Coverage for rocketcea\biprop_utils\goldSearch.py : 14%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
## module goldSearch Finds the brackets (a,b) of a minimum point of the user-supplied scalar function f(x). The search starts downhill from xStart with a step length h.
x,fMin = search(f,a,b,tol=1.0e-6) Golden section method for determining x that minimizes the user-supplied scalar function f(x). The minimum must be bracketed in (a,b). '''
c = 1.618033989 f1 = f(x1) x2 = x1 + h; f2 = f(x2) # Determine downhill direction and change sign of h if needed if f2 > f1: h = -h x2 = x1 + h; f2 = f(x2) # Check if minimum between x1 - h and x1 + h if f2 > f1: return x2,x1 - h # Search loop for i in range (100): h = c*h x3 = x2 + h; f3 = f(x3) if f3 > f2: return x1,x3 x1 = x2; x2 = x3 f1 = f2; f2 = f3 print( "Bracket did not find a mimimum" )
def fminus(x): return -f(x) return search(fminus, a, b, tol=tol)
nIter = ceil(-2.078087*log(tol/abs(b-a))) # Eq. (10.4) nIter = int( 1 + nIter ) R = 0.618033989 C = 1.0 - R # First telescoping x1 = R*a + C*b; x2 = C*a + R*b f1 = f(x1); f2 = f(x2) # Main loop for i in range(nIter): if f1 > f2: a = x1 x1 = x2; f1 = f2 x2 = C*a + R*b; f2 = f(x2) else: b = x2 x2 = x1; f2 = f1 x1 = R*a + C*b; f1 = f(x1) if f1 < f2: return x1,f1 else: return x2,f2
def myfunc( x ): return (3.123-x)**2
print( 'answer should be 3.123' ) print( search(myfunc,0.0,5.0,tol=1.0e-9) ) |