
Light on Python

November 8, 2015

Contents

1 Introduction 1

2 Objects 1

2.1 Your �rst program . 1

2.2 Specifying your own classes . 2

2.3 Indentation, capitals and the use of _ . 4

3 Encapsulation 4

1 Introduction

In this course:

• You'll learn Python the way a child would, even if you are an adult. Children are experts in learning. They
learn by doing, and pick up words along the way. In this text the same approach is followed. Not everything is
de�ned or even explained. Just try to �nd what makes the example code tick by guessing and experimenting.
Regularly try to put together something yourself. Play with it. Evolution has selected playing as the preferred
way of learning. I will not claim to improve on that.

• You'll be addressed like an adult, even if you are a child. Having a separate childs world populated by comic
�gures, Santa Claus and storks bringing babies is a recent notion. Before all that, it was quite normal to have
twelve year old geniusses. But don't worry, programming can be pure fun, both for children and adults.

• You'll focus upon a very e�ective way of using Python right from the start. It is called Object Oriented
Programming. And you'll learn some Functional Programming as well. Don't bother what these words mean.
It'll become clear underway. There are also less important things to learn about Python. You can do so
gradually if you wish, while using it. Just stay curious and look things up on the Internet.

I learned to program as a child, my father was programming the �rst computers in the early 1950's. We climbed
through a window into the basement of the o�ce building of his employer, a multinational oil company. Security
was no issue then. Programming turned out to be fun indeed. And it still is, for me!

2 Objects

2.1 Your �rst program

Install Python 3.x. The Getting Started topic on www.python.org will tell you how. You will also need an editor.
If you're on Windows, Google for Notepad++. If you're on Linux or Apple, you can use Gedit. Then run the
following program:

1

1 cities = [’Londen’, ’Paris’, ’New York’, ’Berlin’] # Store 4 strings into a list
2 print (’Class is:’, type (cities)) # Verify that it is indeed a list
3

4 print (’Before sorting:’, cities) # Print the unsorted list
5 cities.sort () # Sort the list
6 print (’After sorting: ’, cities) # Print the sorted list

Listing 1: prog/sort.py

The pieces of text at the end of each line, starting with #, are comments. Comments don't do anything, they just
explain what's happening. But some explanation will help. 'London', 'Paris' and 'New York' are strings, pieces of
text. You can recognize such pieces of text by the quotes around them. All four of them are objects of type string.
Programmers would say these four objects are instances of class string, but they mean the same thing. To clarify,
a particular dog is an instance of class Dog. There may be classes for which there are no instances. Class Dinosaur
is such a class, since there are no (living) dinosaurs left. So a class in itself is merely a description of a certain
category of objects.

Line 1 of the previous program is actually shorthand for line 1 of the following program:

1 cities = list ((’Londen’, ’Paris’, ’New York’, ’Berlin’)) # Construct list object from ’tuple’ of 4 string objects
2 print (’Class is:’, type (cities)) # Verify that it is indeed a list
3

4 print (’Before sorting:’, cities) # Print the unsorted list
5 cities.sort () # Sort the list
6 print (’After sorting: ’, cities) # Print the sorted list

Listing 2: prog/sort2.py

So you construct objects of a certain class by using the name of that class, followed by (). Inside this () there maybe
things used in constructing the object. In this case the object is of class list, and there's a so called tuple of cities
inside the (). Since the tuple itself is also enclosed in (), you'll have list ((...)), as can be seen in the source code.
A tuple is an immutable group of objects. So you could never sort a tuple itself. But the list you construct from it,
is mutable, so you can sort it.

Once it works, try to make small alterations and watch what happens. Actually do this, it willl speed up learning

2.2 Specifying your own classes

Generally, in a computer program you work with many di�erent classes of objects: buttons and lists, images and
texts, movies and music tracks, aliens and spaceships, chessboards and pawns.

So, looking at the �real� world: you are an instance of class HumanBeing. Your mother is also an instance of class
HumanBeing. But the object under your table wagging its tail is an instance of class Dog. Objects can do things,
often with other objects. You're mother and you can walk the dog. And your dog can bark, as dogs do.

Lets create a Dog class in Python, and then have some actual objects (dogs) of this class (species):

1 class Dog: # The species is called Dog
2 def bark (self): # Define that this dog itself can bark
3 print (’Wraff!’) # Which means saying "Wraff"
4

5

6 your_dog = Dog () # And than lets have an actual dog
7

8 your_dog.bark () # And make it bark

Listing 3: /prog/dog.py

Now lets allow di�erent dogs to bark di�erenly by adding a constructor that puts a particular sound in a particular
dog when it's instantiated (born), and then instantiate your neighbours dog as well:

2

1 class Dog: # Define the dog species
2 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
3 self.sound = sound # Stores accepted sound into self.sound field inside new dog
4

5 def bark (self): # Define bark method
6 print (self.sound) # Prints the self.sound field stored inside this dog
7

8 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
9 neighbours_dog = Dog (’Wooff’) # Instantiate dog, provide sound "Wooff" to constructor

10

11 your_dog.bark () # Prints "Wraff"
12 neighbours_dog.bark () # Prints "Wooff"

Listing 4: /prog/neighbours_dog.py

After running this program and again experimenting with small alterations, lets expand it further. You and your
mother will walk your dog and the neighbours dog:

1 class HumanBeing: # Define the human species
2 def walk (self, dog): # The human itself walks the dog
3 print (’\nLets go!’) # \n means start on new line
4 dog.escape () # Just lets it escape
5

6 class Dog: # Define the dog species
7 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
8 self.sound = sound # Stores accepted sound into self.sound field inside new dog
9

10 def bark (self): # Define bark method
11 print (self.sound) # It prints the self.sound field stored inside this dog
12

13 def escape (self): # Define escape method
14 print (’Run to tree’) # The dog will run to the nearest tree
15 self.bark () # It then calls upon its own bark method
16 self.bark () # And yet again
17

18 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
19 neighbours_dog = Dog (’Wooff’) # Instantiate dog, provide sound "Wooff" to constructor
20

21 you = HumanBeing () # Create yourself
22 mother = HumanBeing () # Create your mother
23

24 you.walk (your_dog) # You walk your own dog
25 mother.walk (neighbours_dog) # your mother walks the neighbours dog

Listing 5: prog/walking_the_dogs

Run the above program and make sure you understand every step of it. Add some print statements printing
numbers, to �nd out in which order it's executed. Adding such print statements is a simple and e�ective method
to debug a program (�nd out where it goes wrong).

In the last example the walk method, de�ned on line 2 receives two parameters (lumps of data) to do its job: self
and dog. It then calls (activates) the escape method of that particular dog: dog.escape. Lets start following program
execution from line 24 at statement you.walk (your_dog). This results in calling (activating) the walk method with
parameter self referring to object you and parameter dog referring to object your_dog. So the object before the
dot in you.walk (your_dog) is passed to the walk method as parameter self, and your_dog is passed to the walk
method as parameter dog.

Parameters used in calling a method, like you and your_dog in line 24 are called actual parameters. Parameters
that are used in de�ning a method, like self and dog in line 2 are called formal parameters. The use of formal
parameters is necessary since you cannot predict what the names of the actual parameters will be. In line 25,
statement mother.walk (neighbours_dog) di�erent actual parameters will be substituted for the formal parameters.
Passing parameters to a method is a general way to transfer information to that method.

3

2.3 Indentation, capitals and the use of _

As can be seen from the listings, indentation is used to tell Python that something is part of what was above.

When you specify your own classes, it is comon practice to start them with a capital letter and use capitals on word
boundaries: HumanBeing.

For objects, their attributes (which are also objects) and what they can do, their methods, in Python it is common
to start with a lowercase letter and use _ on word boundaries: bark, your_dog. If you want to learn a style that is
consistent over multiple programming languages, use capitals on word boundaries for objects and methods as well,
but start always start them with a lowercase letter.

By the wayWritingClassNamesLikeThis or writingAllOtherNamesLikeThis is called Camel Case, while writing_all_other_names_like_this
is called Pothole Case.

Constructors, the special methods that are used to initialize objects (give them their start values), are always
named __init__.

3 Encapsulation

All objects of a certain class have the same attributes (data �elds) but with distinct values, e.g. objects of class
Dog have the attribute self.sound. And all objects of a certain class have the same methods (actions). For our
class Dog in the last example, those are the methods __init__, bark and escape. Objects can have dozens or even
hundreds of attributes and methods. In line 4 of the previous example, method walk of a particular instance of class
HumanBeing, referred to as self, calls method escape of a particular instance of class Dog, referred to as dog. Note
that uppercase letters and lowercase letters are considered distinct in Python. Dog is a class and dog, your_dog
and neighbours_dog are particular dogs, so objects of that class.

So in the example you.walk calls your_dog.escape and mother.walk calls neighbours_dog.escape. Verify this by
reading through the code step by step and do not proceed until you fully and thoroughly undersand this. If needed,
print some numers

In general any object can call any method of any other object. And it also can access any attribute of any other
object. So objects are highly dependent upon eachother. That may become a problem. Suppose change your
program, e.g. by renaming a method. Then all other objects that used to call this method by its old name will
not work anymore. And changing a name is just simple. You may also remove formal parameters, change their
meaning, or remove a method alltogether. In general, in a changing world, you may change your design. As your
program grows bigger and bigger, the impact of changing anything becomes disastrous.

To limit the impact of changing a design, standardisation is the answer. Suppose we have two subclasses of
HumanBeing, NatureLover and CouchPotato. Objects of class NatureLover go out with their dogs to enjoy a walk.
Objecs of class CouchPotato just deliberately let the dog escape from the doorstep, that it might walk itself while
they're watching their favorite soap.

4

