Coverage for pygeodesy/rhumbx.py: 98%
269 statements
« prev ^ index » next coverage.py v7.2.2, created at 2023-09-15 09:43 -0400
« prev ^ index » next coverage.py v7.2.2, created at 2023-09-15 09:43 -0400
2# -*- coding: utf-8 -*-
4u'''A pure Python version of I{Karney}'s C++ classes U{Rhumb
5<https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Rhumb.html>} and U{RhumbLine
6<https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1RhumbLine.html>} from
7I{GeographicLib version 2.0}.
9Class L{RhumbLine} has been enhanced with methods C{intersection2} and C{nearestOn4} to iteratively
10find the intersection of two rhumb lines, respectively the nearest point on a rumb line along a
11geodesic or perpendicular rhumb line.
13For more details, see the C++ U{GeographicLib<https://GeographicLib.SourceForge.io/C++/doc/index.html>}
14documentation, especially the U{Class List<https://GeographicLib.SourceForge.io/C++/doc/annotated.html>},
15the background information on U{Rhumb lines<https://GeographicLib.SourceForge.io/C++/doc/rhumb.html>},
16the utily U{RhumbSolve<https://GeographicLib.SourceForge.io/C++/doc/RhumbSolve.1.html>} and U{Online
17rhumb line calculations<https://GeographicLib.SourceForge.io/cgi-bin/RhumbSolve>}.
19Copyright (C) U{Charles Karney<mailto:Karney@Alum.MIT.edu>} (2014-2022) and licensed under the MIT/X11
20License. For more information, see the U{GeographicLib<https://GeographicLib.SourceForge.io>} documentation.
21'''
22# make sure int/int division yields float quotient
23from __future__ import division as _; del _ # PYCHOK semicolon
25from pygeodesy.basics import copysign0, neg, unsigned0, _zip
26from pygeodesy.constants import NAN, PI_2, _0_0s, _0_0, _0_5, \
27 _1_0, _2_0, _4_0, _720_0, _over
28# from pygeodesy.ellipsoids import _EWGS84 # from .karney
29from pygeodesy.errors import itemsorted, RhumbError, _Xorder
30from pygeodesy.fmath import hypot, hypot1
31# from pygeodesy.fsums import fsum1f_ # _MODS
32from pygeodesy.interns import NN, _COMMASPACE_
33from pygeodesy.karney import _atan2d, Caps, _diff182, GDict, _GTuple, \
34 _norm180, _EWGS84
35from pygeodesy.ktm import KTransverseMercator, _Xs, \
36 _AlpCoeffs, _BetCoeffs # PYCHOK used!
37from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS
38from pygeodesy.props import deprecated_method, Property, Property_RO, property_RO
39from pygeodesy.rhumbBase import RhumbBase, RhumbLineBase, Int, pairs, \
40 sincos2_, _update_all_rls
41# from pygeodesy.streprs import pairs # from .rhumbBase
42# from pygeodesy.units import Int # from .rhumbBase
43# from pygeodesy.utily import sincos2_ # from .rhumbBase
45from math import asinh, atan, cos, cosh, fabs, radians, sin, sinh, sqrt, tan
47__all__ = _ALL_LAZY.rhumbx
48__version__ = '23.09.15'
51class Rhumb(RhumbBase):
52 '''Class to solve the I{direct} and I{inverse rhumb} problems, based on
53 I{elliptic functions} or I{Krüger} series expansion.
55 @see: The U{Detailed Description<https://GeographicLib.SourceForge.io/C++/doc/
56 classGeographicLib_1_1Rhumb.html>} of I{Karney}'s C++ C{Rhumb Class}.
57 '''
58 _mRA = 6 # see .RAorder
60 def __init__(self, a_earth=_EWGS84, f=None, exact=True, name=NN, **RA_TMorder):
61 '''New C{rhumbx.Rhumb}.
63 @kwarg a_earth: This rhumb's earth model (L{Ellipsoid}, L{Ellipsoid2},
64 L{a_f2Tuple}, L{Datum}, 2-tuple C{(a, f)}) or the
65 (equatorial) radius (C{scalar}).
66 @kwarg f: The ellipsoid's flattening (C{scalar}), iff B{C{a_earth}} is
67 a C{scalar}, ignored otherwise.
68 @kwarg exact: If C{True}, use an addition theorem for elliptic integrals
69 to compute I{Divided differences}, otherwise use the I{Krüger}
70 series expansion (C{bool} or C{None}), see also properties
71 C{exact} and C{TMorder}.
72 @kwarg name: Optional name (C{str}).
73 @kwarg RA_TMorder: Optional keyword arguments B{C{RAorder}} and B{C{TMorder}}
74 to set the respective C{order}, see properties C{RAorder}
75 and C{TMorder} and method C{orders}.
77 @raise RhumbError: Invalid B{C{a_earth}}, B{C{f}} or B{C{RA_TMorder}}.
78 '''
79 RhumbBase.__init__(self, a_earth, f, exact, name)
80 if RA_TMorder:
81 self.orders(**RA_TMorder)
83 @Property_RO
84 def _A2(self): # Conformal2RectifyingCoeffs
85 m = self.TMorder
86 return _Xs(_AlpCoeffs, m, self.ellipsoid), m
88 @Property_RO
89 def _B2(self): # Rectifying2ConformalCoeffs
90 m = self.TMorder
91 return _Xs(_BetCoeffs, m, self.ellipsoid), m
93 def _DConformal2Rectifying(self, x, y): # radians
94 return _1_0 + (_sincosSeries(True, x, y, *self._A2) if self.f else _0_0)
96 def Direct(self, lat1, lon1, azi12, s12, outmask=Caps.LATITUDE_LONGITUDE):
97 '''Solve the I{direct rhumb} problem, optionally with the area.
99 @arg lat1: Latitude of the first point (C{degrees90}).
100 @arg lon1: Longitude of the first point (C{degrees180}).
101 @arg azi12: Azimuth of the rhumb line (compass C{degrees}).
102 @arg s12: Distance along the rhumb line from the given to
103 the destination point (C{meter}), can be negative.
105 @return: L{GDict} with 2 up to 8 items C{lat2, lon2, a12, S12,
106 lat1, lon1, azi12, s12} with the destination point's
107 latitude C{lat2} and longitude C{lon2} in C{degrees},
108 the rhumb angle C{a12} in C{degrees} and area C{S12}
109 under the rhumb line in C{meter} I{squared}.
111 @note: If B{C{s12}} is large enough that the rhumb line crosses
112 a pole, the longitude of the second point is indeterminate
113 and C{NAN} is returned for C{lon2} and area C{S12}.
115 @note: If the given point is a pole, the cosine of its latitude is
116 taken to be C{sqrt(L{EPS})}. This position is extremely
117 close to the actual pole and allows the calculation to be
118 carried out in finite terms.
119 '''
120 rl = RhumbLine(self, lat1, lon1, azi12, caps=Caps.LINE_OFF,
121 name=self.name)
122 return rl.Position(s12, outmask | self._debug) # lat2, lon2, S12
124 @deprecated_method
125 def Direct7(self, lat1, lon1, azi12, s12, outmask=Caps.LATITUDE_LONGITUDE_AREA):
126 '''DEPRECATED, use method L{Rhumb.Direct8}.
128 @return: A I{DEPRECATED} L{Rhumb7Tuple}.
129 '''
130 return self.Direct8(lat1, lon1, azi12, s12, outmask=outmask)._to7Tuple()
132 def _DIsometrict(self, phix, phiy, tphix, tphiy, _Dtan_phix_phiy):
133 E = self.ellipsoid
134 return _Dtan_phix_phiy * _Dasinh(tphix, tphiy) - \
135 _Dsin(phix, phiy) * _DeatanhE(sin(phix), sin(phiy), E)
137 def _DIsometric2Rectifyingd(self, psix, psiy): # degrees
138 if self.exact:
139 E = self.ellipsoid
140 phix, phiy, tphix, tphiy = _Eaux4(E.auxIsometric, psix, psiy)
141 t = _Dtant(phix - phiy, tphix, tphiy)
142 r = _over(self._DRectifyingt( tphix, tphiy, t),
143 self._DIsometrict(phix, phiy, tphix, tphiy, t))
144 else:
145 x, y = radians(psix), radians(psiy)
146 r = self._DConformal2Rectifying(_gd(x), _gd(y)) * _Dgd(x, y)
147 return r
149 def _DRectifyingt(self, tphix, tphiy, _Dtan_phix_phiy):
150 E = self.ellipsoid
151 tbetx = E.f1 * tphix
152 tbety = E.f1 * tphiy
153 return (E.f1 * _Dtan_phix_phiy * E.b * PI_2
154 * _DfEt( tbetx, tbety, self._eF)
155 * _Datan(tbetx, tbety)) / E.L
157 def _DRectifying2Conformal(self, x, y): # radians
158 return _1_0 - (_sincosSeries(True, x, y, *self._B2) if self.f else _0_0)
160 def _DRectifying2Isometricd(self, mux, muy): # degrees
161 E = self.ellipsoid
162 phix, phiy, tphix, tphiy = _Eaux4(E.auxRectifying, mux, muy)
163 if self.exact:
164 t = _Dtant(phix - phiy, tphix, tphiy)
165 r = _over(self._DIsometrict(phix, phiy, tphix, tphiy, t),
166 self._DRectifyingt( tphix, tphiy, t))
167 else:
168 r = self._DRectifying2Conformal(radians(mux), radians(muy)) * \
169 _Dgdinv(E.es_taupf(tphix), E.es_taupf(tphiy))
170 return r
172 @Property_RO
173 def _eF(self):
174 '''(INTERNAL) Get the ellipsoid's elliptic function.
175 '''
176 # .k2 = 0.006739496742276434
177 return self._E._elliptic_e12 # _MODS.elliptic.Elliptic(-self._E._e12)
179 def Inverse(self, lat1, lon1, lat2, lon2, outmask=Caps.AZIMUTH_DISTANCE):
180 '''Solve the I{inverse rhumb} problem.
182 @arg lat1: Latitude of the first point (C{degrees90}).
183 @arg lon1: Longitude of the first point (C{degrees180}).
184 @arg lat2: Latitude of the second point (C{degrees90}).
185 @arg lon2: Longitude of the second point (C{degrees180}).
187 @return: L{GDict} with 5 to 8 items C{azi12, s12, a12, S12,
188 lat1, lon1, lat2, lon2}, the rhumb line's azimuth C{azi12}
189 in compass C{degrees} between C{-180} and C{+180}, the
190 distance C{s12} and rhumb angle C{a12} between both points
191 in C{meter} respectively C{degrees} and the area C{S12}
192 under the rhumb line in C{meter} I{squared}.
194 @note: The shortest rhumb line is found. If the end points are
195 on opposite meridians, there are two shortest rhumb lines
196 and the East-going one is chosen.
198 @note: If either point is a pole, the cosine of its latitude is
199 taken to be C{sqrt(L{EPS})}. This position is extremely
200 close to the actual pole and allows the calculation to be
201 carried out in finite terms.
202 '''
203 r, Cs = GDict(name=self.name), Caps
204 if (outmask & Cs.AZIMUTH_DISTANCE_AREA):
205 r.set_(lat1=lat1, lon1=lon1, lat2=lat2, lon2=lon2)
206 E = self.ellipsoid
207 psi1 = E.auxIsometric(lat1)
208 psi2 = E.auxIsometric(lat2)
209 psi12 = psi2 - psi1
210 lon12, _ = _diff182(lon1, lon2)
211 if (outmask & Cs.AZIMUTH):
212 r.set_(azi12=_atan2d(lon12, psi12))
213 if (outmask & Cs.DISTANCE):
214 a12 = hypot(lon12, psi12) * self._DIsometric2Rectifyingd(psi2, psi1)
215 s12 = a12 * E._L_90
216 r.set_(s12=s12, a12=copysign0(a12, s12))
217 if (outmask & Cs.AREA):
218 r.set_(S12=self._S12d(lon12, psi2, psi1))
219 if ((outmask | self._debug) & Cs._DEBUG_INVERSE): # PYCHOK no cover
220 r.set_(a=E.a, f=E.f, f1=E.f1, L=E.L,
221 b=E.b, e=E.e, e2=E.e2, k2=self._eF.k2,
222 lon12=lon12, psi1=psi1, exact=self.exact,
223 psi12=psi12, psi2=psi2)
224 return r
226# def Inverse3(self, lat1, lon1, lat2, lon2): # PYCHOK outmask
227# '''Return the distance in C{meter} and the forward and
228# reverse azimuths (initial and final bearing) in C{degrees}.
229#
230# @return: L{Distance3Tuple}C{(distance, initial, final)}.
231# '''
232# r = self.Inverse(lat1, lon1, lat2, lon2)
233# return Distance3Tuple(r.s12, r.azi12, r.azi12)
235 @deprecated_method
236 def Inverse7(self, lat1, lon1, azi12, s12, outmask=Caps.AZIMUTH_DISTANCE_AREA):
237 '''DEPRECATED, use method L{Rhumb.Inverse8}.
239 @return: A I{DEPRECATED} L{Rhumb7Tuple}.
240 '''
241 return self.Inverse8(lat1, lon1, azi12, s12, outmask=outmask)._to7Tuple()
243 def _meanSinXi(self, x, y): # radians
244 s = _Dlog(cosh(x), cosh(y)) * _Dcosh(x, y)
245 if self.f:
246 s += _sincosSeries(False, _gd(x), _gd(y), *self._RA2) * _Dgd(x, y)
247 return s
249 @deprecated_method
250 def orders(self, RAorder=None, TMorder=None): # PYCHOK expected
251 '''DEPRECATED, use properties C{RAorder} and/or C{TMorder}.
253 Get and set the I{RAorder} and/or I{TMorder}.
255 @kwarg RAorder: I{Rhumb Area} order (C{int}, 4, 5, 6, 7
256 or 8).
257 @kwarg TMorder: I{Transverse Mercator} order (C{int}, 4,
258 5, 6, 7 or 8).
260 @return: L{RhumbOrder2Tuple}C{(RAorder, TMorder)} with
261 the previous C{RAorder} and C{TMorder} setting.
262 '''
263 t = RhumbOrder2Tuple(self.RAorder, self.TMorder)
264 if RAorder not in (None, t.RAorder): # PYCHOK attr
265 self.RAorder = RAorder
266 if TMorder not in (None, t.TMorder): # PYCHOK attr
267 self.TMorder = TMorder
268 return t
270 @Property_RO
271 def _RA2(self):
272 # for WGS84: (0, -0.0005583633519275459, -3.743803759172812e-07, -4.633682270824446e-10,
273 # RAorder 6: -7.709197397676237e-13, -1.5323287106694307e-15, -3.462875359099873e-18)
274 m = self.RAorder
275 return _Xs(_RACoeffs, m, self.ellipsoid, RA=True), m
277 @Property
278 def RAorder(self):
279 '''Get the I{Rhumb Area} order (C{int}, 4, 5, 6, 7 or 8).
280 '''
281 return self._mRA
283 @RAorder.setter # PYCHOK setter!
284 def RAorder(self, order):
285 '''Set the I{Rhumb Area} order (C{int}, 4, 5, 6, 7 or 8).
286 '''
287 n = _Xorder(_RACoeffs, RhumbError, RAorder=order)
288 if self._mRA != n:
289 _update_all_rls(self)
290 self._mRA = n
292 @Property_RO
293 def _RhumbLine(self):
294 '''(INTERNAL) Get this module's C{RhumbLine} class.
295 '''
296 return RhumbLine
298 def _S12d(self, lon12, psi2, psi1): # degrees
299 '''(INTERNAL) Compute the area C{S12}.
300 '''
301 r = (self.ellipsoid.areax if self.exact else
302 self.ellipsoid.area) * lon12 / _720_0
303 r *= self._meanSinXi(radians(psi2), radians(psi1))
304 return r
306 @Property
307 def TMorder(self):
308 '''Get the I{Transverse Mercator} order (C{int}, 4, 5, 6, 7 or 8).
309 '''
310 return self._mTM
312 @TMorder.setter # PYCHOK setter!
313 def TMorder(self, order):
314 '''Set the I{Transverse Mercator} order (C{int}, 4, 5, 6, 7 or 8).
316 @note: Setting C{TMorder} turns property C{exact} off.
317 '''
318 self.exact = self._TMorder(order)
320 def toStr(self, prec=6, sep=_COMMASPACE_, **unused): # PYCHOK signature
321 '''Return this C{Rhumb} as string.
323 @kwarg prec: The C{float} precision, number of decimal digits (0..9).
324 Trailing zero decimals are stripped for B{C{prec}} values
325 of 1 and above, but kept for negative B{C{prec}} values.
326 @kwarg sep: Separator to join (C{str}).
328 @return: Tuple items (C{str}).
329 '''
330 d = dict(ellipsoid=self.ellipsoid, RAorder=self.RAorder,
331 exact=self.exact, TMorder=self.TMorder)
332 return sep.join(pairs(itemsorted(d, asorted=False), prec=prec))
335class RhumbLine(RhumbLineBase):
336 '''Compute one or several points on a single rhumb line.
338 Class C{RhumbLine} facilitates the determination of points on
339 a single rhumb line. The starting point (C{lat1}, C{lon1})
340 and the azimuth C{azi12} are specified once.
342 Method C{RhumbLine.Position} returns the location of an other
343 point at distance C{s12} along and the area C{S12} under the
344 rhumb line.
346 Method C{RhumbLine.intersection2} finds the intersection between
347 two rhumb lines.
349 Method C{RhumbLine.nearestOn4} computes the nearest point on and
350 the distance to a rhumb line in different ways.
351 '''
352 _Rhumb = Rhumb # rhumbx.Rhumb
354 def __init__(self, rhumb, lat1=0, lon1=0, azi12=None, **caps_name): # PYCHOK signature
355 '''New C{rhumbx.RhumbLine}.
357 @arg rhumb: The rhumb reference (C{rhumbx.Rhumb}).
358 @kwarg lat1: Latitude of the start point (C{degrees90}).
359 @kwarg lon1: Longitude of the start point (C{degrees180}).
360 @kwarg azi12: Azimuth of this rhumb line (compass C{degrees}).
361 @kwarg caps_name: Optional keyword arguments C{B{name}=NN} and
362 C{B{caps}=0}, a bit-or'ed combination of L{Caps}
363 values specifying the required capabilities. Include
364 C{Caps.LINE_OFF} if updates to the B{C{rhumb}} should
365 I{not} be reflected in this rhumb line.
366 '''
367 RhumbLineBase.__init__(self, rhumb, lat1, lon1, azi12, **caps_name)
369 @Property_RO
370 def _mu1(self):
371 '''(INTERNAL) Get the I{rectifying auxiliary} latitude C{mu} (C{degrees}).
372 '''
373 return self.ellipsoid.auxRectifying(self.lat1)
375 def Position(self, s12, outmask=Caps.LATITUDE_LONGITUDE):
376 '''Compute a point at a given distance on this rhumb line.
378 @arg s12: The distance along this rhumb between its point and
379 the other point (C{meters}), can be negative.
380 @kwarg outmask: Bit-or'ed combination of L{Caps} values specifying
381 the quantities to be returned.
383 @return: L{GDict} with 4 to 8 items C{azi12, a12, s12, S12, lat2,
384 lon2, lat1, lon1} with latitude C{lat2} and longitude
385 C{lon2} of the point in C{degrees}, the rhumb angle C{a12}
386 in C{degrees} from the start point of and the area C{S12}
387 under this rhumb line in C{meter} I{squared}.
389 @note: If B{C{s12}} is large enough that the rhumb line crosses a
390 pole, the longitude of the second point is indeterminate and
391 C{NAN} is returned for C{lon2} and area C{S12}.
393 If the first point is a pole, the cosine of its latitude is
394 taken to be C{sqrt(L{EPS})}. This position is extremely
395 close to the actual pole and allows the calculation to be
396 carried out in finite terms.
397 '''
398 r, Cs = GDict(name=self.name), Caps
399 if (outmask & Cs.LATITUDE_LONGITUDE_AREA):
400 E, R = self.ellipsoid, self.rhumb
401 a12 = s12 / E._L_90
402 mu12 = self._calp * a12
403 mu2, x90 = self._mu22(mu12, self._mu1)
404 if x90: # PYCHOK no cover
405 lat2 = E.auxRectifying(mu2, inverse=True)
406 lon2 = NAN
407 if (outmask & Cs.AREA):
408 r.set_(S12=NAN)
409 else:
410 psi2 = self._psi1
411 if self._calp:
412 lat2 = E.auxRectifying(mu2, inverse=True)
413 psi12 = R._DRectifying2Isometricd(mu2,
414 self._mu1) * mu12
415 lon2 = psi12 * self._salp / self._calp
416 psi2 += psi12
417 else: # PYCHOK no cover
418 lat2 = self.lat1
419 lon2 = self._salp * s12 / self._r1rad
420 if (outmask & Cs.AREA):
421 S12 = R._S12d(lon2, self._psi1, psi2)
422 r.set_(S12=unsigned0(S12)) # like .gx
423 if (outmask & Cs.LONGITUDE):
424 if (outmask & Cs.LONG_UNROLL):
425 lon2 += self.lon1
426 else:
427 lon2 = _norm180(self._lon12 + lon2)
428 r.set_(azi12=self.azi12, s12=s12, a12=a12)
429 if (outmask & Cs.LATITUDE):
430 r.set_(lat2=lat2, lat1=self.lat1)
431 if (outmask & Cs.LONGITUDE):
432 r.set_(lon2=lon2, lon1=self.lon1)
433 if ((outmask | self._debug) & Cs._DEBUG_DIRECT_LINE): # PYCHOK no cover
434 r.set_(a=E.a, f=E.f, f1=E.f1, L=E.L, exact=R.exact,
435 b=E.b, e=E.e, e2=E.e2, k2=R._eF.k2,
436 calp=self._calp, mu1 =self._mu1, mu12=mu12,
437 salp=self._salp, psi1=self._psi1, mu2=mu2)
438 return r
440 @Property_RO
441 def _psi1(self):
442 '''(INTERNAL) Get the I{isometric auxiliary} latitude C{psi} (C{degrees}).
443 '''
444 return self.ellipsoid.auxIsometric(self.lat1)
446 @property_RO
447 def RAorder(self):
448 '''Get this rhumb line's I{Rhumb Area} order (C{int}, 4, 5, 6, 7 or 8).
449 '''
450 return self.rhumb.RAorder
452 @Property_RO
453 def _r1rad(self): # PYCHOK no cover
454 '''(INTERNAL) Get this rhumb line's parallel I{circle radius} (C{meter}).
455 '''
456 return radians(self.ellipsoid.circle4(self.lat1).radius)
459class RhumbOrder2Tuple(_GTuple):
460 '''2-Tuple C{(RAorder, TMorder)} with a I{Rhumb Area} and
461 I{Transverse Mercator} order, both C{int}, DEPRECATED.
462 '''
463 _Names_ = (Rhumb.RAorder.name, Rhumb.TMorder.name)
464 _Units_ = ( Int, Int)
467# Use I{Divided Differences} to determine (mu2 - mu1) / (psi2 - psi1) accurately.
468# Definition: _Df(x,y,d) = (f(x) - f(y)) / (x - y), @see W. M. Kahan & R. J.
469# Fateman, "Symbolic computation of Divided Differences", SIGSAM Bull. 33(3),
470# 7-28 (1999). U{ACM<https://DL.ACM.org/doi/pdf/10.1145/334714.334716> and @see
471# U{UCB<https://www.CS.Berkeley.edu/~fateman/papers/divdiff.pdf>}, Dec 8, 1999.
473def _Dasinh(x, y):
474 hx = hypot1(x)
475 d = x - y
476 if d:
477 hx *= y
478 hy = x * hypot1(y)
479 t = (d * (x + y) / (hy + hx)) if (x * y) > 0 else (hy - hx)
480 r = asinh(t) / d
481 else:
482 r = _1_0 / hx
483 return r
486def _Datan(x, y):
487 xy = x * y
488 r = xy + _1_0
489 d = x - y
490 if d: # 2 * xy > -1 == 2 * xy + 1 > 0 == xy + r > 0 == xy > -r
491 r = (atan(d / r) if xy > -r else (atan(x) - atan(y))) / d
492 else:
493 r = _1_0 / r
494 return r
497def _Dcosh(x, y):
498 return _Dsincos(x, y, sinh, sinh)
501def _DeatanhE(x, y, E): # see .albers._Datanhee
502 # Deatanhe(x, y) = eatanhe((x - y) / (1 - e^2 * x * y)) / (x - y)
503 e = _1_0 - E.e2 * x * y
504 if e: # assert not isnear0(e)
505 d = x - y
506 e = (E._es_atanh(d / e) / d) if d else (E.e2 / e)
507 return e
510def _DfEt(tx, ty, eF): # tangents
511 # eF = Elliptic(-E.e12) # -E.e2 / (1 - E.e2)
512 r, x, y, = _1_0, atan(tx), atan(ty)
513 d = x - y
514 if (x * y) > 0:
515 # See U{DLMF<https://DLMF.NIST.gov/19.11>}: 19.11.2 and 19.11.4
516 # letting theta -> x, phi -> -y, psi -> z
517 # (E(x) - E(y)) / d = E(z)/d - k2 * sin(x) * sin(y) * sin(z)/d
518 # tan(z/2) = (sin(x)*Delta(y) - sin(y)*Delta(x)) / (cos(x) + cos(y))
519 # = d * Dsin(x,y) * (sin(x) + sin(y))/(cos(x) + cos(y)) /
520 # (sin(x)*Delta(y) + sin(y)*Delta(x))
521 # = t = d * Dt
522 # sin(z) = 2*t/(1+t^2); cos(z) = (1-t^2)/(1+t^2)
523 # Alt (this only works for |z| <= pi/2 -- however, this conditions
524 # holds if x*y > 0):
525 # sin(z) = d * Dsin(x,y) * (sin(x) + sin(y)) /
526 # (sin(x)*cos(y)*Delta(y) + sin(y)*cos(x)*Delta(x))
527 # cos(z) = sqrt((1-sin(z))*(1+sin(z)))
528 sx, cx, sy, cy = sincos2_(x, y)
529 D = (cx + cy) * (eF.fDelta(sy, cy) * sx +
530 eF.fDelta(sx, cx) * sy)
531 D = (sx + sy) * _Dsin(x, y) / D
532 t = D * d
533 t2 = _1_0 + t**2
534 D *= _2_0 / t2
535 s = D * d
536 if s:
537 c = (t + _1_0) * (_1_0 - t) / t2
538 r = eF.fE(s, c, eF.fDelta(s, c)) / s
539 r = D * (r - eF.k2 * sx * sy)
540 elif d:
541 r = (eF.fE(x) - eF.fE(y)) / d
542 return r
545def _Dgd(x, y):
546 return _Datan(sinh(x), sinh(y)) * _Dsinh(x, y)
549def _Dgdinv(x, y): # x, y are tangents
550 return _Dasinh(x, y) / _Datan(x, y)
553def _Dlog(x, y):
554 d = (x - y) * _0_5
555 # Changed atanh(t / (x + y)) to asinh(t / (2 * sqrt(x*y))) to
556 # avoid taking atanh(1) when x is large and y is 1. This also
557 # fixes bogus results being returned for the area when an endpoint
558 # is at a pole. N.B. this routine is invoked with positive x
559 # and y, so the sqrt is always taken of a positive quantity.
560 return (asinh(d / sqrt(x * y)) / d) if d else (_1_0 / x)
563def _Dsin(x, y):
564 return _Dsincos(x, y, sin, cos)
567def _Dsincos(x, y, sin_, cos_):
568 r = cos_((x + y) * _0_5)
569 d = (x - y) * _0_5
570 if d:
571 r *= sin_(d) / d
572 return r
575def _Dsinh(x, y):
576 return _Dsincos(x, y, sinh, cosh)
579def _Dtan(x, y): # PYCHOK no cover
580 return _Dtant(x - y, tan(x), tan(y))
583def _Dtant(dxy, tx, ty):
584 txy = tx * ty
585 r = txy + _1_0
586 if dxy: # 2 * txy > -1 == 2 * txy + 1 > 0 == txy + r > 0 == txy > -r
587 r = ((tan(dxy) * r) if txy > -r else (tx - ty)) / dxy
588 return r
591def _Eaux4(E_aux, mu_psi_x, mu_psi_y): # degrees
592 # get inverse auxiliary lats in radians and tangents
593 phix = radians(E_aux(mu_psi_x, inverse=True))
594 phiy = radians(E_aux(mu_psi_y, inverse=True))
595 return phix, phiy, tan(phix), tan(phiy)
598def _gd(x):
599 return atan(sinh(x))
602def _sincosSeries(sinp, x, y, C, n):
603 # N.B. C[] has n+1 elements of which
604 # C[0] is ignored and n >= 0
605 # Use Clenshaw summation to evaluate
606 # m = (g(x) + g(y)) / 2 -- mean value
607 # s = (g(x) - g(y)) / (x - y) -- average slope
608 # where
609 # g(x) = sum(C[j] * SC(2 * j * x), j = 1..n)
610 # SC = sinp ? sin : cos
611 # CS = sinp ? cos : sin
612 # ...
613 d, _neg = (x - y), neg
614 sp, cp, sd, cd = sincos2_(x + y, d)
615 sd = (sd / d) if d else _1_0
616 s = _neg(sp * sd) # negative
617 # 2x2 matrices in row-major order
618 a1 = s * d**2
619 a2 = s * _4_0
620 a0 = a3 = _2_0 * cp * cd # m
621 b2 = b1 = _0_0s(4)
622 if n > 0:
623 b1 = C[n], _0_0, _0_0, C[n]
625 _fsum = _MODS.fsums.fsum1f_
626 for j in range(n - 1, 0, -1): # C[0] unused
627 b1, b2, Cj = b2, b1, C[j]
628 # b1 = a * b2 - b1 + C[j] * I
629 m0, m1, m2, m3 = b2
630 n0, n1, n2, n3 = map(_neg, b1)
631 b1 = (_fsum(a0 * m0, a1 * m2, n0, Cj),
632 _fsum(a0 * m1, a1 * m3, n1),
633 _fsum(a2 * m0, a3 * m2, n2),
634 _fsum(a2 * m1, a3 * m3, n3, Cj))
635 # Here are the full expressions for m and s
636 # f01, f02, f11, f12 = (0, 0, cd * sp, 2 * sd * cp) if sinp else \
637 # (1, 0, cd * cp, -2 * sd * sp)
638 # m = -b2[1] * f02 + (C[0] - b2[0]) * f01 + b1[0] * f11 + b1[1] * f12
639 # s = -b2[2] * f01 + (C[0] - b2[3]) * f02 + b1[2] * f11 + b1[3] * f12
640 cd *= b1[2]
641 sd *= b1[3] * _2_0
642 s = _fsum(cd * sp, sd * cp) if sinp else \
643 _fsum(cd * cp, _neg(sd * sp), _neg(b2[2]))
644 return s
647_RACoeffs = { # Generated by Maxima on 2015-05-15 08:24:04-04:00
648 4: ( # GEOGRAPHICLIB_RHUMBAREA_ORDER == 4
649 691, 7860, -20160, 18900, 0, 56700, # R[0]/n^0, polynomial(n), order 4
650 1772, -5340, 6930, -4725, 14175, # R[1]/n^1, polynomial(n), order 3
651 -1747, 1590, -630, 4725, # PYCHOK R[2]/n^2, polynomial(n), order 2
652 104, -31, 315, # R[3]/n^3, polynomial(n), order 1
653 -41, 420), # PYCHOK R[4]/n^4, polynomial(n), order 0, count = 20
654 5: ( # GEOGRAPHICLIB_RHUMBAREA_ORDER == 5
655 -79036, 22803, 259380, -665280, 623700, 0, 1871100, # PYCHOK R[0]/n^0, polynomial(n), order 5
656 41662, 58476, -176220, 228690, -155925, 467775, # PYCHOK R[1]/n^1, polynomial(n), order 4
657 18118, -57651, 52470, -20790, 155925, # PYCHOK R[2]/n^2, polynomial(n), order 3
658 -23011, 17160, -5115, 51975, # PYCHOK R[3]/n^3, polynomial(n), order 2
659 5480, -1353, 13860, # PYCHOK R[4]/n^4, polynomial(n), order 1
660 -668, 5775), # PYCHOK R[5]/n^5, polynomial(n), order 0, count = 27
661 6: ( # GEOGRAPHICLIB_RHUMBAREA_ORDER == 6
662 128346268, -107884140, 31126095, 354053700, -908107200, 851350500, 0, 2554051500, # R[0]/n^0, polynomial(n), order 6
663 -114456994, 56868630, 79819740, -240540300, 312161850, -212837625, 638512875, # PYCHOK R[1]/n^1, polynomial(n), order 5
664 51304574, 24731070, -78693615, 71621550, -28378350, 212837625, # R[2]/n^2, polynomial(n), order 4
665 1554472, -6282003, 4684680, -1396395, 14189175, # R[3]/n^3, polynomial(n), order 3
666 -4913956, 3205800, -791505, 8108100, # PYCHOK R[4]/n^4, polynomial(n), order 2
667 1092376, -234468, 2027025, # R[5]/n^5, polynomial(n), order 1
668 -313076, 2027025), # PYCHOK R[6]/n^6, polynomial(n), order 0, count = 35
669 7: ( # GEOGRAPHICLIB_RHUMBAREA_ORDER == 7
670 -317195588, 385038804, -323652420, 93378285, 1062161100, -2724321600, 2554051500, 0, 7662154500, # PYCHOK R[0]/n^0, polynomial(n), order 7
671 258618446, -343370982, 170605890, 239459220, -721620900, 936485550, -638512875, 1915538625, # PYCHOK R[1]/n^1, polynomial(n), order 6
672 -248174686, 153913722, 74193210, -236080845, 214864650, -85135050, 638512875, # PYCHOK R[2]/n^2, polynomial(n), order 5
673 114450437, 23317080, -94230045, 70270200, -20945925, 212837625, # PYCHOK R[3]/n^3, polynomial(n), order 4
674 15445736, -103193076, 67321800, -16621605, 170270100, # PYCHOK R[4]/n^4, polynomial(n), order 3
675 -27766753, 16385640, -3517020, 30405375, # PYCHOK R[4]/n^4, polynomial(n), order 3
676 4892722, -939228, 6081075, # PYCHOK R[4]/n^4, polynomial(n), order 3
677 -3189007, 14189175), # PYCHOK R[7]/n^7, polynomial(n), order 0, count = 44
678 8: ( # GEOGRAPHICLIB_RHUMBAREA_ORDER == 8
679 71374704821, -161769749880, 196369790040, -165062734200, 47622925350, 541702161000, -1389404016000, 1302566265000, 0, 3907698795000, # R[0]/n^0, polynomial(n), order 8
680 -13691187484, 65947703730, -87559600410, 43504501950, 61062101100, -184013329500, 238803815250, -162820783125, 488462349375, # PYCHOK R[1]/n^1, polynomial(n), order 7
681 30802104839, -63284544930, 39247999110, 18919268550, -60200615475, 54790485750, -21709437750, 162820783125, # R[2]/n^2, polynomial(n), order 6
682 -8934064508, 5836972287, 1189171080, -4805732295, 3583780200, -1068242175, 10854718875, # PYCHOK R[3]/n^3, polynomial(n), order 5
683 50072287748, 3938662680, -26314234380, 17167059000, -4238509275, 43418875500, # R[4]/n^4, polynomial(n), order 4
684 359094172, -9912730821, 5849673480, -1255576140, 10854718875, # R[5]/n^5, polynomial(n), order 3
685 -16053944387, 8733508770, -1676521980, 10854718875, # PYCHOK R[6]/n^6, polynomial(n), order 2
686 930092876, -162639357, 723647925, # R[7]/n^7, polynomial(n), order 1
687 -673429061, 1929727800) # PYCHOK R[8]/n^8, polynomial(n), order 0, count = 54
688}
690__all__ += _ALL_DOCS(Caps, Rhumb, RhumbLine)
692if __name__ == '__main__':
694 from pygeodesy.lazily import printf
696 def _re(fmt, r3, x3):
697 e3 = []
698 for r, x in _zip(r3, x3): # strict=True
699 e = fabs(r - x) / fabs(x)
700 e3.append('%.g' % (e,))
701 printf((fmt % r3) + ' rel errors: ' + ', '.join(e3))
703 # <https://GeographicLib.SourceForge.io/cgi-bin/RhumbSolve> version 2.0
704 rhumb = Rhumb(exact=True) # WGS84 default
705 printf('# %r\n', rhumb)
706 r = rhumb.Direct8(40.6, -73.8, 51, 5.5e6) # from JFK about NE
707 _re('# JFK NE lat2=%.8f, lon2=%.8f, S12=%.1f', (r.lat2, r.lon2, r.S12), (71.68889988, 0.25551982, 44095641862956.148438))
708 r = rhumb.Inverse8(40.6, -73.8, 51.6, -0.5) # JFK to LHR
709 _re('# JFK-LHR azi12=%.8f, s12=%.3f S12=%.1f', (r.azi12, r.s12, r.S12), (77.76838971, 5771083.383328, 37395209100030.367188))
710 r = rhumb.Inverse8(40.6, -73.8, 35.8, 140.3) # JFK to Tokyo Narita
711 _re('# JFK-NRT azi12=%.8f, s12=%.3f S12=%.1f', (r.azi12, r.s12, r.S12), (-92.388887981699639, 12782581.0676841792, -63760642939072.492))
713# % python3 -m pygeodesy.rhumbx
715# Rhumb(RAorder=6, TMorder=6, ellipsoid=Ellipsoid(name='WGS84', a=6378137, b=6356752.31424518, f_=298.25722356, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367449.14582341, L=10001965.72931272, R1=6371008.77141506, R2=6371007.18091847, R3=6371000.79000916, Rbiaxial=6367453.63451633, Rtriaxial=6372797.5559594), exact=True)
717# JFK NE lat2=71.68889988, lon2=0.25551982, S12=44095641862956.1 rel errors: 4e-11, 2e-08, 5e-16
718# JFK-LHR azi12=77.76838971, s12=5771083.383 S12=37395209100030.4 rel errors: 3e-12, 5e-15, 0
719# JFK-NRT azi12=-92.38888798, s12=12782581.068 S12=-63760642939072.5 rel errors: 2e-16, 3e-16, 0
721# **) MIT License
722#
723# Copyright (C) 2022-2023 -- mrJean1 at Gmail -- All Rights Reserved.
724#
725# Permission is hereby granted, free of charge, to any person obtaining a
726# copy of this software and associated documentation files (the "Software"),
727# to deal in the Software without restriction, including without limitation
728# the rights to use, copy, modify, merge, publish, distribute, sublicense,
729# and/or sell copies of the Software, and to permit persons to whom the
730# Software is furnished to do so, subject to the following conditions:
731#
732# The above copyright notice and this permission notice shall be included
733# in all copies or substantial portions of the Software.
734#
735# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
736# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
737# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
738# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
739# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
740# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
741# OTHER DEALINGS IN THE SOFTWARE.