
http://pyx.sourceforge.net/

PYX 0.1
User Manual

Jörg Lehmann <joergl@users.sourceforge.net>

André Wobst <wobsta@users.sourceforge.net>

January 17, 2003

PostScript is a trademark of Adobe Systems Incorporated.

2

Contents

1. Introduction 5

2. Module unit 6
2.1. Class length . 6
2.2. Subclasses of length . 7
2.3. Conversion functions . 7

3. Module path: PostScript like paths 8
3.1. Class pathel . 8
3.2. Class path . 9
3.3. Class normpath . 10
3.4. Subclasses of path . 11

4. Module trafo: linear transformations 12
4.1. Class trafo . 12
4.2. Subclasses of trafo . 13

5. Module canvas: PostScript interface 14
5.1. Class canvas . 14

5.1.1. Basic usage . 14
5.1.2. Methods of the class canvas . 15

5.2. Subclasses of base.PathStyle . 17

6. Module epsfile: EPS file inclusion 18

7. Module tex: TEX/LATEX interface 19
7.1. Methods . 19
7.2. Attributes . 20
7.3. Constructors . 21
7.4. Examples . 22

7.4.1. Example 1 . 22
7.4.2. Example 2 . 22

7.5. Known bugs . 24
7.6. Future of the module tex . 24

3

8. Module color 25
8.1. Color models . 25
8.2. Example . 25
8.3. Color gradients . 26

9. Module graph: graph plotting 27
9.1. Introductory notes . 27
9.2. Axes . 27

9.2.1. Axes properties . 28
9.2.2. Partitioning of axes . 28
9.2.3. Painting of axes . 32
9.2.4. Linked axes . 33
9.2.5. Special purpose axes . 34

9.3. Data . 35
9.3.1. List of points . 35
9.3.2. Functions . 36
9.3.3. Parametric functions . 36

9.4. Styles . 37
9.4.1. Symbols . 37
9.4.2. Lines . 38
9.4.3. Rectangles . 38
9.4.4. Texts . 38
9.4.5. Arrows . 38
9.4.6. Bars . 39
9.4.7. Iterateable style attributes . 39

9.5. Keys . 40
9.6. X-Y-Graph . 40
9.7. Examples . 41

9.7.1. A minimal example: plot data from a file 41
9.7.2. A more advanced function plot . 42

A. Mathematical expressions 44

B. Named colors 45

C. Named gradients 46

D. Path styles and arrows in canvas module 47

4

1. Introduction

PyX is a python package to create encapsulated PostScript figures. It provides classes
and methods to access basic PostScript functionality at an abstract level. At the same
time the emerging structures are very convenient to produce all kinds of drawings in a
non-interactive way. In combination with the python language itself the user can just
code any complexity of the figure wanted. Additionally an TEX/LATEX interface enables
one to use the famous high quality typesetting within the figures.
A major part of PYX on top of the already described basis is the provision of high level
functionality for complex tasks like 2d plots in publication-ready quality.

5

2. Module unit

With the unit module PYX makes available classes and functions for the specification
and manipulation of lengths. As usual, lengths consist of a number together with a
measurement unit, e.g. 1 cm, 50 points, 0.42 inch. In addition, lengths in PYX are
composed of the four types “true”, “user”, “visual” and “width”, e.g. 1 user cm, 50 true
points, (0.42 visual+ 0.2 width) inch. As their name tells, they serve different purposes.
True lengths are not scalable and serve mainly for return values of PYX functions. The
other length types allow a rescaling by the user and are differ with respect to the type
of object they are applied:

user length: used for lengths of graphical objects like positions, distances, etc.

visual length: used for sizes of visual elements, like arrows, text, etc.

width length: used for line widths

For instance, if you just want thicker lines for a publication version of your figure, you
can just rescale the width lengths. How this all works, is described in the following
sections.

2.1. Class length

The constructor of the length class accepts as first argument either a number or a string:

• length(number) means a user length in units of unit.default_unit.

• For length(string) the string has to consist of a maximum of three parts sep-
arated by one or more whitespaces:

quantifier: integer/float value

type: "t" (true), "u" (user), "v" (visual), or "w" (width). Optional, defaults to
"u".

unit: "m", "cm", "mm", "inch", or "pt". Optional, defaults to default_unit

Note that default_unit is initially set to "cm", but can be changed at any time by the
user. For instance, use

unit.default_unit = "inch"

6

if you want to specify per default every length in inches. Furthermore, the scaling of the
user, visual and width types can be changed with the set function, which accepts the
name arguments uscale, vscale, and wscale. For example, if you like to change the
thickness of all lines by a factor of two, just insert

unit.set(wscale = 2)

at the beginning of your program.
To complete the discussion of the length class, we mention, that as expected PYX length
can be added, subtracted, multiplied by a numerical factor and converted to a string.

2.2. Subclasses of length

A number of subclasses of length are already predefined. They only differ in their
defaults for type and unit.

Subclass of length Type Unit Subclass of length Type Unit

m(x) user m t m(x) true m
cm(x) user cm t cm(x) true cm
mm(x) user mm t mm(x) true mm
inch(x) user inch t inch(x) true inch
pt(x) user points t pt(x) true points

Here, x is either a number or a string.

2.3. Conversion functions

If you want to know the value of a PYX length in certain units, you can use the predefined
conversion functions which are given in the following table

function result

to m(l) l in units of m
to cm(l) l in units of cm
to mm(l) l in units of mm
to inch(l) l in units of inch
to pt(l) l in units of points

If l is not yet a length instance, it is converted first to a such, as described above. You
can also specify a tuple, if you want to convert multiple lengths at once.

7

3. Module path: PostScript like paths

With help of the path module it is possible to construct PostScript like paths, which are
one of the main building blocks for the generation of drawings. To that end it provides

• classes (derived from pathel) for the primitives moveto, lineto, etc.

• the class path (and derivatives thereof) representing an entire PostScript path

• the class normpath (and derivatives thereof) which is a path consisting only of a
certain subset of pathels, namely the four normpathels moveto, lineto, curveto
and closepath.

3.1. Class pathel

The class pathel is the superclass of all PostScript path construction primitives. It is
never used directly, but only by instantiating its subclasses, which correspond one by
one to the PostScript primitives.

Subclass of pathel function

closepath() closes current subpath
moveto(x, y) sets current point to (x, y)
rmoveto(dx, dy) moves current point relative by (dx, dy)
lineto(x, y) appends straight line from current point to (x, y)
rlineto(dx, dy) appends straight line from current point relative by

(dx, dy)
arc(x, y, r,

angle1, angle2)

appends arc segment in counterclockwise direction
with center (x, y) and radius r from angle1 to
angle2 (in degrees).

arcn(x, y, r,

angle1, angle2)

appends arc segment in clockwise direction with
center (x, y) and radius r from angle1 to angle2 (in
degrees).

arct(x1, y1, x2, y2, r) appends arc segment with radius r which connects
between (x1, y1) and (x2, y2).

rcurveto(dx1, dy1,

dx2, dy2,

dx3, dy3)

appends a Bézier curve with the control points
current point, and the points defined relative to the
current point by (dx1, dy1), (dx2, dy2), and (dx3,
dy3)

Some notes on the above:

8

• All coordinates are in PYX lengths

• If the current point is defined before an arc or arcn command, a straight line from
current point to the beginning of the arc is prepended.

• The bounding box (see below) of Bézier curves is actually only the control box,
i.e. not neccesarily the smallest enclosing rectangle.

3.2. Class path

The class path represents PostScript like paths in PYX. The path constructor allows the
creation of such a path out of series of pathels. A simple example, which generates a
triangle, looks like:

from pyx import *

from path import *

p = path(moveto(0, 0),

lineto(0, 1),

lineto(1, 1),

closepath())

Later on, we shall see, how it is possible to output such a path on a canvas. For the
moment, we only want to discuss the methods provided by the path class. This range
from standard operation like the determination of the length of a path via len(p),
fetching of items using p[index] and the possibility to concatenate two paths, p1 + p2,
append further pathels using p.append(pathel) to more advanced methods, which are
summarized in the following table.
XXX terminology: subpath, . . .

9

path method function

init (*pathels) construct new path consisting of pathels
append(pathel) appends pathel to end of path
arclength(epsilon=1e-5) returns the total arc length of all path segments in

PostScript points with accuracy epsilon.†

at(t) returns the coordinates of the point of path
corresponding to the parameter value t.†

bbox() returns the bounding box of the path

begin() return first point of first subpath of path.†

end() return last point of last subpath of path.†

glue(opath) returns the path glued together with opath, i.e. the
last subpath of path and the first one of opath are
joined.†

intersect(opath,

epsilon=1e-5)

returns tuple consisting of two list of parameter
values corresponding to the intersection points of
path and opath, respectively.†

reversed() returns the normalized reversed path.†

split(t) returns a tuple consisting of two normpaths
corresponding to the path split at the parameter
value t.†

transformed(trafo) returns the normalized and accordingly to the linear
transformation trafo transformed path. Here, trafo
must be an instance of the trafo.trafo class.†

Some notes on the above:

• The bounding box may be too large, if the path contains any curveto elements,
since for these the control box, i.e., the bounding box enclosing the control points
of the Bézier curve is returned.

• The † denotes methods which require a prior conversion of the path into a normpath
instance. This is done automatically, but if you need many to call such methods
often, it is a good idea to do the conversion once for performance reasons.

• Instead of using the glue method, you can also glue two paths together with help
of the << opertor, for instance p = p1 << p2.

3.3. Class normpath

The normpath class represents a specialized form of a path containing only the elements
moveto, lineto, curveto and closepath. Such normalized paths are used during all of
the more sophisticated path operations, namely precisely those which are denoted by a
† in the above table.
Any path can easily be converted to its normalized form by passing it as parameter to
the normpath constructor,

10

np = normpath(p)

Alternatively, by passing a series of pathels to the constructor, a normpath can be
constructed like a generic path. Addition of a normpath and a path always yields a
normpath.

3.4. Subclasses of path

For your convenience, some special PostScript paths are already defined, which are given
in the following table.

Subclass of path function

line(x1, y1, x2, y2) a line from the point (x1, y1) to the
point (x2, y2)

curve(x0, y0, x1, y1, x2, y2, x3, y3) a Bézier curve with control points
(x0, y0), . . ., (x3, y3).

rect(x, y, w, h) a rectangle with the lower left point
(x, y), width w, and height h.

circle(x, y, r) a circle with center (x, y) and
radius r.

Note that besides the circle class all classes are actually subclasses of normpath.

11

4. Module trafo: linear transformations

With the trafo modulo PYX provides linear transformations, which can then be ap-
plied to canvases, Bézier paths and other objects. It consists of the main class trafo

representing a general linear transformation and subclasses thereof, which give special
operations like translation, rotation, scaling, and mirroring.

4.1. Class trafo

The trafo class represents a general transformation, which is defined for a vector ~x as

~x′ = A ~x +~b ,

where A is the transformation matrix and ~b the translation vector. The transformation
matrix must not be singular, i.e. we require detA 6= 0.
Multiple trafo instances can be multiplied, corresponding to a consecutive application
of the respective transformation. Note that trafo1*trafo2 means that first trafo2

gets applied and then trafo1, i.e. the new transformation is given in obvious notation
by A = A1A2 and ~b = A1

~b2 +~b1. Use the trafo methods described below, if you prefer
thinking the other way round. The inverse of a transformation can be obtained via the
trafo method inverse(), defined by the inverse A

−1 of the transformation matrix and
the transformation vector −A

−1~b.
The methods of the trafo class are summarized in the following table.

12

trafo method function

init (matrix=((1,0),(0,1)),

vector=(0,0)):

create new trafo instance with transformation
matrix and vector.

apply(x, y) apply trafo to point vector (x, y).
inverse() returns inverse transformation of trafo.
mirrored(angle) returns trafo followed by mirroring at line

through (0, 0) with direction angle in degrees.
rotated(angle,

x=None, y=None)

returns trafo followed by rotation by angle

degrees around point (x, y), or (0, 0), if not given.
scaled(sx, sy=None,

x=None, y=None)

returns trafo followed by scaling with scaling
factor sx in x-direction, sy in y-direction
(sy = sx, if not given) with scaling center (x, y),
or (0, 0), if not given.

translated(x, y) returns trafo followed by translation by vector
(x, y).

slanted(a, angle=0, x=None,

y=None)

returns trafo followed by XXX

4.2. Subclasses of trafo

The trafo module provides provides a number of subclasses of the trafo class, each of
which corresponds to one trafo method. They are listed in the following table:

trafo subclass function

mirror(angle) mirroring at line through (0, 0) with direction angle

in degrees.
rotate(angle,

x=None, y=None)

rotation by angle degrees around point (x, y), or
(0, 0), if not given.

scale(sx, sy=None,

x=None, y=None)

scaling with scaling factor sx in x-direction, sy in
y-direction (sy = sx, if not given) with scaling center
(x, y), or (0, 0), if not given.

translate(x, y) translation by vector (x, y).
slant(a, angle=0,

x=None, y=None)

XXX

13

5. Module canvas: PostScript interface

The central module for the PostScript access in PYX is named canvas. Besides pro-
viding the class canvas, which presents a collection of visual elements like paths, other
canvases, TEX or LATEX elements, it contains also various path styles (as subclasses of
base.PathStyle), path decorations like arrows (with the class canvas.PathDeco and
subclasses thereof), and the class canvas.clip which allows clipping of the output.

5.1. Class canvas

This is the basic class of the canvas module, the purpose of which is the collection of
various graphical and text elements you want to write eventually to an (E)PS file.

5.1.1. Basic usage

Let us first demonstrate the basic usage of the canvas class. We start by constructing
the main canvas instance, which we shall by convention always name c.

from pyx import *

c = canvas.canvas()

Basic drawing proceeds then via the construction of a path, which can subsequently be
drawn on the canvas using the method stoke():

p = path.line(0, 0, 10, 10)

c.stroke(p)

or more concisely:

c.stroke(path.line(0, 0, 10, 10))

You can modify the appearance of a path by additionally passing instances of the class
PathStyle. For instance, you can draw the the above path p in blue, as well:

c.stroke(p, color.rgb.blue)

Similarly, it is possible to draw a dashed version of p:

c.stroke(p, canvas.linestyle.dashed)

Combining of several PathStyles is of course also possible:

14

c.stroke(p, color.rgb.blue, canvas.linestyle.dashed)

Furthermore, drawing an arrow at the begin or end of the path is done in a similar way.
You just have to use the provided barrow and earrow instances:

c.stroke(p, canvas.barrow.normal, canvas.earrow.large)

Filling of a path is possible via the fill method of the canvas. Let us for example draw
a filled rectangle

r = path.rect(0, 0, 10, 5)

c.fill(r)

Alternatively, you can use the class filled of the canvas module in combination with
the stroke method:

c.stroke(r, canvas.filled())

To conclude the section on the drawing of paths, we consider a pretty sophisicated
combination of the above presented PathStyles:

c.stroke(p,

color.rgb.blue,

canvas.earrow.LARge(color.rgb.red,

canvas.stroked(canvas.linejoin.round),

canvas.filled(color.rgb.green)))

This draws the path in blue with a pretty large green arrow at the end, the outline of
which is red and rounded.
After you have finished the composition of the canvas, you can write it to a file using
the method writetofile(). It expects the obligatory argument filename, the name of
the output file. To write your results to the file ”test.eps” just call it as follows:

c.writetofile("test")

5.1.2. Methods of the class canvas

The canvas class provides the following methods:

15

canvas method function

init (*args) Construct new canvas. args can be instances
of trafo.trafo, canvas.clip and/or
canvas.PathStyle.

bbox() Returns the bounding box enclosing all
elements of the canvas.

draw(path, *styles) Generic drawing routine for given path on the
canvas (i.e. inserts it together with the
necessary newpath command, applying the
given styles. Styles can either be instances of
base.PathStyle or canvas.PathDeco (or
subclasses thereof).

fill(path, *styles) Fills the given path on the canvas, i.e. inserts
it together with the necessary newpath, fill
sequence, applying the given styles. Styles
can either be instances of base.PathStyle or
canvas.PathDeco (or subclasses therof).

insert(*PSOps) Inserts one ore more instances of the class
base.PSOp in the canvas and returns the last
one. Thereby, instances of canvas.canvas are
bracketed by gsave/grestore pair.

set(*styles) Sets the given styles (instances of
base.PathStyle or subclasses) for the rest of
the canvas.

stroke(path, *styles) Strokes the given path on the canvas, i.e.

inserts it together with the necessary
newpath, stroke sequence, applying the given
styles. Styles can either be instances of
base.PathStyle or canvas.PathDeco (or
subclasses thereof).

writetofile(filename,

paperformat=None,

rotated=0,

fittosize=0,

margins="1 t cm")

Writes the canvas to filename. Optionally a
paperformat can be specified, in which case
the output will be centered with respect to the
corresponding size using the given margin. See
canvas. paperformats for a list of known
paper formats . Use rotated, if you want to
center on a 90◦ rotated version of the
respective paper format. If fittosize is set,
the output is additionally scaled to the
maximal possible size.

16

5.2. Subclasses of base.PathStyle

The canvas module provides a number of subclasses of the class base.PathStyle, which
allow to change the look of the paths drawn on the canvas. They are summarized in
Appendix D.

17

6. Module epsfile: EPS file inclusion

With help of the epsfile.epsfile class, you can easily embed another EPS file in your
canvas, thereby scaling, aligning the content at discretion. The most simple example
looks like

from pyx import *

c = canvas.canvas()

c.insert(epsfile.epsfile("file.eps"))

c.writetofile("output")

All relevant parameters are passed to the epsfile.epsfile constructor. They are
summarized in the following table:

argument name description

filename Name of the EPS file (including a possible extension).
x="0 t m" x-coordinate of position (converts to user unit by default).
y="0 t m" y-coordinate of position (converts to user unit by default).
width=None Desired width of EPS graphics or None for original width.

Cannot be combined with scale specification.
heigth=None Desired height of EPS graphics or None for original height.

Cannot be combined with scale specification.
scale=None Scaling factor for EPS graphics or None for no scaling. Cannot

be combined with width or height specification.
align="bl" Alignment of EPS graphics. The first character specifies the

vertical alignment: b for bottom, c for center, and t for top. The
second character fixes the horizontal alignment: l for left, c for
center r for right.

clip=1 Clip to bounding box of EPS file?
showbbox=0 Stroke bounding box of EPS file?
translatebox=1 Use lower left corner of bounding box of EPS file? Set to 0 with

care.

18

7. Module tex: TEX/LATEX interface

7.1. Methods

Text in PYX is created by TEX or LATEX. From the technical point of view, the text
is inserted as an Encapsulated PostScript file (eps-file). This eps-file is generated by
the module tex which runs TEX or LATEX followed by dvips to create the requested
text. TEX is used by instances of the class tex while LATEX is used by latex. Up to
the constructor and the advanced possibilities in LATEX commands both classes tex and
latex are identical. They provide 5 methods to the user listed in the following table:

method task allowed attributes in *attr

text(x, y, cmd, *attr) print cmd style, fontsize, halign, valign,

direction, color, msghandler(s)

define(cmd, *attr) execute cmd msghandler(s)

textwd(cmd, *attr) width of cmd style, fontsize, missextents,

msghandler(s)

textht(cmd, *attr) height of cmd style, fontsize, valign,

missextents, msghandler(s)

textdp(cmd, *attr) depth of cmd style, fontsize, valign,

missextents, msghandler(s)

There are some common rules:

• cmd stands for a TEX or LATEX expression. To prevent a backslash plague, python’s
raw string feature can nicely be used. x, y specify a position.

• define can only be called before any of the other methods. In LATEX definitions
are inserted directly in front of the \begin{document} statement. However, this
is not a limitation, because by \AtBeginDocument{} definitions can be postponed.

• The extent routines textwd, textht, and textdp return true PYX length (see
section 2). Usually, the evaluation takes place when performing a write and the
results are stored in a file with the suffix .size. Therefore you have to run your
file twice at first to get the correct value. This default behaviour can be changed
by the missextents attribute.

• All commands are passed to TEX or LATEX in the calling order of the methods
with one exception: if the same command is used several times (for printing as
well as for calculating extents), all requests are executed at the position of the first
occurrence of the command.

19

• All text is inserted into the canvas at the position, where the tex- or latex-
instance itself is inserted into the canvas. In fact, the eps-file created by TEX or
LATEX and dvips is just inserted.

• The tailing *style parameter stands for a list of attribute parameters listed in the
last column of the table. Attribute parameters are instances of classes discussed
in detail in the following section.

• There can be several msghandler attributes which will be applied sequentially. All
other parameters can occure only once.

7.2. Attributes

style: style.text (default – does nothing to the command),
style.math (switches to math mode in \displaystyle)

fontsize: specifies the LATEX font sizes by fontsize.xxx where xxx is one of tiny,
scriptsize, footnotesize, small, normalsize (default), large, Large, LARGE,
huge, or Huge.

halign: halign.left (default), halign.center, halign.right

valign: valign.top(length) or valign.bottom(length) — creates a vertical box
with width length. The vertical alignment is the baseline of the first line for
top and the last line for bottom. The box width is stored in the TEX dimension
\linewidth.

direction: direction.xxx where xxx stands for horizontal (default), vertical,
upsidedown, or rvertical. Additionally, any angle angle (in degree) is allowed
in direction(angle).

color: stands for any PYX color (see section 8), default is color.gray.black

missextents: provides a routine, which is called when a requested extent is not yet
available. In the following table a list of choises for this parameter is described:

missextents description

missextents.returnzero returns zero (default)
missextents.returnzeroquiet as above, but does not return a warning via

atexit

missextents.raiseerror raise TexMissExtentError

missextents.createextent run TEX or LATEX immediately to get the
requested size

missextents.createallextent run TEX or LATEX immediately to get the
hight, width, and depth of the given text at
once

20

msghandler: provides a filter for TEX and LATEX messages and defines, which messages
are hidden. In the following table the predefined message handlers are described:

msghandler description

msghandler.showall shows all messages
msghandler.hideload Hides messages which are written when

loading packages and including other files.
They look like (file...) where file is a
readable file and ... stands for any text.
This message handler is the default handler.

msghandler.hidegraphicsload Hides messages which are written by
includegraphics of the graphicx package.
They look like <file> where file is a
readable file.

msghandler.hidefontwarning Hides LATEX font warnings. They look like
LaTeX Font Warning: and are followed by
lines starting with (Font).

msghandler.hidebuterror Hides messages except those with a line
which starts with “! ”.

msghandler.hideall hides all messages

7.3. Constructors

Named parameters of the constructor are used to set global options for the instances of
the classes tex and latex. There are some common options for both classes listed in
the following table.

parameter name default value description

defaultmsghandler msghandler.hideload default message handler (tuple
of message handlers is possible)

defaultmissextents missextents.returnzero default missing extent handler
texfilename None Filename used for running TEX

or LATEX. If None, a temporary
name is used and the files are
removed automatically. It can
be used to trace errors.

Additionally, the class tex has another option described in the following table.

parameter name default value description

lts "10pt" Specifies a latex font size file. Those files with the
suffix .lfs can be created by createlfs.tex.
Possible values are listed when a requested name
couldn’t be found.

Instead of the option listed in the table above, for the class latex the options described
in the following table are available (additionally to the common available options).

21

parameter name default value description

docclass "article" specifies the document class
docopt None specifies options to the document class
auxfilename None Specifies a filename for storing the LATEX aux file.

This is needed when using labels and references.

7.4. Examples

7.4.1. Example 1

from pyx import *

c = canvas.canvas()

t = c.insert(tex.tex())

t.text(0, 0, "Hello, world!")

print "width:", t.textwd("Hello, world!")

print "height:", t.textht("Hello, world!")

print "depth:", t.textdp("Hello, world!")

c.writetofile("tex1")

The output of this program is:

width: (0.019535 t + 0.000000 u + 0.000000 v + 0.000000 w) m

height: (0.002441 t + 0.000000 u + 0.000000 v + 0.000000 w) m

depth: (0.000683 t + 0.000000 u + 0.000000 v + 0.000000 w) m

The file tex1.eps is created and looks like:

Hello, world!

7.4.2. Example 2

from pyx import *

c = canvas.canvas()

t = c.insert(tex.tex())

t.text(0, 0, "Hello, world!")

t.text(0, -0.5, "Hello, world!", tex.fontsize.large)

t.text(0, -1.5,

r"\sum_{n=1}^{\infty} {1\over{n^2}} = {{\pi^2}\over 6}",

tex.style.math)

c.stroke(path.line(5, -0.5, 9, -0.5))

22

c.stroke(path.line(5, -1, 9, -1))

c.stroke(path.line(5, -1.5, 9, -1.5))

c.stroke(path.line(7, -1.5, 7, 0))

t.text(7, -0.5, "left aligned") # default is tex.halign.left

t.text(7, -1, "center aligned", tex.halign.center)

t.text(7, -1.5, "right aligned", tex.halign.right)

c.stroke(path.line(0, -4, 2, -4))

c.stroke(path.line(0, -2.5, 0, -5.5))

c.stroke(path.line(2, -2.5, 2, -5.5))

t.text(0, -4,

"a b c d e f g h i j k l m n o p q r s t u v w x y z",

tex.valign.top(2))

c.stroke(path.line(2.5, -4, 4.5, -4))

c.stroke(path.line(2.5, -2.5, 2.5, -5.5))

c.stroke(path.line(4.5, -2.5, 4.5, -5.5))

t.text(2.5, -4,

"a b c d e f g h i j k l m n o p q r s t u v w x y z",

tex.valign.bottom(2))

c.stroke(path.line(5, -4, 9, -4))

c.stroke(path.line(7, -5.5, 7, -2.5))

t.text(7, -4, "horizontal")

t.text(7, -4, "vertical", tex.direction.vertical)

t.text(7, -4, "rvertical", tex.direction.rvertical)

t.text(7, -4, "upsidedown", tex.direction.upsidedown)

t.text(7.5, -3.5, "45", tex.direction(45))

t.text(6.5, -3.5, "135", tex.direction(135))

t.text(6.5, -4.5, "225", tex.direction(225))

t.text(7.5, -4.5, "315", tex.direction(315))

t.text(0, -6, "red", color.rgb.red)

t.text(3, -6, "green", color.rgb.green)

t.text(6, -6, "blue", color.rgb.blue)

c.writetofile("tex2")

The file tex2.eps is created and looks like:

23

Hello, world!

Hello, world!

∞∑

n=1

1

n
2

=
π

2

6

left aligned

center aligned

right aligned

a b c d e

f g h i j k l m

n o p q r s t

u v w x y z

a b c d e

f g h i j k l m

n o p q r s t

u v w x y z horizontalv
er

ti
ca

l

rv
ertica

l

upsidedown

4513
5

225
315

red green blue

7.5. Known bugs

• The end of the last paragraph in a vertical box (valign.top and valign.bottom)
must be explictly written (by the command \par or an empty line) when a para-
graph formating parameter is changed locally (like the \baselineskipwhen chang-
ing the font size). Otherwise, the information is thrown away due to a closing of
the block before the paragraph formatting is performed.

• Due to dvips the bounding box is wrong for rotated text. The rotation is just
ignored in the bounding box calculation.

• Analysing TEX messages is a difficult subject and the message handlers pro-
vided with PYX are not at all perfect in that sense. For the message handlers
msghandler.hideload and msghandler.hidegraphicsload it is known, that they
do not correctly handle long filenames splited on several lines by TEX.

7.6. Future of the module tex

While we will certainly keep this module working at least for a while, it is likely that
another TEX interface will occure soon. The idea is to get rid of dvips and integrate
TEX more directly into PYX.

24

8. Module color

8.1. Color models

PostScript provides different color models. They are available to PYX by different color
classes, which just pass the colors down to the PostScript level. This implies, that
there are no conversion routines between different color models available. However,
some color model conversion routines are included in python’s standard library in the
module colorsym. Furthermore also the comparision of colors within a color model is
not supported, but might be added in future versions at least for checking color identity
and for ordering gray colors.
There is a class for each of the supported color models, namely gray, rgb, cmyk, and
hsb. The constructors take variables appropriate to the color model. Additionally, a list
of named colors is given in appendix B.

8.2. Example

from pyx import *

c = canvas.canvas()

c.fill(path.rect(0, 0, 7, 3), color.gray(0.8))

c.fill(path.rect(1, 1, 1, 1), color.rgb.red)

c.fill(path.rect(3, 1, 1, 1), color.rgb.green)

c.fill(path.rect(5, 1, 1, 1), color.rgb.blue)

c.writetofile("color")

The file color.eps is created and looks like:

25

8.3. Color gradients

The color module provides a class gradient. The constructor of that class receives two
colors from the same color model and two named parameters min and max, which are
set to 0 and 1 by default. Between those colors a linear interpolation takes place by the
method getcolor depending on a value between min and max.
A list of named gradients is available in appendix C.

26

9. Module graph: graph plotting

9.1. Introductory notes

The graph module is considered to be in constant, gradual development. For the moment
we concentrate ourself on standard 2d xy-graphs taking all kind of possible specialties
into account like any number of axes. Architectural decisions play the most substantial
role at the moment and have hopefully already been done that way, that their flexibility
will suffice for future usage in quite different graph applications, e.g. circular 2d graphs
or even 3d graphs. We will describe those parts of the graph module here, which are in
a totally usable state already and are hopefully not to be changed later on. However,
future developments certainly will cause incompatibilities, for example they are expected
to happen for automatic axis ticking (which will therefore not yet be covered within this
manual). At least be warned: Nobody knows the hole list of things that will break.
At the moment, keeping backwards compatibility in the graph module is not at all an
issue. Although we do not yet claim any backwards compatibility for the future at all,
the graph module is certainly one of the biggest construction sites within PYX.
The task of drawing graphs is splitted in quite some subtasks, which are implemented
by classes of its own. We tried to make those components as independend as it is usefull
and possible in order to make them reuseable for different graph types. They are also
replaceable by the user to get more specialized graph drawing tasks done without needing
to implement a hole graph system. A major abstraction layer are the so-called graph
coordinates. Their range is generally fixed to [0; 1]. Only the graph does know about
the conversion between these coordinates and the position at the canvas. By that, all
other components can be reused for different graph geometries.

9.2. Axes

A common feature of a graph are axes. An axis is responsible for the conversion of values
to graph coordinates. There are predefined axis types, namely:

axis type description

linaxis linear axis
logaxis logarithmic axis

Further axes types are available to support axes splitting and bar graphs (other axes
types might be added in the future as well), but they behave quite different from the
generic case and are thus described separately below.

27

9.2.1. Axes properties

Global properties of an axis are set as named parameters in the axis constructor. Both,
the linaxis and the logaxis, have the same set of named parameters listed in the
following table:

argument name description

title axis title
min fixes axis minimum; if not set, it is automatically determined, but

this might fail, for example for the x-range of functions, when it is
not specified there

max as above, but for the maximum
reverse boolean; exchange minimum and maximum (might be used

without setting minimum and maximum); if min¿max and reverse
is set, they cancel each other

divisor numerical divisor for the axis partitioning; default: 1
suffix a suffix to indicate the divisor within an automatic axis labeling
datavmin minimal graph coordinate when adjusting the axis minima to the

graph data; default: 0.05 (or 0, when min is present)
datavmax as above, but for the maximum; default: 0.95 (or 1, when max is

present)
tickvmin minimal graph coordinate for placing ticks to the axis; default: 0
tickvmax as above, but for the maximum; default: 1
part axis partitioning (described below)
rate axis partition rating (described below)
dense dense parameter for the axis partition rating; if not set, the dense

value for the graph is used
painter axis painter (described below)

9.2.2. Partitioning of axes

The definition of ticks and labels appropriate to an axis range is called partitioning.
The axis partioning within PYX uses rational arithmetics, which avoids any kind of
rounding problems to the cost of performance. The class frac supplies a rational number.
However, a partitioning is composed out of a sorted list of ticks, where the class tick

is derived from frac and has additional properties called ticklevel and labellevel.
When those values are None, it just means not present, 0 means tick or label, respectively,
1 means subtick or sublevel and so on. When labellevel is not None, a text might be
explicitly given, which will get used as the text of that label. Otherwise the axis painter
has to create an appropriate text for the label.
We will first discuss manual partitioning schemes, namely a plain manual partition,
another appropriate for linear axes and a third one for logarithmic axes. These partition
schemes might be used directly or indirectly via automatic axis partioning schemes.

28

Manual partitioning

The class manualpart creates a manual partition where every single tick, label etc. is set
independendly from each other as described by named parameters of the constructor:

argument name default description

ticks None position of ticks, subticks, etc. (see below)
labels None position of labels, sublabels, etc. (see below)
texts None force text at labels, sublabels, etc. (see below)
mix () ordered tick list to be merged into the result

The parameters ticks, labels, and texts can either be a sequence, or a sequence of
sequences. (When it is not a sequence at all, it is converted to a sequence with a single
entry.) When it is a sequence of sequences, than the first sequence stands for the ticks,
labels, and texts of the labels, the second sequence stands for the subticks, sublabels,
and texts of the sublabels, and so on. When it is just a sequence, it stands for the ticks,
labels and texts of the labels and no subticks, sublabels and subtexts will be created.
The single entries of ticks and labels can either be a frac or a string, which will be
converted to a frac. However, a float is not valid in order to avoid a conversion from a
float to a frac. Valid strings are just numbers like "0.1", or fractions like "1/10".

Partitioning of linear axes

The class linpart creates a linear partition as described by named parameters of the
constructor:

argument name default description

ticks None distance between ticks, subticks, etc. (see comment
below); when the parameter is None, ticks will get placed
at labels

labels None distance between labels, sublabels, etc. (see comment
below); when the parameter is None, labels will get
placed at ticks

extendtick 0 allow for a range extention to include the next tick of the
given level

extendlabel None as above, but for labels
epsilon 1e-10 allow for exceeding the range by that relative value
texts None as in manualpart
mix () as in manualpart

The ticks and labels can either be a sequence or just a single entry. When a sequence
is provided, the first entry stands for the tick or label, respectively, the second for the
subtick or sublabel, and so on. The entries can either be a frac or a string, as in
manualpart.

29

Partitioning of logarithmic axes

The class logpart create a logarithmic partition. The class has the same arguments as
linpart upto the interpretation of two arguments ticks and labels. Both parameters
can contain just a single entry or a sequence — the interpretation of those possibilities
is the same as it was for linpart. The entries have to be shiftfracs, which contains
a frac for the shift, say s, and a list of frac for the positions, say pi. Valid positions
are then snpi, where n can be any integer number. Within logpart there are numerous
predefined shiftfracs, namely:

name values it descibes

shift5fracs1 1 and multiple of 105

shift4fracs1 1 and multiple of 104

shift3fracs1 1 and multiple of 103

shift2fracs1 1 and multiple of 102

shiftfracs1 1 and multiple of 10
shiftfracs125 1, 2, 5 and multiple of 10
shiftfracs1to9 1, 2, . . . , 9 and multiple of 10

Automatic partitioning of linear axes

When no explicit axis partitioning is given in the constructor of an linear axis, it is ini-
tialized with an automatic partitioning schemes for linear axes. This scheme is provided
by the class autolinpart, where the constructor takes the following arguments:

argument name default description

list defaultlist list of possible values for the ticks parameter of
linpart (labels are placed at the position of ticks)

extendtick 0 allow for a range extention to include the next tick
of the given level

epsilon 1e-10 allow for exceeding the range by that relative value
mix () as in manualpart

The default value for the argument list, namely defaultlist, is defined as a class vari-
able of autolinpart and has the value ((frac(1, 1), frac(1, 2)), (frac(2, 1),

frac(1, 1)), (frac(5, 2), frac(5, 4)), (frac(5, 1), frac(5, 2))). This im-
plies, that the automatic axis partitioning scheme allows for partitions using (ticks,
subticks) with at distances (1, 1/2), (2, 1), (5/2, 5/4), (5, 5/2). This list must be sorted
by the number of ticks the entries will lead to. Additionally, as most likely already from
the default value of the argument list, the given fractions are automatically multiplied
or divided by 10 in order to fit better to the axis range. Therefore these additional
partitioning possibilities must not be given explicitly.

Automatic partitioning of logarithmic axes

When no explicit axis partitioning is given in the constructor of an logarithmic axis, it is
initialized with an automatic partitioning schemes for logarithmic axes. This scheme is

30

provided by the class autologpart, where the constructor takes the following arguments:

argument name default description

list defaultlist list of pairs with possible values for the ticks and
labels parameters of logpart

extendtick 0 allow for a range extention to include the next tick
of the given level

extendlabel None as above, but for labels
epsilon 1e-10 allow for exceeding the range by that relative value
mix () as in manualpart

The default value for the argument list, namely defaultlist, is defined as a class
variable of autologpart and has the value:

(((shiftfracs1, shiftfracs1to9), # ticks & subticks,

(shiftfracs1, shiftfracs125)), # labels & sublevels

((shiftfracs1, shiftfracs1to9), None), # ticks & subticks, labels=ticks

((shift2fracs1, shiftfracs1), None), # ticks & subticks, labels=ticks

((shift3fracs1, shiftfracs1), None), # ticks & subticks, labels=ticks

((shift4fracs1, shiftfracs1), None), # ticks & subticks, labels=ticks

((shift5fracs1, shiftfracs1), None)) # ticks & subticks, labels=ticks

As for the autolinaxis, this list must be sorted by the number of ticks the entries will
lead to.

Rating of axes partitionings

When an axis partitioning scheme returns several partitioning possibilities, the partitions
are rated by an instance of a rater class provided as the parameter rate at the axis
constructor. It is used to calculate a positive rating number for a given axis partitioning.
In the end, the lowest rated axis partitioning gets used.
The rating consists of two steps. The first takes into account only the number of ticks,
subticks, labels and so on in comparison to an optimal number. Additionally, the trans-
gression of the axis range by ticks and labels is taken into account. This rating leads
to a preselection of possible partitions. In the second step the layout of a partition gets
acknowledged by rating the distance of the labels to each other. Thereby partitions with
overlapping labels get quashed out.
The class axisrater implements a rating with quite some parameters specifically ad-
justed to linear and logarithmic axes. A detailed description of the hole system goes
beyond the scope of that manual. Take your freedom and have a look at the PYX source
code if you wish to adopt the rating to personal preferences.
The overall optimal partition properties, namely the density of ticks and labels, can be
easily adjusted by the single parameter dense of the axis (or graph) constructor. The
rating is adjusted to the default densitiy value of 1, but modifications of this parameter
in the range of 0.5 (for less ticks) to 2 or even 3 (for more ticks) might be usefull. This
parameter was taken out of the rating class for easier access.

31

9.2.3. Painting of axes

A major task for an axis is its painting. It is done by instances of axispainter, provided
to the constructor of an axis as its painter argument. The constructor of the axis
painter receives a numerous list of named parameters to modify the axis look. A list of
parameters is provided in the following table:

argument name description

innerticklengths1,4 tick length of inner ticks (visual length);
default: axispainter.defaultticklengths

outerticklengths1,4 as before, but for outer ticks; default: None
tickattrs2,4 stroke attributes for ticks; default: ()
gridattrs2,4 stroke attributes for grid lines; default: None
zerolineattrs3,4 stroke attributes for a grid line at axis value 0; default: ()
baselineattrs3,4 stroke attributes for the axis baseline;

default: canvas.linecap.square
labeldist label distance from axis (visual length); default: "0.3 cm"

labelattrs2,4 text attributes for labels;
default: ((), tex.fontsize.footnotesize)

labeldirection4 relative label direction (see below); default: None
labelhequalize set width of labels to its maximum (boolean); default: 0
labelvequalize set height and depth of labels to their maxima (boolean);

default: 1
titledist title distance from labels (visual length); default: "0.3 cm"

titleattrs3,4 text attributes for title; default: ()
titledirection4 relative title direction (see below);

default: axispainter.paralleltext
titlepos title position in graph coordinates; default: 0.5
fractype text creation for labels (see below);

default: axispainter.fractypeauto
ratfracsuffixenum write suffix at the enumerator (boolean); default: 1
ratfracover text for fraction line; default: r"\over"
decfracpoint decimal point; default: "."
expfractimes text between factor and decimal power; default: r"\cdot"
expfracpre1 allow factor 1 before a decimal power (boolean); default: 0
expfracminexp minimal exponent for decimal power; default: 4
suffix0 when a suffix is x write 0x instead of 0 (boolean); default: 0
suffix1 when a suffix is x write 1x instead of x (boolean); default: 0

1 The parameter should be a sequence, where the entries are attributes for the different
levels. When the level is larger then the sequence length, None is assumed. When the
parameter is not a sequence, it is applied to all levels.
2 The parameter should be a sequence of sequences, where the entries are attributes for
the different levels. When the level is larger then the sequence length, None is assumed.
When the parameter is not a sequence of sequences, it is applied to all levels.

32

3 The parameter should be a sequence. When the parameter is not a sequence, the
parameter is interpreted as a sequence with a single entry.
4 The feature can be turned off by the value None. Within sequences or sequences of
sequences, the value None might be used to turn off the feature for some levels selectively.

Relative directions for labels (labeldirection) and titles (titledirection) are basi-
cally a float number in degree. The text direction is calculated relatively to the baseline
of the axis and is added as an attribute of the text, when no direction was already
provided. The relative direction prevents upside down text by flipping it by 180 de-
grees. For convenience, the two self-explanatory values axispainter.paralleltext

and axispainter.orthogonaltext are available.
The fractype parameter determines the creation of label texts. There are three types
available, which can be forced by providing them to the fractype parameter. The
possibilities are listed in the following table.

fractype description example

axispainter.fractypedec decimal 0.1
axispainter.fractypeexp decimal with exponent 2 · 104

axispainter.fractyperat rational
1

2
axispainter.fractypeauto automatic (see below)

For the default axispainter.fractypeauto the three possibilities are selected depend-
ing on some simple rules: axispainter.fractyperat is used, when the axis provides a
suffix, axispainter.fractypeexp is used, when the exponent exceed expfracminexp,
and axispainter.fractypedec is used otherwise.

9.2.4. Linked axes

Linked axes can be used whenever an axis should be repeated within a single graph or
even between different graphs although the intrinsic meaning is to have only one axis
plotted several times. The constructor of linkaxis receives the axis it is linked to as
its first parameter. Additionally, the named parameter title contains an axis title
(default is None) and the named parameter painter refers to an axispainter (default
is linkaxispainter). This linkedaxispainter is a slightly modified version of the
standard axispainter. Hence it can receive all the parameters as the axispainter and
only the default value of the parameter zerolineattrs is changed to None compared to
the axispainter previously discussed. Additionally, two parameters are added, namely
skipticklevel and skiplabellevel. They are used to build the tick list to be plotted
at the linked axis. Ticks and labels at levels equal or higher as the provided values get
ignored. The default is None (do not ignore any ticks) for the ticks and 0 (ignore all
labels) for the labels.

33

9.2.5. Special purpose axes

Splitable axes

Axes with breaks are created by instances of the class splitaxis. Its constructor takes
the following parameters:

argument name description

(axis list) a list of axes to be used as subaxes (this is the first parameter
of the constructor; it has no name)

splitlist a single number or a list split points of the possitions of the
axis breaks in graph coordinates; the value None forces
relsizesplitdist to be used; default: 0.5

splitdist gap of the axis break; default: 0.1
relsizesplitdist used when splitlist entries are None; gap of the axis break

in values of the surrounding axes (on logarithmic axes, a
decade corresponds to 1); the split position is adjusted to give
both surrounding axes the same scale (thus, their range must
be completely fixed); default: 1

title axis title
painter axis painter; default: splitaxispainter() (described below)

A split axis is build up from a list of “subaxes”. Those subaxes have to provide some
range information needed to identify the subaxis to be used out of a plain number (thus
all axes minima and maxima has to be set except for the two subaxes at the egde, where
for the first only the maximum is needed, while for the last only the minimum is needed).
The only point left is the description of the specialized splitaxispainter, where the
constructor takes the following parameters:

argument name description

breaklinesdist (visual) distance between the break lines; default: 0.05
breaklineslength (visual) length of break lines; default: 0.5
breaklinesangle angle of the breakline with respect to the axis; default: -60
breaklinesattrs stroke attributes for the break lines (None to turn off the break

lines, otherwise a single value or a tuple); default: ()
Additionally, the painter takes parameters for the axis title formatting like the stan-
dard axis painter class axispainter. The parameters are titledist, titleattrs,
titledirection, and titlepos.

Bar axes

Axes appropriate for bar graphs are created by instances of the class baraxis. Its
constructor takes the following parameters:

34

argument name description

subaxis baraxis can be recursive by having another axis as its subaxis;
default: None

multisubaxis allow for multiple subaxis (boolean); default: 0
title axis title
dist distance between bars (relative to the bar width); default: 0.5
firstdist distance of the first bar to the border; default: 0.5*dist
lastdist as before but for the last bar
names tuple of name identifiers for bars; when set, no other identifiers are

allowed; default: None
texts dictionary translating names into label texts (otherwise just the

names are used); default: {}
painter axis painter; default: baraxispainter (described below)

In contrast to other axes, a bar axis uses name identifiers to calculate a possition at the
axis. Usually, a style appropriate to a bar axis (this is right now just the bar style) set
those names out of the data it recieves. However, the names can be forced and fixed.
Bar axes can be recursive. Thus for a given value, an appropriate subaxis is choosen
(usually another bar axis). Usually only a single subaxis is needed, because for each value
the same recursive subaxis transformation has to be applied. However, this prevents the
subaxis to be painted, but as soon as multisubaxis is turned on, the subaxes (note
axes instead of axis) are painted as well (however their painter can be set to not paint
anything). For that, duplications of the subaxis are created for each name (right now,
this is only available for the bar axis). By that, each subaxis can have different names,
in particular different number of names.
The only point left is the description of the specialized baraxispainter. It works
quite similar as the axispainter. Thus the constructor have quite some parame-
ters in common, namely titledist, titleattrs, titledirection, titlepos, and
baselineattrs. Furthermore the two parameters innerticklength and outerticklength

work like their counterparts in the axispainter, but only plain values are allowed
there (no tuples). However, they are both None by default and no ticks get plotted.
Then there is a hole bunch of name attribute identifiers, namely namedist, nameattrs,
namedirection, namehequalize, namevequalize which are identical to their counter-
parts called label... instead of name. Last but not least, there is a parameter namepos
which is analogous to titlepos and set to 0.5 by default.

9.3. Data

9.3.1. List of points

Instances of the class data link a datafile and a style (see below; default is symbol).
The link object is needed in order to be able to plot several data from a singe file without
reading the file several times which would just be a bad design. However, for easy usage,
it is possible to provide a filename instead of a datafile as the first argument to the

35

constructor of the class data hiding the underlying datafile instance completely from
view. This is the preverable solution as long as the datafile gets used only once.
The additional parameters of the constructor of the class data are named parameters.
The values of those parameters describe data columns which are linked to the names of
the parameters within the style. The data columns can be identified directly via their
number or title, or by means of mathematical expressions, as the following table will
show by some examples.

selection method example

as in datafile.getcolumnno data("test.dat", x=1,

y="result", dy="delta")

by mathematical expressions data("test.dat", x="0.5*$1",

y="0.5*result", dy="0.5*a", a=3)

Note that mathematical expressions get evaluated by datafile.addcolumn and thus the
same column identifications become available.

9.3.2. Functions

The class function provides data generation out of a functional expression. The default
style for function plotting is line. The constructor of function takes an expression as
the first parameter. The expression must be a string with exactly one equal sign (=). At
the left side the result axis identifier must be placed and at the right side the expression
must depend on exactly one variable axis identifier. Hence, a valid expression looks
like "y=sin(x)". You can access own variables and functions by providing them as a
dictionary to the constructors extern argument.
Additional named parameters of the constructor are:

argument name default description

min None minimal value for the variable parameter;
when None, the axis data range will be used

max None as above, but for the maximum
points 100 number of points to be calculated
parser mathtree.parser() parser for the mathematical expression
extern None dictionary of extern variables and functions

The expression evaluation takes place at a linear raster of the variable axis. More
advanced methods (detection of rapidely changing functions, handling of divergencies)
are likely to be added in future releases.

9.3.3. Parametric functions

The class paramfunction provides data generation out of a parametric representation of
a function. The default style for parametric function plotting is line. The parameter list
of the constructor of paramfunction starts with three parameters describing the function
parameter. The first parameter is a string, namely the variable name. It is followed by a

36

minimal and maximal value to be used for that parameter. The next parameter contains
an expression assigning functions to the axis identifiers in a quite pythonic tuple notation.
As an example, such an expression could look like "x, y = sin(k), cos(3*k)".
Additionally, the named parameters points, parser, and extern behave like their
equally named counterparts in function.

9.4. Styles

Styles are used to draw data at a graph. A style determines what is painted and how it is
painted. Due to this powerfull approach there are already some different styles available
and the possibility to introduce other styles opens even more prospects.

9.4.1. Symbols

The class symbol can be used to plot symbols, errorbars and lines configurable by param-
eters of the constructor. Providing None to attributes hides the according component.

argument name default description

symbol changesymbol.cross() symbol to be used (see below)
size "0.2 cm" size of the symbol (visual length)
symbolattrs canvas.stroked() draw attributes for the symbol
errorscale 0.5 size of the errorbar caps (relative to the

symbol size)
errorbarattrs () stroke attributes for the errorbars
lineattrs None stroke attributes for the line

The parameter symbol has to be a routine, which returns a path to be drawn (e.g.
stoked or filled). There are several those routines already available in the class symbol,
namely cross, plus, square, triangle, circle, and diamond. Furthermore, change-
able attributes might be used here (like the default value changesymbol.cross), see
section 9.4.7 for details.
The attributes are available as class variables after plotting the style for outside us-
age. Additionally, the variable path contains the path of the line (even when it wasn’t
plotted), which might be used to get crossing points, fill areas, etc.
Valid data names to be used when providing data to symbols are listed in the following
table. The character X stands for axis names like x, x2, y, etc.

data name description

X position of the symbol
Xmin minimum for the errorbar
Xmax maximum for the errorbar
dX relative size of the errorbar: Xmin, Xmax = X-dX, X+Xd

dXmin relative minimum Xmin = X-dXmin

dXmax relative maximum Xmax = X+dXmax

37

9.4.2. Lines

The class line is inherited from symbol and is restricted to line drawing. The constructor
takes only lineattrs and its default is set to changelinestyle(). The other features
of the symbol style are turned off.

9.4.3. Rectangles

The class rect draws filled rectangles into a graph. The size and the position of the
rectangles to be plotted can be provided by the same data names like for the errorbars of
the class symbol. Indeed, the class symbol reuses most of the symbol code by inheritance,
while modifying the errorbar look into a colored filled rectangle and turing off the symbol
itself.
The color to be used for the filling of the rectangles is taken from a gradient provided to
the constructor by the named parameter gradient (default is color.gradient.Gray).
The data name color is used to select the color out of this gradient.

9.4.4. Texts

Another style to be used within graphs is the class text, which adds the output of text
to the class symbol. The text position relative to the symbol is defined by the two named
parameters textdx and textdy having a default of "0 cm" and "0.3 cm", respectively,
which are by default interpreted as visual length. A further named parameter textattrs
may contain a sequence of text attributes (or just a single attribute). The default for
this parameter is tex.halign.center. Furthermore the constructor of this class allows
all other attributes of the class symbol.

9.4.5. Arrows

The class arrow can be used to plot small arrows into a graph where the size and direction
of the arrows has to be given within the data. The constructor of the class takes the
following parameters:

argument name default description

linelength "0.2 cm" length of a the arrow line (visual length)
arrowattrs () stroke attributes
arrowsize "0.1 cm" size of the arrow (visual length)
arrowdict {} attributes to be used in the earrow constructor
epsilon 1e-10 smallest allowed arrow size factor for a arrow to

become plotted (avoid numerical instabilities)

The arrow allows for data names like the symbol and introduces additionally the data
names size for the arrow size (as an multiplicator for the sizes provided to the construc-
tor) and angle for the arrow direction (in degree).

38

9.4.6. Bars

The class bar must be used in combination with an baraxis in order to create bar plots.
The constructor takes the following parameters:

argument name description

fromzero bars start at zero (boolean); default: 1
stacked stack bars (boolean/integer); for values bigger than 1 it is the

number of bars to be stacked; default: 0
xbar bars parallel to the graphs x-direction (boolean); default: 0
barattrs fill attributes; default: (canvas.stroked(color.gray.black),

changecolor.Rainbow())

Additionally, the bar style takes two data names appropriate to the graph (like x, x2,
and y).

9.4.7. Iterateable style attributes

The attributes provided to the constructors of styles can usually handle so called iter-
ateable attributes, which are changing itself when plotting several data sets. Iterateable
attributes can be easily written, but there are already some iterateable attributes avail-
able for the most common cases. For example a color change is done by instances of
the class colorchange, where the constructor takes a gradient. Applying this attribute
to a style and using this style at a sequence of data, the color will get changed lineary
along the gradient from one end to the other. The class colorchange includes inherited
classes as class variables, which are called like the color gradients shown in appendix C.
For them the default gradient is set to the appropriate color gradient.
Another attribute changer is called changesequence. The constructor takes a list of
attributes and the attribute changer cycles through this list whenever a new attribute is
requested. This attribute changer is used to implement the following attribute changers:

attribute changer description

changelinestyle iterates linestyles solid, dashed, dotted, dasheddotted
changestrokedfilled iterates (canvas.stroked(), canvas.filled())

changefilledstroked iterates (canvas.filled(), canvas.stroked())

The class changesymbol can be used to cycle throu symbols and it provides already
various specialized classes as class variables. To loop over all available symbols (cross,
plus, square, triangle, circle, and diamond) the equal named class variables can be used.
They start at that symbol they are named of. Thus changesymbol.cross() cycles throu
the sequence starting at the cross symbol. Furthermore there are four class variables
called squaretwice, triangletwice, circletwice, and diamondtwice. They cycle
throu the four fillable symbols, but returning the symbols twice before they go on to the
next one. They are intented to be used in combination with changestrokedfilled and
changefilledstroked.

39

9.5. Keys

Sorry, there is not yet any support for graph keys.

9.6. X-Y-Graph

The class graphxy draws standard x-y-graphs. It is a subcanvas and can thus be just
inserted into a canvas. The x-axes are named x, x2, x3, . . . and equally the y-axes. The
number of axes is not limited. All odd numbered axes are plotted at the bottom (for
x axes) and at the left (for y axes) and all even numbered axes are plotted opposite to
them. The lower numbers are closer to the graph.
The constructor of graphxy takes axes as named parameters where the parameter name
is an axis name as just described. Those parameters refer to an axis instance as they
where described in section 9.2. When no x or y is provided, they are automatically set to
instances of linaxis. When no x2 or y2 axes are given they are initialized as standard
linkaxis to the axis x and y. However, you can turn off the automatism by setting those
axes explicitly to None.
However, the constructor takes some more attributes, namely first of all a tex canvas.
(This ugly construction is likely to be ommited in future versions of PYX once a new TEX
binding becomes available.) Other parameters are named and listed in the following
table:

argument name default description

xpos "0" x position of the graph (user length)
ypos "0" y position of the graph (user length)
width None width of the graph area (axes are outside of that

range)
height None as abovem, but for the height
ratio goldenrule width/height ratio when only a width or height is

provided
backgroundattrs None background attributes for the graph area
axisdist "0.8 cm" distance between axis (visual length)

After a graph is constructed, data can be plotted via the plot method. The first
argument should be an instance of the data providing classes described in section 9.3.
This first parameter can also be a list of those instances when you want to iterate the
style you explicitly provide as a second parameter to the plot method. The plot method
returns the style (or a list of styles when a data list was provided) which was used for
plotting. Just as an example you can thus access the path of a line and fill areas with it
and so on.
After the plot method was called once or several times, you should call the method
finish. (This is actually needed as long as a tex canvas gets used for text output and
the tex canvas is inserted into the main canvas before the graph gets inserted.) Finishing
a graph allows for the access to positioning routines which can be quite usefull to plot
additional information into a graph.

40

Sometimes it is also nice to partly finish a graph. By that you can even modify the
order in which a graph performs its drawing process. By default the four methods
dolayout, dobackground, doaxis, and dodata are called in that order. The method
dolayout must always be called first, but this is internally ensured once you call any
of the routines yourself. After dolayout gets called, the method plot can not be used
anymore.
To get a position within a graph as a tuple out of some axes values, the method pos

can be used. It takes two values for a position at the x and y axis. By default, the axes
named x or y are used, but this is changed when the named parameters xaxis and yaxis

are set to other axes. The graph axes are available by their name using the dictionary
axes. Each axis has a method gridpath which is set by the graph. It returns a gridpath
for a given position at the axis.

9.7. Examples

9.7.1. A minimal example: plot data from a file

We plot data from the file "graph.dat":

1 2

2 3

3 8

4 13

5 18

6 21

The following script creates the file "graph.eps":

from pyx import *

c = canvas.canvas()

t = c.insert(tex.tex())

g = c.insert(graph.graphxy(t, width=10))

g.plot(graph.data("graph.dat", x=1, y=2))

g.finish()

c.writetofile("graph")

The result looks like:

41

0

0

5

5

2 4 6

10

1 3 7

20

15

25

9.7.2. A more advanced function plot

from pyx import *

from pyx.graph import *

c = canvas.canvas()

t = tex.tex()

a, b = 2, 9

mypainter=axispainter(baselineattrs=canvas.earrow.normal)

g = c.insert(graphxy(t, width=10, x2=None, y2=None,

x=linaxis(min=0, max=10,

part=manualpart(ticks=(frac(a, 1),

frac(b, 1)),

texts=("a", "b")),

painter=mypainter),

y=linaxis(painter=mypainter,

part=manualpart())))

line = g.plot(function("y=(x-3)*(x-5)*(x-7)"))

g.finish()

pa = path.path(g.axes["x"].gridpath(a))

pb = path.path(g.axes["x"].gridpath(b))

(splita,), (splitpa,) = line.path.intersect(pa)

(splitb,), (splitpb,) = line.path.intersect(pb)

42

area = (pa.split(splitpa)[0] <<

line.path.split(splita, splitb)[1] <<

pb.split(splitpb)[0].reversed())

area.append(path.closepath())

g.stroke(area, canvas.linewidth.THick,

canvas.filled(color.gray(0.8)))

t.text(g.pos(0.5*(a+b), 0)[0], 1,

r"\int_a^b f(x) {\rm d}x", tex.halign.center, tex.style.math)

c.insert(t)

c.writetofile("graph2")

The result looks like:

a b

∫ b

a

f(x)dx

43

A. Mathematical expressions

At several points within PYX mathematical expressions can be provided in form of string
parameters. They are evaluated by the module mathtree. This module is not described
futher in this user manual, because it is considered to be a technical detail. We just give
a list of available operators, functions and predefined variable names here here.

Operators: +; -; *; /; ** and ^ (both for power)

Functions: neg (negate); sgn (signum); sqrt (square root); exp; log (natural loga-
rithm); sin, cos, tan, asin, acos, atan (trigonometric functions in radian units);
sind, cosd, tand, asind, acosd, atand (as before but in degree units); norm

(
√

a2 + b2 as an example for functions with multiple arguments)

predefined variables: pi (π); e (e)

44

B. Named colors

grey.black

grey.white

rgb.red

rgb.green

rgb.blue

cmyk.GreenYellow

cmyk.Yellow

cmyk.Goldenrod

cmyk.Dandelion

cmyk.Apricot

cmyk.Peach

cmyk.Melon

cmyk.YellowOrange

cmyk.Orange

cmyk.BurntOrange

cmyk.Bittersweet

cmyk.RedOrange

cmyk.Mahogany

cmyk.Maroon

cmyk.BrickRed

cmyk.Red

cmyk.OrangeRed

cmyk.RubineRed

cmyk.WildStrawberry

cmyk.Salmon

cmyk.CarnationPink

cmyk.Magenta

cmyk.VioletRed

cmyk.Rhodamine

cmyk.Mulberry

cmyk.RedViolet

cmyk.Fuchsia

cmyk.Lavender

cmyk.Thistle

cmyk.Orchid

cmyk.DarkOrchid

cmyk.Purple

cmyk.Plum

cmyk.Violet

cmyk.RoyalPurple

cmyk.BlueViolet

cmyk.Periwinkle

cmyk.CadetBlue

cmyk.CornflowerBlue

cmyk.MidnightBlue

cmyk.NavyBlue

cmyk.RoyalBlue

cmyk.Blue

cmyk.Cerulean

cmyk.Cyan

cmyk.ProcessBlue

cmyk.SkyBlue

cmyk.Turquoise

cmyk.TealBlue

cmyk.Aquamarine

cmyk.BlueGreen

cmyk.Emerald

cmyk.JungleGreen

cmyk.SeaGreen

cmyk.Green

cmyk.ForestGreen

cmyk.PineGreen

cmyk.LimeGreen

cmyk.YellowGreen

cmyk.SpringGreen

cmyk.OliveGreen

cmyk.RawSienna

cmyk.Sepia

cmyk.Brown

cmyk.Tan

cmyk.Gray

cmyk.Black

cmyk.White

45

C. Named gradients

0 1

gradient.Gray

gradient.ReverseGray

gradient.RedGreen

gradient.RedBlue

gradient.GreenRed

gradient.GreenBlue

gradient.BlueRed

gradient.BlueGreen

gradient.RedBlack

gradient.BlackRed

gradient.RedWhite

gradient.WhiteRed

gradient.GreenBlack

gradient.BlackGreen

gradient.GreenWhite

gradient.WhiteGreen

gradient.BlueBlack

gradient.BlackBlue

gradient.BlueWhite

gradient.WhiteBlue

gradient.Rainbow

gradient.ReverseRainbow

gradient.Hue

gradient.ReverseHue

46

D. Path styles and arrows in canvas module

linecap.butt (default)

linecap.round

linecap.square

linejoin.miter (default)

linejoin.round

linejoin.bevel

linestyle.solid (default)

linestyle.dashed

linestyle.dotted

linestyle.dashdotted

linewidth.THIN

linewidth.THIn

linewidth.THin

linewidth.Thin

linewidth.thin

linewidth.normal (default)

linewidth.thick

linewidth.Thick

linewidth.THick

linewidth.THIck

linewidth.THICk

linewidth.THICK

miterlimit.lessthan180deg

miterlimit.lessthan90deg

miterlimit.lessthan60deg

miterlimit.lessthan45deg

miterlimit.lessthan11deg (default)

dash((1, 1, 2, 2, 3, 3), 0)

dash((1, 1, 2, 2, 3, 3), 1)

dash((1, 2, 3), 2)

dash((1, 2, 3), 3)

dash((1, 2, 3), 4)

earrow.SMall

earrow.Small

earrow.small

earrow.normal

earrow.large

earrow.Large

earrow.LArge

barrow.normal

47

