Coverage for pygeodesy/hausdorff.py: 96%

233 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2023-09-15 09:43 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Hausdorff distances. 

5 

6Classes L{Hausdorff}, L{HausdorffDegrees}, L{HausdorffRadians}, 

7L{HausdorffCosineAndoyerLambert}, L{HausdorffCosineForsytheAndoyerLambert}, 

8L{HausdorffCosineLaw}, L{HausdorffDistanceTo}, L{HausdorffEquirectangular}, 

9L{HausdorffEuclidean}, L{HausdorffFlatLocal}, L{HausdorffFlatPolar}, 

10L{HausdorffHaversine}, L{HausdorffHubeny}, L{HausdorffKarney}, 

11L{HausdorffThomas} and L{HausdorffVincentys} to compute U{Hausdorff 

12<https://WikiPedia.org/wiki/Hausdorff_distance>} distances between two 

13sets of C{LatLon}, C{NumPy}, C{tuples} or other types of points. 

14 

15Only L{HausdorffDistanceTo} -iff used with L{ellipsoidalKarney.LatLon} 

16points- and L{HausdorffKarney} requires installation of I{Charles Karney}'s 

17U{geographiclib<https://PyPI.org/project/geographiclib>}. 

18 

19Typical usage is as follows. First, create a C{Hausdorff} calculator 

20from a given set of C{LatLon} points, called the C{model} or C{template} 

21points. 

22 

23C{h = HausdorffXyz(point1s, ...)} 

24 

25Get the C{directed} or C{symmetric} Hausdorff distance to a second set 

26of C{LatLon} points, named the C{target} points, by using 

27 

28C{t6 = h.directed(point2s)} 

29 

30respectively 

31 

32C{t6 = h.symmetric(point2s)}. 

33 

34Or, use function C{hausdorff_} with a proper C{distance} function and 

35optionally a C{point} function passed as keyword arguments as follows 

36 

37C{t6 = hausdorff_(point1s, point2s, ..., distance=..., point=...)}. 

38 

39In all cases, the returned result C{t6} is a L{Hausdorff6Tuple}. 

40 

41For C{(lat, lon, ...)} points in a C{NumPy} array or plain C{tuples}, 

42wrap the points in a L{Numpy2LatLon} respectively L{Tuple2LatLon} 

43instance, more details in the documentation thereof. 

44 

45For other points, create a L{Hausdorff} sub-class with the appropriate 

46C{distance} method overloading L{Hausdorff.distance} and optionally a 

47C{point} method overriding L{Hausdorff.point} as the next example. 

48 

49 >>> from pygeodesy import Hausdorff, hypot_ 

50 >>> 

51 >>> class H3D(Hausdorff): 

52 >>> """Custom Hausdorff example. 

53 >>> """ 

54 >>> def distance(self, p1, p2): 

55 >>> return hypot_(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z) 

56 >>> 

57 >>> h3D = H3D(xyz1, ..., units="...") 

58 >>> d6 = h3D.directed(xyz2) 

59 

60Transcribed from the original SciPy U{Directed Hausdorff Code 

61<https://GitHub.com/scipy/scipy/blob/master/scipy/spatial/_hausdorff.pyx>} 

62version 0.19.0, Copyright (C) Tyler Reddy, Richard Gowers, and Max Linke, 

632016, distributed under the same BSD license as SciPy, including C{early 

64breaking} and C{random sampling} as in U{Abdel Aziz Taha, Allan Hanbury 

65"An Efficient Algorithm for Calculating the Exact Hausdorff Distance" 

66<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}, IEEE Trans. Pattern 

67Analysis Machine Intelligence (PAMI), vol 37, no 11, pp 2153-2163, Nov 2015. 

68''' 

69 

70from pygeodesy.constants import INF, NINF, _0_0 

71from pygeodesy.datums import _ellipsoidal_datum, _WGS84 

72from pygeodesy.errors import _IsnotError, PointsError, _xattr, _xkwds, _xkwds_get 

73import pygeodesy.formy as _formy 

74from pygeodesy.interns import NN, _i_, _j_, _units_ 

75# from pygeodesy.iters import points2 # from .points 

76from pygeodesy.lazily import _ALL_LAZY, _FOR_DOCS 

77from pygeodesy.named import _Named, _NamedTuple, notOverloaded, _Pass 

78# from pygeodesy.namedTuples import PhiLam2Tuple # from .points 

79from pygeodesy.points import _distanceTo, points2 as _points2, PhiLam2Tuple, radians 

80from pygeodesy.props import Property_RO, property_doc_, property_RO 

81from pygeodesy.units import Float, Number_, _xUnit, _xUnits 

82from pygeodesy.unitsBase import _Str_degrees, _Str_degrees2, _Str_meter, _Str_NN, \ 

83 _Str_radians, _Str_radians2 

84 

85# from math import radians # from .points 

86from random import Random 

87 

88__all__ = _ALL_LAZY.hausdorff 

89__version__ = '23.08.06' 

90 

91 

92class HausdorffError(PointsError): 

93 '''Hausdorff issue. 

94 ''' 

95 pass 

96 

97 

98class Hausdorff(_Named): 

99 '''Hausdorff base class, requires method L{Hausdorff.distance} to 

100 be overloaded. 

101 ''' 

102 _datum = _WGS84 

103 _func = None # formy function 

104 _kwds = {} # func_ options 

105 _model = () 

106 _seed = None 

107 _units = _Str_NN # XXX Str to _Pass and for backward compatibility 

108 

109 def __init__(self, point1s, seed=None, name=NN, units=NN, **kwds): 

110 '''New C{Hausdorff...} calculator. 

111 

112 @arg point1s: Initial set of points, aka the C{model} or 

113 C{template} (C{LatLon}[], C{Numpy2LatLon}[], 

114 C{Tuple2LatLon}[] or C{other}[]). 

115 @kwarg seed: Random sampling seed (C{any}) or C{None}, C{0} 

116 or C{False} for no U{random sampling<https:// 

117 Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

118 @kwarg name: Optional name for this interpolator (C{str}). 

119 @kwarg units: Optional, the distance units (C{Unit} or C{str}). 

120 @kwarg kwds: Optional keyword argument for distance function, 

121 retrievable with property C{kwds}. 

122 

123 @raise HausdorffError: Insufficient number of B{C{point1s}} 

124 or an invalid B{C{point1}}, B{C{seed}} 

125 or B{C{units}}. 

126 ''' 

127 _, self._model = self._points2(point1s) 

128 if seed: 

129 self.seed = seed 

130 if name: 

131 self.name = name 

132 if units: # and not self.units: 

133 self.units = units 

134 if kwds: 

135 self._kwds = kwds 

136 

137 @Property_RO 

138 def adjust(self): 

139 '''Get the adjust setting (C{bool} or C{None} if not applicable). 

140 ''' 

141 return _xkwds_get(self._kwds, adjust=None) 

142 

143 @Property_RO 

144 def datum(self): 

145 '''Get the datum of this calculator (L{Datum} or C{None} if not applicable). 

146 ''' 

147 return self._datum 

148 

149 def _datum_setter(self, datum): 

150 '''(INTERNAL) Set the datum. 

151 ''' 

152 d = datum or _xattr(self._model[0], datum=datum) 

153 if d not in (None, self._datum): # PYCHOK no cover 

154 self._datum = _ellipsoidal_datum(d, name=self.name) 

155 

156 def directed(self, point2s, early=True): 

157 '''Compute only the C{forward Hausdorff} distance. 

158 

159 @arg point2s: Second set of points, aka the C{target} (C{LatLon}[], 

160 C{Numpy2LatLon}[], C{Tuple2LatLon}[] or C{other}[]). 

161 @kwarg early: Enable or disable U{early breaking<https:// 

162 Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} (C{bool}). 

163 

164 @return: A L{Hausdorff6Tuple}C{(hd, i, j, mn, md, units)}. 

165 

166 @raise HausdorffError: Insufficient number of B{C{point2s}} or 

167 an invalid B{C{point2}}. 

168 

169 @note: See B{C{point2s}} note at L{HausdorffDistanceTo}. 

170 ''' 

171 return self._hausdorff_(point2s, False, early, self.distance) 

172 

173 def distance(self, point1, point2): 

174 '''Return the distance between B{C{point1}} and B{C{point2s}}, 

175 subject to the supplied optional keyword arguments, see 

176 property C{kwds}. 

177 ''' 

178 return self._func(point1.lat, point1.lon, 

179 point2.lat, point2.lon, **self._kwds) 

180 

181 def _hausdorff_(self, point2s, both, early, distance): 

182 _, ps2 = self._points2(point2s) 

183 return _hausdorff_(self._model, ps2, both, early, self.seed, 

184 self.units, distance, self.point) 

185 

186 @property_RO 

187 def kwds(self): 

188 '''Get the supplied, optional keyword arguments (C{dict}). 

189 ''' 

190 return self._kwds 

191 

192 def point(self, point): 

193 '''Convert a C{model} or C{target} point for the C{.distance} method. 

194 ''' 

195 return point # pass thru 

196 

197 def _points2(self, points): 

198 '''(INTERNAL) Check a set of points. 

199 ''' 

200 return _points2(points, closed=False, Error=HausdorffError) 

201 

202 @property_doc_(''' the random sampling seed (C{Random}).''') 

203 def seed(self): 

204 '''Get the random sampling seed (C{any} or C{None}). 

205 ''' 

206 return self._seed 

207 

208 @seed.setter # PYCHOK setter! 

209 def seed(self, seed): 

210 '''Set the random sampling seed (C{Random(seed)}) or 

211 C{None}, C{0} or C{False} for no U{random sampling 

212 <https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

213 

214 @raise HausdorffError: Invalid B{C{seed}}. 

215 ''' 

216 if seed: 

217 try: 

218 Random(seed) 

219 except (TypeError, ValueError) as x: 

220 raise HausdorffError(seed=seed, cause=x) 

221 self._seed = seed 

222 else: 

223 self._seed = None 

224 

225 def symmetric(self, point2s, early=True): 

226 '''Compute the combined C{forward and reverse Hausdorff} distance. 

227 

228 @arg point2s: Second set of points, aka the C{target} (C{LatLon}[], 

229 C{Numpy2LatLon}[], C{Tuple2LatLon}[] or C{other}[]). 

230 @kwarg early: Enable or disable U{early breaking<https:// 

231 Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} (C{bool}). 

232 

233 @return: A L{Hausdorff6Tuple}C{(hd, i, j, mn, md, units)}. 

234 

235 @raise HausdorffError: Insufficient number of B{C{point2s}} or 

236 an invalid B{C{point2}}. 

237 

238 @note: See B{C{point2s}} note at L{HausdorffDistanceTo}. 

239 ''' 

240 return self._hausdorff_(point2s, True, early, self.distance) 

241 

242 @property_doc_(''' the distance units (C{Unit} or C{str}).''') 

243 def units(self): 

244 '''Get the distance units (C{Unit} or C{str}). 

245 ''' 

246 return self._units 

247 

248 @units.setter # PYCHOK setter! 

249 def units(self, units): 

250 '''Set the distance units (C{Unit} or C{str}). 

251 

252 @raise TypeError: Invalid B{C{units}}. 

253 ''' 

254 self._units = _xUnits(units, Base=Float) 

255 

256 @Property_RO 

257 def wrap(self): 

258 '''Get the wrap setting (C{bool} or C{None} if not applicable). 

259 ''' 

260 return _xkwds_get(self._kwds, adjust=None) 

261 

262 

263class HausdorffDegrees(Hausdorff): 

264 '''L{Hausdorff} base class for distances from C{LatLon} 

265 points in C{degrees}. 

266 ''' 

267 _units = _Str_degrees 

268 

269 if _FOR_DOCS: 

270 __init__ = Hausdorff.__init__ 

271 directed = Hausdorff.directed 

272 symmetric = Hausdorff.symmetric 

273 

274 def distance(self, point1, point2): # PYCHOK no cover 

275 '''I{Must be overloaded} to return the distance between 

276 B{C{point1}} and B{C{point2}} in C{degrees}. 

277 ''' 

278 notOverloaded(self, point1, point2) 

279 

280 

281class HausdorffRadians(Hausdorff): 

282 '''L{Hausdorff} base class for distances from C{LatLon} 

283 points converted from C{degrees} to C{radians}. 

284 ''' 

285 _units = _Str_radians 

286 

287 if _FOR_DOCS: 

288 __init__ = Hausdorff.__init__ 

289 directed = Hausdorff.directed 

290 symmetric = Hausdorff.symmetric 

291 

292 def distance(self, point1, point2): # PYCHOK no cover 

293 '''I{Must be overloaded} to return the distance between 

294 B{C{point1}} and B{C{point2}} in C{radians}. 

295 ''' 

296 notOverloaded(self, point1, point2) 

297 

298 def point(self, point): 

299 '''Return B{C{point}} as L{PhiLam2Tuple} to maintain 

300 I{backward compatibility} of L{HausdorffRadians}. 

301 

302 @return: A L{PhiLam2Tuple}C{(phi, lam)}. 

303 ''' 

304 try: 

305 return point.philam 

306 except AttributeError: 

307 return PhiLam2Tuple(radians(point.lat), radians(point.lon)) 

308 

309 

310class _HausdorffMeterRadians(Hausdorff): 

311 '''(INTERNAL) Returning C{meter} or C{radians} depending on 

312 the optional keyword arguments supplied at instantiation 

313 of the C{Hausdorff*} sub-class. 

314 ''' 

315 _units = _Str_meter 

316 _units_ = _Str_radians 

317 

318 def directed(self, point2s, early=True): 

319 '''Overloaded method L{Hausdorff.directed} to determine 

320 the distance function and units from the optional 

321 keyword arguments given at this instantiation, see 

322 property C{kwds}. 

323 

324 @see: L{Hausdorff.directed} for other details. 

325 ''' 

326 return self._hausdorff_(point2s, False, early, _formy._radistance(self)) 

327 

328 def symmetric(self, point2s, early=True): 

329 '''Overloaded method L{Hausdorff.symmetric} to determine 

330 the distance function and units from the optional 

331 keyword arguments given at this instantiation, see 

332 property C{kwds}. 

333 

334 @see: L{Hausdorff.symmetric} for other details. 

335 ''' 

336 return self._hausdorff_(point2s, True, early, _formy._radistance(self)) 

337 

338 def _func_(self, *args, **kwds): # PYCHOK no cover 

339 notOverloaded(self, *args, **kwds) 

340 

341 

342class HausdorffCosineAndoyerLambert(_HausdorffMeterRadians): 

343 '''Compute the C{Hausdorff} distance based on the I{angular} distance 

344 in C{radians} from function L{pygeodesy.cosineAndoyerLambert}. 

345 ''' 

346 def __init__(self, point1s, seed=None, name=NN, **datum_wrap): 

347 '''New L{HausdorffCosineAndoyerLambert} calculator. 

348 

349 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

350 B{C{seed}}, B{C{name}} and other exceptions. 

351 

352 @kwarg datum_wrap: Optional keyword arguments for function 

353 L{pygeodesy.cosineAndoyerLambert}. 

354 ''' 

355 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

356 **datum_wrap) 

357 self._func = _formy.cosineAndoyerLambert 

358 self._func_ = _formy.cosineAndoyerLambert_ 

359 

360 if _FOR_DOCS: 

361 directed = Hausdorff.directed 

362 symmetric = Hausdorff.symmetric 

363 

364 

365class HausdorffCosineForsytheAndoyerLambert(_HausdorffMeterRadians): 

366 '''Compute the C{Hausdorff} distance based on the I{angular} distance 

367 in C{radians} from function L{pygeodesy.cosineForsytheAndoyerLambert}. 

368 ''' 

369 def __init__(self, point1s, seed=None, name=NN, **datum_wrap): 

370 '''New L{HausdorffCosineForsytheAndoyerLambert} calculator. 

371 

372 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

373 B{C{seed}}, B{C{name}} and other exceptions. 

374 

375 @kwarg datum_wrap: Optional keyword arguments for function 

376 L{pygeodesy.cosineAndoyerLambert}. 

377 ''' 

378 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

379 **datum_wrap) 

380 self._func = _formy.cosineForsytheAndoyerLambert 

381 self._func_ = _formy.cosineForsytheAndoyerLambert_ 

382 

383 if _FOR_DOCS: 

384 directed = Hausdorff.directed 

385 symmetric = Hausdorff.symmetric 

386 

387 

388class HausdorffCosineLaw(_HausdorffMeterRadians): 

389 '''Compute the C{Hausdorff} distance based on the I{angular} 

390 distance in C{radians} from function L{pygeodesy.cosineLaw_}. 

391 

392 @note: See note at function L{pygeodesy.vincentys_}. 

393 ''' 

394 def __init__(self, point1s, seed=None, name=NN, **radius_wrap): 

395 '''New L{HausdorffCosineLaw} calculator. 

396 

397 @kwarg radius_wrap: Optional keyword arguments for function 

398 L{pygeodesy.cosineLaw}. 

399 

400 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

401 B{C{seed}}, B{C{name}} and other exceptions. 

402 ''' 

403 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

404 **radius_wrap) 

405 self._func = _formy.cosineLaw 

406 self._func_ = _formy.cosineLaw_ 

407 

408 if _FOR_DOCS: 

409 directed = Hausdorff.directed 

410 symmetric = Hausdorff.symmetric 

411 

412 

413class HausdorffDistanceTo(Hausdorff): 

414 '''Compute the C{Hausdorff} distance based on the distance from the 

415 points' C{LatLon.distanceTo} method, conventionally in C{meter}. 

416 ''' 

417 _units = _Str_meter 

418 

419 def __init__(self, point1s, seed=None, name=NN, **distanceTo_kwds): 

420 '''New L{HausdorffDistanceTo} calculator. 

421 

422 @kwarg distanceTo_kwds: Optional keyword arguments for each 

423 B{C{point1s}}' C{LatLon.distanceTo} 

424 method. 

425 

426 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

427 B{C{seed}}, B{C{name}} and other exceptions. 

428 

429 @note: All C{model}, C{template} and C{target} B{C{points}} 

430 I{must} be instances of the same ellipsoidal or 

431 spherical C{LatLon} class. 

432 ''' 

433 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

434 **distanceTo_kwds) 

435 

436 if _FOR_DOCS: 

437 directed = Hausdorff.directed 

438 symmetric = Hausdorff.symmetric 

439 

440 def distance(self, p1, p2): 

441 '''Return the distance in C{meter}. 

442 ''' 

443 return p1.distanceTo(p2, **self._kwds) 

444 

445 def _points2(self, points): 

446 '''(INTERNAL) Check a set of points. 

447 ''' 

448 np, ps = Hausdorff._points2(self, points) 

449 return np, _distanceTo(HausdorffError, points=ps) 

450 

451 

452class HausdorffEquirectangular(Hausdorff): 

453 '''Compute the C{Hausdorff} distance based on the C{equirectangular} distance 

454 in C{radians squared} like function L{pygeodesy.equirectangular_}. 

455 ''' 

456 _units = _Str_degrees2 

457 

458 def __init__(self, point1s, seed=None, name=NN, **adjust_limit_wrap): 

459 '''New L{HausdorffEquirectangular} calculator. 

460 

461 @kwarg adjust_limit_wrap: Optional keyword arguments for function 

462 L{pygeodesy.equirectangular_} I{with default} 

463 C{B{limit}=0} for I{backward compatibility}. 

464 

465 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

466 B{C{seed}}, B{C{name}} and other exceptions. 

467 ''' 

468 adjust_limit_wrap = _xkwds(adjust_limit_wrap, limit=0) 

469 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

470 **adjust_limit_wrap) 

471 self._func = _formy._equirectangular # helper 

472 

473 if _FOR_DOCS: 

474 directed = Hausdorff.directed 

475 symmetric = Hausdorff.symmetric 

476 

477 

478class HausdorffEuclidean(_HausdorffMeterRadians): 

479 '''Compute the C{Hausdorff} distance based on the C{Euclidean} 

480 distance in C{radians} from function L{pygeodesy.euclidean_}. 

481 ''' 

482 def __init__(self, point1s, seed=None, name=NN, **adjust_wrap): 

483 '''New L{HausdorffEuclidean} calculator. 

484 

485 @kwarg adjust_radius_wrap: Optional keyword arguments for 

486 function L{pygeodesy.euclidean}. 

487 

488 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

489 B{C{seed}}, B{C{name}} and other exceptions. 

490 ''' 

491 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

492 **adjust_wrap) 

493 self._func = _formy.euclidean 

494 self._func_ = _formy.euclidean_ 

495 

496 if _FOR_DOCS: 

497 directed = Hausdorff.directed 

498 symmetric = Hausdorff.symmetric 

499 

500 

501class HausdorffExact(Hausdorff): 

502 '''Compute the C{Hausdorff} distance based on the I{angular} 

503 distance in C{degrees} from method L{GeodesicExact}C{.Inverse}. 

504 ''' 

505 _units = _Str_degrees 

506 

507 def __init__(self, point1s, seed=None, name=NN, datum=None, **wrap): 

508 '''New L{HausdorffKarney} calculator. 

509 

510 @kwarg datum: Datum to override the default C{Datums.WGS84} and 

511 first B{C{point1s}}' datum (L{Datum}, L{Ellipsoid}, 

512 L{Ellipsoid2} or L{a_f2Tuple}). 

513 @kwarg wrap: Optional keyword argument for method C{Inverse1} 

514 of class L{geodesicx.GeodesicExact}. 

515 

516 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

517 B{C{seed}}, B{C{name}} and other exceptions. 

518 

519 @raise TypeError: Invalid B{C{datum}}. 

520 ''' 

521 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

522 **wrap) 

523 self._datum_setter(datum) 

524 self._func = self.datum.ellipsoid.geodesicx.Inverse1 # note -x 

525 

526 if _FOR_DOCS: 

527 directed = Hausdorff.directed 

528 symmetric = Hausdorff.symmetric 

529 

530 

531class HausdorffFlatLocal(_HausdorffMeterRadians): 

532 '''Compute the C{Hausdorff} distance based on the I{angular} distance in 

533 C{radians squared} like function L{pygeodesy.flatLocal_}/L{pygeodesy.hubeny_}. 

534 ''' 

535 _units = _Str_radians2 

536 

537 def __init__(self, point1s, seed=None, name=NN, **datum_scaled_wrap): 

538 '''New L{HausdorffFlatLocal}/L{HausdorffHubeny} calculator. 

539 

540 @kwarg datum_scaled_wrap: Optional keyword arguments for 

541 function L{pygeodesy.flatLocal}. 

542 

543 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

544 B{C{seed}}, B{C{name}} and other exceptions. 

545 

546 @note: The distance C{units} are C{radians squared}, not C{radians}. 

547 ''' 

548 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

549 **datum_scaled_wrap) 

550 self._func = _formy.flatLocal 

551 self._func_ = self.datum.ellipsoid._hubeny_2 

552 

553 if _FOR_DOCS: 

554 directed = Hausdorff.directed 

555 symmetric = Hausdorff.symmetric 

556 

557 

558class HausdorffFlatPolar(_HausdorffMeterRadians): 

559 '''Compute the C{Hausdorff} distance based on the I{angular} 

560 distance in C{radians} from function L{pygeodesy.flatPolar_}. 

561 ''' 

562 _wrap = False 

563 

564 def __init__(self, points, seed=None, name=NN, **radius_wrap): 

565 '''New L{HausdorffFlatPolar} calculator. 

566 

567 @kwarg radius_wrap: Optional keyword arguments for function 

568 L{pygeodesy.flatPolar}. 

569 

570 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

571 B{C{seed}}, B{C{name}} and other exceptions. 

572 ''' 

573 Hausdorff.__init__(self, points, seed=seed, name=name, 

574 **radius_wrap) 

575 self._func = _formy.flatPolar 

576 self._func_ = _formy.flatPolar_ 

577 

578 if _FOR_DOCS: 

579 directed = Hausdorff.directed 

580 symmetric = Hausdorff.symmetric 

581 

582 

583class HausdorffHaversine(_HausdorffMeterRadians): 

584 '''Compute the C{Hausdorff} distance based on the I{angular} 

585 distance in C{radians} from function L{pygeodesy.haversine_}. 

586 

587 @note: See note under L{HausdorffVincentys}. 

588 ''' 

589 _wrap = False 

590 

591 def __init__(self, points, seed=None, name=NN, **radius_wrap): 

592 '''New L{HausdorffHaversine} calculator. 

593 

594 @kwarg radius_wrap: Optional keyword arguments for function 

595 L{pygeodesy.haversine}. 

596 

597 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

598 B{C{seed}}, B{C{name}} and other exceptions. 

599 ''' 

600 Hausdorff.__init__(self, points, seed=seed, name=name, 

601 **radius_wrap) 

602 self._func = _formy.haversine 

603 self._func_ = _formy.haversine_ 

604 

605 if _FOR_DOCS: 

606 directed = Hausdorff.directed 

607 symmetric = Hausdorff.symmetric 

608 

609 

610class HausdorffHubeny(HausdorffFlatLocal): # for Karl Hubeny 

611 if _FOR_DOCS: 

612 __doc__ = HausdorffFlatLocal.__doc__ 

613 __init__ = HausdorffFlatLocal.__init__ 

614 directed = HausdorffFlatLocal.directed 

615 distance = HausdorffFlatLocal.distance 

616 symmetric = HausdorffFlatLocal.symmetric 

617 

618 

619class HausdorffKarney(Hausdorff): 

620 '''Compute the C{Hausdorff} distance based on the I{angular} 

621 distance in C{degrees} from I{Karney}'s U{geographiclib 

622 <https://PyPI.org/project/geographiclib>} U{Geodesic 

623 <https://GeographicLib.SourceForge.io/Python/doc/code.html>} 

624 Inverse method. 

625 ''' 

626 _units = _Str_degrees 

627 

628 def __init__(self, point1s, datum=None, seed=None, name=NN, **wrap): 

629 '''New L{HausdorffKarney} calculator. 

630 

631 @kwarg datum: Datum to override the default C{Datums.WGS84} and 

632 first B{C{knots}}' datum (L{Datum}, L{Ellipsoid}, 

633 L{Ellipsoid2} or L{a_f2Tuple}). 

634 @kwarg wrap: Optional keyword argument for method C{Inverse1} 

635 of class L{geodesicw.Geodesic}. 

636 

637 @raise ImportError: Package U{geographiclib 

638 <https://PyPI.org/project/geographiclib>} missing. 

639 

640 @raise TypeError: Invalid B{C{datum}}. 

641 

642 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

643 B{C{seed}}, B{C{name}} and other exceptions. 

644 ''' 

645 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

646 **wrap) 

647 self._datum_setter(datum) 

648 self._func = self.datum.ellipsoid.geodesic.Inverse1 

649 

650 

651class HausdorffThomas(_HausdorffMeterRadians): 

652 '''Compute the C{Hausdorff} distance based on the I{angular} 

653 distance in C{radians} from function L{pygeodesy.thomas_}. 

654 ''' 

655 def __init__(self, point1s, seed=None, name=NN, **datum_wrap): 

656 '''New L{HausdorffThomas} calculator. 

657 

658 @kwarg datum_wrap: Optional keyword argument for function 

659 L{pygeodesy.thomas}. 

660 

661 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

662 B{C{seed}}, B{C{name}} and other exceptions. 

663 ''' 

664 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

665 **datum_wrap) 

666 self._func = _formy.thomas 

667 self._func_ = _formy.thomas_ 

668 

669 if _FOR_DOCS: 

670 directed = Hausdorff.directed 

671 symmetric = Hausdorff.symmetric 

672 

673 

674class HausdorffVincentys(_HausdorffMeterRadians): 

675 '''Compute the C{Hausdorff} distance based on the I{angular} 

676 distance in C{radians} from function L{pygeodesy.vincentys_}. 

677 

678 @note: See note at function L{pygeodesy.vincentys_}. 

679 ''' 

680 _wrap = False 

681 

682 def __init__(self, point1s, seed=None, name=NN, **radius_wrap): 

683 '''New L{HausdorffVincentys} calculator. 

684 

685 @kwarg radius_wrap: Optional keyword arguments for function 

686 L{pygeodesy.vincentys}. 

687 

688 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

689 B{C{seed}}, B{C{name}} and other exceptions. 

690 ''' 

691 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

692 **radius_wrap) 

693 self._func = _formy.vincentys 

694 self._func_ = _formy.vincentys_ 

695 

696 if _FOR_DOCS: 

697 directed = Hausdorff.directed 

698 symmetric = Hausdorff.symmetric 

699 

700 

701def _hausdorff_(ps1, ps2, both, early, seed, units, distance, point): 

702 '''(INTERNAL) Core of function L{hausdorff_} and methods C{directed} 

703 and C{symmetric} of classes C{hausdorff.Hausdorff...}. 

704 ''' 

705 # shuffling the points generally increases the 

706 # chance of an early break in the inner j loop 

707 rr = randomrangenerator(seed) if seed else range 

708 

709 hd = NINF 

710 hi = hj = m = mn = 0 

711 md = _0_0 

712 

713 # forward or forward and backward 

714 for fb in range(2 if both else 1): 

715 n = len(ps2) 

716 for i in rr(len(ps1)): 

717 p1 = point(ps1[i]) 

718 dh, dj = INF, 0 

719 for j in rr(n): 

720 p2 = point(ps2[j]) 

721 d = distance(p1, p2) 

722 if early and d < hd: 

723 break # early 

724 elif d < dh: 

725 dh, dj = d, j 

726 else: # no early break 

727 if hd < dh: 

728 hd = dh 

729 if fb: 

730 hi, hj = dj, i 

731 else: 

732 hi, hj = i, dj 

733 md += dh 

734 mn += 1 

735 m += 1 

736 # swap model and target 

737 ps1, ps2 = ps2, ps1 

738 

739 md = None if mn < m else (md / float(m)) 

740 return Hausdorff6Tuple(hd, hi, hj, m, md, units) 

741 

742 

743def _point(p): 

744 '''Default B{C{point}} callable for function L{hausdorff_}. 

745 

746 @arg p: The original C{model} or C{target} point (C{any}). 

747 

748 @return: The point, suitable for the L{hausdorff_} 

749 B{C{distance}} callable. 

750 ''' 

751 return p 

752 

753 

754def hausdorff_(model, target, both=False, early=True, seed=None, units=NN, 

755 distance=None, point=_point): 

756 '''Compute the C{directed} or C{symmetric} U{Hausdorff 

757 <https://WikiPedia.org/wiki/Hausdorff_distance>} distance between 2 sets of points 

758 with or without U{early breaking<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} 

759 and U{random sampling<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

760 

761 @arg model: First set of points (C{LatLon}[], C{Numpy2LatLon}[], 

762 C{Tuple2LatLon}[] or C{other}[]). 

763 @arg target: Second set of points (C{LatLon}[], C{Numpy2LatLon}[], 

764 C{Tuple2LatLon}[] or C{other}[]). 

765 @kwarg both: Return the C{directed} (forward only) or the C{symmetric} 

766 (combined forward and reverse) C{Hausdorff} distance (C{bool}). 

767 @kwarg early: Enable or disable U{early breaking<https://Publik.TUWien.ac.AT/ 

768 files/PubDat_247739.pdf>} (C{bool}). 

769 @kwarg seed: Random sampling seed (C{any}) or C{None}, C{0} or C{False} for no 

770 U{random sampling<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

771 @kwarg units: Optional, the distance units (C{Unit} or C{str}). 

772 @kwarg distance: Callable returning the distance between a B{C{model}} 

773 and B{C{target}} point (signature C{(point1, point2)}). 

774 @kwarg point: Callable returning the B{C{model}} or B{C{target}} point 

775 suitable for B{C{distance}} (signature C{(point)}). 

776 

777 @return: A L{Hausdorff6Tuple}C{(hd, i, j, mn, md, units)}. 

778 

779 @raise HausdorffError: Insufficient number of B{C{model}} or B{C{target}} points. 

780 

781 @raise TypeError: If B{C{distance}} or B{C{point}} is not callable. 

782 ''' 

783 if not callable(distance): 

784 raise _IsnotError(callable.__name__, distance=distance) 

785 if not callable(point): 

786 raise _IsnotError(callable.__name__, point=point) 

787 

788 _, ps1 = _points2(model, closed=False, Error=HausdorffError) # PYCHOK non-sequence 

789 _, ps2 = _points2(target, closed=False, Error=HausdorffError) # PYCHOK non-sequence 

790 return _hausdorff_(ps1, ps2, both, early, seed, units, distance, point) 

791 

792 

793class Hausdorff6Tuple(_NamedTuple): 

794 '''6-Tuple C{(hd, i, j, mn, md, units)} with the U{Hausdorff 

795 <https://WikiPedia.org/wiki/Hausdorff_distance>} distance C{hd}, 

796 indices C{i} and C{j}, the total count C{mn}, the C{I{mean} 

797 Hausdorff} distance C{md} and the class or name of both distance 

798 C{units}. 

799 

800 For C{directed Hausdorff} distances, count C{mn} is the number 

801 of model points considered. For C{symmetric Hausdorff} distances 

802 count C{mn} twice that. 

803 

804 Indices C{i} and C{j} are the C{model} respectively C{target} 

805 point with the C{hd} distance. 

806 

807 Mean distance C{md} is C{None} if an C{early break} occurred and 

808 U{early breaking<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} 

809 was enabled by keyword argument C{early=True}. 

810 ''' 

811 _Names_ = ('hd', _i_, _j_, 'mn', 'md', _units_) 

812 _Units_ = (_Pass, Number_, Number_, Number_, _Pass, _Pass) 

813 

814 def toUnits(self, **Error): # PYCHOK expected 

815 '''Overloaded C{_NamedTuple.toUnits} for C{hd} and C{md} units. 

816 ''' 

817 U = _xUnit(self.units, Float) # PYCHOK expected 

818 M = _Pass if self.md is None else U # PYCHOK expected 

819 self._Units_ = (U,) + Hausdorff6Tuple._Units_[1:4] \ 

820 + (M,) + Hausdorff6Tuple._Units_[5:] 

821 return _NamedTuple.toUnits(self, **Error) 

822 

823 

824def randomrangenerator(seed): 

825 '''Return a C{seed}ed random range function generator. 

826 

827 @arg seed: Initial, internal L{Random} state (C{hashable} 

828 or C{None}). 

829 

830 @note: L{Random} with C{B{seed} is None} seeds from the 

831 current time or from a platform-specific randomness 

832 source, if available. 

833 

834 @return: A function to generate random ranges. 

835 

836 @example: 

837 

838 >>> rrange = randomrangenerator('R') 

839 >>> for r in rrange(n): 

840 >>> ... # r is random in 0..n-1 

841 ''' 

842 R = Random(seed) 

843 

844 def _range(n, *stop_step): 

845 '''Like standard L{range}C{start, stop=..., step=...)}, 

846 except the returned values are in random order. 

847 

848 @note: Especially C{range(n)} behaves like standard 

849 L{Random.sample}C{(range(n), n)} but avoids 

850 creating a tuple with the entire C{population} 

851 and a list containing all sample values (for 

852 large C{n}). 

853 ''' 

854 if stop_step: 

855 s = range(n, *stop_step) 

856 

857 elif n > 32: 

858 r = R.randrange # Random._randbelow 

859 s = set() 

860 for _ in range(n - 32): 

861 i = r(n) 

862 while i in s: 

863 i = r(n) 

864 s.add(i) 

865 yield i 

866 s = set(range(n)) - s # [i for i in range(n) if i not in s] 

867 else: 

868 s = range(n) 

869 

870 s = list(s) 

871 R.shuffle(s) 

872 while s: 

873 yield s.pop(0) 

874 

875 return _range 

876 

877# **) MIT License 

878# 

879# Copyright (C) 2016-2023 -- mrJean1 at Gmail -- All Rights Reserved. 

880# 

881# Permission is hereby granted, free of charge, to any person obtaining a 

882# copy of this software and associated documentation files (the "Software"), 

883# to deal in the Software without restriction, including without limitation 

884# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

885# and/or sell copies of the Software, and to permit persons to whom the 

886# Software is furnished to do so, subject to the following conditions: 

887# 

888# The above copyright notice and this permission notice shall be included 

889# in all copies or substantial portions of the Software. 

890# 

891# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

892# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

893# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

894# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

895# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

896# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

897# OTHER DEALINGS IN THE SOFTWARE.