Coverage for pygeodesy/geodesicw.py: 90%
221 statements
« prev ^ index » next coverage.py v7.6.1, created at 2025-01-06 12:20 -0500
« prev ^ index » next coverage.py v7.6.1, created at 2025-01-06 12:20 -0500
2# -*- coding: utf-8 -*-
4u'''Wrapper around Python classes C{geodesic.Geodesic} and C{geodesicline.GeodesicLine} from
5I{Karney}'s Python package U{geographiclib<https://PyPI.org/project/geographiclib>}, provided
6that package is installed.
8The I{wrapped} class methods return a L{GDict} instance offering access to the C{dict} items
9either by C{key} or by C{attribute} name.
11With env variable C{PYGEODESY_GEOGRAPHICLIB} left undefined or set to C{"2"}, this module and modules
12L{pygeodesy.geodesici}, L{pygeodesy.geodesicx} and L{pygeodesy.karney} will use U{GeographicLib 2.0
13<https://GeographicLib.SourceForge.io/C++/doc/>} transcoding, otherwise C{1.52} or older.
14'''
16from pygeodesy.basics import _copysign, _xinstanceof
17from pygeodesy.constants import EPS, NAN, _EPSqrt as _TOL, _0_5
18from pygeodesy.datums import _earth_datum, _WGS84, _EWGS84
19# from pygeodesy.dms import F_D # from .latlonBase
20# from pygeodesy.ellipsoids import _EWGS84 # from .datums
21from pygeodesy.errors import _AssertionError, GeodesicError, \
22 IntersectionError
23from pygeodesy.fsums import Fsum, Fmt, unstr
24from pygeodesy.internals import _DUNDER_nameof, _under
25from pygeodesy.interns import NN, _DOT_, _SPACE_, _to_, _too_
26from pygeodesy.karney import _atan2d, Caps, Direct9Tuple, GDict, \
27 Inverse10Tuple, _kWrapped
28from pygeodesy.latlonBase import LatLonBase as _LLB, F_D, Radius_
29from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS
30from pygeodesy.named import callername, classname, _name1__, _name2__
31from pygeodesy.namedTuples import Destination3Tuple, Distance3Tuple
32from pygeodesy.props import Property, Property_RO, property_RO, \
33 property_ROver
34# from pygeodesy.streprs import Fmt, unstr # from .fsums
35# from pygeodesy.units import Radius_ # from .latlonBase
36from pygeodesy.utily import _unrollon, _Wrap, wrap360, fabs # PYCHOK used!
38from contextlib import contextmanager
39# from math import fabs # from .utily
41__all__ = _ALL_LAZY.geodesicw
42__version__ = '24.11.02'
44_plumb_ = 'plumb'
45_TRIPS = 65
48class _gWrapped(_kWrapped):
49 ''''(INTERNAL) Wrapper for some of I{Karney}'s U{geographiclib
50 <https://PyPI.org/project/geographiclib>} classes.
51 '''
53 @property_ROver # MCCABE 24
54 def Geodesic(self):
55 '''Get the I{wrapped} C{geodesic.Geodesic} class from I{Karney}'s Python
56 U{geographiclib<https://GitHub.com/geographiclib/geographiclib-python>},
57 provided the latter is installed.
58 '''
59 _Geodesic = self.geographiclib.Geodesic
60 if not (Caps.LATITUDE == _Geodesic.LATITUDE and
61 Caps.LONGITUDE == _Geodesic.LONGITUDE and
62 Caps.AZIMUTH == _Geodesic.AZIMUTH and
63 Caps.DISTANCE == _Geodesic.DISTANCE and
64 Caps.DISTANCE_IN == _Geodesic.DISTANCE_IN and
65 Caps.REDUCEDLENGTH == _Geodesic.REDUCEDLENGTH and
66 Caps.GEODESICSCALE == _Geodesic.GEODESICSCALE and
67 Caps.AREA == _Geodesic.AREA and
68 Caps.ALL == _Geodesic.ALL):
69 raise _AssertionError(Caps=bin(Caps.ALL),
70 Geodesic=bin(_Geodesic.ALL))
72 class Geodesic(_Geodesic):
73 '''I{Wrapper} for I{Karney}'s Python U{geodesic.Geodesic
74 <https://PyPI.org/project/geographiclib>} class.
75 '''
76 _datum = _WGS84
77 _debug = 0 # like .geodesicx.bases._GeodesicBase
78 LINE_OFF = 0 # in .azimuthal._GnomonicBase and .css.CassiniSoldner
79 _name = NN
81 def __init__(self, a_ellipsoid=_EWGS84, f=None, **name): # PYCHOK signature
82 '''New I{wrapped} C{geodesic.Geodesic} instance.
84 @arg a_ellipsoid: The equatorial radius I{a} (C{meter}, conventionally),
85 an ellipsoid (L{Ellipsoid}) or a datum (L{Datum}).
86 @arg f: The ellipsoid's flattening (C{scalar}), required if B{C{a_ellipsoid})
87 is C{meter}, ignored otherwise.
88 @kwarg name: Optional C{B{name}=NN} (C{str}).
89 '''
90 _earth_datum(self, a_ellipsoid, f=f, **name) # raiser=NN
91 E = self.ellipsoid
92 with _wargs(self, *E.a_f, **name) as args:
93 _Geodesic.__init__(self, *args)
94 if name:
95 self._name, _ = _name2__(name, _or_nameof=E)
97 def ArcDirect(self, lat1, lon1, azi1, a12, outmask=Caps._STD): # PYCHOK no cover
98 '''Return the C{_Geodesic.ArcDirect} result as L{GDict}.
99 '''
100 with _wargs(self, lat1, lon1, azi1, a12, outmask) as args:
101 d = _Geodesic.ArcDirect(self, *args)
102 return GDict(d)
104 def ArcDirectLine(self, lat1, lon1, azi1, a12, caps=Caps._STD_LINE, **name): # PYCHOK no cover
105 '''Return the C{_Geodesic.ArcDirectLine} as I{wrapped} C{GeodesicLine}.
106 '''
107 return self._GenDirectLine(lat1, lon1, azi1, True, a12, caps, **name)
109 Area = _Geodesic.Polygon # like GeodesicExact.Area
111 @property_RO
112 def datum(self):
113 '''Get this geodesic's datum (C{Datum}).
114 '''
115 return self._datum
117 @Property
118 def debug(self):
119 '''Get the C{debug} option (C{bool}).
120 '''
121 return bool(self._debug)
123 @debug.setter # PYCHOK setter!
124 def debug(self, debug):
125 '''Set the C{debug} option (C{bool}) to include more
126 details in L{GDict} results.
127 '''
128 self._debug = Caps._DEBUG_ALL if debug else 0
130 def Direct(self, lat1, lon1, azi1, s12=0, outmask=Caps._STD):
131 '''Return the C{_Geodesic.Direct} result as L{GDict}.
132 '''
133 with _wargs(self, lat1, lon1, azi1, s12, outmask) as args:
134 d = _Geodesic.Direct(self, *args)
135 return GDict(d)
137 def Direct3(self, lat1, lon1, azi1, s12): # PYCHOK outmask
138 '''Return the destination lat, lon and reverse azimuth
139 in C{degrees} as L{Destination3Tuple}.
140 '''
141 d = self.Direct(lat1, lon1, azi1, s12, outmask=Caps._DIRECT3)
142 return Destination3Tuple(d.lat2, d.lon2, d.azi2)
144 def _DirectLine(self, ll1, azi12, s12=0, **caps_name):
145 '''(INTERNAL) Short-cut version.
146 '''
147 return self.DirectLine(ll1.lat, ll1.lon, azi12, s12, **caps_name)
149 def DirectLine(self, lat1, lon1, azi1, s12, caps=Caps._STD_LINE, **name):
150 '''Return the C{_Geodesic.DirectLine} as I{wrapped} C{GeodesicLine}.
151 '''
152 return self._GenDirectLine(lat1, lon1, azi1, False, s12, caps, **name)
154 @Property_RO
155 def ellipsoid(self):
156 '''Get this geodesic's ellipsoid (C{Ellipsoid}).
157 '''
158 return self.datum.ellipsoid
160 @property_RO
161 def f1(self): # in .css.CassiniSoldner.reset
162 '''Get the geodesic's ellipsoid's I{1 - flattening} (C{float}).
163 '''
164 return getattr(self, _under(Geodesic.f1.name), self.ellipsoid.f1)
166 def _GDictDirect(self, lat, lon, azi, arcmode, s12_a12, outmask=Caps._STD):
167 '''(INTERNAL) Get C{_Geodesic._GenDirect} result as C{GDict}.
168 '''
169 with _wargs(self, lat, lon, azi, arcmode, s12_a12, outmask) as args:
170 t = _Geodesic._GenDirect(self, *args)
171 return Direct9Tuple(t).toGDict() # *t
173 def _GDictInverse(self, lat1, lon1, lat2, lon2, outmask=Caps._STD):
174 '''(INTERNAL) Get C{_Geodesic._GenInverse} result as L{Inverse10Tuple}.
175 '''
176 with _wargs(self, lat1, lon1, lat2, lon2, outmask) as args:
177 t = _Geodesic._GenInverse(self, *args)
178 return Inverse10Tuple(t).toGDict(lon1=lon1, lon2=lon2) # *t
180 def _GenDirectLine(self, lat1, lon1, azi1, arcmode, s12_a12, *caps, **name):
181 '''(INTERNAL) Invoked by C{_Geodesic.DirectLine} and C{-.ArcDirectLine},
182 returning the result as a I{wrapped} C{GeodesicLine}.
183 '''
184 with _wargs(self, lat1, lon1, azi1, arcmode, s12_a12, *caps, **name) as args:
185 t = _Geodesic._GenDirectLine(self, *args)
186 return self._Line13(t, **name)
188 def _Inverse(self, ll1, ll2, wrap, **outmask):
189 '''(INTERNAL) Short-cut version, see .ellipsoidalBaseDI.intersecant2.
190 '''
191 if wrap:
192 ll2 = _unrollon(ll1, _Wrap.point(ll2))
193 return self.Inverse(ll1.lat, ll1.lon, ll2.lat, ll2.lon, **outmask)
195 def Inverse(self, lat1, lon1, lat2, lon2, outmask=Caps._STD):
196 '''Return the C{_Geodesic.Inverse} result as L{GDict}.
197 '''
198 with _wargs(self, lat1, lon1, lat2, lon2, outmask) as args:
199 d = _Geodesic.Inverse(self, *args)
200 return GDict(d)
202 def Inverse1(self, lat1, lon1, lat2, lon2, wrap=False):
203 '''Return the non-negative, I{angular} distance in C{degrees}.
205 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll
206 B{C{lat2}} and BC{lon2}} (C{bool}).
207 '''
208 # see .FrechetKarney.distance, .HausdorffKarney._distance
209 # and .HeightIDWkarney._distances
210 if wrap:
211 _, lat2, lon2 = _Wrap.latlon3(lat1, lat2, lon2, True) # _Geodesic.LONG_UNROLL
212 r = self.Inverse(lat1, lon1, lat2, lon2)
213 # XXX _Geodesic.DISTANCE needed for 'a12'?
214 return fabs(r.a12)
216 def Inverse3(self, lat1, lon1, lat2, lon2): # PYCHOK outmask
217 '''Return the distance in C{meter} and the forward and reverse
218 azimuths in C{degrees} as L{Distance3Tuple}.
219 '''
220 r = self.Inverse(lat1, lon1, lat2, lon2, outmask=Caps._INVERSE3)
221 return Distance3Tuple(r.s12, wrap360(r.azi1), wrap360(r.azi2))
223 def _InverseLine(self, ll1, ll2, wrap, **caps_name):
224 '''(INTERNAL) Short-cut version.
225 '''
226 if wrap:
227 ll2 = _unrollon(ll1, _Wrap.point(ll2))
228 return self.InverseLine(ll1.lat, ll1.lon, ll2.lat, ll2.lon, **caps_name)
230 def InverseLine(self, lat1, lon1, lat2, lon2, caps=Caps._STD_LINE, **name):
231 '''Return the C{_Geodesic.InverseLine} as I{wrapped} C{GeodesicLine}.
232 '''
233 with _wargs(self, lat1, lon1, lat2, lon2, caps, **name) as args:
234 t = _Geodesic.InverseLine(self, *args)
235 return self._Line13(t, **name)
237 def Line(self, lat1, lon1, azi1, caps=Caps._STD_LINE, **name):
238 '''Set up a I{wrapped} C{GeodesicLine} to compute several points
239 along a single, I{wrapped} (this) geodesic.
240 '''
241 return _wrapped.GeodesicLine(self, lat1, lon1, azi1, caps=caps, **name)
243 def _Line13(self, t, **name):
244 '''(INTERNAL) Wrap C{_GeodesicLine}, add distance and arc length
245 to reference point 3.
246 '''
247 gl = _wrapped.GeodesicLine(self, t.lat1, t.lon1, t.azi1, caps=t.caps,
248 salp1=t.salp1, calp1=t.calp1, **name)
249 gl.a13, gl.s13 = t.a13, t.s13
250 return gl
252 @property_RO
253 def name(self):
254 '''Get the name (C{str}).
255 '''
256 return self._name
258# Polygon = _Geodesic.Polygon
260 WGS84 = None # _EWGS84.geodesicw recusion
262 # Geodesic.ArcDirect.__doc__ = _Geodesic.ArcDirect.__doc__
263 # Geodesic.Direct.__doc__ = _Geodesic.Direct.__doc__
264 # Geodesic.Inverse.__doc__ = _Geodesic.Inverse.__doc__
265 # Geodesic.InverseLine.__doc__ = _Geodesic.InverseLinr.__doc__
266 # Geodesic.Line.__doc__ = _Geodesic.Line.__doc__
267 return Geodesic # overwrite property_ROver
269 @property_ROver # MCCABE 16
270 def GeodesicLine(self):
271 '''Get the I{wrapped} C{geodesicline.GeodesicLine} class from I{Karney}'s
272 Python U{geographiclib<https://GitHub.com/geographiclib/geographiclib-python>},
273 provided the latter is installed.
274 '''
275 _GeodesicLine = self.geographiclib.GeodesicLine
277 class GeodesicLine(_GeodesicLine):
278 '''I{Wrapper} for I{Karney}'s Python U{geodesicline.GeodesicLine
279 <https://PyPI.org/project/geographiclib>} class.
280 '''
281 _geodesic = None
282 _name = NN
284 def __init__(self, geodesic, lat1, lon1, azi1, **caps_name_): # salp1=NAN, calp1=NAN
285 '''New I{wrapped} C{geodesicline.GeodesicLine} instance.
287 @arg geodesic: A I{wrapped} C{Geodesic} instance.
288 @arg lat1: Latitude of the first points (C{degrees}).
289 @arg lon1: Longitude of the first points (C{degrees}).
290 @arg azi1: Azimuth at the first points (compass C{degrees360}).
291 @kwarg caps_name_: Optional keyword arguments C{B{caps}=Caps.STANDARD},
292 a bit-or'ed combination of L{Caps} values specifying the
293 capabilities the C{GeodesicLine} instance should possess,
294 an optional C{B{name}=NN} plus C{salp1=NAN} and C{calp1=NAN}
295 for I{INTERNAL} use.
296 '''
297 _xinstanceof(_wrapped.Geodesic, geodesic=geodesic)
298 with _wargs(self, geodesic, lat1, lon1, azi1, **caps_name_) as args:
299 name, caps_ = _name2__(caps_name_, _or_nameof=geodesic)
300 _GeodesicLine.__init__(self, *args, **caps_) # XXX avoid updates?
301 if name:
302 self._name = name
303 self._geodesic = geodesic
305 @Property_RO
306 def a1(self):
307 '''Get the I{equatorial arc} (C{degrees}), the arc length between
308 the northward equatorial crossing and point C{(lat1, lon1)}.
310 @see: U{EquatorialArc<https://GeographicLib.SourceForge.io/
311 C++/doc/classGeographicLib_1_1GeodesicLine.html>}
312 '''
313 try:
314 return _atan2d(self._ssig1, self._csig1)
315 except AttributeError:
316 return NAN # see .geodesicx.gxline._GeodesicLineExact
318 equatorarc = a1
320 def Arc(self):
321 '''Return the angular distance to point 3 (C{degrees} or C{NAN}).
322 '''
323 return self.a13
325 def ArcPosition(self, a12, outmask=Caps._STD):
326 '''Return the position at C{B{a12} degrees} on this line.
328 @arg a12: Angular distance from this line's first point
329 (C{degrees}).
331 @see: Method L{Position} for further details.
332 '''
333 with _wargs(self, a12, outmask) as args:
334 d = _GeodesicLine.ArcPosition(self, *args)
335 return GDict(d)
337 @Property_RO
338 def azi0(self): # see .css.CassiniSoldner.forward4
339 '''Get the I{equatorial azimuth} (C{degrees}), the azimuth of the
340 geodesic line as it crosses the equator in a northward direction.
342 @see: U{EquatorialAzimuth<https://GeographicLib.SourceForge.io/
343 C++/doc/classGeographicLib_1_1GeodesicLine.html>}
344 '''
345 try:
346 return _atan2d(self._salp0, self._calp0)
347 except AttributeError:
348 return NAN # see .geodesicx.gxline._GeodesicLineExact
350 equatorazimuth = azi0
352 def Distance(self):
353 '''Return the distance to reference point 3 (C{meter} or C{NAN}).
354 '''
355 return self.s13
357 @property_RO
358 def geodesic(self):
359 '''Get the I{wrapped} geodesic (L{Geodesic}).
360 '''
361 return self._geodesic
363 def Intersecant2(self, lat0, lon0, radius, tol=_TOL):
364 '''Compute the intersection(s) of this geodesic line and a circle.
366 @arg lat0: Latitude of the circle center (C{degrees}).
367 @arg lon0: Longitude of the circle center (C{degrees}).
368 @arg radius: Radius of the circle (C{meter}, conventionally).
369 @kwarg tol: Convergence tolerance (C{scalar}).
371 @return: 2-Tuple C{(P, Q)} with both intersections points (representing
372 a geodesic chord), each a L{GDict} from method L{Position} and
373 extended to 14 items C{lat1, lon1, azi1, lat2, lon2, azi2, a12,
374 s12, lat0, lon0, azi0, a02, s02, at} with the circle center
375 C{lat0}, C{lon0}, azimuth C{azi0} at the intersection, distance
376 C{a02} in C{degrees} and C{s02} in C{meter} along the geodesic
377 from the circle center to the intersection C{lat2, lon2} and
378 the angle C{at} between the geodesic and this line at the
379 intersection. The I{geodesic} azimuth at the intersection is
380 C{(at + azi2)}. If this line is tangential to the circle, both
381 intersections are the same L{GDict} instance.
383 @raise IntersectionError: The circle and this geodesic line do not
384 intersect.
386 @raise UnitError: Invalid B{C{radius}}.
387 '''
388 return _Intersecant2(self, lat0, lon0, radius, tol=tol)
390 def PlumbTo(self, lat0, lon0, est=None, tol=_TOL):
391 '''Compute the I{perpendicular} intersection of this geodesic line
392 with a geodesic from the given point.
394 @arg lat0: Latitude of the point (C{degrees}).
395 @arg lon0: Longitude of the point (C{degrees}).
396 @kwarg est: Optional, initial estimate for the distance C{s12} of
397 the intersection I{along} this geodesic line (C{meter}).
398 @kwarg tol: Convergence tolerance (C(meter)).
400 @return: The intersection point on this geodesic line, a L{GDict}
401 from method L{Position} extended to 14 items C{lat1, lon1,
402 azi1, lat2, lon2, azi2, a12, s12, lat0, lon0, azi0, a02,
403 s02, at} with C{a02} and C{s02} the distance in C{degrees}
404 and C{meter} from the given point C{lat0, lon0} to the
405 intersection C{lat2, lon2}, azimuth C{azi0} at the given
406 point and the (perpendicular) angle C{at} between the
407 geodesic and this line at the intersection point. The
408 geodesic azimuth at the intersection is C{(at + azi2)}.
409 See method L{Position} for further details.
411 @see: Methods C{Intersecant2}, C{Intersection} and C{Position}.
412 '''
413 return _PlumbTo(self, lat0, lon0, est=est, tol=tol)
415 def Position(self, s12, outmask=Caps._STD):
416 '''Return the position at distance C{B{s12} meter} on this line.
418 @arg s12: Distance from this line's first point (C{meter}).
419 @kwarg outmask: Bit-or'ed combination of L{Caps} values specifying
420 the quantities to be returned.
422 @return: A L{GDict} with up to 12 items C{lat1, lon1, azi1, lat2,
423 lon2, azi2, m12, a12, s12, M12, M21, S12} with C{lat1},
424 C{lon1}, C{azi1} and arc length C{a12} always included,
425 except when C{a12=NAN}.
426 '''
427 with _wargs(self, s12, outmask) as args:
428 d = _GeodesicLine.Position(self, *args)
429 return GDict(d)
431 # GeodesicLine.ArcPosition.__doc__ = _GeodesicLine.ArcPosition.__doc__
432 # GeodesicLine.Position.__doc__ = _GeodesicLine.Position.__doc__
433 return GeodesicLine # overwrite property_ROver
435 @property_ROver
436 def Geodesic_WGS84(self):
437 '''Get the I{wrapped} C{Geodesic(WGS84)} singleton, provided the
438 U{geographiclib<https://PyPI.org/project/geographiclib>} package
439 is installed, otherwise an C{ImportError}.
440 '''
441 return _EWGS84.geodesicw # overwrite property_ROver
443_wrapped = _gWrapped() # PYCHOK singleton, .ellipsoids, .test/base.py
446class Geodesic(_gWrapped): # overwritten by 1st instance
447 '''I{Wrapper} around I{Karney}'s class U{geographiclib.geodesic.Geodesic
448 <https://GeographicLib.SourceForge.io/Python/doc/code.html>}.
449 '''
450 def __new__(unused, a_ellipsoid=_EWGS84, f=None, **name):
451 '''Return a I{wrapped} C{geodesic.Geodesic} instance from I{Karney}'s
452 Python U{geographiclib<https://PyPI.org/project/geographiclib>},
453 provide the latter is installed, otherwise an C{ImportError}.
455 @arg a_ellipsoid: An ellipsoid (L{Ellipsoid}) or datum (L{Datum})
456 or the equatorial radius I{a} of the ellipsoid (C{meter}).
457 @arg f: The flattening of the ellipsoid (C{scalar}), required if
458 B{C{a_ellipsoid}}) is C{meter}, ignored otherwise.
459 @kwarg name: Optional C{B{name}=NN} (C{str}).
460 '''
461 g = _wrapped.Geodesic(a_ellipsoid, f=f, **name)
462 _MODS.geodesicw.Geodesic = g.__class__ # overwrite class
463 return g
466class GeodesicLine(_gWrapped): # overwritten by 1st instance
467 '''I{Wrapper} around I{Karney}'s class U{geographiclib.geodesicline.GeodesicLine
468 <https://GeographicLib.SourceForge.io/Python/doc/code.html>}.
469 '''
470 def __new__(unused, geodesic, lat1, lon1, azi1, caps=Caps._STD_LINE, **name):
471 '''Return a I{wrapped} C{geodesicline.GeodesicLine} instance from I{Karney}'s
472 Python U{geographiclib<https://PyPI.org/project/geographiclib>}, provided
473 the latter is installed, otherwise an C{ImportError}.
475 @arg geodesic: A I{wrapped} L{Geodesic} instance.
476 @arg lat1: Latitude of the first points (C{degrees}).
477 @arg lon1: Longitude of the first points (C{degrees}).
478 @arg azi1: Azimuth at the first points (compass C{degrees360}).
479 @kwarg caps: Optional, bit-or'ed combination of L{Caps} values specifying
480 the capabilities the C{GeodesicLine} instance should possess,
481 i.e., which quantities can be returned by methods
482 C{GeodesicLine.Position} and C{GeodesicLine.ArcPosition}.
483 @kwarg name: Optional C{B{name}=NN} (C{str}).
484 '''
485 gl = _wrapped.GeodesicLine(geodesic, lat1, lon1, azi1, caps=caps, **name)
486 _MODS.geodesicw.GeodesicLine = gl.__class__ # overwrite class
487 return gl
490def Geodesic_WGS84():
491 '''Get the I{wrapped} L{Geodesic}C{(WGS84)} singleton, provided
492 U{geographiclib<https://PyPI.org/project/geographiclib>} is
493 installed, otherwise an C{ImportError}.
494 '''
495 return _wrapped.Geodesic_WGS84
498class _wargs(object): # see also .formy._idllmn6, .latlonBase._toCartesian3, .vector2d._numpy
499 '''(INTERNAL) C{geographiclib} arguments and exception handler.
500 '''
501 @contextmanager # <https://www.Python.org/dev/peps/pep-0343/> Examples
502 def __call__(self, inst, *args, **kwds):
503 '''(INTERNAL) Yield C{tuple(B{args})} with any errors raised
504 as L{GeodesicError} embellished with all B{C{kwds}}.
505 '''
506 try:
507 yield args
508 except Exception as x:
509 u = _DOT_(classname(inst), callername(up=2, underOK=True))
510 raise GeodesicError(unstr(u, *args, **_name1__(kwds)), cause=x)
512_wargs = _wargs() # PYCHOK singleton
515def _Intersecant2(gl, lat0, lon0, radius, tol=_TOL, form=F_D): # MCCABE in LatLonEllipsoidalBaseDI.intersecant2, .geodesicx.gxline.Intersecant2
516 # (INTERNAL) Return the intersections of a circle at C{lat0, lon0}
517 # and a geodesic line as a 2-Tuple C{(P, Q)}, each a C{GDict}.
518 r = Radius_(radius)
519 n = _DUNDER_nameof(_Intersecant2)[1:]
520 _P = gl.Position
521 _I = gl.geodesic.Inverse
523 def _R3(s):
524 # radius, intersection, etc. at distance C{s}
525 P = _P(s)
526 d = _I(lat0, lon0, P.lat2, P.lon2)
527 return fabs(d.s12), P, d
529 def _bisect2(s, c, Rc, r, tol, _R3):
530 _s = Fsum(c).fsumf_
531 for i in range(_TRIPS):
532 b = _s(s)
533 Rb, P, d = _R3(b)
534 if Rb > r:
535 break
536 else: # b >>> s and c >>> s
537 raise ValueError(Fmt.no_convergence(b, s))
538 # Rb > r > Rc
539 for i in range(_TRIPS): # 47-48
540 s = (b + c) * _0_5
541 R, P, d = _R3(s)
542 if Rb > R > r:
543 b, Rb = s, R
544 elif Rc < R < r:
545 c, Rc = s, R
546# else:
547# break
548 t = fabs(b - c)
549 if t < tol: # or fabs(R - r) < tol:
550 break
551 else: # t = min(t, fabs(R - r))
552 raise ValueError(Fmt.no_convergence(t, tol))
553 i += C.iteration # combine iterations
554 P.set_(lat0=lat0, lon0=lon0, azi0=d.azi1, iteration=i,
555 a02=d.a12, s02=d.s12, at=d.azi2 - P.azi2, name=n)
556 return P, s
558 # get the perpendicular intersection of 2 geodesics,
559 # one the plumb, pseudo-rhumb line to the other
560 C = _PlumbTo(gl, lat0, lon0, tol=tol)
561 try:
562 a = fabs(C.s02) # distance between centers
563 if a < r:
564 c = C.s12 # distance along pseudo-rhumb line
565 h = _copysign(r, c) # past half chord length
566 P, p = _bisect2( h, c, a, r, tol, _R3)
567 Q, q = _bisect2(-h, c, a, r, tol, _R3)
568 if fabs(p - q) < max(EPS, tol):
569 Q = P
570 elif a > r:
571 raise ValueError(_too_(Fmt.distant(a)))
572 else: # tangential
573 P = Q = C
574 except Exception as x:
575 t = _LLB(C.lat2, C.lon2).toStr(form=form)
576 t = _SPACE_(x, _plumb_, _to_, Fmt.PAREN(t))
577 raise IntersectionError(t, txt=None, cause=x)
579 return P, Q
582def _PlumbTo(gl, lat0, lon0, est=None, tol=_TOL):
583 # (INTERNAL) Return the I{perpendicular} intersection of
584 # a geodesic line C{gl} and geodesic from C{(lat0, lon0)}.
585 pl = _MODS.rhumb.bases._PseudoRhumbLine(gl)
586 return pl.PlumbTo(lat0, lon0, exact=gl.geodesic,
587 est=est, tol=tol)
589# **) MIT License
590#
591# Copyright (C) 2016-2025 -- mrJean1 at Gmail -- All Rights Reserved.
592#
593# Permission is hereby granted, free of charge, to any person obtaining a
594# copy of this software and associated documentation files (the "Software"),
595# to deal in the Software without restriction, including without limitation
596# the rights to use, copy, modify, merge, publish, distribute, sublicense,
597# and/or sell copies of the Software, and to permit persons to whom the
598# Software is furnished to do so, subject to the following conditions:
599#
600# The above copyright notice and this permission notice shall be included
601# in all copies or substantial portions of the Software.
602#
603# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
604# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
605# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
606# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
607# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
608# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
609# OTHER DEALINGS IN THE SOFTWARE.