
Hadoop Inspector

Ken Farmer
William Farmer

August 14, 2015



Abstract

As the complexity and number of data feeds grow, data quality emerges as one of the chief
challenges. Hadoop Inspector is a data quality and health analyzer intended to dramatically
improve the quality and manageability of Hadoop environments.

Hadoop Inspector can be scheduled to periodically scan an environment with user-supplied
checks: either violations of rules or warnings of anomalies - at the table and field level.
Data Quality checks include: uniqueness, foreign key, format, or unknown value constraints.
Consistency checks include: row and spot-checking base table row counts against aggregate
tables, peer tables in other clusters, or sources tables. Policy checks include: existence, age,
or table naming conventions. The test runner is aggregate-aware so that checking can be
performed incrementally and frequently.

Both rule and warning violations can be viewed through a web interface to examine the
current integrity of the cluster, as well as the historical integrity with time series graphs.
The current state of the project exists primarily as a demonstration of the concept, providing
a basis for the next steps of completing the test runner, user-check repositories, UI and
packaged-set of reusable tests.

Submitted on August 14, 2015 for the Cloudera Strata Competition.



Hadoop Inspector William Farmer, Ken Farmer

1 Motivation
Data quality problems have plagued analytical systems for twenty years: continually appearing
in the top four reasons for project failure. In this space data quality problems loom large -
a small defect that could be safely ignored or forgotten in the transactional world hamper
queries and cause users to question our credibility for months.

The advent and innovation in Big Data and Data Science has not diminished this challenge.
On Hadoop specifically:

• Our data generally lacks any enforced constraints to ensure data validity

• We are adding data faster than ever, with less time to research upstream and ETL
pipeline issues

• We are building vast systems, sometimes with hundreds of thousands of tasks being
defined

• We often have democratized access to our clusters - with dozens of different people
adding data.

Additionally, in these large clusters most teams struggle to comply with policies and
other requirements, whether regulatory, corporate or defined by their own teams. These
might define general data retention requirements, or specific requirements for individual
tables. They might define table naming conventions, security requirements, or stats aging &
collection requirements.

2 Objective
Hadoop-Inspector is being built because we believe that the complexity of a large, constantly
loaded cluster defies an unmanaged approach or QA testing in the development process. It
requires something more like an automobile assembly line: continuous quality control (QC)
that can take into account undocumented changes from upstream sources, accidental changes
to production, changes that bypass QA, etc. And it shouldn’t be limited to traditional
quality tests, but should be able to test for compliance with policies as well.

3 Technical Details
Users determine the schedule on which they wish to test their cluster, and every allotted
time increment, every check is run. These results are kept in a local database which is then
referenced when users examine the frontend.

Again, given the intricacies of a hadoop cluster, most checks should be written by the
cluster maintainers and operators. Every environment and system is different, and every
cluster will have different requirements. We’ve strived to provide some basic checks, as well
as suggestions for checks that may apply to cluster-specific requirements, however for the
most part, these checks are the user’s responsibility.

3.1 Checks
Every check is simply a script that lives in a type-specific folder. Rules and Warnings exist
separately. The directory structure is up to the user, however we recommend using our
standard layout:

Cloudera Competition 1 August 2015



Hadoop Inspector William Farmer, Ken Farmer

checks
|--Rules
|--Warnings

The final directory structure is configurable through either JSON config, or command-line
arguments.

Each script returns a JSON-encoded object to stdout that meets the following specification.
Every check that is added to the system must abide by this specification in order to be added
to the record. If a check does not meet this specification its output will be ignored.

{
"name":"Name of test",
"violations":9000,
"Output":"Test Specific output. Either JSON or String"

}

3.1.1 Rules

Rules are strict rules about the cluster. They should never be ignored, or disobeyed, and
any violation of a set rule results in a violation. Ideally, a “healthy” cluster should have no
rule violations.

An example rule would be that a specific column only contains integers.

3.1.2 Warnings

Checks are suggestions about specific tables, or databases. These are a lot more fluid, and a
warning from a check does not necessarily indicate an issue with the database, but rather
that something new may have happened.

For example, a check that examines the average number of a column may throw a warning
if an entry is too far from the mean. This isn’t an indication that the data is bad, just that
it may be bad.

3.2 Viewing Results
All results can be viewed through the front end. This provides a way to analyze your cluster’s
health, as well as its current status.

Figure 1: Index

Cloudera Competition 2 August 2015



Hadoop Inspector William Farmer, Ken Farmer

Figure 2: Environment View

Figure 3: Database View

3.3 Configuration
Most aspects of this framework can be configured using the JSON files located in /config.
As of August 14, 2015, the files are located in /config.

4 Current Status
Our initial focus has been on building a demo to help us validate ideas, and build some of
our UIs. This includes:

• hadoopinspector-demogen - Can generate 50, 000+ check results against a hypothetical
user hadoop environment

• server - Runs a website that allows the user to analyze these demo results

• report - Produces a pdf check result summary report

Cloudera Competition 3 August 2015


	Motivation
	Objective
	Technical Details
	Checks
	Rules
	Warnings

	Viewing Results
	Configuration

	Current Status

