
Quick Start wrapnumpy3

Prerequisites
This is a Python 3.x program, so you do need to have Python 3.2 or higher, though the module would
probably work ok with Python 3.1. This is a wrapper for numpy, so it expects numpy to be installed with
Python 3.x.

At the time of writing, on Linux platforms numpy needs to be installed from a source tar ball, which can be
downloaded from pypi: http://pypi.python.org/pypi. Currently the package is for numpy 1.6.1. It includes
installation instructions. The supporting programs for LAPACK and/or BLAS can be installed from your
favourite distribution's binaries. If the installation of Numpy is a problem for you, consider using Matalg. a
pure Python 3.x package, which is much slower than Numpy, but is quite usable for small sets of
equations, say up to a few dozen equations.

Check Installation
The installation command:

sudo setup.py install

will probably put wrapnumpy3.py and testMat.py in the following directory on your PC - that's where it was
installed on my kubuntu "natty" PC:

/usr/local/lib/python3.2/dist-packages/wrapnumpy3/wrapnumpy3.py

To check the installation, start python3.2 or higher as follows:

python3

Check that you have Python3.2 or higher and then quit the Python shell by pressing ctrl+D. Now change
to the directory where the test program testwrap3.py is (look at wrapnp3-tst subidrectory) and start the
program as follows:

ak@supremo:/dat/work/py3/wrapnumpy3/wrapnp3-tst$./testwrap3.py
This works, if no failures reported...

If you see only the messages This works, if no failures reported... then You are indeed ready for the
journey

Try Matrix multiplication
Let us create two smallest matrices, amat and bmat:

>>> from wrapnumpy3 import wrapnumpy3 as _m
>>> Matrix = _m.Matrix
>>> amat = Matrix(2, 2)
>>> bmat = Matrix(2, 2)

The two (2 x 2) matrices have zero terms. We can put any numerical values in the terms. For instance

>>> amat[0, 0] = 7

http://pypi.python.org/pypi

will make the first term equal to 7. Verify it:

>>> print(amat)
 [7, 0.0]
 [0.0, 0.0]
>>>

That does not look nice, so let us print it in a neater format:

>>> amat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 7.00000E+00 0.00000E+00
 0.00000E+00 0.00000E+00

We can similarly fill all the terms with non zero values, either the same way as we just did for amat[0, 0] or
using a function enterdata as follows:

>>> utils = _m.Utilities()
>>> amat = utils.enterdata(2, 2, [[7, 6], [5, 3]], False)
>>> bmat = utils.enterdata(2, 2, [[1, 2], [3, 4]], False)

We have recreated amat and bmat and put some values in it. False simply signals to enterdata not to
echo the data. Let us check that the data is entered correctly.

>>> amat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 7.00000E+00 6.00000E+00
 5.00000E+00 3.00000E+00
>>> bmat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 1.00000E+00 2.00000E+00
 3.00000E+00 4.00000E+00

To multiply the two matrices and store the result in cmat, write:

>>> cmat = amat * bmat

Let us check the results:

>>> cmat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 2.50000E+01 3.80000E+01
 1.40000E+01 2.20000E+01

Even if we trust numpy and its wrapper wrapnumpy3, we should verify the matrix multiplication on a piece
of paper...

Let us now multiply a matrix by a scalar:

>>> xscl = 2.1
>>> amat = xscl * amat
>>> amat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 1.47000E+01 1.26000E+01

 1.05000E+01 6.30000E+00

Mental arithmetic will show that the matrix amat has been correctly scaled. Post multiplication has exactly
the same effect.

Usually matrices are scaled in situ, so to multiply bmat by the same scalar we can write in shorthand:

>>> xscl * bmat
[[2.1, 4.2], [6.300000000000001, 8.4]]
>>> bmat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 2.10000E+00 4.20000E+00
 6.30000E+00 8.40000E+00

Other Matrix Operations
I have used the terminal to enter these commands, but they can be tested in the IDLE Python Shell just as
easily and actually a little more conveniently.

Let us recreate the amat and bmat before they were scaled by scalar multiplication:

>>> amat = utils.enterdata(2, 2, [[7, 6], [5, 3]])
Echo check of enterdata
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 7.00000E+00 6.00000E+00
 5.00000E+00 3.00000E+00
>>> bmat = utils.enterdata(2, 2, [[1, 2], [3, 4]])
Echo check of enterdata
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 1.00000E+00 2.00000E+00
 3.00000E+00 4.00000E+00

By default, the last parameter is True and signals to the enterdata method to echo print the data.

Matrix Addition
To add the two amat and the bmat matrices, write:

>>> cmat = amat + bmat
>>> cmat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 8.00000E+00 8.00000E+00
 8.00000E+00 7.00000E+00

OK, now see what happens if we try an operation that is not defined in matrix algebra - try to add a scalar
and a matrix, an illegal operation in matrix algebra:

>>> cmat = amat + xscl
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'Matrix' and 'float'

So Python has saved us from doing something illegal!

Matrix Subtraction
Subtraction is very similar to addition:

>>> cmat = amat - bmat
>>> cmat.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 2 5
 6.00000E+00 4.00000E+00
 2.00000E+00 -1.00000E+00
>>>

Solution of Simultaneous Equations
This is probably the most important matrix operation of all. To signal the solution of simultaneous
equations, we borrowed the two starts, which in scalar arithmetic would signal raising to a power. So if we
define rhs as the right had matrix and specify it as

>>> rhs = utils.enterdata(2, 1, [[10], [1]])
Echo check of enterdata
[10]
[1]

we can solve the equation:

cmat * sol = rhs

as follows:

>>> sol = cmat ** rhs
>>> sol.neatprint()
A matrix of dimensions (m x n), where m, n, LineLen = 2 1 5
 1.00000E+00
 1.00000E+00

Happy computing!

ak 2011-09-10

	Prerequisites
	Check Installation
	Try Matrix multiplication
	Other Matrix Operations
	Matrix Addition
	Matrix Subtraction
	Solution of Simultaneous Equations

