit well with a
not-Fourier-transformed indirect dimension.

Attributes:

datadir: str
Path to the input file/dataset directory

filename: str
Base of the name of the file, without extensions

fid: 2darray

FID. For simulated data, this must be explicitely set!

acqus: dict
Dictionary of acqusition parameters

ngdic: dict

Created only if it is an experimental spectrum. Generated by nmrglue.bruker.read, contains

all the information on the spectrometer and on the spectrum.

procs: dict
Dictionary of processing parameters

S: 2darray
Complex spectrum

rr: 2darray
Real part F2, real part F1

ii: 2darray
Imaginary part F2, imaginary part F1

freq fl: Idarray
Indeces of the experiments, works as placeholder

freq f2: Idarray
Frequency scale of the direct dimension, in Hz

ppm_ fl: Idarray
Indeces of the experiments, works as placeholder

ppm_ f2: Idarray
ppm scale of the direct dimension

trfl: dict

Projections of the indirect dimension, as 1darrays. Keys: 'ppm_ {2’ where they were taken

243

o trf2: dict
Projections of the direct dimension, as 1darrays. Keys: 'ppm_ f1” where they were taken

o Trfl: dict
Projections of the indirect dimension, as pSpectrum 1D objects. Keys: 'ppm_ 2" where they
were taken

o Trf2: dict
Projections of the direct dimension, as pSpectrum 1D objects. Keys: 'ppm_ {1’ where they
were taken

e integrals: dict
Dictionary where to save the regions and values of the integrals.

o I fit. Voigt Fit P2D object

Interface for lineshape deconvolution.

Methods:

_init _ (self, in_file, pv=False, isexp=True)

Initialize the class.

Parameters:

e in_file: str
path to file to read, or to the folder of the spectrum

e pv: bool
True if you want to use pseudo-voigt lineshapes for simulation, False for Voigt

e isexp: bool
True if this is an experimental dataset, False if it is simulated

add noise(self, s n=1)
Adds noise to the FID, using the function sim.noisegen.

Parameters:

e s n: float
Standard deviation of the noise

adjph(self, expno=0, p0=None, pl=None, pv=None, update=True)

Adjusts the phases of the spectrum according to the given parameters, or interactively if they are
left as default.

244

Parameters:

e expno: int
Index of the experiment (python numbering) to use in the interactive panel

e p0: float or None
O-th order phase correction /°

e pl: float or None
1-st order phase correction /°

e pv: float or None
1-st order pivot /ppm

e update: bool
Choose if to upload the procs dictionary or not

align(self, lims=None, u_ off=0.5, ref idx=0)
Aligns the spectrum to a reference signal in the reference spectrum (default: first one).

Parameters:

e lims: tuple or None
Reference signal region, in ppm. If None, you can select it interactively.

e u_off: float
Maximum displacement allowed, in ppm

o ref idx: int
Index of the spectrum to be used as a reference (python numbering)

basl(self, from procs=False, phase=True)

Apply baseline correction to the whole pseudo-2D by subtracting self.baseline from self.S. Then,
self.S is unpacked in self.rr and self.ii.

Parameters:

e from procs: bool
If True, computes the baseline using the polynomion model reading self.procs|'basl_c¢'| as co-
efficients

e phase: bool
Choose if to apply the same phase correction of the spectrum to the baseline. This should be
done if the baseline was computed before the phase adjustment!

cal(self, offset=None, isHz=False, update=True)

Calibration of the ppm and frequency scales according to a given value, or interactively. In this
latter case, a reference peak must be chosen. Calls processing.calibration

245

Parameters:

o offset: float
scale shift F2

e isHz: tuple of bool
True if offset is in frequency units, False if offset is in ppm

e update: bool
Choose if to update the procs dictionary or not

calfl(self, value=None, isHz=False)

Calibrates the ppm and frequency scale of the indirect dimension according to a given value, or
interactively. Calls self.cal on F1 only.

Parameters:

e value: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

calf2(self, value=None, isHz=False)

Calibrates the ppm and frequency scale of the direct dimension according to a given value, or
interactively. Calls self.cal on F2 only

Parameters:

e value: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

convdta(self, scaling=1)

Calls processing.convdta

eae(self)

Calls processing. EAE to shuffle the data and make a States-like FID. Sets self.eaeflag to 0.

integrate(self, which=0, lims=None)

Integrate the spectrum with a dedicated GUI. Calls processing.integral on each experiment, then
saves the results in self.integrals. Therefore, the entries of self.integrals are sequences! If lims is not
given, calls fit.integrate on the trace to select the regions to integrate.

246

Parameters:
e which: int

Experiment index to show in interactive panel

e lims: tuple
Region of the spectrum to integrate (ppml, ppm2)

inv_ process(self)

Performs the inverse processing of the spectrum according to the given parameters. Overwrites
the S attribute!! Calls inv_xfb.

mc(self)

Computes the magnitude of the spectrum on self.S. Then, updates rr, ri, ir, ii.

mount(self, fids=|], filename=None, newacqus=None)

Replaces the FID of the experiment with a custom one, made by stacking 1D experiments. If
the default filename exists (i.e. '<self.filename>.npy'), the function loads it, otherwise calls process-
ing.stack fids to create it. The 'fid' attribute is overwritten. The key TD1 of the acqus dictionary
is updated to match the first dimension of the new FID.

Parameters:

o fids: sequence of 1darray or Spectrum_ 1D objects
FIDs to be stacked. It can be empty if the .npy file already exists.

e filename: str or None
Path to the filename, without the .npy extension. If it is None, the default filename is used.

e newacqus: dict
New acqus dictionary that replaces the actual one. If it is not a dictionary, no actions are
performed.

pknl(self)

Reverses the effect of the digital filter by applying a first order phase correction. To be called
after having processed the data by 'self.process()’

plot(self, Neg=True, 1vl0=0.2, Y label="")
Plots the real part of the spectrum as a 2D contour plot.

Parameters:
e Neg: bool

Plot (True) or not (False) the negative contours.

e 1vIO: float
Starting contour value.

e Y label: str
Custom label for vertical axis.

247

plot md(self, which=None, lims=None)
Plot a number of experiments, superimposed.

Parameters:

e which: str or None
List of experiment indexes, so that eval(which) is meaningful. None plots all of them

e lims: tuple
Region of the spectrum to show (ppml, ppm2)

plot stacked(self, which=None, lims=None)

Plot a number of experiments, stacked.

Parameters:

e which: str or None
List of experiment indexes, so that eval(which) is meaningful. None plots all of them.

e lims: tuple
Region of the spectrum to show (ppml, ppm2)

process(self)

Process only the direct dimension. Calls processing.fp on each transient. The parameters are
read from the procs dictionary

projfl(self, a, b=None)

Calculates the sum trace of the indirect dimension, from a to b in F2. Store the trace in the
dictionary trfl and as 1D spectrum in Trfl. The key is 'a' or 'a:b' Updates the Trfl|labell.freq and
Trfl[label|.ppm with self.freq fl and self.ppm_ fl respectively.

Parameters:

e a: float
ppm F2 value where to extract the trace.

e b: float or None.
If it is None, extract the trace in a. Else, sum from a to b in F2.

projf2(self, a, b=None)

Calculates the sum trace of the direct dimension, from a to b in F1. Store the trace in the
dictionary trf2 and as 1D spectrum in Trf2. The key is 'a' or 'a:b'

248

Parameters:

e a: float
ppm F1 value where to extract the trace.

e b: float or None.
If it is None, extract the trace in a. Else, sum from a to b in F1.

gfil(self, which=None, u=None, s=None)

Gaussian filter to suppress signals. Tries to read self.procs|'qfil'|, which is { 'u": u, 's": s }
Otherwise, these are set interactively by processing.interactive qfil and then added to self.procs.
Calls processing.qfil

Parameters:

e which: int or None
Index of the F2 trace to be used for interactive qfil. If None, a suitable trace can be selected
using misc.select traces.

o u: float
Position /ppm

e s: float
Width (standard deviation) /ppm

read procs(self, other dir=None)

Reads the procs dictionary from a file named 'filename.procs' in the same directory of the input
file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to look into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

Returns:

e procs: dict
Dictionary of processing parameters

rpbc(self, ref exp=0, **rpbc_kws)

Computes the phase angles and the baseline using processing.rpbc on a reference spectrum taken
from self.S. Then applies the phase correction and subtracts the baseline, automatically, to all exper-
iments of the pseudo-2D. The procs dictionary is then updated and saved. The polynomial baseline
is computed according to the given coefficients and stored in self.baseline

249

Parameters:

o ref exp: int
Index of the reference experiment on which to apply the algorithm

e rpbc_kws: keyworded arguments
See processing. RPBC for details.

scan(self, ns=1, s n=1)

Simulates the acquisition of ns scans, by adding a different realization of noise at each iteration.
The function is supposed to start with the FID without noise at all. If not, the results will be biased.

Parameters:

e ns: int
Number of scans to accumulate

e s n: float
Standard deviation of the noise

to_wav(self, filename=None, cutoff=None, rate=44100)

Converts the FID in an audio file by using misc.data2wav.

Parameters:

e filename: str
Path where to save the file. If None, self.filename is used

e cutoff: float
Clipping limits for the FID

e rate: int
Sampling rate in samples/sec

write acqus(self, other dir=None)
Write the acqus dictionary in a file named 'filename.acqus'. Calls misc.write acqus 1D

Parameters:

e other dir: str or None
Different location for the acqus dictionary to write into. If None, self.datadir is used instead.

write integrals(self, filename='"integrals.dat')

Write the integrals in a file named filename.

250

Parameters:

e filename: str
name of the file where to write the integrals.

write procs(self, other dir=None)

Writes the actual procs dictionary in a file named 'filename.procs' in the same directory of the
input file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to write into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

write ser(ser, acqus, path=None)

Writes a real /complex array in binary format. Calls misc.write ser. Be sure that acqus contains
the BYTORDA and DTYPA keys. See misc.write _ser to understand the meaning of these values.

Parameters:

e ser: ndarray
Array that you want to convert in binary format.

e acqus: dict
Dictionary of acquisition parameters. It must contain BYTORDA and DTYPA.

e path: str
Path where to save the binary file.

xf1(self)

Process only the indirect dimension. Transposes the spectrum in hypermode or normally if
FnMODE != QF, then calls for processing.fp using self.procs|keys||0], finally transposes it back. The
result is stored in self.S, then self.rr and self.ii are written. freq fl and ppm_f1 are assigned with
the indexes of the transients

xf2(self)

Process only the direct dimension. Calls processing.fp using procs|keys||[1] The result is stored in
self.S, then self.rr and self.ii are written. freq fl and ppm_f1 are assigned with the indexes of the
transients

251

3.6.2 Spectra.Spectrum 1D class
Class: 1D NMR spectrum

Attributes:

e datadir: str
Path to the input file/dataset directory

e filename: str
Base of the name of the file, without extensions

o fid: Idarray
FID

e acqus: dict
Dictionary of acqusition parameters

e ngdic: dict
Created only if it is an experimental spectrum. Generated by nmrglue.bruker.read, contains
all the information on the spectrometer and on the spectrum.

e procs: dict
Dictionary of processing parameters

e S: Idarray
Complex spectrum

e 1: Idarray
Real part of the spectrum

e i: Idarray
Imaginary part of the spectrum

o freq: Idarray
Frequency scale of the spectrum, in Hz

e ppm: Idarray
ppm scale of the spectrum

o I fit. Voigt Fit object
Used for deconvolution. See fit.Voigt fit.

e baseline: Idarray
Baseline of the spectrum.

e integrals: dict
Dictionary where to save the regions and values of the integrals.

Methods:

__init _ (self, in_file, pv=False, isexp=True, spect="'bruker")

Initialize the class. Simulation of the dataset (i.e. isexp=False) employs sim.sim_1D.

252

Parameters:

e in file: str
path to file to read, or to the folder of the spectrum

e pv: bool
True if you want to use pseudo-voigt lineshapes for simulation, False for Voigt

e isexp: bool
True if this is an experimental dataset, False if it is simulated

e spect: sir
Data file format. Allowed: 'bruker', 'varian', 'magritek'; 'oxford', 'jeol'

acme(self, **method kws)

Automatic phase correction based on entropy minimization It calculates the phase angles using
the algorithm specified in method, then calls self.adjph with those values.

Parameters:

e method kws: keyworded arguments
Additional parameters for the chosen method.

add noise(self, s n=1)
Adds noise to the FID, using the function sim.noisegen.

Parameters:

e s n: float
Standard deviation of the noise

adjph(self, p0=None, pl=None, pv=None, update=True)

Adjusts the phases of the spectrum according to the given parameters, or interactively if they are
left as default. Calls for processing.ps

Parameters:

e p0: float or None
0-th order phase correction /°

e pl: float or None
1-st order phase correction /°

e pv: float or None
1-st order pivot /ppm

e update: bool
Choose if you want to update the procs dictionary or not

253

baseline correction(self, basl file='spectrum.basl', winlim=None)

Correct the baseline of the spectrum, according to a pre-existing file or interactively. Calls
processing.baseline _correction or processing.load baseline

Parameters:

e basl file: str
Path to the baseline file. If it already exists, the baseline will be built according to this file;
otherwise this will be the destination file of the baseline.

e winlim: tuple or None
Limits of the baseline. If it is None, it will be interactively set. If basl file exists, it will be
read from there. Else, (ppml, ppm?2).

basl(self, from procs=False, phase=True)

Apply the baseline correction by subtracting self.baseline from self.S. Then, self.S is unpacked in
self.r and self.i

Parameters:

e from procs: bool
If True, computes the baseline using the polynomion model reading self.procs|'basl_c¢'| as co-
efficients

e phase: bool
Choose if to apply the same phase correction of the spectrum to the baseline. This should be
done if the baseline was computed before the phase adjustment!

blp(self, pred=8, order=38)

Call processing.blp on self.fid for the application of backward linear prediction to the data. Im-
portant for Oxford benchtop data, where you have to predict 8 points to have a usable spectrum.

Parameters:

e pred: int
Number of points to be predicted

e order: int
Number of coefficients to be used for the prediction
o N: int
Number of FID points to be used for calculation; used to decrease computation time

cal(self, offset=None, isHz=False, update=True)

Calibrates the ppm and frequency scale according to a given value, or interactively. Calls pro-
cessing.calibration

254

Parameters:

e offset: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

e update: bool
Choose if to update the procs dictionary or not

convdta(self, scaling=1)

Call processing.convdta using self.acqus['GRPDLY'|

integrate(self, lims=None)

Integrate the spectrum with a dedicated GUI. Calls fit.integrate and writes in self.integrals with
keys [ppm1:ppm?2]
Parameters:

e lims: tuple
Integrates from lims|0] to lims[1]. If it is None, calls for interactive integration.

inv_ process(self)

Performs the inverse processing of the spectrum according to the given parameters. Overwrites
the S attribute!! Calls processing.inv_fp

mc(self)

Calculates the magnitude of the spectrum and overwrites self.S, self.r, self.i

pknl(self)

Reverses the effect of the digital filter by applying a first order phase correction. To be called
after having processed the data by 'self.process()’

plot(self, name=None, ext="png', dpi=600)
Plots the real part of the spectrum.

Parameters:

e name: Sir
Filename for the figure. If None, it is shown instead.

e cxt: sir
Format of the image
e dpi: int
Resolution of the image in dots per inches

255

process(self, interactive=False)

Performs the processing of the FID. The parameters are read from self.procs. Calls process-
ing.interactive fp or processing.fp using self.acqus and self.procs Writes the result is self.S, then
unpacks it in self.r and self.i Calculates frequency and ppm scales. Also initializes self.F with
fit.Voigt _Fit class using the current parameters

Parameters:

e interactive: bool
True if you want to open the interactive panel, False to read the parameters from self.procs.

gfil(self, u=None, s=None)

Gaussian filter to suppress signals. Tries to read self.procs|'qfil'|, which is { 'u': u, 's": s }
Otherwise, these are set interactively by processing.interactive qfil and then added to self.procs.
Calls processing.qfil

Parameters:

e u: float
Position of the filter /ppm

e s: float
Width (standard deviation) of the filter /ppm

read procs(self, other dir=None)

Reads the procs dictionary from a file named 'filename.procs' in the same directory of the input
file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to look into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

Returns:

e procs: dict
Dictionary of processing parameters

rpbc(self, **rpbc_kws)

Computes the phase angles and the baseline using processing. RPBC on self.S. Then applies the
phase correction and subtracts the baseline, automatically. The procs dictionary is then updated
and saved. The polynomial baseline is computed according to the given coefficients and stored in
self.baseline

256

Parameters:

e rpbc kws: keyworded arguments
See processing. RPBC for details.

scan(self, ns=1, s n=1)

Simulates the acquisition of ns scans, by adding a different realization of noise at each iteration.
The function is supposed to start with the FID without noise at all. If not, the results will be biased.

Parameters:

e ns: int
Number of scans to accumulate

e s n: float
Standard deviation of the noise

to_ vf(self, filename=None, Hs=None, fvf=True)

Transform a simulated spectrum in a .ivf or .fvf file to be used in a deconvolution procedure.
To do this, it reads the peak parameters saved in acqus. The number of signals is determined by
acqus|'amplitudes']. Multiplets are splitted according to their Js, and saved as components.

Parameters:

e filename: str or None
Path to the filename to be saved, without extension. If None, self .filename is used

e Hs: int or None
Number of nuclei the spectrum integrates for. If None, the sum of the amplitudes is used.

e fvf: bool
If True, adds the '.fvf' extension to the filename, if False, adds '.ivf'

to wav(self, filename=None, cutoff=None, rate=44100)

Converts the FID in an audio file by using misc.data2wav.

Parameters:

e filename: str
Path where to save the file. If None, self.filename is used

e cutoff: float
Clipping limits for the FID

e rate: nt
Sampling rate in samples/sec

257

write acqus(self, other dir=None)
Write the acqus dictionary in a file named 'filename.acqus'. Calls misc.write acqus_ 1D

Parameters:

e other dir: str or None
Different location for the acqus dictionary to write into. If None, self.datadir is used instead.

write integrals(self, other dir=None)
Write the integrals in a file named '{self filename}.int".

Parameters:

e other dir: str or None
Different location for the integrals file to write into. If None, self.datadir is used instead.

write procs(self, other dir=None)

Writes the actual procs dictionary in a file named 'filename.procs' in the same directory of the
input file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to write into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

write ser(ser, acqus, path=None)

Writes a real /complex array in binary format. Calls misc.write ser. Be sure that acqus contains
the BYTORDA and DTYPA keys. See misc.write ser to understand the meaning of these values.

Parameters:

e ser: ndarray
Array that you want to convert in binary format.

e acqus: dict
Dictionary of acquisition parameters. It must contain BYTORDA and DTYPA.

e path: str
Path where to save the binary file.

258

3.6.3 Spectra.Spectrum_ 2D class
Class: 2D NMR spectrum

Attributes:

datadir: str
Path to the input file/dataset directory

filename: str
Base of the name of the file, without extensions

fid: 2darray
FID

acqus: dict
Dictionary of acqusition parameters

ngdic: dict
Created only if it is an experimental spectrum. Generated by nmrglue.bruker.read, contains
all the information on the spectrometer and on the spectrum.

procs: dict
Dictionary of processing parameters

eaeflag: int
If FnMODE is Echo-Antiecho, keeps track of the manipulation of the data so to not repeat the
same process twice

S: 2darray
Complex (or hypercomplex, depending on FnMODE) spectrum

rr: 2darray
Real part F2, real part F1

ii: 2darray
Imaginary part F2, imaginary part F1

ir: 2darray
Real part F2, imaginary part F1. Only exist if F1 is acquired in phase-sensitive mode

ri: 2darray
Imaginary part F2, real part F1. Only exist if F1 is acquired in phase-sensitive mode

freq fl: Idarray
Frequency scale of the indirect dimension, in Hz

freq f2: Idarray
Frequency scale of the direct dimension, in Hz

ppm_fl: Idarray
ppm scale of the indirect dimension

ppm_ 2: Idarray
ppm scale of the direct dimension

trfl: dict
Projections of the indirect dimension, as 1darrays. Keys: 'ppm_ 2’ where they were taken

259

trf2: dict
Projections of the direct dimension, as 1darrays. Keys: 'ppm_ f1” where they were taken

Trfl: dict
Projections of the indirect dimension, as pSpectrum 1D objects. Keys: 'ppm_ 2" where they
were taken

Trf2: dict
Projections of the direct dimension, as pSpectrum 1D objects. Keys: 'ppm_ {1’ where they
were taken

integrals: dict
Dictionary where to save the regions and values of the integrals.

Methods:

_init __ (self, in_file, pv=False, isexp=True, is pseudo=False)

Initialize the class.

Parameters:

in_file: str
path to file to read, or to the folder of the spectrum

pv: bool
True if you want to use pseudo-voigt lineshapes for simulation, False for Voigt

isexp: bool
True if this is an experimental dataset, False if it is simulated

is_pseudo: bool
True if it is a pseudo-2D. Legacy option

add noise(self, s n=1)

Adds noise to the FID, using the function sim.noisegen.

Parameters:

s_n: float
Standard deviation of the noise

adjph(self, p01=None, pl11=None, pvl=None, p02=None, p12=None, pv2=None, up-
date=True)

Adjusts the phases of the spectrum according to the given parameters, or interactively if they are
left as default. The non-interactive workflow is to apply processing.ps on F2, transpose according
to FnMODE, apply processing.ps on F1, transpose back. If FnMODE is 'No', the phase correction
is applied only on F2, as it should be done in a pseudo-2D experiment. Once self.S was updated
and unpacked, the phase values are added to the procs dictionary to keep track of multiple phase
adjustments.

260

Parameters:

e p01: float or None
0-th order phase correction /° of the indirect dimension

e pll: float or None
1-st order phase correction /° of the indirect dimension

e pvl: float or None
1-st order pivot /ppm of the indirect dimension

e p02: float or None
0-th order phase correction /° of the direct dimension

e pl2: float or None
1-st order phase correction /° of the direct dimension

e pv2: float or None
1-st order pivot /ppm of the direct dimension

e update: bool
Choose if to update the procs dictionary or not

cal(self, offset=[None, None|, isHz=False, update=True)

Calibration of the ppm and frequency scales according to a given value, or interactively. In this
latter case, a reference peak must be chosen. Calls processing.calibration

Parameters:

o offset: tuple
(scale shift F1, scale shift F2)

e isHz: tuple of bool
True if offset is in frequency units, False if offset is in ppm

e update: bool
Choose if to update the procs dictionary or not

calfl(self, value=None, isHz=False)

Calibrates the ppm and frequency scale of the indirect dimension according to a given value, or
interactively. Calls self.cal on F'1 only.

Parameters:

e value: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

261

calf2(self, value=None, isHz=False)

Calibrates the ppm and frequency scale of the direct dimension according to a given value, or
interactively. Calls self.cal on F2 only

Parameters:

e value: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

convdta(self, scaling=1)

Calls processing.convdta to compensate for the group delay. It does not always work, depends
on TopSpin version and planets alignment.

Parameters:

e scaling: float
Scaling factor for processingconvdta.

eae(self)

Calls processing. EAE to shuffle the data and make a States-like FID. Sets self.eaeflag to 0.

integrate(self, **kwargs)
Integrates the spectrum with a dedicated GUI. Calls fit.integrate 2D

Parameters:

o kwargs: keyworded arguments
Additional parameters for fit.integrate 2D

inv_ process(self)

Performs the inverse processing of the spectrum according to the given parameters. Overwrites
the S attribute!! Calls inv_ xfb.

mc(self)

Computes the magnitude of the spectrum on self.S. Then, updates rr, ri, ir, ii.

pknl(self)

Reverses the effect of the digital filter by applying a first order phase correction. To be called
after having processed the data by 'self.process()’

262

plot(self, Neg=True, 1vl0=0.2)
Plots the real part of the spectrum. Use the mouse scroll to adjust the contour starting level.

Parameters:

e Neg: bool
Plot (True) or not (False) the negative contours.

e 1vI0: float

Starting contour value with respect to the maximum of the spectrum

process(self, interactive=False, **int kwargs)

Performs the full processing of the FID on both dimensions. The parameters are read from
self.procs. If FnMODE is Echo-Antiecho and you did not call self.eae before, the FID is converted
to States with processing. EAE before to start. If interactive is True, calls processing.interactive xfb
with int kwargs, else calls processing.xfb. The complex/hypercomplex spectrum is stored in self.S,
then unpacked into self.rr, self.ri, self.ir, self.ii. If FnMODE is Echo-Antiecho, a phase correction of
-90 degrees is applied on the indirect dimension.

Parameters:

e interactive: bool
True if you want to open the interactive panel, False to read the parameters from self.procs.

e int kwargs: keyworded arguments
Additional parameters for processing.interactive xfb, if interactive=True.

projfl(self, a, b=None)

Calculates the sum trace of the indirect dimension, from a ppm to b ppm in F2. Store the trace
in the dictionary trfl and as 1D spectrum in Trfl. The key is 'a' or 'a:b' Calls misc.get trace on
self.rr with column=True

Parameters:

e a: float
ppm F2 value where to extract the trace.

e b: float or None.
If it is None, extract the trace in a. Else, sum from a to b in F2.

projf2(self, a, b=None)

Calculates the sum trace of the direct dimension, from a ppm to b ppm in F1. Store the trace in
the dictionary trf2 and as 1D spectrum in Trf2. The key is 'a' or 'a:b' Calls misc.get trace on self.rr
with column=False

263

Parameters:

e a: float
ppm F1 value where to extract the trace.

e b: float or None.
If it is None, extract the trace in a. Else, sum from a to b in F1.

gfil(self, which=None, u=None, s=None)

Gaussian filter to suppress signals. Tries to read self.procs|'qfil'|, which is { 'u': u, 's": s }
Otherwise, these are set interactively by processing.interactive qfil and then added to self.procs.
Calls processing.qfil

Parameters:

e which: int or None
Index of the F2 trace to be used for interactive qfil. If None, a suitable trace can be selected
using misc.select traces.

e u: float
Position /ppm

e s: float
Width (standard deviation) /ppm

read procs(self, other dir=None)

Reads the procs dictionary from a file named 'filename.procs' in the same directory of the input
file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to look into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

Returns:

e procs: dict
Dictionary of processing parameters

scan(self, ns=1, s n=1)

Simulates the acquisition of ns scans, by adding a different realization of noise at each iteration.
The function is supposed to start with the FID without noise at all. If not, the results will be biased.

Parameters:

e ns: int
Number of scans to accumulate

e s n: float
Standard deviation of the noise

264

to_wav(self, filename=None, cutoff=None, rate=44100)

Converts the FID in an audio file by using misc.data2wav.

Parameters:

e filename: str
Path where to save the file. If None, self filename is used

e cutoff: float
Clipping limits for the FID

e rate: nt
Sampling rate in samples/sec

write acqus(self, other dir=None)
Write the acqus dictionary in a file named 'filename.acqus'. Calls misc.write acqus_ 1D

Parameters:

e other dir: str or None
Different location for the acqus dictionary to write into. If None, self.datadir is used instead.

write integrals(self, other dir=None)
Write the integrals in a file named '{self .filename}.int'.

Parameters:

e other dir: str or None
Different location for the integrals file to write into. If None, self.datadir is used instead.

write procs(self, other dir=None)

Writes the actual procs dictionary in a file named 'filename.procs' in the same directory of the
input file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to write into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

write ser(ser, acqus, path=None)

Writes a real /complex array in binary format. Calls misc.write ser. Be sure that acqus contains
the BYTORDA and DTYPA keys. See misc.write _ser to understand the meaning of these values.

265

Parameters:

e ser: ndarray
Array that you want to convert in binary format.

e acqus: dict
Dictionary of acquisition parameters. It must contain BYTORDA and DTYPA.

e path: str
Path where to save the binary file.

xf1(self)

Process only the indirect dimension. Transposes the spectrum in hypermode or normally if
FnMODE != QF, then calls for processing.fp using self.procs|keys||0], finally transposes it back. The
result is stored in self.S, then self.rr and self.ii are written. freq fl and ppm_f1 are assigned with
the indexes of the transients

xf2(self)

Process only the direct dimension. Calls processing.fp using procs|keys||1] The result is stored in
self.S, then self.rr and self.ii are written. freq fl and ppm f1 are assigned with the indexes of the
transients

266

3.6.4 Spectra.pSpectrum_1D class

Subclass of Spectrum 1D that allows to handle processed 1D NMR spectra. Useful when dealing
with traces of 2D spectra. Shares the same attributes with Spectrum_1D.

Attributes:

datadir: str
Path to the input file/dataset directory

filename: str
Base of the name of the file, without extensions

acqus: dict
Dictionary of acqusition parameters

ngdic: dict

Created only if it is an experimental spectrum. Generated by nmrglue.bruker.read, contains
all the information on the spectrometer and on the spectrum.

procs: dict
Dictionary of processing parameters

S: 1darray
Complex spectrum

r: Ildarray
Real part of the spectrum

i: Idarray
Imaginary part of the spectrum

freq: Idarray
Frequency scale of the spectrum, in Hz

ppm: Idarray
ppm scale of the spectrum

F: fit. Voigt Fit object
Used for deconvolution. See fit.Voigt fit.

baseline: Idarray
Baseline of the spectrum.

integrals: dict
Dictionary where to save the regions and values of the integrals.

Methods:

__init __ (self, in_file, acqus=None, procs=None, istrace=False, filename="'T")

Initialize the class.

267

Parameters:

e in_file: str or 1darray
If istrace is True, in_file is the NMR spectrum. Else, it is the directory of the processed data.

e acqus: dict or None
If istrace is True, you must supply the associated 'acqus' dictionary. Else, it is not necessary
as it is read from the input directory

e procs: dict or None
You can pass the dictionary of processing parameters, if you want. Otherwise, it is initialized
with standard values.

e istrace: bool
Declare the object as trace extracted from a 2D (True) or as true experimental spectrum (False)

e filename: str
If istrace is True, this will be the filename of self.acqus and self.procs

acme(self, **method kws)

Automatic phase correction based on entropy minimization It calculates the phase angles using
the algorithm specified in method, then calls self.adjph with those values.

Parameters:

e method kws: keyworded arguments
Additional parameters for the chosen method.

add noise(self, s n=1)
Adds noise to the FID, using the function sim.noisegen.

Parameters:

e s n: float
Standard deviation of the noise

adjph(self, p0=None, pl=None, pv=None, update=True)

Adjusts the phases of the spectrum according to the given parameters, or interactively if they are
left as default. Calls for processing.ps

Parameters:

e p0: float or None
0-th order phase correction /°

e pl: float or None
1-st order phase correction /°

e pv: float or None
1-st order pivot /ppm

e update: bool
Choose if you want to update the procs dictionary or not

268

baseline correction(self, basl file='spectrum.basl', winlim=None)

Correct the baseline of the spectrum, according to a pre-existing file or interactively. Calls
processing.baseline _correction or processing.load baseline

Parameters:

e basl file: str
Path to the baseline file. If it already exists, the baseline will be built according to this file;
otherwise this will be the destination file of the baseline.

e winlim: tuple or None
Limits of the baseline. If it is None, it will be interactively set. If basl file exists, it will be
read from there. Else, (ppml, ppm?2).

basl(self, from procs=False, phase=True)

Apply the baseline correction by subtracting self.baseline from self.S. Then, self.S is unpacked in
self.r and self.i

Parameters:

e from procs: bool
If True, computes the baseline using the polynomion model reading self.procs|'basl_c¢'| as co-
efficients

e phase: bool
Choose if to apply the same phase correction of the spectrum to the baseline. This should be
done if the baseline was computed before the phase adjustment!

blp(self, pred=8, order=38)

Call processing.blp on self.fid for the application of backward linear prediction to the data. Im-
portant for Oxford benchtop data, where you have to predict 8 points to have a usable spectrum.

Parameters:

e pred: int
Number of points to be predicted

e order: int
Number of coefficients to be used for the prediction
o N: int
Number of FID points to be used for calculation; used to decrease computation time

cal(self, offset=None, isHz=False, update=True)

Calibrates the ppm and frequency scale according to a given value, or interactively. Calls pro-
cessing.calibration

269

Parameters:

e offset: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

e update: bool
Choose if to update the procs dictionary or not

convdta(self, scaling=1)

Call processing.convdta using self.acqus['GRPDLY'|

integrate(self, lims=None)

Integrate the spectrum with a dedicated GUI. Calls fit.integrate and writes in self.integrals with
keys [ppm1:ppm?2]
Parameters:

e lims: tuple
Integrates from lims|0] to lims[1]. If it is None, calls for interactive integration.

inv_ process(self)

Performs the inverse processing of the spectrum according to the given parameters. Overwrites
the S attribute!! Calls processing.inv_fp

mc(self)

Calculates the magnitude of the spectrum and overwrites self.S, self.r, self.i

pknl(self)

Reverses the effect of the digital filter by applying a first order phase correction. To be called
after having processed the data by 'self.process()’

plot(self, name=None, ext="png', dpi=600)
Plots the real part of the spectrum.

Parameters:

e name: Sir
Filename for the figure. If None, it is shown instead.

e cxt: sir
Format of the image
e dpi: int
Resolution of the image in dots per inches

270

process(self, interactive=False)

Performs the processing of the FID. The parameters are read from self.procs. Calls process-
ing.interactive fp or processing.fp using self.acqus and self.procs Writes the result is self.S, then
unpacks it in self.r and self.i Calculates frequency and ppm scales. Also initializes self.F with
fit.Voigt _Fit class using the current parameters

Parameters:

e interactive: bool
True if you want to open the interactive panel, False to read the parameters from self.procs.

gfil(self, u=None, s=None)

Gaussian filter to suppress signals. Tries to read self.procs|'qfil'|, which is { 'u': u, 's": s }
Otherwise, these are set interactively by processing.interactive qfil and then added to self.procs.
Calls processing.qfil

Parameters:

e u: float
Position of the filter /ppm

e s: float
Width (standard deviation) of the filter /ppm

read procs(self, other dir=None)

Reads the procs dictionary from a file named 'filename.procs' in the same directory of the input
file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to look into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

Returns:

e procs: dict
Dictionary of processing parameters

rpbc(self, **rpbc_kws)

Computes the phase angles and the baseline using processing. RPBC on self.S. Then applies the
phase correction and subtracts the baseline, automatically. The procs dictionary is then updated
and saved. The polynomial baseline is computed according to the given coefficients and stored in
self.baseline

271

Parameters:

e rpbc kws: keyworded arguments
See processing. RPBC for details.

scan(self, ns=1, s n=1)

Simulates the acquisition of ns scans, by adding a different realization of noise at each iteration.
The function is supposed to start with the FID without noise at all. If not, the results will be biased.

Parameters:

e ns: int
Number of scans to accumulate

e s n: float
Standard deviation of the noise

to_ vf(self, filename=None, Hs=None, fvf=True)

Transform a simulated spectrum in a .ivf or .fvf file to be used in a deconvolution procedure.
To do this, it reads the peak parameters saved in acqus. The number of signals is determined by
acqus|'amplitudes']. Multiplets are splitted according to their Js, and saved as components.

Parameters:

e filename: str or None
Path to the filename to be saved, without extension. If None, self .filename is used

e Hs: int or None
Number of nuclei the spectrum integrates for. If None, the sum of the amplitudes is used.

e fvf: bool
If True, adds the '.fvf' extension to the filename, if False, adds '.ivf'

to wav(self, filename=None, cutoff=None, rate=44100)

Converts the FID in an audio file by using misc.data2wav.

Parameters:

e filename: str
Path where to save the file. If None, self.filename is used

e cutoff: float
Clipping limits for the FID

e rate: nt
Sampling rate in samples/sec

272

write acqus(self, other dir=None)
Write the acqus dictionary in a file named 'filename.acqus'. Calls misc.write acqus_ 1D

Parameters:

e other dir: str or None
Different location for the acqus dictionary to write into. If None, self.datadir is used instead.

write integrals(self, other dir=None)
Write the integrals in a file named '{self filename}.int".

Parameters:

e other dir: str or None
Different location for the integrals file to write into. If None, self.datadir is used instead.

write procs(self, other dir=None)

Writes the actual procs dictionary in a file named 'filename.procs' in the same directory of the
input file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to write into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

write ser(ser, acqus, path=None)

Writes a real /complex array in binary format. Calls misc.write ser. Be sure that acqus contains
the BYTORDA and DTYPA keys. See misc.write ser to understand the meaning of these values.

Parameters:

e ser: ndarray
Array that you want to convert in binary format.

e acqus: dict
Dictionary of acquisition parameters. It must contain BYTORDA and DTYPA.

e path: str
Path where to save the binary file.

273

3.6.5 Spectra.pSpectrum_ 2D class

Subclass of Spectrum 2D that allows to handle processed 2D NMR spectra. Reads the processed
spectrum from Bruker.

Attributes:

datadir: str
Path to the input file/dataset directory

filename: str
Base of the name of the file, without extensions

acqus: dict
Dictionary of acqusition parameters

ngdic: dict
Generated by nmrglue.bruker.read, contains all the information on the spectrometer and on
the spectrum.

procs: dict
Dictionary of processing parameters

S: 2darray
Complex (or hypercomplex, depending on FnMODE) spectrum

rr: 2darray
Real part F2, real part F1

ii: 2darray
Imaginary part F2, imaginary part F1

ir: 2darray
Real part F2, imaginary part F1. Only exist if F'1 is acquired in phase-sensitive mode

ri: 2darray
Imaginary part F2, real part F1. Only exist if F1 is acquired in phase-sensitive mode

freq fl: Idarray
Frequency scale of the indirect dimension, in Hz

freq f2: Idarray
Frequency scale of the direct dimension, in Hz

ppm_ fl: Idarray
ppm scale of the indirect dimension

ppm_ 2: Idarray
ppm scale of the direct dimension

trfl: dict
Projections of the indirect dimension, as 1darrays. Keys: 'ppm_ {2’ where they were taken

trf2: dict
Projections of the direct dimension, as 1darrays. Keys: 'ppm_fl1” where they were taken

274

o Trfl: dict

Projections of the indirect dimension, as pSpectrum 1D objects. Keys: 'ppm_ 2" where they
were taken

o Trf2: dict

Projections of the direct dimension, as pSpectrum 1D objects. Keys: 'ppm_f1’ where they
were taken

e integrals: dict
Dictionary where to save the regions and values of the integrals.

Methods:
__init__ (self, in_file)

Initialize the class.

Parameters:

e in_file: str
Path to the spectrum. Here, the 'pdata/#' folder must be specified.

add noise(self, s n=1)
Adds noise to the FID, using the function sim.noisegen.

Parameters:

e s n: float
Standard deviation of the noise

adjph(self, p01=None, pl11=None, pvl=None, p02=None, p12=None, pv2=None, up-
date=True)

Adjusts the phases of the spectrum according to the given parameters, or interactively if they are
left as default. The non-interactive workflow is to apply processing.ps on F2, transpose according
to FnMODE, apply processing.ps on F1, transpose back. If FnMODE is 'No', the phase correction
is applied only on F2, as it should be done in a pseudo-2D experiment. Once self.S was updated
and unpacked, the phase values are added to the procs dictionary to keep track of multiple phase
adjustments.

Parameters:

e p01: float or None
0-th order phase correction /° of the indirect dimension

e pll: float or None
1-st order phase correction /° of the indirect dimension

e pvl: float or None
1-st order pivot /ppm of the indirect dimension

275

e p02: float or None
0-th order phase correction /° of the direct dimension

e pl12: float or None
1-st order phase correction /° of the direct dimension

e pv2: float or None
1-st order pivot /ppm of the direct dimension

e update: bool
Choose if to update the procs dictionary or not

cal(self, offset=|None, None|, isHz=False, update=True)

Calibration of the ppm and frequency scales according to a given value, or interactively. In this
latter case, a reference peak must be chosen. Calls processing.calibration
Parameters:

o offset: tuple
(scale shift F1, scale shift F2)

e isHz: tuple of bool
True if offset is in frequency units, False if offset is in ppm

e update: bool
Choose if to update the procs dictionary or not

calfl(self, value=None, isHz=False)

Calibrates the ppm and frequency scale of the indirect dimension according to a given value, or
interactively. Calls self.cal on F1 only.
Parameters:

e value: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

calf2(self, value=None, isHz=False)

Calibrates the ppm and frequency scale of the direct dimension according to a given value, or
interactively. Calls self.cal on F2 only
Parameters:

e value: float or None
scale shift value

e isHz: bool
True if offset is in frequency units, False if offset is in ppm

276

convdta(self, scaling=1)

Calls processing.convdta to compensate for the group delay. It does not always work, depends
on TopSpin version and planets alignment.

Parameters:

e scaling: float
Scaling factor for processingconvdta.

eae(self)

Calls processing. EAE to shuffle the data and make a States-like FID. Sets self.eaeflag to 0.

integrate(self, **kwargs)
Integrates the spectrum with a dedicated GUI. Calls fit.integrate 2D

Parameters:

e kwargs: keyworded arguments
Additional parameters for fit.integrate 2D

inv_process(self)

Performs the inverse processing of the spectrum according to the given parameters. Overwrites
the S attribute!! Calls inv xfb.

mc(self)

Computes the magnitude of the spectrum on self.S. Then, updates rr, ri, ir, ii.

pknl(self)

Reverses the effect of the digital filter by applying a first order phase correction. To be called
after having processed the data by 'self.process()’

plot(self, Neg=True, 1vl0=0.2)
Plots the real part of the spectrum. Use the mouse scroll to adjust the contour starting level.

Parameters:

e Neg: bool
Plot (True) or not (False) the negative contours.

e IvIO: float
Starting contour value with respect to the maximum of the spectrum

277

process(self, interactive=False, **int kwargs)

Performs the full processing of the FID on both dimensions. The parameters are read from
self.procs. If FnMODE is Echo-Antiecho and you did not call self.eae before, the FID is converted
to States with processing. EAE before to start. If interactive is True, calls processing.interactive xfb
with int kwargs, else calls processing.xfb. The complex/hypercomplex spectrum is stored in self.S,
then unpacked into self.rr, self.ri, self.ir, self.ii. If FnMODE is Echo-Antiecho, a phase correction of
-90 degrees is applied on the indirect dimension.

Parameters:

e interactive: bool
True if you want to open the interactive panel, False to read the parameters from self.procs.

e int kwargs: keyworded arguments
Additional parameters for processing.interactive xfb, if interactive=True.

projfl(self, a, b=None)

Calculates the sum trace of the indirect dimension, from a ppm to b ppm in F2. Store the trace
in the dictionary trfl and as 1D spectrum in Trfl. The key is 'a' or 'a:b' Calls misc.get trace on
self.rr with column=True

Parameters:

e a: float
ppm F2 value where to extract the trace.

e b: float or None.
If it is None, extract the trace in a. Else, sum from a to b in F2.

projf2(self, a, b=None)

Calculates the sum trace of the direct dimension, from a ppm to b ppm in F1. Store the trace in
the dictionary trf2 and as 1D spectrum in Trf2. The key is 'a' or 'a:b' Calls misc.get _trace on self.rr
with column=False

Parameters:

e a: float
ppm F1 value where to extract the trace.

e b: float or None.
If it is None, extract the trace in a. Else, sum from a to b in F1.

qfil(self, which=None, u=None, s=None)

Gaussian filter to suppress signals. Tries to read self.procs|'qfil'|, which is { 'u': u, 's": s }
Otherwise, these are set interactively by processing.interactive qfil and then added to self.procs.
Calls processing.qfil

278

Parameters:

e which: int or None
Index of the F2 trace to be used for interactive qfil. If None, a suitable trace can be selected
using misc.select traces.

e u: float
Position /ppm

e s: float
Width (standard deviation) /ppm

read procs(self, other dir=None)

Reads the procs dictionary from a file named 'filename.procs' in the same directory of the input
file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to look into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

Returns:

e procs: dict
Dictionary of processing parameters

scan(self, ns=1, s n=1)

Simulates the acquisition of ns scans, by adding a different realization of noise at each iteration.
The function is supposed to start with the FID without noise at all. If not, the results will be biased.

Parameters:
e ns: int

Number of scans to accumulate

e s n: float
Standard deviation of the noise

to wav(self, filename=None, cutoff=None, rate=44100)
Converts the FID in an audio file by using misc.data2wav.

Parameters:

e filename: str
Path where to save the file. If None, self.filename is used

e cutoff: float
Clipping limits for the FID

e rate: nt
Sampling rate in samples/sec

279

write acqus(self, other dir=None)
Write the acqus dictionary in a file named 'filename.acqus'. Calls misc.write acqus_ 1D

Parameters:

e other dir: str or None
Different location for the acqus dictionary to write into. If None, self.datadir is used instead.

write integrals(self, other dir=None)
Write the integrals in a file named '{self .filename}.int'".

Parameters:

e other dir: str or None
Different location for the integrals file to write into. If None, self.datadir is used instead.

write procs(self, other dir=None)

Writes the actual procs dictionary in a file named 'filename.procs' in the same directory of the
input file.

Parameters:

e other dir: str or None
Different location for the procs dictionary to write into. If None, self.datadir is used instead.
W! Do not put the trailing slash!

write ser(ser, acqus, path=None)

Writes a real /complex array in binary format. Calls misc.write ser. Be sure that acqus contains
the BYTORDA and DTYPA keys. See misc.write _ser to understand the meaning of these values.

Parameters:

e ser: ndarray
Array that you want to convert in binary format.

e acqus: dict
Dictionary of acquisition parameters. It must contain BYTORDA and DTYPA.

e path: str
Path where to save the binary file.

xf1(self)

Process only the indirect dimension. Transposes the spectrum in hypermode or normally if
FnMODE != QF, then calls for processing.fp using self.procs|keys||0], finally transposes it back. The
result is stored in self.S, then self.rr and self.ii are written. freq fl and ppm_fl are assigned with
the indexes of the transients

280

xf2(self)

Process only the direct dimension. Calls processing.fp using procs|keys][1] The result is stored in
self.S, then self.rr and self.ii are written. freq fl and ppm_f1 are assigned with the indexes of the
transients

	Introduction
	User guide
	Initialize the package
	Extra variables

	Processing of a 'raw' 1D spectrum
	The class pSpectrum_1D

	Processing of a 'raw' 2D spectrum
	Computing projections

	Simulating data
	Simulate 1D data
	Simulate 2D data

	The Pseudo_2D class
	Deconvolution of 1D datasets
	Example scripts
	Reading and processing of 1D spectra
	Fit 1D spectrum
	Read and process 2D spectrum

	List of modules and functions
	MISC package
	misc.avg_antidiag
	misc.binomial_triangle
	misc.calcres
	misc.cmap2list
	misc.data2wav
	misc.edit_checkboxes
	misc.extend_taq
	misc.find_nearest
	misc.freq2ppm
	misc.get_trace
	misc.get_ylim
	misc.hankel
	misc.hz2pt
	misc.in2px
	misc.load_ser
	misc.makeacqus_1D
	misc.makeacqus_1D_jeol
	misc.makeacqus_1D_oxford
	misc.makeacqus_1D_spinsolve
	misc.makeacqus_1D_varian
	misc.makeacqus_2D
	misc.mathformat
	misc.merge_dict
	misc.molfrac
	misc.noise_std
	misc.nuc_format
	misc.polyn
	misc.ppm2freq
	misc.ppmfind
	misc.pretty_scale
	misc.print_dict
	misc.print_list
	misc.procpar
	misc.px2in
	misc.readlistfile
	misc.select_for_integration
	misc.select_traces
	misc.set_fontsizes
	misc.set_ylim
	misc.show_cmap
	misc.snr
	misc.snr_2D
	misc.split_acqus_2D
	misc.split_procs_2D
	misc.trim_data
	misc.trim_data_2D
	misc.unhankel
	misc.write_acqus_1D
	misc.write_acqus_2D
	misc.write_help
	misc.write_ser
	misc.zero_crossing

	PROCESSING package
	processing.acme
	processing.align
	processing.baseline_correction
	processing.blp
	processing.blp_ng
	processing.cadzow
	processing.cadzow_2D
	processing.calc_nc
	processing.calibration
	processing.convdta
	processing.convolve
	processing.eae
	processing.em
	processing.fp
	processing.ft
	processing.gm
	processing.gmb
	processing.hilbert
	processing.ift
	processing.integral
	processing.integral_2D
	processing.integrate
	processing.interactive_basl_windows
	processing.interactive_echo_param
	processing.interactive_fp
	processing.interactive_phase_1D
	processing.interactive_phase_2D
	processing.interactive_qfil
	processing.interactive_xfb
	processing.inv_convolve
	processing.inv_fp
	processing.inv_xfb
	processing.iterCadzow
	processing.load_baseline
	processing.lp
	processing.lrd
	processing.make_polynomion_baseline
	processing.make_scale
	processing.mcr
	processing.mcr_als
	processing.mcr_stack
	processing.mcr_unpack
	processing.pknl
	processing.ps
	processing.qfil
	processing.qpol
	processing.qsin
	processing.quad
	processing.repack_2D
	processing.rev
	processing.rpbc
	processing.simplisma
	processing.sin
	processing.split_echo_train
	processing.stack_fids
	processing.sum_echo_train
	processing.td_eff
	processing.tp_hyper
	processing.unpack_2D
	processing.whittaker_smoother
	processing.write_basl_info
	processing.xfb
	processing.zf

	FIGURES package
	figures.ax1D
	figures.ax2D
	figures.ax_heatmap
	figures.dotmd
	figures.dotmd_2D
	figures.figure1D
	figures.figure1D_multi
	figures.figure2D
	figures.figure2D_multi
	figures.fitfigure
	figures.heatmap
	figures.ongoing_fit
	figures.plot_fid
	figures.plot_fid_re
	figures.redraw_contours
	figures.sns_heatmap
	figures.stacked_plot

	SIM package
	sim.calc_splitting
	sim.cron
	sim.f_gaussian
	sim.f_lorentzian
	sim.f_pvoigt
	sim.gaussian_filter
	sim.load_sim_1D
	sim.load_sim_2D
	sim.mult_noise
	sim.multiplet
	sim.noisegen
	sim.sim_1D
	sim.sim_2D
	sim.t_2Dgaussian
	sim.t_2Dlorentzian
	sim.t_2Dpvoigt
	sim.t_2Dvoigt
	sim.t_gaussian
	sim.t_lorentzian
	sim.t_pvoigt
	sim.t_voigt
	sim.water7

	FIT package
	fit.CostFunc
	fit.Peak
	fit.SINC_ObjFunc
	fit.Voigt_Fit
	fit.Voigt_Fit_P2D
	fit.ax_histogram
	fit.bin_data
	fit.build_2D_sgn
	fit.build_baseline
	fit.calc_R2
	fit.calc_fit_lines
	fit.dic2mat
	fit.fit_int
	fit.gaussian_fit
	fit.gen_iguess
	fit.gen_iguess_2D
	fit.get_region
	fit.histogram
	fit.integrate
	fit.integrate_2D
	fit.interactive_smoothing
	fit.join_par
	fit.lr
	fit.lsp
	fit.make_iguess
	fit.make_iguess_P2D
	fit.make_iguess_auto
	fit.make_signal
	fit.peak_pick
	fit.plot_fit
	fit.plot_fit_P2D
	fit.polyn_basl
	fit.print_par
	fit.read_par
	fit.read_vf
	fit.read_vf_P2D
	fit.sinc_phase
	fit.smooth_spl
	fit.test_correl
	fit.test_ks
	fit.test_randomsign
	fit.test_residuals
	fit.voigt_fit
	fit.voigt_fit_2D
	fit.voigt_fit_P2D
	fit.voigt_fit_indep
	fit.write_log
	fit.write_par
	fit.write_vf
	fit.write_vf_P2D

	SPECTRA package
	Spectra.Pseudo_2D
	Spectra.Spectrum_1D
	Spectra.Spectrum_2D
	Spectra.pSpectrum_1D
	Spectra.pSpectrum_2D

