Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

import pylab as plt 

import numpy as np 

from rocketcea.biprop_utils.InterpProp_scipy import InterpProp 

from math import exp, log 

 

from rocketcea.biprop_utils.density_at_mr import bulkDensity, add_prop_sg, got_sg, get_sg 

from rocketcea.cea_obj import CEA_Obj 

 

from rocketcea.biprop_utils.mr_t_limits import MR_Temperature_Limits 

from rocketcea.biprop_utils.mr_peak_at_eps_pc import MR_Peak_At_EpsPc 

from rocketcea.biprop_utils.run_cea_w_error_corr import run_cea_odf 

 

from rocketcea.biprop_utils.calc_plot_range import calcMinMaxRange 

from rocketcea.biprop_utils.contour_supt import getLocalAngle, label_frac_ipos 

from rocketcea.biprop_utils.back_terp import find_first_terp 

 

colorL = ['r','g','b','darkcyan','deepskyblue','darkorange','brown','deeppink', 

'maroon','crimson','seagreen','fuchsia','darkviolet' ] 

 

def add_frozen_isp_to_mr_obj( mr_obj, Pc=500., eps=20. ): 

 

oxName = mr_obj.mrLimitsObj.oxName 

fuelName = mr_obj.mrLimitsObj.fuelName 

 

mr_obj.isp_frozenL = [] # build an Isp frozen list 

mr_obj.mr_frozenL = [] # build an Isp frozen list 

mr_obj.sg_frozenL = [] # build an Isp frozen list 

 

for imr,mr in enumerate( mr_obj.mrL ): 

isp_frozen = run_cea_odf(mr_obj.mrLimitsObj.ispODEObj, Pc=Pc, MR=mr, eps=eps ) 

if isp_frozen > mr_obj.isp_min: 

mr_obj.isp_frozenL.append( isp_frozen ) 

mr_obj.mr_frozenL.append( mr ) 

 

sg = bulkDensity(oxName, fuelName, mr) 

mr_obj.sg_frozenL.append( sg ) 

 

def add_sg_isp_to_mr_obj( mr_obj ): 

 

oxName = mr_obj.mrLimitsObj.oxName 

fuelName = mr_obj.mrLimitsObj.fuelName 

 

mr_obj.sgL = [] # build a bulkDensity list 

mr_obj.sg_ispL = [] # build a rho * Isp list 

 

for imr,mr in enumerate( mr_obj.mrL ): 

sg = bulkDensity(oxName, fuelName, mr) 

mr_obj.sgL.append( sg ) 

 

mr_obj.sg_ispL.append( sg * mr_obj.isL[imr] ) 

 

mr_obj.sg_min = min( mr_obj.sgL ) 

mr_obj.sg_max = max( mr_obj.sgL ) 

 

def get_label_coordinates( mr_obj, sg_offset=0., is_offset=0.): 

sg = (mr_obj.sg_min + mr_obj.sg_max)/2.0 + sg_offset 

#isp = (mr_obj.isp_min + mr_obj.isp_max)/2.0 + is_offset 

isp = mr_obj.isp_max 

 

oxName = mr_obj.mrLimitsObj.oxName 

fuelName = mr_obj.mrLimitsObj.fuelName 

desc = oxName + '/' + fuelName 

 

return sg, isp, desc 

 

def min_max( M ): # return the min and max in matrix 

lo = np.min(M) 

hi = np.max(M) 

return lo, hi 

 

class RhoIspPlot( object ): 

 

def __init__(self, figsize=(10,8), dpi=70, Pc=500., eps=20., 

nsteps_sg=100, nsteps_isp=100, legend_loc='best', show_mr_on_plot=False, 

show_frozen_isp_on_plot=False, 

bipropL=None, 

monopropL=None, 

spec_gravD=None): 

 

if bipropL is None: 

bipropL = [('LOX','LH2'), ('N2O4','MMH'), ('LOX','RP1'), ('FLOX80','CH4'),('IRFNA','MHF3'), 

('LOX','CH4'), ('F2','H2'), ('F2','N2H4'), ('CLF5','N2H4'),('N2F4','N2H4')] 

 

self.figsize = figsize 

self.dpi = dpi 

self.Pc = Pc 

self.eps = eps 

 

self.headline = 'Pc=%g psia, Area Ratio=%g:1'%(self.Pc, self.eps) 

 

self.nsteps_sg = nsteps_sg # controls grid on plot for interplating stage properties 

self.nsteps_isp = nsteps_isp 

 

# 'best', 'upper right', 'right', 'center', 'lower center', 'center right', etc. 

self.legend_loc = legend_loc 

self.show_mr_on_plot = show_mr_on_plot 

self.show_frozen_isp_on_plot = show_frozen_isp_on_plot 

 

self.bipropL = bipropL 

 

if monopropL is None: 

monopropL = [] 

self.monopropL = monopropL 

self.monoprop_sgIspD = {} #index:name, value:(sg, Isp) 

 

self.fig = plt.figure(figsize=figsize, dpi=dpi) # figsize=(NxM) inches 

self.added_props_to_plot = False 

 

if spec_gravD is not None: 

for key, val in spec_gravD.items(): 

add_prop_sg(name, val) 

 

self.mr_objL = [] 

 

self.isp_min = 9999.0 # initialize extents of plot 

self.isp_max = 0.0 

self.sg_min = 9999.0 

self.sg_max = 0.0 

 

for (oxName, fuelName) in bipropL: 

 

if not got_sg(oxName): 

raise Exception('%s Specific Gravity Missing...\n'%oxName +\ 

' add to spec_gravD["%s"]'%oxName) 

if not got_sg(fuelName): 

raise Exception('%s Specific Gravity Missing...\n'%fuelName +\ 

' add to spec_gravD["%s"]'%fuelName) 

 

tobj = MR_Temperature_Limits(oxName=oxName, fuelName=fuelName, 

TC_LIMIT=1500.0, PcNominal=Pc, epsNominal=eps, 

MR_MIN=0.0, MR_MAX=200.0) 

 

 

self.mr_objL.append( MR_Peak_At_EpsPc(tobj, pc=Pc, eps=eps) ) 

add_sg_isp_to_mr_obj( self.mr_objL[-1] ) 

 

if show_frozen_isp_on_plot: 

add_frozen_isp_to_mr_obj( self.mr_objL[-1], Pc=Pc, eps=eps ) 

 

self.isp_min = min(self.isp_min, self.mr_objL[-1].isp_min) 

self.isp_max = max(self.isp_max, self.mr_objL[-1].isp_max) 

self.sg_min = min(self.sg_min, self.mr_objL[-1].sg_min) 

self.sg_max = max(self.sg_max, self.mr_objL[-1].sg_max) 

 

for propName in self.monopropL: 

sg = get_sg( propName ) 

if sg is not None: 

self.sg_min = min(self.sg_min, sg) 

self.sg_max = max(self.sg_max, sg) 

 

ispObj = CEA_Obj( propName=propName) 

Isp = ispObj.get_Isp(Pc=Pc, eps=eps) 

 

self.isp_min = min(self.isp_min, Isp) 

self.isp_max = max(self.isp_max, Isp) 

 

self.monoprop_sgIspD[propName] = (sg, Isp) 

 

 

 

self.rhobRange = self.sg_max - self.sg_min 

self.ispRange = self.isp_max - self.isp_min 

 

def add_stage_param_contours(self, stg_obj, set_param='DeltaV', param_value=2000.0, 

plot_paramL=None, # can be any of ['DeltaV', 'GLOW', 'VolPropellant', 'WtPropellant', 'WtInert'] 

plot_param_valD=None, # e.g. {'GLOW':[100, 200, 300]} 

label_frac_posD=None, # e.g. {'GLOW':0.1} 

num_ticks=10): # used in "pretty" ranges 

 

if plot_param_valD is None: 

plot_param_valD = {} 

 

if label_frac_posD is None: 

label_frac_posD = {} 

 

if plot_paramL is None: 

if set_param != 'GLOW': 

plot_paramL = ['GLOW'] 

else: 

plot_paramL = ['DeltaV'] 

 

line2 = 'Pc=%g psia, Area Ratio=%g:1'%( self.Pc, self.eps) 

callD = {set_param:param_value} # e.g. {'DeltaV':2100.0} 

 

if set_param == 'DeltaV': 

self.headline = stg_obj.stage_desc + '\nDeltaV=%g ft/sec, %s'%(param_value, line2) 

call_func = stg_obj.setDeltaV 

elif set_param == 'VolPropellant': 

s = '%g'%param_value 

if 'e' in s: 

s = '%g'%(param_value/1728.0,) 

self.headline = stg_obj.stage_desc + '\nVolPropellant=%s ft^3, %s'%(s, line2) 

else: 

self.headline = stg_obj.stage_desc + '\nVolPropellant=%g in^3, %s'%(param_value, line2) 

 

call_func = stg_obj.setVolPropellant 

elif set_param == 'WtPropellant': 

self.headline = stg_obj.stage_desc + '\nWtPropellant=%g lbm, %s'%(param_value, line2) 

call_func = stg_obj.setWtPropellant 

elif set_param == 'WtInert': 

self.headline = stg_obj.stage_desc + '\nWtInert=%g lbm, %s'%(param_value, line2) 

call_func = stg_obj.setWtInert 

elif set_param == 'GLOW': 

self.headline = stg_obj.stage_desc + '\nGLOW=%g lbm, %s'%(param_value, line2) 

call_func = stg_obj.setGLOW 

else: 

print('ERROR... did not recognize set_param="%s" in add_stage_param_contours'%set_param) 

sys.exit() 

 

# build a grid of values. 

# set one of DeltaV, VolPropellant, WtPropellant, WtInert, calculate the rest. 

 

sgArr = np.linspace(self.sg_min, self.sg_max, self.nsteps_sg) 

isArr = np.linspace(self.isp_min, self.isp_max, self.nsteps_isp) 

#print 'sgArr =',sgArr 

#print 'isArr =',isArr 

#print '-'*55 

 

# create empty matrices to receive state data 

dvMatrix = np.empty(shape=(self.nsteps_sg, self.nsteps_isp), dtype=np.float64) 

volMatrix = np.empty(shape=(self.nsteps_sg, self.nsteps_isp), dtype=np.float64) 

wpMatrix = np.empty(shape=(self.nsteps_sg, self.nsteps_isp), dtype=np.float64) 

wiMatrix = np.empty(shape=(self.nsteps_sg, self.nsteps_isp), dtype=np.float64) 

glowMatrix = np.empty(shape=(self.nsteps_sg, self.nsteps_isp), dtype=np.float64) 

muMatrix = np.empty(shape=(self.nsteps_sg, self.nsteps_isp), dtype=np.float64) 

 

bad_ijL = [] # keep a list of i,j positions that fail 

 

for i, sg in enumerate(sgArr): 

for j, isp in enumerate(isArr): 

callD['sg'] = sg 

callD['Isp'] = isp 

call_func( **callD ) 

 

if stg_obj.DeltaV is None: 

bad_ijL.append( (i,j) ) 

dvMatrix[i][j] = 0 

volMatrix[i][j] = 0 

wpMatrix[i][j] = 0 

wiMatrix[i][j] = 0 

glowMatrix[i][j] = 0 

muMatrix[i][j] = 0 

else: 

dvMatrix[i][j] = stg_obj.DeltaV 

volMatrix[i][j] = stg_obj.VolPropellant 

wpMatrix[i][j] = stg_obj.WtPropellant 

wiMatrix[i][j] = stg_obj.WtInert 

glowMatrix[i][j] = stg_obj.GLOW 

muMatrix[i][j] = stg_obj.MassFrac 

 

#print 'bad_ijL =',bad_ijL 

#print 'glowMatrix' 

#for i in range(len(sgArr)): 

# print glowMatrix[i] 

#print 'glow min, max=',min_max( glowMatrix ) 

#print 'MassFrac min, max=',min_max( muMatrix ) 

# ==================================  

 

def build_a_contour_curve( target_val, M ): 

 

xyPlotL = [] # list of (x,y) pairs to be plotted i.e. (sg, Isp) 

 

for i, sg in enumerate(sgArr): 

is_ans = find_first_terp( target_val, M[i], isArr ) 

#print 'is_ans =',is_ans 

if is_ans is not None: 

xyPlotL.append( (sgArr[i], is_ans) ) 

 

for j, isp in enumerate(isArr): 

sg_ans = find_first_terp( target_val, M[:,j], sgArr ) 

#print 'sg_ans =',sg_ans 

if sg_ans is not None: 

xyPlotL.append( (sg_ans, isArr[j]) ) 

 

if xyPlotL: 

xyPlotL.sort() 

return xyPlotL 

# ==================================  

 

def build_contour_curves( valueL, M): 

 

xyL = [] # list of tuples (val, xyPlotL) 

for val in valueL: 

#print 'making xyPlotL for val =',val 

xyPlotL = build_a_contour_curve( val, M ) 

if xyPlotL: 

xyL.append( (val, xyPlotL) ) 

 

return xyL 

# ==================================  

 

def add_curves_to_figure( xyL, color=(.5,0,0), alpha=0.5, 

label='', units='lbm', 

line_style='--', label_frac_pos=0.3): 

 

for (val, xyPlotL) in xyL: 

 

xL = [v[0] for v in xyPlotL] 

yL = [v[1] for v in xyPlotL] 

 

s = '%g %s'%(val, units) 

bbox = {'fc':(1,1,1), 'pad':0, 'facecolor':'w', 'edgecolor':'w', 'alpha':alpha} 

propsD = {'ha':'center', 'va':'center', 'bbox':bbox} 

 

if label: 

plt.plot(xL, yL, line_style, color=color, label=label) 

label = '' 

else: 

plt.plot(xL, yL, line_style, color=color) 

 

 

#ipos = min(len(xL)-1, max(0, int( label_frac_pos * len(xL) ))) 

ipos = label_frac_ipos( xL, yL, self.rhobRange, self.ispRange, label_frac=label_frac_pos ) 

 

rotationAng = getLocalAngle( xL[ipos], xL, yL, self.rhobRange, self.ispRange, self.figsize ) 

 

plt.text(xL[ipos], yL[ipos], s, fontdict=propsD, rotation=rotationAng, color=color) 

# ==================================  

 

 

def build_valueL_xyL( pname, M ): 

if pname in plot_param_valD: 

valueL = plot_param_valD[pname] 

else: 

lo, hi = min_max( M ) 

lo, hi, step = calcMinMaxRange(lo, hi, num_ticks=num_ticks) 

#print 'lo, hi, step =',lo, hi, step 

valueL = list( np.arange(lo, hi, step) ) 

 

xyL = build_contour_curves( valueL, M) 

return xyL 

 

# plot each of the parameters 

if 'DeltaV' in plot_paramL: 

xyL = build_valueL_xyL( 'DeltaV', dvMatrix ) 

add_curves_to_figure( xyL, color=(0,0.5,0.5), alpha=0.5, 

label=r'$\Delta V$' , units='ft/s', 

line_style=':', label_frac_pos=label_frac_posD.get('DeltaV',0.3) ) 

 

if 'GLOW' in plot_paramL: 

xyL = build_valueL_xyL( 'GLOW', glowMatrix ) 

add_curves_to_figure( xyL, color=(.5,0,0), alpha=0.5, 

label='GLOW', units='lbm', 

line_style=':', label_frac_pos=label_frac_posD.get('GLOW',0.3) ) 

 

if 'VolPropellant' in plot_paramL: 

xyL = build_valueL_xyL( 'VolPropellant', volMatrix ) 

add_curves_to_figure( xyL, color=(.5,0,.5), alpha=0.5, 

label=r'$V_{prop}$', units=r'$in^3$', 

line_style='--', label_frac_pos=label_frac_posD.get('VolPropellant',0.3) ) 

 

if 'CubicFt' in plot_paramL: 

xyL = build_valueL_xyL( 'CubicFt', volMatrix/1728.0 ) 

add_curves_to_figure( xyL, color=(.5,0,.5), alpha=0.5, 

label=r'$V_{prop}$', units=r'$ft^3$', 

line_style='--', label_frac_pos=label_frac_posD.get('CubicFt',0.3) ) 

 

if 'WtPropellant' in plot_paramL: 

xyL = build_valueL_xyL( 'WtPropellant', wpMatrix ) 

add_curves_to_figure( xyL, color=(0,.5,0), alpha=0.5, 

label=r'$W_{prop}$', units='lbm', 

line_style='--', label_frac_pos=label_frac_posD.get('WtPropellant',0.3) ) 

 

if 'WtInert' in plot_paramL: 

xyL = build_valueL_xyL( 'WtInert', wiMatrix ) 

add_curves_to_figure( xyL, color=(0,0,.5), alpha=0.5, 

label='Winert', units='lbm', 

line_style='--', label_frac_pos=label_frac_posD.get('WtInert',0.3) ) 

 

 

if 'MassFrac' in plot_paramL: 

xyL = build_valueL_xyL( 'MassFrac', muMatrix ) 

add_curves_to_figure( xyL, color=(.5,.5,0), alpha=0.5, 

label=r'$\mu_{stg}$', units=r'$\mu$', 

line_style=':', label_frac_pos=label_frac_posD.get('MassFrac',0.3) ) 

 

plt.legend( loc=self.legend_loc ) 

 

 

def add_rho_isp_contours(self, label_frac_pos=0.3, num_ticks=10): 

 

sgArr = np.linspace(self.sg_min, self.sg_max, self.nsteps_sg) 

isArr = np.linspace(self.isp_min, self.isp_max, self.nsteps_isp) 

 

dsg = self.rhobRange / self.nsteps_sg 

disp = self.ispRange / self.nsteps_isp 

 

sgIslo, sgIshi, sgIsstep = calcMinMaxRange(self.sg_min*self.isp_min, self.sg_max*self.isp_max, num_ticks=num_ticks) 

label = r'$\rho$ Isp' 

 

val = sgIslo + sgIsstep 

while val < sgIshi: 

xyPlotL = [] 

for sg in sgArr: 

isp_test = val / sg 

if isp_test>self.isp_min and isp_test<self.isp_max: 

xyPlotL.append( (sg, isp_test) ) 

for isp in isArr: 

sg_test = val / isp 

if sg_test>self.sg_min and sg_test<self.sg_max: 

xyPlotL.append( (sg_test, isp) ) 

xyPlotL.sort() 

 

c = (.2,.2,.2,.2) 

s = '%g %s'%(val, r'$\rho$ Isp') 

bbox = {'fc':(1,1,1,0.8), 'pad':0, 'facecolor':'w', 'edgecolor':'w'} 

propsD = {'ha':'center', 'va':'center', 'bbox':bbox} 

 

if xyPlotL: 

xL = [xy[0] for xy in xyPlotL] 

yL = [xy[1] for xy in xyPlotL] 

plt.plot(xL, yL, '--', color=c) 

 

 

if label: 

plt.plot(xL, yL, '--', color=c, label=label) 

label = '' 

else: 

plt.plot(xL, yL, '--', color=c) 

 

 

#ipos = min(len(xL)-1, max(0, int( label_frac_pos * len(xL) ))) 

ipos = label_frac_ipos( xL, yL, self.rhobRange, self.ispRange, label_frac=label_frac_pos ) 

 

rotationAng = getLocalAngle( xL[ipos], xL, yL, self.rhobRange, self.ispRange, self.figsize ) 

 

plt.text(xL[ipos], yL[ipos], s, fontdict=propsD, rotation=rotationAng, color='k') 

 

val += sgIsstep 

 

 

def add_propellants(self): 

if self.added_props_to_plot: 

return 

 

# properties for MR labels 

bbox = {'fc':(1,1,1,0.8), 'pad':4, 'facecolor':'w', 'edgecolor':'w'} 

mr_propsD = {'ha':'center', 'va':'bottom', 'bbox':bbox, 'fontsize':14} 

mr_frozen_propsD = {'ha':'center', 'va':'top', 'bbox':bbox, 'fontsize':14} 

 

self.added_props_to_plot = True 

 

for i, obj in enumerate( self.mr_objL ): 

c = colorL[i % len(colorL)] 

plt.plot(obj.sgL, obj.isL, '-', color=c, linewidth=3) 

 

if self.show_frozen_isp_on_plot: 

plt.plot(obj.sg_frozenL, obj.isp_frozenL, '-', color=c, linewidth=3) 

 

sg, isp, desc = get_label_coordinates( obj, sg_offset=0., is_offset=0.) 

propsD = {'ha':'center', 'va':'bottom', 'color':c, 'weight':'bold', 'fontsize':12} 

plt.text(sg, isp, desc, fontdict=propsD) 

 

if self.show_mr_on_plot: 

# add MR labels to curve 

ileft = int(len(obj.mrL)/10) 

iright = len(obj.mrL) - int(ileft/2) 

mrlo, mrhi, mrstep = calcMinMaxRange(obj.mrL[0], obj.mrL[-1], num_ticks=10) 

mr_isp_terp = InterpProp(obj.mrL, obj.isL) 

mr_sg_terp = InterpProp(obj.mrL, obj.sgL) 

 

mr = mrlo 

#print 'showing MR for',desc,'mrlo, mrhi, mrstep=',mrlo, mrhi, mrstep 

s = 'MReq=' 

while mr < mrhi+mrstep/2.: 

if mr>=obj.mrL[ileft] and mr<=obj.mrL[iright]: 

sg = mr_sg_terp( mr ) 

Isp = mr_isp_terp( mr ) 

 

rotationAng = getLocalAngle( sg, obj.sgL, obj.isL, self.rhobRange, self.ispRange, self.figsize ) 

plt.text( sg, Isp, s+'%g'%mr, fontdict=mr_propsD, rotation=rotationAng, color=c) 

s = '' 

 

mr += mrstep 

 

if self.show_frozen_isp_on_plot: 

ileft = int(len(obj.mr_frozenL)/10) 

iright = len(obj.mr_frozenL) - int(ileft/2) 

mrlo, mrhi, mrstep = calcMinMaxRange(obj.mr_frozenL[0], obj.mr_frozenL[-1], num_ticks=6) 

mr_isp_terp = InterpProp(obj.mr_frozenL, obj.isp_frozenL) 

mr_sg_terp = InterpProp(obj.mr_frozenL, obj.sg_frozenL) 

 

mr = mrlo 

#print 'showing MR for',desc,'mrlo, mrhi, mrstep=',mrlo, mrhi, mrstep 

s = 'MRfroz=' 

while mr < mrhi+mrstep/2.: 

if mr>=obj.mr_frozenL[ileft] and mr<=obj.mr_frozenL[iright]: 

sg = mr_sg_terp( mr ) 

Isp = mr_isp_terp( mr ) 

 

rotationAng = getLocalAngle( sg, obj.sg_frozenL, obj.isp_frozenL, self.rhobRange, self.ispRange, self.figsize ) 

plt.text( sg, Isp, s+'%g'%mr, fontdict=mr_frozen_propsD, rotation=rotationAng, color=c) 

s = '' 

 

mr += mrstep 

 

 

 

for propName, (sg, Isp) in self.monoprop_sgIspD.items(): 

 

plt.plot([sg], [Isp], 'o', color='b', markersize=10) 

propsD = {'ha':'center', 'va':'bottom', 'color':'b', 'weight':'bold'} 

plt.text(sg, Isp+2, propName, fontdict=propsD) 

 

 

plt.xlabel('Specific Gravity (g/ml)') 

plt.ylabel('CEA IspVac (sec)') 

plt.title(self.headline) 

 

def show(self): 

self.add_propellants() 

plt.show() 

 

def savefig(self, fname, dpi=120): 

self.add_propellants() 

plt.savefig(fname, dpi=dpi) 

 

if __name__=="__main__": 

from veh_stage_obj import ConstMassFracStage 

 

#rp = RhoIspPlot() 

rp = RhoIspPlot(bipropL=[('LOX','LH2'),('N2O4','MMH')], nsteps_sg=90, nsteps_isp=90) 

 

stg_obj = ConstMassFracStage( mass_frac=0.8, WtPayload=1000.0 ) 

 

rp.add_rho_isp_contours() 

#rp.add_stage_param_contours( stg_obj, set_param='GLOW', param_value=2000.0, 

# plot_paramL=['DeltaV']) 

rp.add_stage_param_contours( stg_obj, set_param='DeltaV', param_value=7200.0, 

plot_paramL=['GLOW'], num_ticks=16) 

 

rp.show()