

Traits
User Interface

Class
David C. Morrill
Enthought, Inc.

dmorrill@enthought.com

What We’re Going To Cover…

• The MVC programming model
• Creating Traits UI Views
• Creating Traits UI Handlers
• Defining Editors

GUI Design 101: The Model, View, Controller
Approach

• The Traits UI supports, and is based on,
the MVC design pattern.

• The MVC pattern defines a UI in terms of
three components:
– Models
– Views
– Controllers

GUI Design 101: Models

• A model is the data and behavior that
represents (i.e. models) some aspect of a
particular problem domain.

• For example: A well log contains
measurements that model a particular physical
property of a lithological column.

• Models do not have an inherent visual
representation.

GUI Design 101: Views

• A view is the visual representation of some
aspects of a model.

• For example: A line plot can be used as a
view of a well log model.

• It’s possible, and common, for a model to
have more than one view (e.g. a plot and
spreadsheet view of a well log model).

GUI Design 101: Controllers

• A controller defines behavior that mediates
and controls the flow of information
between the user, the view and the model.

• Having a controller helps prevent the
model from becoming cluttered with view
specific details and code.

GUI Design 101: The MVC Big Picture

Model

ControllerView

Data and Events Data and Events

Control

Data and Events

Defining a Model

• Defining a model using Traits is easy…
• Any object with traits is a model that can

be used with the Traits UI.
• The object’s traits define the data and

events that the model provides.

Defining a View

• A Traits UI defines an MVC view using View
objects.

• A View object defines the general characteristics
of a particular user interface view.

• A View also contains content which describes
the individual items displayed in the view.

• A View does not reference a model directly.
• In general, a View is a reusable object that can

be used to create multiple, simultaneous views
for different model object instances.

The Kinds of Views

• There are seven basic types of views
supported by the Traits UI:
– Modal
– Live
– Livemodal
– Nonmodal
– Wizard
– Panel
– Subpanel

Modal Views…

• Suspend the application until the user
dismisses them.

• Are displayed in a separate dialog window.
• Always make a copy of the model, interact

with the copy, then update the original
model from the copy when the user clicks
OK. If the user cancels, no changes are
made to the original model.

Live Views…

• Allow the user to continue working with
other parts of the application (they are not
modal).

• Are always displayed in a separate
window.

• Interact directly with the specified model.
Changes made to the model in a view are
immediately seen by other parts of the
application.

Livemodal Views…

• Are a cross between live and modal views.
• Suspend the application until the user

dismisses them (i.e. they are modal).
• Always appear in a separate window.
• Do not make copies of the model.

Changes made to the model by the view
are immediately seen by other parts of the
application (even though the user cannot
interact with those parts).

Nonmodal Views…

• Are the inverse of livemodal views…
• Allow the user to continue working with other

parts of the application (they are not modal).
• Are always displayed in a separate window.
• Always make a copy of the model, interact with

the copy, then update the original model from
the copy when the user clicks OK. If the user
cancels, no changes are made to the original
model.

Wizard Views…

• Organize their contents into a series of
“wizard” pages which the user must
process sequentially.

• Suspend the application until the user
dismisses them (i.e. they are modal).

• Are displayed in a separate window.
• Operate directly on the model.

Panel Views…

• Are displayed as part of a containing
window or panel.

• Allow a non-Traits UI window to intermix
Traits UI and non-Traits UI elements
together (e.g. within a wx.Frame window).

• Can contain the normal buttons that the
other View kinds allow.

• Operate directly on the model.

Subpanel Views…

• Are nearly identical to panel views.
• The only difference is that a subpanel view

never displays any of the standard Traits
UI buttons, even if the View object
specifies them.

VET: View Editing Tool

• VET is a tool for building Traits user
interfaces.

• We’ll be using it today to interactively
illustrate many of the Traits UI features…

View Buttons

• Views (except for subpanel) support a standard set of
optional buttons:
– OK: Allows the user to close a view after having successfully

edited the model.
– Cancel: Allows the user to close a view, discarding any changes

made to the model.
– Undo/Redo: Allows the user to undo or redo any or all changes

made to the model.
– Revert: Allows a user to undo and discard all changes made to

the model without closing the View window.
– Apply: Allows the user to apply all changes made to a copy of

the model to the original model without closing the View window.
– Help: Allows the user to display View specific help information.

Controlling a View Window’s Appearance

• A View defines several traits that can be used to
control the appearance of a window:
– width, height: Window size. It can be:

• an absolute pixel value (e.g. width = 400 means width is 400
pixels)

• a fraction of the screen size (e.g. width = 0.5 means 0.5 *
screen width)

– x, y: Window position. It can be:
• an absolute pixel value (e.g. x = 50 means left edge is 50

pixels from the left edge of the display, and x= -50 means the
right edge is 50 pixels from the right edge of the display)

• a fraction of the screen size (e.g. x = 0.1 means the left edge
is at 0.1 * screen width, and x = -0.1 means the right edge is
0.1 * screen width from the right edge of the display).

Controlling a View Window’s Appearance (cont.)

• Additional View traits that affect the
window’s appearance are:
– title: Specifies the contents of the window’s

title bar.
– resizable: If False (the default), the window

has a fixed size. If True, the window will have
a sizing border.

Specifying a View’s Contents

• A View has three primary types of content:
– The actual editors (i.e. widgets) that appear in the

view, specified using Item, Group and Include
objects.

– A menu bar, specified using Menu, Action and
Separator objects.

– A tool bar, specified using Action and Separator
objects.

• It can also have various optional buttons (e.g.
Undo, OK, Cancel) specified using the buttons
trait on the View itself.

The Item Object

• An Item defines a single editor or control that
appears in a view.

• In some cases, an Item corresponds to a single
object trait to be edited.

• In other cases, an Item represents a non-
editable, visual element in the view, such as a
separator line, or extra space between fields.

• The type of Item is determined by the value of
its traits, which can be divided up into several
categories…

Specifying an Item’s Content

• name: A string that specifies the name of the trait the
Item will edit.
– If empty, the Item defines a label only (using the label trait).
– If = ‘ ‘ (a blank), the Item simply inserts extra space into the

view.
– If = ‘_’, the Item inserts a separator line into the view.
– If = ‘nn’, the Item inserts nn pixels of space into the view.

• object: A string that specifies the name of the view
context object the name trait belongs to. Unless you are
editing multiple objects in a single View, this is typically
left to its default value of “object”.

Controlling an Item’s Presentation and Editing

• editor: The editor (factory) used to edit the
contents of the trait. If not specified, the editor
will be obtained from the trait itself.

• format_str: A string containing standard Python
formatting sequences (e.g. “%5d”) that can be
used in conjunction with most text-based trait
editors to format the trait value for editing.

• format_func: An alternative to format_str that
specifies a callable that can be used with most
text-based trait editors to format the trait value
for editing.

Controlling an Item’s Appearance

• label: A string specifying the label to display next to the
editor. The default is to use the trait name to
automatically define the label (e.g. a trait name of
employee_name becomes a label of Employee name).

• style: A string specifying the style of editor to use. The
possible values are:
– simple: A property sheet style editor, fits on a single line
– custom: A custom editor that usually presents a more elaborate

UI that may require a larger amount of screen real estate.
– text: A single line text editor (i.e. the user must always type in a

value)
– readonly: A non-editable (i.e. display only) editor.
The default is to use the style specified by the containing Group or

View.

Controlling an Item’s Appearance (cont.)

• width/height: An integer value (default: -1) specifying
the desired width/height of an item.
– If the value is positive, max(value, minimum_needed) is used.
– If the value is < -1, abs(value) is used, even if it is less than

what the item says it needs.
– A value of -1 means use the size requested by the item itself.

• resizable: A boolean (default False) specifying whether
the item benefits from extra space (e.g. lists, tables,
trees, multi-line text editors).

• padding: An integer value (default 0) specifying the
amount of extra padding that should be added around an
item.

Controlling an Item’s Visibility and Status

• defined_when: A Python expression evaluated when the UI for a
View is created. If the value of the expression is true, the item is
included in the UI; otherwise the item is omitted.

• visible_when: A Python expression evaluated when the UI for a
View is created, and also whenever any trait belonging to any object
in the UI’s context is changed. If the value of the expression is true,
the editor for the item is visible; otherwise the editor is hidden.

• enabled_when: A Python expression evaluated when the UI for a
View is created, and also whenever any trait belonging to any object
in the UI’s context is changed. If the value of the expression is true,
the editor for the item is enabled; otherwise the editor is disabled.

Note: These expressions are useful for relatively simple cases. For
more complex cases, a Handler subclass should be used.

Providing User Assistance for an Item

• tooltip: A string specifying information that
should be displayed as a tooltip whenever the
mouse pointer is positioned over the item’s
editor. The default is that no tooltip is displayed.

• help: A string specifying a complete help
description of the item. This description is used
when the Help button is clicked to automatically
synthesize a complete help page for the UI.

The Group Object

• The Group object is used to organize Item
or other Group objects visually and
logically.

• Groups can be nested to any depth.

Specifying a Group’s Content

• The contents of a group are specified as any
number of positional arguments to the Group
constructor, or by assigning a list of values to the
group’s content trait.

• Each item added to a group can be an:
– Item
– Group
– Include

• The contents of the group are laid out in the
same order they are added to the group.

Organizing a View’s Layout using Groups

• orientation: A string specifying the layout orientation used by the
group. The possible values are:
– vertical: The contents of the group are laid out in a single column. This

is the default.
– horizontal: The contents of the group are laid out in a single row.

• layout: A string specifying the layout method used by the group.
The possible values are:
– normal: The contents of the group are laid out normally, with no special

handling. This is the default.
– split: Similar to normal, but splitter bars are inserted between group

items to allow the user to adjust the space devoted to each item. Note:
the position of the splitter bars can be made a user preference item by
assigning a value to the group’s id trait.

– tabbed: Each item contained in the group is displayed on its own
separate notebook page.

More complex layouts are accomplished by appropriate nesting of
groups.

Controlling a Group’s Appearance

• show_labels: A boolean (default: True) specifying whether or
not labels should be displayed next to each group item.

• show_left: A boolean (default: True) specifying whether
labels, if shown, should be displayed to the left (True) or right
(False) of the group’s items.

• show_borders: A boolean (default: False) specifying whether
or not a border should be drawn around the contents of the
group.

• label: A string specifying a label used to describe the entire
group. If the value is the empty string (the default), no label is
displayed. Otherwise. if show_borders is True, the label is
displayed as part of the border drawn around the contents of
the group. If show_borders is False, the label is displayed as
a fancy text label if style is ‘custom’, or a simple text label if it
is not.

Controlling a Group’s Appearance (cont.)

• style: A string specifying the default style to use for each item
in the group. As with an Item, the possible values are:
simple, custom, text, readonly. The group’s style value is
only used for items contained in the group that do not
explicitly specify their own style value.

• padding: An integer value (default: 0) in the range from 0 to
15, specifying the amount of extra padding to insert between
each group item as well as around the outside of the group.

• selected: A boolean (default: False) specifying whether the
group should be the selected notebook page when the
containing View is displayed. Obviously, this only applies
when the group represents a page within a notebook, and
only one group at most within the notebook should have a
True value.

Controlling a Group’s Visibility and Status

• defined_when: A Python expression evaluated
when the UI for a View is created.
– If the value of the expression is True, the group and

its contents are included in the UI.
– Otherwise the group and its contents are omitted.

• visible_when: A Python expression evaluated
when the UI for a View is created, and also
whenever any trait belonging to any object in the
UI’s context is changed.
– If the value of the expression is True, the group and

its contents are visible.
– Otherwise they are hidden.

Controlling a Group’s Visibility and Status (cont.)

• enabled_when: A Python expression evaluated when
the UI for a View is created, and also whenever any trait
belonging to any object in the UI’s context is changed.
– If the value of the expression is True, the group and all editors

for items contained in the group are enabled
– Otherwise the group and all contained editors are disabled.
– Note that this can be used to control a user’s progress through a

wizard View, by enabling and disabling the groups defining each
wizard page.

These expressions are useful for relatively simple cases.
For more complex cases, a Handler subclass should be
used.

Providing User Assistance for a Group

• help: A string (default ‘’) specifying a user-
oriented description of the group’s contents.

This information is used to automatically create a
help page for the containing View when the
Help button is clicked. The help information for
the group will be combined with the information
provided by the help traits of the group’s content
items.

Special Group Subtypes

• HGroup: A group of horizontally laid out
items

• VGroup: A group of vertically laid out
items

• HSplit: A group of horizontally split items
• VSplit: A group of vertically split items
• Tabbed: A group of tabbed notebook

items

The Include Object

• Include objects are references to other view
elements, namely Items and Groups.

• Include objects allow for factoring views into
smaller pieces that are dynamically included
when a user interface is constructed from a
View.

• This allows for several interesting capabilities,
including:
– Parameterized views
– “Visual” inheritance

• When a user interface is being constructed from a
View, any imbedded Include objects are logically
replaced by the Item or Group object they refer to.

• For example:

• The process is recursive, and will continue until no
Include objects remain in the resulting View.

How Include Objects are Handled

my_view = View(‘a’, Include(‘my_group’), ‘e’)
my_group = Group(‘b’, ‘c’, ‘d’)

is equivalent to:
my_view = View(‘a’, ‘b’, ‘c’, ‘d’, ‘e’)

Creating Implicit Include Objects

• A class View containing Group or Item objects
with non-default id traits is automatically
refactored into an equivalent View using Include
objects.

• For example:
my_view = View(Group(‘a’, ‘b’, id = ‘my_group’),
 Group(‘x’, Item(‘y’, id = ‘my_item’)))

is equivalent to:

my_view = View(Include(‘my_group’),
 Group(‘x’, Include(‘my_item’)))
my_group = Group(‘a’, ‘b’)
my_item = Item(‘y’)

Using Include Objects Effectively

• There are several possible uses for Include objects.
• One example is creating “parameterized” views.
• For example, the traits TableFilter class contains the

following view:

• This allows TableFilter subclasses to define a new
version of the filter_view Group containing their custom
content without having to redefine the main TableFilter
view.

traits_view = View('name{Filter name}', '_',
 Include('filter_view'),
 title = 'Edit filter', …)
filter_view = Group()

View Objects as Part of a Class Definition

• View elements, like View, Group and Item
objects, can be created and used in any
context, such as module level variables or
dynamically created within methods or
functions.

• However, there are some additional
semantics that apply when they are
created statically as part of a class
definition…

Defining Views, Groups and Items within a Class

• Views elements created within a class
definition have semantics similar to
methods. In particular:
– They are inherited by subclasses
– They can be overridden by subclasses

• This leads to a feature referred to as
“visual inheritance”…

“Visual” Inheritance

• Just like methods can be overridden in subclasses to
customize behavior without rewriting an entire class, so
to can view elements be overridden.

• For example:
class Camera (HasTraits):
 manufacturer = Str
 price = Float
 traits_view = View(‘manufacturer, ‘price’, Include(‘other’))
 other = Group()

class FilmCamera (Camera):
 film_type = Enum(’35mm’, ’16mm’, ‘8mm’, ‘Polaroid’)
 other = Group(‘film_type’)

class DigitalCamera (Camera):
 storage_type = Enum(‘CompactFlash’, ‘SD’, ‘xD’)
 other = Group(‘storage_type’)

“Visual” Inheritance

ViewElements

ViewIElements

Camera class

FilmCamera class

View

manufacturer,
price

Group

Group

film_type

parent

traits_view

other

other

view_elements

view_elements

ViewIElementsDigitalCamera class Group

storage_type
other

view_elements

The trait_view Method

• The trait_view method allows you to get or set
view element related information on an object.

• For example:
– obj.trait_view() returns the default View associated

with obj.
– obj.trait_view(‘my_view’) returns the view element

named my_view (or none if my_view is not defined).
– obj.trait_view(‘my_group’, Group(‘a’, ‘b’))

defines a Group with the name my_group. This
group can either be retrieved using trait_view or as
the view element referred to by an Include object
imbedded within a View.

The trait_views Method

• The trait_views method can be used to
return the list of names of some or all view
elements associated with a class.

• For example:
– obj.trait_views() returns the names of all

View objects associated with obj.
– obj_trait_views(Group) returns the names

of all Group objects associated with obj.

Events

• In the context of the Traits UI and user interface
creation, an event is something that happens
while a user is interacting with a user interface.

• More specifically, events include:
– Button clicks.
– Menu selections.
– Window/Dialogs being opened or closed.
– Changes made to a field or value by the user.
– Changes made to a field or value by some other part

of the program.

Event Handlers

• An event handler is a method or function that is
called whenever a specific event occurs (e.g. the
OK button being pressed).

• Proper event handling is the key to writing
flexible and powerful user interfaces.

• In a traits UI, event handlers can either be
written:
– As methods on the model.
– As methods on a special object called a Handler.

The Handler Class

• In the MVC programming model, a Handler
class instance is a controller.

• If you are using the VET tool, it automatically
builds a Handler for you.

• The main purpose of a Handler subclass is:
– To handle events common to every traits UI view.
– To handle events specific to a particular model and

view.
– To help keep model code separate from user

interface specific details.

The Handler Class: Common Events

• The events (and methods) common to
every Handler subclass are:
– init (info): Handle view initialization
– close (info, is_ok): Handle a user request to

close a dialog or window.
– closed (info, is_ok): Handles a dialog or

window being closed.
– setattr (info, object, name, value): Handles

a request to change a model trait value.

The Handler Class: View Specific Events

• Event handlers specific to a particular
View fall into the following categories:
– Trait change handlers.
– Menu and toolbar action handlers.

The Handler Class: Trait Change Handlers

• A trait change handler is called for each model trait when
a view is initialized or when the trait changes value.

• A trait change handler is optional. If one is not defined,
its corresponding event is ignored.

• A handler always has the following method signature:
– object_trait_changed (info)

• where:
– object: The name of the context object containing the trait.
– trait: The name of the trait.
– info: A UIInfo object containing information about the current

state of the user interface.

The Handler Class: Menu/Toolbar Action Handlers

• Menu and toolbar action handlers are not
optional.

• They are explicitly referenced by Action objects
specified in a View.

• The signature for an action handler is always:
– method_name(info)

• where:
– method_name: The method name specified in the

corresponding Action object.
– info: A UIInfo object containing information about the

current state of the user interface.

The UIInfo Object

• A UIInfo object is automatically created whenever a
View is displayed.

• The UIInfo object is passed on every call to a Handler
method (referred to as the info argument).

• The UIInfo object contains all the View specific
information defined by the View.

• It is basically a namespace containing:
– Each context object, referenced using its context name.
– Each trait editor, referenced using its Item name or id.
– The traits UI created UI object, referenced using the name ‘ui’.

• It is your responsibility to ensure that context objects and
editors don’t use duplicate names.

The UI Object

• A UI object is also created automatically each time a
traits UI View is displayed.

• The UI object contains all the traits UI information
common to every View.

• The UI object is returned as the result of a call to the
edit_traits, configure_traits or ui method (on a View
object).

• Although the UI object contains lots of information, the
parts of most interest to a traits UI developer are:
– result: A boolean value indicating the result of a modal dialog

(i.e. True = user clicked OK; False = user clicked Cancel).
– dispose(): A method that can be used to close the dialog or

window under program control.

The Traits UI Object Model

 foo

bar

wxPython controls

object Trait EditorFactory

Editor

View Group Item

name = ‘foo’

UI

Handler

.control

.control

.view
.handler

.foo
UIInfo

.info .ui

.object

.ui()

.simple_editor()

ViewElements

.view_elements

enthought.traits.ui subclass

enthought.traits.ui class

Toolkit

.trait(…) .get_editor()

.handler

What Editors Do

• Editors are the heart of the traits UI.
• Editors create a UI toolkit specific user interface

for displaying and entering a specific type of
data (e.g. floats, colors, fonts, file names, …)

• Every trait has a default editor associated with it.
• However, the default editor can be overridden

either in the trait definition or in a view Item
definition.

What Editors Do

• Editors and traits are loosely coupled: the editor only
ensures that the type of data it understands is entered,
and relies on the associated trait to actually validate the
data entered.

• In some cases, the data allowed by the editor is a subset
of the data allowed by the trait, so no user errors can
occur.

• In other cases, the editor allows a superset of the data
allowed by the trait, and catches exceptions thrown by
the trait when invalid values are entered. The editor then
provides feedback to the user to indicate that the entered
value is not valid (e.g. the entry field turns red).

Editors and Editor Factories

• What we call an editor is in fact an editor
factory (but editor is a less intimidating term).

• An editor factory can be thought of as a template
for creating the real editors when needed (i.e.
when a View is displayed).

• Because they are templates, the same editor
factory object can often be re-used in multiple
views, or even multiple times within the same
view.

• When a View is displayed, the editor factory for
each Item in the View is called to create an
editor for that Item.

The Basic Editor Styles

• Editor factories can create any one of four
different editor styles, based on the value of the
corresponding Item’s ‘style’ trait.

• The four editor styles are:
– simple: Fits on a single line. Can be used to create

Visual Basic style property sheets.
– custom: Provides the richest user experience, and

can use as much screen real estate as necessary.
– text: Fits on a single line, and is always a text entry

field.
– readonly: Displays the current value of a trait, but

does not allow the user to edit it.

The Basic Editor Styles

For example, these are the four styles supported by the EnumEditor:

The Standard Trait Editors

• The Traits UI package comes with a large set of
predefined editor factories, and an open architecture
that allows for creating new ones as needed.

• The current set of predefined editor factories are:

FlashValueShellPlot

KeyBindingDropDNDImage

AnimatedGIFLEDIEHTMLHTML

TupleTreeText

TabularTableSetRGBAColor

RGBColorRangePlotList

InstanceImageEnumKivaFontFont

FileEnumEnableRGBADrop

DirectoryCustomCompoundColor

CodeCheckListButtonBoolean

The Standard Trait Editors

• In this presentation we’ll focus on six of the
predefined editor factories…

• Three that are simple, yet very useful:
– ButtonEditor
– CustomEditor
– EnumEditor

• And three that are extremely useful, but require
more setup to use properly:
– InstanceEditor
– TableEditor
– TreeEditor

The ButtonEditor Editor Factory

• The ‘buttons’ trait of a View object allows you to
define standard and custom buttons along the
bottom edge of a window or dialog.

• However, there may be other cases where it
would be useful to define buttons at other points
in a view. This is where the ButtonEditor comes
in handy.

• Traits defines a Button trait, which is an Event
trait combined with a ButtonEditor. It is a
parameterized type whose argument is the label
you want to appear on the button in a view.

The ButtonEditor Editor Factory

class EMail (HasTraits):
 msg = Str
 spell_check = Button('Spell Check')

 view = View(Group(
 Group (
 Item('msg',
 style='custom',
 resizable=True),
 Item('spell_check'),
 show_labels=False)),
 height = .3)

results in this display…

For example:

The ButtonEditor Editor Factory

• There are several ways to handle the button
being clicked. Here’s one that treats ‘spell check’
as a model function:

class EMail (HasTraits):
 msg = Str
 spell_check = Button('Spell Check')

 view = View(<see previous slide>)

 def _spell_check_fired (self):
 # Perform spell checking...

The ButtonEditor Editor Factory

• Here’s another that treats it as a view/controller function:

class EMailHandler (Handler):
 spell_check = Button('Spell Check')

 def handler_spell_check_changed (self, info):
 if info.initialized:
 # Perform spell checking...

 view = View(<see earlier slide>)

class EMail (HasTraits):
 msg = Str

The CustomEditor Editor Factory

• While the Traits UI can handle most user
interface requirements, occasionally there are
cases where it is useful to imbed a non-traits
widget in the middle of a traits View.

• One solution is to write a new traits
EditorFactory subclass that creates the needed
widget.

• However, in many “one of” cases it may be
faster and easier to simply use a CustomEditor
to imbed the “foreign” control into a particular
View.

The CustomEditor Editor Factory

• Using a CustomEditor requires specifying a callable
function plus any additional arguments the function may
require. The signature for the function must be:

 function(parent, editor, args, …)
where:
• parent: The parent window for the custom widget
• editor: The CustomEditor instance being used to create the
 custom widget
• args: Any additional arguments needed by the function to create the
 custom widget

The function must return the custom widget it creates, created as a
child of the parent window.

The CustomEditor Editor Factory
• The following is an example of using a CustomEditor to create a

view:

def make_calendar (parent, editor):
 import wx
 import wx.calendar
 return wx.calendar.CalendarCtrl(parent, -1, wx.DateTime_Now())

class Appointment (HasTraits):
 description = Str
 date = Str

 view = View(Group (Group (Group (Item(name='description',
 style='custom',
 resizable=True),
 show_labels=False),
 Group (Item(name='date',
 editor = CustomEditor(make_calendar)),
 show_labels=False),
 orientation='horizontal')),
 height = 0.18)

The CustomEditor Editor Factory

• Which results in the
following display…

• Note that in practice,
more code is required
than this, since among
other things, event
handlers to handle input
from the control and set
the appropriate trait value
also need to be set up.

The EnumEditor Editor Factory

• Let’s start with a trivial example of using an
EnumEditor:
– Fruit = Enum(‘apple’, ‘pear’, ‘peach’)

• Unsurprisingly, the EnumEditor is the default
editor for the Enum trait, and will
automatically yield the following results when
used in a traits UI:

The EnumEditor Editor Factory

• Now, let’s make the example a little more “real world”…
• We’re doing an interactive menu, and fruit is a trait in an Order

object that represents the diner’s choice from among the fruit
currently on hand.

• Current stock is maintained in a separate Stock class instance that
has a fruits trait that lists the fruit currently available.

• The diner should only be able to choose a fruit that is currently
available.

class Order (HasTraits):
 fruit = Str # A simple Enum won’t work anymore
 …

class Stock (HasTraits):
 fruits = List(Str) # List of fruits on hand
 …

The EnumEditor Editor Factory

• We can still use the EnumEditor to create the UI, but we’ll
have to provide more information to help it tie things together.

• In this case, we’ll focus on three of the EnumEditor traits that
are of interest for this example:
– values: The values to enumerate (can be a list, tuple, dict,

or a CTrait or TraitHandler than is mapped).
– name: Extended trait name of the trait containing the

enumeration data.
• The values and name traits provide complementary means of

accomplishing the same task: providing the set of
enumeration values independently of the trait being edited.

• In this case, we’ll use the name trait because we have access
to a Stock object whose fruits trait contains the enumeration
of available fruit.

The EnumEditor Editor Factory

• The resulting Order view would then look something like:
class Order (HasTraits):
 fruit = Str
 …
 view = View(…,
 Item(‘fruit’,
 editor = EnumEditor(name = ‘stock.fruits’)),
 …)

order.edit_traits(context = { ‘object’: order, ‘stock’: current_stock,
 view = ‘view’)

• This view relies on two objects: the Order being edited, and a Stock
object containing the available fruits, referred to as ‘stock’ in the
above view.

• This requires providing a context containing both objects when the
Order view is displayed:

The InstanceEditor Editor Factory

• The following type of trait declaration occurs frequently:
– manager = Instance(Employee)

• Amazingly enough, the InstanceEditor is designed to edit these types
of traits.

• There are multiple usage scenarios for editing this type of trait though:
– The instance is fixed, but the user needs to edit the contents of the

instance.
– The user needs to select from a fixed or varying set of instances, but

does not need to modify the contents of the instance once selected.
– The user needs to select or create an instance, and then be able to

edit the contents of the selected instance.
• The InstanceEditor is designed to handle all of these scenarios, along

with several variations on how the editing should be performed.
• However, in order to do this, the InstanceEditor requires a more

complex definition than do most other trait editors.

The InstanceEditor Editor Factory

• Let’s start with the easiest case:
– The user only needs to edit the contents of

the current instance object.
• In this case, there are two choices:

1. Allow the user to edit the object contents in
a separate pop-up dialog.

2. Edit the contents of the instance object “in-
line”, as if it were part of the main object
being edited.

The InstanceEditor Editor Factory

• For case 1, use the “simple” editor style and
specify some or all of the following traits:
– label: The label on the button that displays the pop-up

editor dialog. It defaults to the trait name.
– view: The View object or name to display in the pop-

up editor dialog. It defaults to the default View for the
instance object.

– kind: How the pop-up editor should be displayed (e.g.
‘modal’). It defaults to the value specified on the view
itself.

The InstanceEditor Editor Factory
For example:

class Address (HasTraits):
 street = Str
 city = Str
 state = Str
 zip = Str

 view = View([['street'],
 ['city', 'state', 'zip', orientation='horizontal']],
 buttons = ['OK', 'Cancel'])

class Person (HasTraits):
 name = Str
 age = Int
 sex = Enum('male', 'female')
 address = Instance(Address, ())

 view = View([['name'],
 [['age', 'sex', orientation='horizontal'],
 ['address', show_labels=False],
 orientation='horizontal']],
 buttons = ['OK', 'Cancel'])

The InstanceEditor Editor Factory

For case 2, use the “custom” editor style and ignore the label trait:
class Address (HasTraits):
 street = Str
 city = Str
 state = Str
 zip = Str

 view = View([['street'], ['13', 'city', 'state', 'zip', '-']],
 buttons = ['OK', 'Cancel'])

class Person (HasTraits):
 name = Str
 age = Int
 sex = Enum('male', 'female')
 address = Instance(Address, ())

 view = View([['9', 'name', '-'],
 ['17', 'age', 'sex', '-'],
 [Item('address', style = 'custom'), '-<>']],

 buttons = ['OK', 'Cancel'])

The InstanceEditor Editor Factory

• Now let’s move on to the next case:
– The user needs to select from a fixed or varying set

of instances, but does not need to modify the
contents of the instance once selected.

• Within this case there are several important
sub-cases:
– The user must select from a known set of existing

instances. The set may change over time.
– The user must select from several different types

(i.e. classes) of objects, which are only created
once the user selects them.

– The user must select from an unknown set of
existing instances (e.g. by drag and drop).

The InstanceEditor Editor Factory

• The InstanceEditor supports all of these sub-cases, and
in fact allows any combination of them to be used
together in the same editor.

• It does this by allowing you to specify one or more
InstanceChoiceItem subclasses as part of the
InstanceEditor definition.

• There are three predefined InstanceChoiceItem
subclasses, each handling one of the three previously
described sub-cases:
– InstanceChoice: Describes a single instance object the user

can select. Note: If an instance has a suitable name trait, the
instance can be used instead of an InstanceChoice object.

– InstanceFactoryChoice: Describes a ‘factory’ (e.g. a class)
which can create instance objects the user can select.

– InstanceDropChoice: Describes a class of object the user can
drag and drop on the editor to select it.

The InstanceEditor Editor Factory

• The list of InstanceChoiceItems can either be
specified as part of the InstanceEditor itself,
using the values trait, or as an external model,
specified using the name trait.

• Or they can be used together to create a
composite set.

• In any case, changes made to the set of
InstanceChoiceItems are immediately reflected
in the InstanceEditor user interface.

The InstanceEditor Editor Factory

For example:
class Person (HasTraits):
 name = Str
 age = Int
 phone = Regex(value = '000-0000',
 regex = '\d\d\d[-]\d\d\d\d')

 view = View('name', 'age', 'phone')

class Team (HasTraits):
 name = Str
 captain = Instance(Person)
 roster = List(Person)

 view = View('name', '_',
 Item('captain',
 editor = InstanceEditor(name = 'roster', editable = False)),
 buttons = [‘OK’, ‘Cancel’])

The InstanceEditor Editor Factory
And a slightly more complex example…

class Person (HasStrictTraits):
 name = Str
 age = Int
 phone = Regex(value = '000-0000', regex = '\d\d\d[-]\d\d\d\d')

 traits_view = View(['name', 'age', 'phone', style='readonly'])
 edit_view = View(['name', 'age', 'phone'],
 buttons = ['OK', 'Cancel'])

class Team (HasStrictTraits):
 name = Str
 captain = Instance(Person)
 roster = List(Person)

 traits_view = View(
 [[Item('name'),
 Item('_'),
 Item('captain',
 editor = InstanceEditor(
 name = 'roster',
 editable = False,
 values = [InstanceFactoryChoice(
 klass = Person,
 name = 'Non player',
 view = 'edit_view')])),
 Item('_')],
 [Item('captain', style='custom')],
 buttons = ['OK', 'Cancel'])

The InstanceEditor Editor Factory
And here’s an example showing “drag and drop” support:
view = View(
 Group(
 Group(Item('company',
 editor = tree_editor,
 resizable = True)
 show_labels=False),
 Group(
 Group(Item(label ='Employee of the Month', style = 'custom'),
 Item('eom',
 editor = InstanceEditor(values = [
 InstanceDropChoice(klass = Employee,
 selectable = True)]),
 style='custom', resizable = True)
 show_labels = False),

 Group(Item(label = 'Department of the Month}', style='custom'),
 Item('dom',
 editor = InstanceEditor(values = [
 InstanceDropChoice(klass = Department)]),
 style='custom',
 resizable = True)),
 show_labels = False, layout = 'split'),
 orientation = 'horizontal', show_labels = False, layout = 'split'),
 title = 'Company Structure', handler = TreeHandler(),
 buttons = [‘OK’, ‘Cancel’], resizable = True,
 width = .5, height = .5)

The InstanceEditor Editor Factory

Which looks like:

The InstanceEditor Editor Factory

Finally, it is possible to combine instance selection and editing in a
single editor by simply combining the editing and selection traits:

class Person (HasTraits):
 name = Str
 age = Int
 phone = Regex(value = '000-0000',
 regex = '\d\d\d[-]\d\d\d\d')

 traits_view = View('name', 'age', 'phone')

class Team (HasTraits):
 name = Str
 captain = Instance(Person)
 roster = List(Person)

 traits_view = View(Item('name'),
 Item('_'),
 Item('captain',
 editor = InstanceEditor(name = 'roster'),
 style='custom'),
 buttons = ['Undo', 'OK', 'Cancel'])

The TableEditor Editor Factory

• Another common type of trait declaration
is:
– department = List(Employee)

• In the case of a list of objects with traits,
the TableEditor can be used to display
the list as a table, with one object per row,
and one object trait per column.

• In fact, the TableEditor is the default
editor for a List trait whose values are
objects with traits.

The TableEditor Editor Factory

• Some of the features of the TableEditor are:
– Supports ‘editable’ and ‘read-only’ modes.
– Allows object editing either in-place within the table, or

separately, in an external ‘inspector’ view.
– In-place editing supports many of the common trait editors,

including drag and drop.
– Supports ascending/descending sorting on any column.
– Sorting can either affect the underlying model or just the view.
– Allows the user re-order/include/exclude any of the object

columns, and persist the resulting set across application
sessions.

– Allows searching the table contents in a wide variety of ways.
– Allows filtering the table contents using a wide variety of user

customizable and persistable filters.
– Table/column/cell level context menus
– All changes made to the table are fully undoable/redoable.
– Colors, fonts and grid lines are fully customizable.

The TableEditor Editor Factory

An example of a TableEditor:

The TableEditor Editor Factory

• All of these features and flexibility come at a price…in
this case, the amount of work needed to correctly define
a TableEditor.

• Out of the box, a TableEditor will display many lists of
objects without any extra work…but the results will often
be non-optimal.

• The traits that can be defined for a TableEditor include:
– Table Attributes: Colors, fonts, sorting rules, …
– Table Columns: What object traits can be displayed as columns

and how.
– Table Filters: What standard and custom filters can be applied

to the table.
– Table Search: What filter can be used to search the table.
– Table Factory: An optional callable that can be used to add new

object rows to the table.

The TableEditor Editor Factory: Table Attributes

row_heightcolumns_namerowsreorderable

searchline_coloredit_view

selectedrow_label_widthlabel_fontdeletable

reverserow_factory_kwlabel_colorconfigurable

auto_addrow_factory_argslabel_bg_colorcolumns

sortablerow_factoryfilterscolumn_label_height

sort_modelother_columnsfiltercell_read_only_bg_color

show_linesorientationeditablecell_font

show_column_labelson_selectedit_view_widthcell_color

selection_coloron_dclickedit_view_heightcell_bg_color

selection_bg_colormenu edit_view_handlerauto_size

The TableEditor Editor Factory: Table Columns

• You define the content, appearance and behavior of a
table by providing ordered sets of TableColumn objects.

• Each TableColumn object describes a single
column/object trait.

• You can provide two sets of columns:
– columns: The columns you see initially
– other_columns: The remaining columns

• These are the default columns, the user’s most recent
preference setting overrides them.

• There are two basic types of TableColumn:
– ObjectColumn: Used for objects with traits
– ListColumn: For lists and tuples

• You can also define subclasses to get state dependent
column behavior

The TableEditor Editor Factory: Table Columns

ObjectColumn traits:
• name: Name of the object trait to display/edit
• label: Column label to use for the column
• type: The type of data contained by the column
• text_color: Text color for this column
• text_font: Text font for this column
• cell_color: Cell background color for this column
• read_only_cell_color: Cell background color for non-editable

columns
• horizontal_alignment: Horizontal alignment of text in the column
• vertical_alignment: Vertical alignment of text in the column
• visible: Is the table column visible (i.e. viewable)?
• editable: Is this column editable?
• droppable: Can external objects be dropped on the column?
• editor: Editor factory to use when editing the column “in-place”
• menu: Context menu to display when this column is right-clicked

The TableEditor Editor Factory: Table Columns

• For almost every ObjectColumn trait there is a
corresponding “get” or “is” method.
– For example, “editor” and “get_editor()”, “editable” and

“is_editable()”.
• Defining a method overrides the corresponding

trait.
• This allows subclasses to define values that are

dependent upon the state of each table object or
other values.

The TableEditor Editor Factory: Table Filters

• When applied to a table, a filter reduces
the set of visible rows to only those objects
which match the filter’s criteria.

• A TableEditor defines two filter related
traits:
– filter: The filter initially in effect (defaults to

None = “No filter”)
– filters: A list of TableFilter objects that the

user can choose from using the “View” drop
down list.

The TableEditor Editor Factory: Table Filters

• There are two basic types of filters:
– Normal filter: An actual filter that can be applied and modified.
– Template filter: A filter which cannot be applied or modified, but

which is used to create new normal filter objects of the same
type as the template and with the same initial filter values.

• A template filter is simply a normal filter with its template trait
set to True.

• User created filters are automatically persisted across
application sessions as part of the TableEditor’s user
preference handling.

• You can create your own TableFilter subclasses, or use any
of the standard subclasses:
– EvalTableFilter
– RuleTableFilter
– MenuTableFilter

The TableEditor Editor Factory: Table Filters

The EvalTableFilter:
• Allows a user to enter a Python

expression whose value
determines whether or not an
object meets the filter criteria.

• Its use is obviously best suited
to users already familiar with
Python.

• Trait references on the object
being tested do not need to be
explicitly qualified.

The TableEditor Editor Factory: Table Filters

The RuleTableFilter:
• Allows users to define “rules”

using drop down value entry
for trait names and
operations.

• Rules can be “and”ed or
“or”ed together.

• Rules can be added, deleted
and modified.

• Introspection based…
requires no set-up by the
developer.

The TableEditor Editor Factory: Table Filters

The MenuTableFilter:
• Is similar to the

RuleTableFilter
• The differences are:

– A rule is automatically created
for each object trait.

– Rules cannot be added or
deleted.

– Rules are implicitly “and”ed
together.

– Rules can be turned on and off.

The TableEditor Editor Factory: Table Search

• Making a table searchable
allows the user to search for
(and optionally select) object
rows which match a
specified search criteria.

• A table is made searchable
by setting the TableEditor’s
search trait to a TableFilter
object.

• Doing so adds a “search”
icon to the table’s toolbar,
which displays a pop-up
search dialog.

• The search dialog allows the
user to search for the next or
previous match, or to select
all matching rows.

The TableEditor Editor Factory: Table Factory

• If users can add new rows to a table, then a
factory must be provided to create the new table
objects.

• The TableEditor traits that specify the object
factory are:
– row_factory: A callable that creates and returns a

new object instance when the user adds a new row to
the table.

– row_factory_args: An optional tuple that contains
any positional arguments that need to be passed to
the factory.

– row_factory_kw: An optional dictionary that contains
any keyword arguments that need to be passed to the
factory.

The TableEditor Editor Factory: An Example
class Employee (HasTraits):
 name = Str
 age = Int
 phone = Regex(value = '000-0000', regex = '\d\d\d[-]\d\d\d\d'
 traits_view = View('name', 'age', 'phone',
 title = 'Create new employee', width = 0.18, buttons = [‘OK’,
‘Cancel’])

table_editor = TableEditor(
 columns = [ObjectColumn(name = 'name'),
 ObjectColumn(name = 'age'),
 ObjectColumn(name = 'phone')],
 deletable = True, sort_model = True, orientation = 'vertical',
 edit_view = View(Group('name', 'age', 'phone', show_border=True],
 resizable = True),
 filters = [EvalFilterTemplate, MenuFilterTemplate, RuleFilterTemplate],
 search = RuleTableFilter(),
 row_factory = Employee)

class Department (HasStrictTraits):
 employees = List(Employee)
 traits_view = View(Group(Item('employees',
 editor = table_editor,
 resizable = True),
 show_border = True,
 show_labels = False),
 title = 'Department Personnel', width = .4, height = .4,
 resizable = True, buttons = [' OK', 'Cancel'], kind = 'live')

The TableEditor Editor Factory: An Example

The resulting view looks like:

The TreeEditor Editor Factory

• Objects often are connected together in such a
way that a hierarchical or tree view of them is a
useful user interface feature.

• Common examples:
– File system explorer: files are contained in directories,

which are contained in other directories…
– Organizational chart: Employees belong to

departments, which in turn belong to the company
itself.

• A TreeEditor allows interconnected objects with
traits to be displayed as a tree.

The TreeEditor Editor Factory

• Using a TreeEditor, each connected object in the graph
of objects to be displayed becomes a separate tree item.

• Some of the features supported by the TreeEditor
include:
– Full drag and drop support:

• Objects can be dragged into the tree.
• Objects can be dragged out of the tree.
• Objects can be dragged within the tree.
• Structural relationships between objects are enforced.

– Objects can be:
• Added
• Deleted
• Renamed

– The contents of objects can be edited in a separate “inspector”
view if desired.

– Each object can have a standard or custom context menu.

The TreeEditor Editor Factory

Here are some examples of TreeEditors being used in the VET tool:

The TreeEditor Editor Factory

• Like the TableEditor, in order to provide such a
rich set of user interactions, the TreeEditor
needs additional information to perform its task.

• The extra information is divided into two parts:
– General information about the editor’s behavior

defined by traits on the TreeEditor itself.
– Specific information about each of the object types

that can appear in the tree, provided by a set of
TreeNode objects associated with the TreeEditor.

The TreeEditor Editor Factory

The general TreeEditor traits are:

Layout orientation of tree and editororientation
Called when a node is double clickedon_dclick
Called when a node is selectedon_select
Size of the tree node iconsicon_size
Should the tree root node be hidden?hide_root
Should tree nodes have icons?show_icons
Ref to a shared object editoreditor
Is the editor shared across trees?shared_editor
Are the individual nodes editable?editable
(TreeNode,...) -> MultiTreeNode mapmulti_nodes
Supported TreeNode objects nodes

The TreeEditor Editor Factory

• A TreeNode provides information about one or more
types (i.e. classes) of object that can appear in the tree:
– The object classes the TreeNode applies to.
– Which object trait (if any) contains the children of the object.
– Can the object’s children be renamed, copied deleted or

inserted?
– What object class instances can be added to, copied to or

moved to the children of the object.
– The icons used to represent the object in the tree.
– The context menu to display when the object is right-clicked on.
– The view to display when the object is selected for editing.

The TreeEditor Editor Factory

The traits for a TreeNode are:

viewmenuformatter

renamelabeldelete

on_selectinsertcopy

on_dclickicon_pathchildren

node_foricon_openauto_open

nameicon_groupauto_close

moveicon_itemadd

The TreeEditor Editor Factory

• In addition, there are several different types of and ways
to use TreeNodes:
– If all the information about an object type is static, simply use a

TreeNode and initialize its traits.
– If some of the information is not known until run-time, create a

subclass of TreeNode and override the necessary methods.
Each trait has a corresponding method that can be used to
override the trait value (e.g. “get_children()” overrides
“children” and “can_delete()” overrides “delete”).

– Sometimes you have data that is not explicitly or conveniently
hierarchical, so you need to build a model that exposes the
hierarchy. In this case, you can create your model classes as
subclasses of TreeNodeObject and create corresponding
ObjectTreeNodes for use with the model’s TreeEditor. An
ObjectTreeNode simply delegates all its methods to the object it
describes.

The TreeEditor Editor Factory

An example (Part 1):
class Employee (HasTraits):
 name = Str('<unknown>')
 title = Str
 phone = Regex(regex = r'\d\d\d-\d\d\d\d')

 def default_title (self):
 self.title = 'Senior Engineer‘

class Department (HasTraits):
 name = Str('<unknown>')
 employees = List(Employee)

class Company (HasTraits):
 name = Str('<unknown>')
 departments = List(Department)
 employees = List(Employee)

class Partner (HasTraits):
 name = Str('<unknown>')
 company = Instance(Company)

The TreeEditor Editor Factory

An example (Part 2):

no_view = View()

tree_editor = TreeEditor(
 nodes = [
 TreeNode(node_for = [Company],
 auto_open = True,
 children = '',
 label = 'name',
 view = View(['name']),
 TreeNode(node_for = [Company],
 auto_open = True,
 children = 'departments',
 label = '=Departments',
 view = no_view,
 add = [Department]),

 TreeNode(node_for = [Company],
 auto_open = True,
 children = 'employees',
 label = '=Employees',
 view = no_view,
 add = [Employee]),
 TreeNode(node_for = [Department],
 auto_open = True,
 children = 'employees',
 label = 'name',
 view = View(['name']),
 add = [Employee]),
 TreeNode(node_for = [Employee],
 auto_open = True,
 label = 'name',
 view = View(['name', 'title', 'phone']))])

The TreeEditor Editor Factory

An example (Part 3):

view = View(Group(Item(name = 'company',
 editor = tree_editor,
 resizable = True),
 show_labels = False),
 title = 'Company Structure',
 buttons = [‘OK’, ‘Cancel’],
 resizable = True,
 width = .3,
 height = .3)

The TreeEditor Editor Factory

The resulting view looks like:

Saving and Restoring User GUI Preferences

• The Traits UI allows some user preference
settings to be saved without writing any code.

• The preferences that can be saved automatically
are defined by a View and the individual editors
contained in a View.

• Some of the user preference settings that can be
saved currently are:
– Window/Dialog size and position
– Splitter bar position
– User defined table filters

Saving and Restoring User GUI Preferences

• User preferences are only saved when you request them
to be saved.

• You request a preference to be saved simply by
assigning a non-empty ‘id’ trait to the corresponding
View, Group or Item object.

• In order for any preferences to be saved, a View must
have a non-empty ‘id’.

• The user preference values for a View are saved in a
global “database” under the view’s ‘id’, so the View ‘id’
should also be unique across applications and views.

• For example: View(…, id =
‘enthought.graph.vpl.graph_canvas’, …)

Saving and Restoring User GUI Preferences

• Group and Item ‘id’ values only need to be
unique within the containing View.

• The currently supported preference items are:
– View (Window/Dialog size and position)
– Group (Splitter bar position when layout = ‘split’)
– Item (Splitter bar position when editor = TreeEditor)
– Item (User defined filters when editor = TableEditor)

• New editors can save their preferences by
implementing the ‘save_prefs’ and
‘restore_prefs’ methods.

