Package pygeodesy :: Module lcc
[frames] | no frames]

Module lcc

Lambert conformal conic projection for 1- or 2-Standard Parallels class Conic, Conics registry and position class Lcc.

See http://wikipedia.org/wiki/Lambert_conformal_conic_projection, http://www.linz.govt.nz/data/geodetic-system/coordinate-conversion/ projection-conversions/lambert-conformal-conic-geographic, Snyder pp 107-109 and http://mathworld.wolfram.com/LambertConformalConicProjection.html.


Version: 17.06.25

Classes
  Conic
Lambert conformal conic projection (1- or 2-SP).
  Lcc
Lambert conformal conic East-/Northing location.
Functions
 
toLcc(latlon, conic=Conic(name='WRF_Lb', lat0=40.0, lon0=-97.0, par1=33.0, par2=45..., height=None, Lcc=<class 'pygeodesy.lcc.Lcc'>)
Convert an (ellipsoidal) geodetic point to a Lambert location.
Variables
  Conics = Conics.Be08Lb: Conic(name='Be08Lb', lat0=50.797815, l...
Registered conics (_Enum).
Function Details

toLcc(latlon, conic=Conic(name='WRF_Lb', lat0=40.0, lon0=-97.0, par1=33.0, par2=45..., height=None, Lcc=<class 'pygeodesy.lcc.Lcc'>)

 

Convert an (ellipsoidal) geodetic point to a Lambert location.

Parameters:
  • latlon - Ellipsoidal point (LatLon).
  • conic - Lambert projection to use (Conic).
  • height - Optional height for the point, overriding the default height (meter).
  • Lcc - Lcc class for the Lambert location (Lcc).
Returns:
The Lambert location (Lcc).
Raises:
  • TypeError - If latlon is not ellipsoidal.

Variables Details

Conics

Registered conics (_Enum).

Value:
Conics.Be08Lb: Conic(name='Be08Lb', lat0=50.797815, lon0=4.35921583, p\
ar1=49.833333, par2=51.166667, E0=649328.0, N0=665262.0, k0=1, SP=2, d\
atum=(name='GRS80', ellipsoid=Ellipsoids.GRS80, transform=Transforms.W\
GS84)
Conics.Be72Lb: Conic(name='Be72Lb', lat0=90.0, lon0=4.3674867, par1=49\
.8333339, par2=51.1666672, E0=150000.013, N0=5400088.438, k0=1, SP=2, \
datum=(name='NAD83', ellipsoid=Ellipsoids.GRS80, transform=Transforms.\
NAD83)
...