
IceNLP
A Natural Language Processing Toolkit for Icelandic∗

User Guide

Hrafn Loftsson
School of Computer Science

Reykjavik University
hrafn@ru.is

Anton Karl Ingason
School of Humanities
University of Iceland

antoni@hi.is

July 2021

∗The following persons have contributed to the development of IceNLP: Hrafn Loftsson, Anton Karl
Ingason, Aðalsteinn Tryggvason, Guðmundur Örn Leifsson, Hlynur Sigurþórsson, Ragnar Lárus Sigurðsson,
Sverrir Sigmundarson and Robert Östling.

1

Contents

1 What is IceNLP? 4

2 Installation 5

3 The tagset 5

4 IceMorphy 6

5 IceTagger 7

6 TriTagger 7

7 IceStagger 8

8 IceParser 9

9 Lemmald 10

10 IceNER 10

11 BÍN 10

12 File format 11
12.1 Tagging . 11

12.1.1 Input file . 11
12.1.2 Output file . 11
12.1.3 Dictionaries . 12

12.2 Parsing . 12
12.2.1 Input file . 12
12.2.2 Output file . 13

13 Usage 13
13.1 The tokeniser . 13
13.2 SrxSegmentizer . 14
13.3 IceTagger . 15
13.4 TriTagger . 17

13.4.1 Training . 19
13.5 IceStagger . 20

13.5.1 Training . 20
13.6 Lemmald . 21
13.7 IceMorphy . 22
13.8 IceParser . 23
13.9 IceNER . 24
13.10Dictionaries . 25

14 Demo application 25

15 Building from source 25

2

References 27

Appendix 29

A The Icelandic tagset 29

3

1 What is IceNLP?

IceNLP is an open-source Natural Language Processing (NLP) toolkit for analysing Icelandic
text. The toolkit consists of a tokeniser and a sentence segmentiser, the morphological
analyser IceMorphy, the linguistic rule-based tagger IceTagger, the trigram tagger TriTagger,
the perceptron tagger IceStagger, the shallow parser IceParser, the lemmatiser Lemmald, and
the named entity recogniser IceNER. The system is written as a collection of Java classes.

The tokeniser is used for tokenising stream of characters into linguistic units and for
performing sentence segmentation (Palmer 2000).

IceMorphy is mainly used for guessing the tags for unknown words and filling tag profile
gaps in a dictionary (Loftsson 2008).

IceTagger is a linguistic rule-based tagger1 for tagging Icelandic text (Loftsson 2006;
2008). It uses a large part-of-speech (PoS) tagset consisting of about 600 tags (see Section 3).
Evaluation showes that IceTagger achieved higher accuracy than the best performing data-
driven tagger when tested using the same test corpora and the same ratio of unknown words
(Loftsson 2008, Loftsson et al. 2009; 2011, Helgadóttir 2004). The average tagging accuracy,
computed when tagging test corpora derived from the Icelandic Frequency Dictionary (IFD)
corpus (Pind et al. 1991), is about 92%2. When using data from BÍN (see Section 11), the
Database of Modern Icelandic Inflections (Bjarnadóttir 2005), the accuracy increases to
about 92.8%.

TriTagger is a re-implementation of the well known statistical TnT tagger (Brants 2000).
By using TriTagger as a word class tagger during initial disambiguation, then using Ice-
Tagger to disambiguate tags that are consistent with the chosen word class, and finally
using TriTagger again to fully disambiguate words, to which IceTagger is not able to assign
unambiguous tags, an accuracy of about 92.7% is achieved (Loftsson et al. 2009; 2011). By
using BÍN, the accuracy further increases to about 93.5%.

IceStagger is a modified version of Stagger (Östling 2013), a tagger based on the Aver-
aged Perceptron algorithm (Collins 2002). By adding specific linguistic features and using
IceMorphy, an accuracy of about 92.8% is achieved (Loftsson and Östling 2013). By using
BÍN, the accuracy increases to about 93.7%.

IceParser is a shallow parser based on the incremental finite-state parsing technique
(Aït-Mokhtar and Chanod 1997). It labels both constituent structure and grammatical
functions. Evaluation shows that F-measure for constituents and syntactic functions is 96.7%
and 84.3%, respectively, when assuming perfectly tagged input (Loftsson and Rögnvaldsson
2007).

Lemmald is a mixed method lemmatiser for Icelandic. It combines the advantages of
data-driven machine learning with linguistic insights to maximize performance. Given cor-
rect tagging, the system lemmatizes Icelandic text with an accuracy of 99.55% (Ingason
et al. 2008).

IceNER is a rule-based named entity recogniser for Icelandic. The system marks persons,
companies, locations and events. Evaluation has shown that IceNER achieves an overall F-
score of 71.5% without using a gazette list, and 79.3% when using a gazette list of only 523
names (Tryggvason 2009).

1As apposed to a data-driven tagger trainable on different languages.
2Tagging accuray is measured using a corrected version of the IFD corpus (Loftsson 2009).

4

2 Installation

The source of IceNLP is available for download/cloning at https://github.com/hrafnl/
icenlp.

Release versions (programs and data without source code) can be downloaded from
https://github.com/hrafnl/icenlp/releases.

The description below assumes installation or a release version for the Linux operating
system. The programs and data come in a zip-file named IceNLP-x.y.z.zip (where x.y.z
is the current version number). Run unzip on this zip-file and extract all the files to a
directory of your choice.

A main directory, IceNLP, will be created with the following subdirectories: bat, dict,
dist, doc, lib, and ngrams.

The bat directory includes shell scripts (.sh files) for running individual components of
the tool. The commands for each tool can be found in a subdirectory of the bat directory
(see Section 13).

The dict directory contains various dictionaries related to the individual tools of IceNLP
as well as shell scripts to extract data from BÍN.

The dist directory contains the IceNLPCore.jar file. This file consists of all the .class
files needed to run IceNLP along with default dictionaries (“resource files”).

The doc directory contains this user guide and a description of the Icelandic tagset.
The lib directory contains various .jar files used by IceNLP.
The ngrams directory contains tools for building ngram models.

3 The tagset

The taggers in IceNLP use the main Icelandic tagset, created during the making of the IFD
corpus. Due to the morphological richness of the Icelandic language the main tagset is large
and makes fine distinctions compared to related languages. The original tagset contains
about 700 tags, but the taggers have been developed/trained using a reduced version of
the tagset, containing about 600 tags. Type information for proper nouns (named-entity
classification) has been removed and only one tag for numerical constants is used (Loftsson
et al. 2011).

Each tag in the tagset comprises word class information and morphological features.
Each character in the tag has a particular function. The first character denotes the word
class. For each word class there is a predefined number of additional characters (at most
six) which describe morphological features, like gender, number and case for nouns, degree
and declension for adjectives, voice, mood and tense for verbs, etc.

Table 1 shows the semantics of the noun tags. Consider, for example, the tag “nken”. The
first letter, “n”, denotes the word class “nafnorð ” (noun), the second letter, “k ”, denotes the
gender “karlkyn” (masculine), the third letter, “e”, denotes the number “eintala” (singular)
and the last letter, “n”, denotes the case “nefnifall ” (nominative case).

To give another example, consider the words “fallegu hestarnir stukku” (the beautiful
horses jumped). The corresponding tag for “fallegu” is “ lkenvf ” denoting adjective, mas-
culine, singular, nominative, weak declension, positive; the tag for “hestarnir ” is “nkfng”
denoting noun, masculine, plural, nominative with suffixed definite article; and the tag for
“stukku” is “sfg3fþ” denoting verb, indicative mood, active voice, 3-rd person, plural and
past tense. Note the agreement in gender, number and case.

5

Char# Category/Feature Symbol – semantics
1 Word class n–noun
2 Gender k–masculine, v–feminine, h–neuter, x–unspecified
3 Number e–singular, f–plural
4 Case n–nominative, o–accusative, þ–dative, e–genitive
5 Article g–with suffixed definite article
6 Proper noun s–proper noun

Table 1: The semantics of the noun tags

A complete description of the Icelandic tagset can be found in the Appendix.

4 IceMorphy

The unknown word guesser, IceMorphy, uses a familiar approach to unknown word guessing,
i.e. it performs morphological analysis, compound analysis and ending analysis (Mikheev
1997, Nakov et al. 2003). An additional important feature of IceMorphy is its handling of
tag profile gaps.

1. Morphological analysis. The morphological analyser tries to classify an unknown
word as a member of a particular morphological class. For a given unknown word w, a
morphological class is guessed depending on the morphological ending of w. Then the
stem r of w is extracted and all k possible morphological endings for r are generated
resulting in search strings, si (i = 1, . . . , k), such that si = r + endingi. A dictionary
lookup is performed for si until a word is found having the same morphological class
as was originally assumed or no match was found. If the search is successful, a tag is
deduced using the assumed word class and the morphological ending of w.

2. Compound analysis. This part uses a straightforward method of repeatedly remov-
ing prefixes from unknown words and performing a lookup for the remaining part of
the word. If the remaining word part is not found in the dictionary it is sent to the
morphological analysis for further processing. If the lookup or morphological analysis
deduces a tag t for the remaining word part, the original word (without prefix removal)
is given the same tag t.

3. Ending analysis. The ending analyser is called if an unknown word can neither
be deduced by morphological analysis nor by compound analysis. This component
uses a hand-written dictionary of endings along with an automatically generated one.
The former, which is looked up first, is mainly used to capture common endings for
adjectives and verbs, for which numerous tags are possible. IceMorphy assumes that
endings are different for capitalized words vs. other words and therefore uses two
endings dictionaries, one for proper nouns and another for all other words.

4. Tag profile gaps. A tag profile gap arises when a particular word, listed in the
dictionary, has some missing tags in its tag profile (set of possible tags). This, of
course, presents problems to a disambiguator since its purpose is to select one single
correct tag from all possible ones. For each noun, adjective, or verb of a particular
morphological class, IceMorphy generates all possible tags for the given word.

6

5 IceTagger

IceTagger reads an untagged input file consisting of Icelandic sentences and produces an
output file consisting of the words of the sentences augmented with the appropriate PoS
tags. The tagger consists of the following phases:

1. Tokenisation. The sequence of characters in the input file is split into simple tokens
(linguistic units) like words, numbers and punctuation marks. In some cases, sentence
segmentation needs to be carried out, i.e. the process of identifying when one sentence
ends and another one begins.

2. Introduction of ambiguity. For each sentence to be tagged, the tag profile for each
word, both known and unknown words, is introduced. A word is looked up in a pre-
compiled dictionary. If the word exists, i.e. the word is known, the corresponding tag
profile for the word is returned. In the case of a tag profile gap, the unknown word
guesser, IceMorphy, is used for filling in the missing tags. If the word does not exist in
the dictionary, i.e. the word is unknown, IceMorphy is used for guessing the possible
tags. At the end of this phase, a given word of a sentence can have multiple tags, i.e.
ambiguity has been introduced.

3. Disambiguation. IceTagger removes ambiguity by considering the context in which
a particular word appears. To be more specific, the tagger removes illegitimate tags
from words based on context. The tasks below are applied to one sentence at a time:

(a) Identify idioms and phrasal verbs. Idioms, i.e. bigrams and trigrams, which
are always tagged unambiguously are kept in a special dictionary. A special
dictionary is also used for recognising phrasal verbs, i.e. verb-particle pairs whose
words are adjacent in text.

(b) Apply local elimination rules. A sentence to be tagged is scanned from left
to right and all tags of each word are checked in sequence. Depending on the
word class (the first letter of the tag) of the focus word, the token is sent to
the appropriate disambiguation routine which checks a variety of disambiguation
constraints applicable to the particular word class and the surrounding words.
At each step, only tags for the focus word are eliminated.

(c) Apply global heuristics. Grammatical function analysis is performed, prepo-
sitional phrases are guessed, and the acquired knowledge is used to force feature
agreement where appropriate. The heuristics are a collection of functions that
guess the syntactic structure of the sentence and use it as an aid in the disam-
biguation process. Additionally, specific heuristics are used to choose between
supine and past participle verb forms, infinitive or active verb forms, and en-
suring agreement between reflexive pronouns and their antecedents. At last, the
default heuristic is simply to choose the most frequent tag for a given word.

6 TriTagger

TriTagger is statistical tagger based on a Hidden Markov Model (HMM). The tagger is
data-driven, i.e. it learns its language model from a tagged corpus. The main advantage of
data-driven taggers is that they are language independent and no (or limited) human effort

7

is needed for derivation of the model. The algorithm used by the tagger is as follows (consult
(Brants 2000) for full details):

1. Tokenisation. TriTagger uses the tokenisation method described in section 5.

2. Introduction of ambiguity. Known words are handled in the manner described in
section 5. Since TriTagger is language independent, it has no knowledge of Icelandic
morphology. Suffix analysis is, therefore, the default method for guessing possible tags
for unknown words. On the other hand, since IceMorphy already exists, it can be
called from within TriTagger (see section 13.4). In that case, TriTagger will use tags
provided by IceMorphy if IceMorphy can use morphological analysis (as opposed to
ending analysis or default handling) to guess the tags for an unknown word. For other
unknown words, suffix analysis is carried out.

3. Disambiguation. The states of the HMM represent pair of tags and the model emits
words each time it leaves a state. A trigram tagger finds an assignment of PoS to
words by optimising the product of lexical probabilities and contextual probabilities.
Lexical probability is the probability of observing word i given PoS j (p(wi|tj)) and
contextual probability is the probability of observing PoS i given k previous PoS
(p(ti|ti−1, ti−2, . . . , ti−k); k = 2 for a trigram model). A sentence is tagged by assigning
it the tag sequence which receives the highest probability by the model.

The probabilities of the model are estimated from a training corpus using maximum
likelihood estimation. Thus, before Tritagger can be used it needs to be trained on a tagged
corpus. A pre-trained model named otb, derived from the IFD corpus, can be found in the
ngrams/models directory. Training of the tagger is described in section 13.4.1.

7 IceStagger

IceStagger (Loftsson and Östling 2013) is a modified version of the Stockholm Tagger (Stag-
ger) (Östling 2013), an open-source implementation of the Averaged Perceptron tagger by
Collins (2002).

The Averaged Perceptron algorithm uses a feature-rich model that can be trained effi-
ciently. Features are modeled using feature functions of the form φ(hi, ti) for a history hi
and a tag ti. The history hi is a complex object modeling different aspects of the sequence
being tagged. It may contain previously assigned tags in the sequence to be annotated,
as well as other contextual features such as the form of the current word, or whether the
current sentence ends with a question mark. Intuitively, the job of the training algorithm
is to find out which feature functions are good indicators that a certain tag ti is associated
with a certain history hi.

A model consists of feature functions φs, each paired with a feature weight αs which is to
be estimated during training. The scoring function is defined over entire sequences, which
in a PoS tagging task typically means sentences. For a sequence of words w of length n in
a model with d feature functions, the scoring function is defined as:

score(w, t) =

n∑
i=1

d∑
s=1

αsφs(hi, ti)

8

Training the model is done in an error-driven fashion: tagging each sequence in the
training data with the current model, and adding to the feature weights the difference
between the corresponding feature function for the correct tagging, and the model’s tagging.

During tagging, the highest scoring sequence of tags is computed:

t̄ = arg maxt score(w, t)

8 IceParser

IceParser is an incremental finite-state parser. The parser comprises a sequence of finite-
state transducers, each of which uses a collection of regular expressions to specify which
syntactic patterns are to be recognised. The purpose of each transducer is to add syntactic
information into the recognised substrings of the input text.

IceParser is designed to produce annotations according to an annotation scheme de-
scribed in (Loftsson and Rögnvaldsson 2006). The parser consists of two main components:
a phrase structure module and a syntactic functions module.

The purpose of the phrase structure module is to add brackets and labels to input
sentences to indicate phrase structure. The output of one transducer serves as the input
to the following transducers in the sequence. The syntactic annotation is performed in a
bottom-up fashion, i.e. deepest constituents are analysed first.

Both simple phrase structures and complex structures are recognised. Since the parser
is based on finite-state machines, each phrase structure does not contain a structure of the
same type. Complex structures contain other structures, whereas simple structures do not.

Two labels are attached to each marked constituent: the first one denotes the beginning
of the constituent, the second one denotes the end (e.g. [NP . . . NP]). The main labels are
AdvP, AP, NP, PP and VP – the standard labels used for syntactic annotation (denot-
ing adverb, adjective, noun, prepositional and verb phrase, respectively). Additionally, the
labels CP, SCP, InjP, APs, NPs and MWE are used for marking coordinating conjunc-
tions, subordinating conjunctions, interjections, a sequence of adjective phrases, a sequence
of noun phrases, and multiword expressions, respectively.

The purpose of the syntactic functions module is to add functional tags to denote gram-
matical functions. The input to the first transducer in this module is the output of the
last transducer in the phrase structure module, i.e. it is assumed that the syntactic func-
tions module receives text that has been annotated with constituent structure. As in the
phrase structure module, the output of one transducer serves as the input to the following
transducers in the sequence.

Four different types of syntactic functions are annotated: genitive qualifiers, subjects,
objects/complements and temporal expressions. Curly brackets are used for denoting the
beginning and the end of a syntactic function, and special function tags are used for labels
(*QUAL, *SUBJ, *OBJ/*OBJAP/*OBJNOM/*IOBJ/*COMP, *TIMEX). Please refer to
(Loftsson and Rögnvaldsson 2006), for a thorough description of the annotation scheme
used.

In total, IceParser consists of about 25 finite-state transducers. The parser is imple-
mented in Java and the lexical analyser generator tool JFlex (http://jflex.de/).

9

9 Lemmald

Lemmald is a mixed method lemmatizer for Icelandic. It achieves good performance by
relying on IceTagger for tagging and the IFD corpus for training. Lemmald combines the
advantages of data-driven machine learning with linguistic insights to maximize performance.

To achieve this, it makes use of a novel approach: Hierarchy of Linguistic Identities
(HOLI), which involves organizing features and feature structures for the machine learning
based on linguistic knowledge (Ingason et al. 2008). Accuracy of the lemmatisation is further
improved using an add-on which connects to BÍN.

Given correct tagging, the system lemmatises Icelandic text with an accuracy of 99.55%.

10 IceNER

IceNER is a named entity recoginiser for Icelandic, based on linguistic rules. The system
marks persons, companies, locations and events. Evaluation has shown that IceNER achieves
an overall F-score of 71.5% without using a gazette list, and 79.3% when using a gazette list
of only 523 names (Tryggvason 2009).

The system reads the text several times, applying the strictest rules first and then more
relaxed rules. IceNER is built on two subsystems. The first, called NameScanner, uses
regular expressions to create lists of named entities based on endings such as “- son”, “-
dóttir”, and abbreviations like “hf”, “ehf”. It also generate lists of words that can be of
significance, such as professional titles, words that imply a location, a company or a person,
etc.

The second subsystem, NameFinder, reads these lists, and breaks up combinations of
words if a name is made of more than a single word. If, for example, the name “Ingibjörg
Sólrún Gísladóttir” appears in the name list, then entries for “Ingibjörg Sólrún”, “Ingibjörg”,
“Sólrún”, “Gísladóttir” and “Sólrún Gísladóttir” will also be added. The NameFinder will
also read the text itself, after it has been run through IceTagger. The NameFinder will
then use the name lists and rules based on the context in which entities appear to try to
categorize the entities.

11 BÍN

BÍN (“Beygingarlýsing íslensks nútímamáls”) is a comprehensive full form database of mod-
ern Icelandic inflections Bjarnadóttir (2005), developed at the Árni Magnússon Institute for
Icelandic Studies. BÍN contains about 280,000 paradigms, with over 5.8 million inflectional
forms for common nouns, proper nouns, adjectives, verbs, and adverbs.

Due to licensing issues, BÍN cannot be distributed with IceNLP. However, IceNLP con-
tains several shell scripts to extract data from BÍN for the purpose of using it in it’s taggers.
As stated in Section 1, the accuracy of the taggers increases considerably when extending
their dictionaries with data from BÍN.

The shell scripts rely on a database dump of BÍN, which is available for download from
bin.arnastofnun.is. The dump file has the name SHsnid.csv.

Copy this file into the dict/BIN directory. Then run the extractBinData.sh script,
which will generate dictionaries with data from BÍN for the three taggers: IceTaggger,
TriTagger, and IceStagger.

To run a tagger with an extended dictionary, please refer to Section 13.

10

12 File format

The IceNLP toolkit uses UTF8 character encoding for all files. It is thus assumed that
dictionaries and input files are encoded in UTF8 format. Moreover, output files, generated
by the tool, will be encoded in UTF8.

12.1 Tagging

12.1.1 Input file

The input file to be tagged can have one of four formats:

1. One token/tag pair per line (only used by IceStagger). An empty line (the newline
character) is required between sentences.

2. One token per line. An empty line (the newline character) is required between
sentences.

3. One sentence per line.

4. Other format. This entails that a sentence can span more than one line, or that
there can be more than one sentence per line in the input file.

12.1.2 Output file

The taggers can return output in either of two formats:

1. One token/tag per line (or one token/tag/lemma per line). The token appears
first in each line followed by the tag(s) selected by the tagger (and the lemma if
lemmatisation is needed (see Section 13.3). If the token is an unknown word the string
<UNKNOWN> appears after the tag. There is some additional output possible in
this format, which we will discuss in Section 13.3. Here is an example of this output
format:

ég fp1en
opnaði sfg1eþ
dyrnar nvfog
, ,
steig sfg1eþ
inn aa
og c
sparkaði sfg1eþ
hvítum lkeþsf
brennivínspoka nkeþ <UNKNOWN>
með aþ
sunddóti nheþ <UNKNOWN>
til ae
hliðar nvee
. .

11

2. One sentence per line. Each line consists of a sentence in which each token is
followed by the tag (and possibly the lemma), selected by the tagger. Here is the
example above in this format:

ég fp1en opnaði sfg1eþ dyrnar nvfog , , steig sfg1eþ inn aa og c sparkaði sfg1eþ
hvítum lkeþsf brennivínspoka nkeþ með aþ sunddóti nheþ til ae hliðar nvee . .

12.1.3 Dictionaries

The dict directory contains a copy of the default dictionaries and wordlists that are part
of the IceNLPCore.jar file. The files in the dict directory can be changed by the user and
parameters for individual tools of IceNLP can be used to point to these dictionaries in case
the user wants to change the default behaviour (see Section 13).

The dictionaries, which list words/endings and associated tags, used by IceTagger have
the following format:

w1 = t11_t12_. . ._t1s1
w2 = t21_t22_. . ._t2s2
. . .
wn = tn1_tn2_. . ._tnsn

Here n is the number of words/endings in the dictionary, wi is word/ending number i,
tik is the kth frequent tag for word/ending i, and si is the number of tags for word/ending
i (i = 1. . .n). Note that the above means that the tags for a given word/ending are sorted
according to frequency – the most frequent tag appears first in the list of tags for a given
word/ending.

To illustrate, the following is a record from a dictionary for the word “við ” (see the
Appendix for explanation of the individual tags):
við=ao_fp1fn_aþ_aa

Since TriTagger bases its language model on frequencies, word and tag frequencies are
needed in its dictionary. Thus, the frequency dictionary used by TriTagger has the following
format:

w1 fw1 t11 ft11 t12 ft12 . . . t1s ft1s
w2 fw2 t21 ft21 t22 ft22 . . . t2s ft2s
. . .
wn fwn tn1 ftn1 tn2 ftn2 . . . tns ftns

To illustrate, the following is a record from a frequency dictionary for the word “við ”:
við 5810 ao 3673 fp1fn 1332 aa 507 aþ 298

12.2 Parsing

12.2.1 Input file

The input to the parser are POS-tagged sentences. The tags are assumed to be part of
the tagset used in the IFD corpus, i.e. the tagset used by IceTagger. From version 1.5.0 of
IceNLP, the parser also accepts tags that confirm to the revised Icelandic tagset, described in

12

the documentation for MIM_GOLD 20.5 (https://repository.clarin.is/repository/
xmlui/handle/20.500.12537/39). Furthermore, it is assumed that the input file has one
sentence in each line.

Here is an example of the input format:

ég fp1en opnaði sfg1eþ dyrnar nvfog , pk steig sfg1eþ inn aa og c sparkaði sfg1eþ
hvítum lkeþsf brennivínspoka nkeþ með af sunddóti nheþ til af hliðar nvee . pl

12.2.2 Output file

The output of the parser consists of the POS-tagged sentences with added syntactic infor-
mation. The parser either writes one sentences in each line or one phrase/syntactic function
in each line. Here is an example of the latter:

{*SUBJ> [NP ég fp1en] }
[VP opnaði sfg1eþ]
{*OBJ< [NP dyrnar nvfog] }
, pk
[VP steig sfg1eþ]
[AdvP inn aa]
[CP og c]
[VP sparkaði sfg1eþ]
{*OBJ< [NP [AP hvítum lkeþsf] brennivínspoka nkeþ] }
[PP með af [NP sunddóti nheþ]]
[PP til af [NP hliðar nvee]]
. pl

13 Usage

Java 1.6 runtime (or later) is required to run the programs. Java is available for free from
Oracle, http://java.com.

In this section, usage of the individual tools on Linux is described.

13.1 The tokeniser

The tokeniser application is used for tokenising input files and converting between different
file formats (the tokeniser performs both word tokenisation and sentence segmentation).

To start the application, open a terminal (command prompt), go to the bat/tokenizer
directory and type in the following command:

./tokenize.sh [param]

The parameters are:

• -i <inpFile>: The input file to be tokenised. The file has a particular input format
which is described by the -if parameter.

• -o <outFile>: The output file into which the tokens are written. The desired output
format is described by the -of parameter.

13

• -if <inputFormat>: This parameter describes the format of the input file. The possible
values are:

– 0 : One token/tag per line, with an empty line between sentences.

– 1 : One token per line, with an empty line between sentences.

– 2 : One sentence per line.

– 3 : Other different format.

• -of <outputFormat>. This parameter describes the desired output format.

– 1 : One token per line, with an empty line between sentences.

– 2 : One sentence per line.

• -l <filename>: filename is the name of a lexicon used by the tokeniser. The purpose
of the lexicon is to list the abbreviations and the multiword expressions (MWEs) that
the tokeniser is supposed to recognise. If this parameter is not supplied, the tokeniser
uses the default resource file lexicon.txt in the IceNLPCore.jar file.

• -c <count>: The tokeniser quits after tokenising <count> sentences.

• -mwe: Mark MWEs in the output.

• -sa: Split abbreviations. Use this option if each abbreviation is to be splitted into
individual parts.

• -ns: Not strict tokenisation. This means, for example, that strings like delta$(4) are
not broken apart. If this parameter is not supplied, i.e. strict tokenisation is preferred,
then the above string will result in the following tokens: delta $ (4).

For example, the following command:

./tokenize.sh -i test.txt -o test.out -if 2 -of 1

runs the tokeniser on the input file test.txt and writes to the output file test.out. The format
of the input file is one sentence per line, and the desired output format is one token per line.

Furthermore, if the -i parameter is not provided, the tokeniser reads from standard
input and writes to standard output. In that case, inputFormat=3 and outputFormat=1.
For example, the following Linux command can be used to tokenize the string “Ég á stóran
hund. Sá er a.m.k. 10 kíló.” (and write the output to the screen):

echo "Ég á stóran hund. Sá er a.m.k. 10 kíló." | ./tokenize.sh

13.2 SrxSegmentizer

The SrxSegmentizer splits sentences according to rules defined in an SRX file. Such SRX
rules are included in the IceNLP distribution and the Segment library is used internally to
apply the rules.

Use the command srxsegmentizer.sh. Two parameters can be supplied, an input file
and an output file. If those are omitted, input is read from stdin and output written to
stdout.

Example:

14

./srxsegmentizer.sh testinput.txt output.txt
(or, using stdin/stdout)
echo "Þetta er nr. 1 og a.m.k. fínt. Farið e.t.v. þangað." | ./srxsegmentizer.sh

Output:

Þetta er nr. 1 og a.m.k. fínt.
Farið e.t.v. þangað.

13.3 IceTagger

To start IceTagger, open a terminal, go to the bat/icetagger directory, and type in the
following command:

./icetagger.sh [parameters]

The parameters can be supplied in two ways:

• -p <filename>: This tells the application to read the parameters from the file file-
name. A default parameter file paramDefault.txt can be found in the bat/icetagger
directory. This file has a number of attribute-value pairs whose values can be changed.
The parameters are described below.

In most cases, only the parameters INPUT_FILE,OUTPUT_FILE, LINE_FORMAT
and OUTPUT_FORMAT need to be changed. To understand fully some of the other
parameters you need to consult (Loftsson 2008).

– INPUT_FILE : The name of the input file to be tagged. The file has a particular
input format which is described by the LINE_FORMAT parameter.

– OUTPUT_FILE : The name of the output file. The file has a particular output
format which is described by the OUTPUT_FORMAT parameter.

– FILE_LIST : The name of a file containing a list of file names (one per line) to
be tagged. For each file name F to be tagged the corresponding tagged output
file is generated in the same directory as F with the same name as F but with
“.out” appended. If this parameter is used then the parameters INPUT_FILE
and OUTPUT_FILE are ignored.

– LINE_FORMAT : The format of the input file, 1=one token per line, 2=one
sentence per line, 3=other format.

– OUTPUT_FORMAT : The desired format of the output file, 1=one token per
line, 2=one sentence per line.

– SEPARATOR: space|underscore. Used for OUTPUT_FORMAT=2. Specifies
the character used as a separator between a word and its tag.

– SENTENCE_START : upper|lower. upper : Every sentence starts with an upper
case letter. lower : Every sentence starts with a lower case letter, except when
the first word is a proper noun.

– LOG_FILE : The name of a log file if one is desired. The log file will list debugging
information.

15

– FULL_DISAMBIGUATION : yes|no. This applies to words which the tagger can
not fully disambiguate. If this value is yes the tagger will either select the tag
with the highest frequency or call TriTagger for full disambiguation (see next
parameter). If the value is no the tagger will return all the tags that could not
be eliminated.

– MODEL_TYPE : start|end|startend. If start, an n-gram model (see the MODEL
parameter) is used for choosing the word class during initial disambiguation,
and then IceTagger is used to disambiguate tags that are consistent with the
chosen word class. If end, the n-gram model is only run in the last phase to fully
disambiguate words to which IceTagger is not able to assign unambiguous tags.
If startend, the n-gram model is used both at the start and in the last phase.

– FULL_OUTPUT : yes|no. If yes the tagger will write subject-verb-object infor-
mation and information on prepositional phrases to the output file and detailed
information for unknown words. If no then only unknown words are marked.

– BASE_TAGGING : yes|no. If yes the tagger will only assign a single tag to each
word based on maximum frequency.

– TAG_MAP_DICT : The name of the dictionary used for mapping the tags used
internally by IceTagger to some other tagset.

– LEMMATIZE : yes|no. If yes then IceTagger outputs the lemma, in addition
to the word and its tag. Note that the lemma is only written out if OUT-
PUT_FORMAT=1.

– STRICT : yes|no. Strict tokenisation or not. Used by the tokeniser, see section
13.1.

– For typical use of IceTagger, the user does not need to provide values for the
following parameters, because as a default the corresponding files are read directly
from the IceNLPCore.jar file:

∗ MODEL: The name of an n-gram model. The n-gram model is only used if the
MODEL_TYPE parameter has a value (and if FULL_DISAMBIGUATION=yes).
IfMODEL_TYPE has no value then IceTagger performs full disambiguation
by selecting the tag with the highest frequency.
∗ BASE_DICT : The name of the base dictionary of words and associated tags.

Its format can be seen in section 12.1.3.
∗ DICT : The name of the main dictionary of words and associated tags. Its

format can be seen in section 12.1.3.
∗ IDIOMS_DICT : The name of the dictionary for idioms or multiword ex-

pressions and associated tags.
∗ VERB_PREP_DICT : The name of the dictionary for verb-preposition pairs

and associated cases.
∗ VERB_OBJ_DICT : The name of the dictionary for verbs and corresponding

cases for their objects.
∗ VERB_ADVERB_DICT : The name of the dictionary for verb-particle (phrasal

verb) information.
∗ ENDINGS_BASE : The name of the base dictionary listing possible tags for

different endings. Used by IceMorphy.

16

∗ ENDINGS_DICT : The name of the main dictionary listing possible tags for
different endings. Used by IceMorphy.
∗ ENDINGS_PROPER_DICT : The name of the main dictionary listing pos-

sible tags for different proper name endings. Used by IceMorphy.
∗ PREFIXES_DICT : The name of the prefixes dictionary. Used by Ice-
Morphy.
∗ TAG_FREQUENCY_FILE : The name of the tag frequency file. This file is

only used by IceMorphy when BASE_TAGGING=yes.
∗ TOKEN_DICT : The name of the file used by the tokeniser to recognise

abbreviations, see section 13.1.

• The latter possibility is to supply the parameters through the command line. For
example, by issuing commands like:

./icetagger.sh -i <inputFile> -o <outputFile> -d <dictionary> -lf 2 . . . , etc.

The parameters supplied this way correspond to the attributes and values above. The
name of the parameters can be seen by typing: ./icetagger.sh -help

For running IceTagger with all the default settings, issue either of the commands:

– ./icetagger.sh -i <inputfile> -o <outputfile>
– ./icetagger.sh -f <filelist>

Here, <filelist> is a name of a file containing a list of files (one per line) to be tagged.

If neither the -i/-o parameters nor the -f parameter are provided, IceTagger reads
from standard input and writes to standard output. For example, the following Linux
command can be used to make IceTagger tag the string “Ég á stóran hund” (and write
the output to the screen):

echo "Ég á stóran hund" | ./icetagger.sh

For increasing the accuracy of IceTagger, the main dictionary of the tagger can be ex-
tended with data from BÍN. Once the data from BÍN has been extracted (see Section 11), the
parameter file paramDefaultBin.txt can be used for running IceTagger with the extended
dictionary.

13.4 TriTagger

To start TriTagger, open a terminal, go to the bat/tritagger directory, and type in the
following command:

./tritagger.sh [parameters]

The parameters can be supplied in two ways:

• -p <filename>: This tells the application to read the parameters from the file filename.
A default parameter file paramDefault.txt can be found in the bat/tritagger directory.
This file has a number of attribute-value pairs whose values can be changed:

17

– INPUT_FILE : See section 13.3.

– OUTPUT_FILE : See section 13.3.

– FILE_LIST : See section 13.3.

– LINE_FORMAT : See section 13.3.

– OUTPUT_FORMAT : See section 13.3.

– SENTENCE_START : See section 13.3.

– CASE_SENSITIVE : yes|no. The default is no which means that TriTagger does
case-insensitive lookup into the main dictionary for the first word of a sentence.
If that fails, the tagger tries case-sensitive lookup. If this parameter is set to yes,
then case-insensitive lookup is not performed.

– NGRAM : 2=bigrams, 3=trigrams.

– For typical use of TriTagger, the user does not need to provide values for the
following parameters, because as a default the corresponding files are read directly
from the IceNLPCore.jar file:

∗ MODEL: The name of the model derived from a training corpus. The model
consists of a n-gram file, a lexicon and a file with lambda (smoothing) pa-
rameters. This model name should not have any extension. For example,
if MODEL=otb, then the program will load the files otb.ngram, otb.lex and
otb.lambda (see section 13.4.1).
∗ STRICT : See section 13.3.
∗ TOKEN_DICT : See section 13.3.
∗ ICEMORPHY : yes|no. If yes then TriTagger uses tags guessed by IceMorphy

for unknown words that go successfully through the morphological analysis
component of IceMorphy. Otherwise, suffix handling of unknown words is
used.
∗ DICT : Main dictionary used by IceMorphy. See section 13.3.
∗ BASE_DICT : Base dictionary used by IceMorphy. See section 13.3.
∗ ENDINGS_BASE : See section 13.3.
∗ ENDINGS_DICT : See section 13.3.
∗ ENDINGS_PROPER_DICT : See section 13.3.
∗ PREFIXES_DICT : See section 13.3.

– BACKUP_DICT : The name of a backup dictionary. If lookup into the model
dictionary fails then this backup dictionary is used.

– IDIOMS_DICT : See section 13.3.

• The latter possibility is to supply the parameters through the command line. For
example, by issuing commands like:

./tritagger.sh -i <inputFile> -o <outputFile> -m <model> -lf 2 . . . , etc.

The parameters supplied this way correspond to the attributes and values above. The
name of the parameters can be seen by typing: ./tritagger -help

For running TriTagger with all the default settings, issue either of the commands:

18

– ./tritagger.sh -i <inputfile> -o <outputfile>

– ./tritagger.sh -f <filelist>

Here, <filelist> is a name of a file containing a list of files (one per line) to be tagged.

If neither the -i/-o parameters nor the -f parameter are provided, TriTagger reads
from standard input and writes to standard output. For example, the following Linux
command can be used to make TriTagger tag the string “Ég á stóran hund” (and write
the output to the screen):

echo "Ég á stóran hund" | ./tritagger.sh

For increasing the accuracy of TriTagger, the main dictionary of the tagger can be
extended with data from BÍN. Once the data from BÍN has been extracted (see Section
11), the parameter file paramDefaultBin.txt can be used for running TriTagger with the
extended dictionary.

As mentioned above, one of the files resulting from the training phase is a lexicon file
(with the extension .lex), containing the tag profile for each word. In some cases one might
want to extend this file, for example by adding data to it from some other data resource
BÍN than the training corpus. If one does only want TriTagger do use data derived from
the training corpus (but not also from the other data resource) for suffix handling, then a
single line containing the following string can be put into the .lex file right after the last
entry (word) derived from the training corpus:

[NOSUFFIXES]

During the loading of the lexicon, TriTagger will then not use entries in the lexicon, that
appear after this specially marked string, for suffix handling.

13.4.1 Training

Before Tritagger can be used it needs to be trained on a tagged corpus. A pre-trained model
(otb), derived from the IFD corpus, is part of the IceNLPCore.jar file and can also be found
in the ngrams/models directory. For illustration, we now describe how to train a new
model using any training corpus, for example the small corpus ngrams/corpus.txt. For
training, Perl3 is needed.

1. Open a terminal and go to the ngrams directory.

2. Type bash train corpus.txt corpus -e, where bash is a shell, train is the program
for training, corpus.txt is the training corpus, corpus is the name of the output model
and -e signifies empty lines between sentences in the training corpus. If all goes well,
four files, corpus.ngrams, corpus.lex, corpus.orig.lex and corpus.lambda will be created
in the ngrams/models directory.

3. At this point the file corpus.lex (and corpus.orig.lex) is a lexicon derived from the
corpus.txt training corpus and can be used directly with TriTagger as described in
section 13.4.

3http://www.perl.org/.

19

13.5 IceStagger

To start IceStagger for tagging text, open a terminal, go to the bat/icestagger directory,
and type in the following command:

./icestagger.sh [parameters]

The (main) parameters are the following (the full description of the possible parameters
can be found in the README file in this directory):

• -lang is: For tagging Icelandic, the value is is needed for the lang parameter.

• -modelfile <filename>: filename is the name of a model generated during training.

• -plain: For generating plain output, i.e. one token/tag pair per line.

• -icemorphy <n>: n is 0 (do not use IceMorphy), or 1 (use IceMorphy for filling tag
profile gaps and guessing the tag profile for unknown words), or 2 (only use IceMorphy
for unknown words).

• -tag <filename 1> <filename 2> . . . <filename n>: Specifies tagging of n files. This
should be the last argument.

There are two possible formats for the input files to be tagged:

• A file with an .txt extensions is assumed to contain raw text and will be tokenised by
IceStagger’s tokeniser before tagging. If there is only one file name in the input list,
the output is written to standard output, otherwise each tagging output is written to
a separate file.

• A file with any other extension is assumed to contain a single token/tag pair in each
line with an empty line between sentences. The tag in the second column is used
for evaluating the tagger’s accuracy. In this case, the tagging output is written to
standard output.

For example, the following command:

./icestagger.sh -modelfile otb.bin -lang is -plain -icemorphy 1 -tag sentences.txt

uses the training model otb.bin to tag the sentences.txt file using IceMorphy, generating
plain (one token/tag per line) output.

13.5.1 Training

To generate a model from a training corpus, the following (main) parameters can be used:

• -lang is: For training on Icelandic text.

• -trainfile <filename>: filename is the training corpus to be used. The format is
assumed to be one token/tag pair in each line with an empty line between sentences.

• -lexicon <filename>: filename is a lexicon in which each line has 4 tab-separated
fields: <word form, lemma, tag, frequency>. The frequency can be 0. The lexicon is
optional.

20

• -positers <n>: Train the tagger with at most n iterations.

• -plain: For generating plain output, i.e. one token/tag pair per line.

• -train: Specifies training mode. This should be the last argument.

For example, the following command:

./icestagger.sh -trainfile otb.plain -modelfile otb.bin -positers 10 -lang is -train

uses the training corpus otb.plain to produce the training model otb.bin using 10 itera-
tions.

A pre-trained model (otb), derived from the IFD corpus, is part of the IceNLP distri-
bution and can be found in the models directory of the bat/icestagger directory.

For increasing the accuracy of IceStagger, a lexicon with data from BÍN can be provided
during training. Once the data from BÍN has been extracted (see Section 11), the shell
script trainIceStaggerBin.sh can be used for training. Tagging can then be carried out
using the tagIceStaggerBin.sh shell.

13.6 Lemmald

The lemmatizer can be used as part of IceTagger by supplying the -lem parameter and
specifying output format 1. See section 13.3 on IceTagger usage for further information. An
example of such usage is the following:

echo "Ég á stóran hund" | ./icetagger.sh -of 1 -lem

The same result can be achieved using ./lemmatize.sh and that command also allows
for lemmatizing input that has already been tagged, for example using a different tagger.
The parameters of ./lemmatize.sh are the following:

• -i<file>: The input file. If omitted the input is read from stdin.

• -o<file>: The output file. If omitted the output is written to stdout.

• -h: Display help.

• -lemmatizeTagged : Indicates that the input is already tagged. Such input should have
one token per line and each token should consist of a word and its tag.

Example 1: Lemmatizing a plain text file

./lemmatize.sh -i plaintext.txt -o myoutput.txt
(or, using stdin/stdout)
echo "Við erum æðislegar. Við kunnum alla dansana." | ./lemmatize.sh

Reads the plain text file plaintext.txt and writes the result to myoutput.txt. IceTagger
is used for tagging before Lemmald lemmatizes.

Input:

Við erum æðislegar. Við kunnum alla dansana.

Output:

21

Við ég fp1fn
erum vera sfg1fn
æðislegar æðislegur lvfnsf
. . .

Við ég fp1fn
kunnum kvinna sfg1fþ
alla allur fokfo
dansana dans nkfog
. . .

Example 2: Lemmatizing input that is already tagged
To lemmatize tagged input, with one token per line, each of which has a word form and

a PoS tag, supply the parameter "-lemmatizeTagged". The lemma is added between the
word form and its tag.

./lemmatize.sh -i testinput.txt -o output.txt -lemmatizeTagged
(or, using stdin/stdout)
cat testinput.txt | ./lemmatize.sh -lemmatizeTagged

Input:

Ég fp1en
á sfg1en
stóran lkeosf
hund nkeo

Output:

Ég ég fp1en
á eiga sfg1en
stóran stór lkeosf
hund hundur nkeo

13.7 IceMorphy

The morphological analyser, IceMorphy, can be used as a stand-alone application. To start
IceMorphy, open a terminal, go to the bat/icemorphy directory, and type in the following
command:

./icemorphy.sh -p <paramFile>

The format of the parameter file is similar to the format of the file used by IceTagger. Two de-
fault parameter files paramAnalyze.txt and paramFill.txt can be found in the bat/icemorphy
directory. The former is used for analysing words in a file, the latter for filling tag profile
gaps in a dictionary:

• Analysing. In this mode IceMorphy accepts an input file consisting of one word in
each line. It looks up each word in the supplied dictionary (see the DICT parameter)
and fetches the corresponding tags if the word is found or guesses the possible tags if

22

the word is unknown. Unknown words are marked with a * at the end of each line in
the output file. Additionally, one of the strings <MORPHO>, <COMPOUND> or
<ENDING> are printed after the *, signifying which module of IceMorphy produced
the result (see Sect. 4). The analyser either returns all tags for each word (sorted
by frequency) or only the most frequent tag. This can be controlled by the MODE
parameter.

• Filling. In this mode IceMorphy accepts an input file (a dictionary) in the format
described in section 12.1.3. For each word in the input file, the morphological analyzer
generates the missing tags, i.e. it does tag profile gap filling.

The parameters of the <paramFile> are described below:

• MODE : all|one|fill. all=analyze words and return all tags, one=analyze words and
return the one most frequent tag, fill=fill tag profile gaps in a dictionary.

• INPUT_FILE : The name of the input file to be either analysed or filled.

• OUTPUT_FILE : The name of the output file.

• LOG_FILE : The name of a log file if one is desired. The log file will list debugging
information.

• SEPARATOR: space|equal. Specifies the character used as a separator between a word
and its tag(s).

• TAGSEPARATOR: space|underscore. Specifies the character used as a separator be-
tween the tags.

• For typical use of IceMorphy, the user does not need to provide values for the following
parameters, because as a default the corresponding files are read directly from the
IceNLPCore.jar file:

– DICT : The name of the main dictionary of words and associated tags. See section
13.3.

– BASE_DICT : The name of the base dictionary. See section 13.3.
– ENDINGS_BASE : See section 13.3.
– ENDINGS_DICT : See section 13.3.
– ENDINGS_DICT : See section 13.3.
– ENDINGS_PROPER_DICT : See section 13.3.
– PREFIXES_DICT : See section 13.3.
– TAG_FREQUENCY_FILE : See section 13.3.

13.8 IceParser

To start the parser, open a terminal, go to the bat/iceparser directory and type in the
following command:

./iceParser.sh -i <inputFile> -o <outputFile> [optional param]

The optional parameters are:

23

• -f : IceParser annotates grammatical functions (as well as constituent structure).

• -l : IceParser writes out one phrase/syntactic function in each line. Otherwise, the
output is one sentence per line.

• -a: IceParser uses feature agreement rather than only relying on word order, when
grouping words into noun phrases and annotating subjects of verbs.

• -e: IceParser attaches a question mark (?) to the end of labels for NPs and/or subjects
to denote possible grammatical errors.

• -m: IceParser merges function labels with phrase labels.

• -json: IceParser writes the output in json format.

• -xml : IceParser writes the output in xml format.

Note that IceParser assumes that the input file has one sentence per line. Each line
consists of a sequence of word-tag pairs (see 12.2).

A grammar definition corpus, a representative collection of about 200 Icelandic sentences
(Loftsson and Rögnvaldsson 2006) is provided in the bat/iceparser directory. The name
of the file is 200sent_func.gdc and it has been hand-annotated with constituent structure
and grammatical functions. The original text is in the file 200sent.txt.

The following command makes IceParser annotate the original file with constituent
structure and grammatical functions:

./iceParser.sh -i 200sent.txt -o 200sent.out -f -l

The hand-annotated file 200sent_func.gdc and the parser generated file 200sent.out can
then be compared by using utilities like Unix diff.

IceParser can, additionally, be made to generate output files corresponding to the result
of each of its individual finite-state transducers. In that case, type in:

./iceparserOut.sh -i 200sent.txt -o 200sent.out -p .

The third command-line parameter above denotes the path for the output files. The
output files are text files with the .out ending.

13.9 IceNER

To start IceNER, open a terminal, go to the bat/iceNER directory and type in the follow-
ing command:

./iceNER.sh -i <inputFile> -o <outputFile> [optional param]

The optional parameters are:

• -l <filename>: IceNER uses <filename> as a gazette list (a list which contains pre-
catagorised entities).

• -g : IceNER runs in greedy mode. In this mode, all unmarked named entities that
follow the prepositions “á” and “í” are marked as locations and names with the pattern
“Xxxx Xxxx” are marked as persons.

24

13.10 Dictionaries

The dictionaries used by the system are located in the dict directory. The dictionaries
which start with the prefix otb have been automatically generated from the IFD corpus.
For example, the main dictionary, dict/icetagger/otb.dict, was generated by extracting all
the words from the IFD corpus along with all the tags that appeared with each word. The
format of this dictionary is described in section 12.1.3.

Two base dictionaries are used by the system. These are dict/icetagger/baseDict.dict and
dict/icetagger/baseEndings.dict. The former is mainly used for words and associated tags
of the closed word classes, e.g. conjunctions, pronouns, prepositions and irregular verbs. A
word is first looked up in this base dictionary before the main dictionary (DICT) is searched.

The latter is a hand-compiled list of endings and associated tags. An ending is first
looked up in this list before the endings dictionary supplied by the user (ENDINGS_DICT)
is searched.

14 Demo application

A small demo application is part of this release. The purpose of the application is to analyse
(tag and parse) text specified by the user. To start the application, open a terminal, go to
the bat/demo directory and type in the following command:

./tagAndParseGUI.sh [inputFile]

The input file is optional. If not input file is specified, it is assumed that the user will
type in the text to be analysed.

For example, the file test.txt in the bat/demo directory can be analysed, by typing:

./tagAndParseGUI.sh test.txt

Tagging and parsing can also be tested by running the /.tagAndParse.sh command in
the bat/demo directory.

In that case, the test.txt file is used as the input to the tagger. The output of the tagger
is then piped into IceParser, which finally produces the file parse.out as output.

15 Building from source

To build IceNLP from source, you need the following three tools:

1. Java Development Kit (JDK). The JDK includes tools useful for developing and
testing programs written in the Java programming language and running on the Java
platform. JDK is available for free from Oracle.

2. JFlex. JFlex is a lexical analyzer generator (also known as scanner generator) for
Java, written in Java. JFlex is availble for free from http://jflex.de

3. Apache Ant. Apache Ant is a Java library and command-line tool whose mission is
to drive processes described in build files as targets and extension points dependent
upon each other. Ant is available for free from http://ant.apache.org/

25

For example, to build IceNLPCore, go to the directory icenlp/core and issue this com-
mand: ant

Ant will then use the instructions given in the build.xml file to build each individual
component of IceNLP.

Note that before building you will need to increase the memory used by JFlex : Go to
the directory of JFlex and edit the jflex file. At the bottom of this file, change:

$JAVA -Xmx128m -jar $JFLEX_HOME/lib/jflex-1.x.y.jar $@
to
$JAVA -Xmx2048m -jar $JFLEX_HOME/lib/jflex-1.x.y.jar $@

26

References

S. Aït-Mokhtar and J.-P. Chanod. Incremental Finite-State Parsing. In Proceedings of
Applied Natural Language Processing, Washington DC, USA, 1997.

K. Bjarnadóttir. Modern Icelandic Inflections. In H. Holmboe, editor, Nordisk Sprogteknologi
2005. Museum Tusculanums Forlag, Copenhagen, 2005.

T. Brants. TnT: A statistical part-of-speech tagger. In Proceedings of the 6th Conference on
Applied Natural Language Processing, Seattle, WA, USA, 2000.

M. Collins. Discriminative training methods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing, Philadelphia, PA, USA, 2002.

S. Helgadóttir. Testing Data-Driven Learning Algorithms for PoS Tagging of Icelandic. In
H. Holmboe, editor, Nordisk Sprogteknologi 2004. Museum Tusculanums Forlag, Copen-
hagen, 2004.

A. Ingason, S. Helgadóttir, H. Loftsson, and E. Rögnvaldsson. A Mixed Method Lemmati-
zation Algorithm Using Hierachy of Linguistic Identities (HOLI). In B. Nordström and
A. Rante, editors, Advances in Natural Language Processing, 6th International Conference
on NLP, GoTAL 2008, Proceedings, Gothenburg, Sweden, 2008.

H. Loftsson. Tagging a Morphologically Complex Language Using Heuristics. In T. Salakoski,
F. Ginter, S. Pyysalo, and T. Pahikkala, editors, Advances in Natural Language Processing,
5th International Conference on NLP, FinTAL 2006, Proceedings, Turku, Finland, 2006.

H. Loftsson. Nordic Journal of Linguistics, 31(1):2008.

H. Loftsson. Correcting a PoS-tagged corpus using three complementary methods. In Pro-
ceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), Athens,
Greece, 2009.

H. Loftsson and R. Östling. Tagging a Morphologically Complex Language Using an Av-
eraged Perceptron Tagger: The Case of Icelandic. In Proceedings of the 19th Nordic
Conference of Computational Linguistics (NODALIDA-2013), Oslo, Norway, 2013.

H. Loftsson and E. Rögnvaldsson. A shallow syntactic annotation scheme for Icelandic
text. Technical Report RUTR-SSE06004, Department of Computer Science, Reykjavik
University, 2006.

H. Loftsson and E. Rögnvaldsson. IceParser: An Incremental Finite-State Parser for Ice-
landic. In Proceedings of NoDaLiDa 2007, Tartu, Estonia, 2007.

H. Loftsson, I. Kramarczyk, S. Helgadóttir, and E. Rögnvaldsson. Improving the tagging
accuracy of Icelandic text. In Proceedings of the 17th Nordic Conference of Computational
Linguistics (NODALIDA-2009), Odense, Denmark, 2009.

H. Loftsson, S. Helgadóttir, and E. Rögnvaldsson. Using a morphological database to in-
crease the accuracy in PoS tagging. In Proceedings of Recent Advances in Natural Language
Processing (RANLP 2011), Hissar, Bulgaria, 2011.

27

A. Mikheev. Automatic Rule Induction for Unknown Word Guessing. Computational Lin-
guistics, 21(4):543–565, 1997.

P. Nakov, Y. Bonev, G. Angelova, E. Cius, and W. Hahn. Guessing Morphological Classes
of Unknown German Nouns. In Proceedings of Recent Advances in Natural Language
Processing, Borovets, Bulgaria, 2003.

R. Östling. Stagger: an Open-Source Part of Speech Tagger for Swedish. Northern European
Journal of Language Technology, 3(1):1–18, 2013.

D. Palmer. Tokenisation and Sentence Segmentation. In R. Dale, H. Moisl, and H. Somers,
editors, Handbook of Natural Language Processing. Marcel Dekker, New York, 2000.

J. Pind, F. Magnússon, and S. Briem. Íslensk orðtíðnibók [The Icelandic Frequency Dictio-
nary]. The Institute of Lexicography, University of Iceland, Reykjavik, Iceland, 1991.

A. Tryggvason. Named Entity Recognition for Icelandic, 2009. MSc-thesis,
School of Computer Science, Reykjavik University. http://nlp.ru.is/pdf/
NamedEntityRecognitionforIcelandic.pdf.

28

A The Icelandic tagset

Table 2: The Icelandic tagset
Char# Category/Feature Symbol – semantics
1 Word class n–noun
2 Gender k–masculine, v–feminine, h–neuter, x–unspecified
3 Number e–singular, f–plural
4 Case n–nominative, o–accusative, þ–dative, e–genitive
5 Article g–with suffixed definite article
6 Proper noun s–proper name
1 Word class l–adjective
2 Gender k–masculine, v–feminine, h–neuter
3 Number e–singular, f–plural
4 Case n–nominative, o–accusative, þ–dative, e–genitive
5 Declension s–strong declension, v–weak declension, o–indeclineable
6 Degree f–positive, m–comparative, e–superlative
1 Word class f–pronoun
2 Subcategory a–demonstrative, b–reflexive, e–possessive, o–indefinite,

p–personal, s–interrogative, t–relative
3 Gender/Person k–masculine, v–feminine, h–neuter/1–1st person, 2–2nd person
4 Number e–singular, f–plural
5 Case n–nominative, o–accusative, þ–dative, e–genitive
1 Word class g–article
2 Gender k–masculine, v–feminine, h–neuter
3 Number e–singular, f–plural
4 Case n–nominative, o–accusative, þ–dative, e–genitive
1 Word class t–numeral
2 Category f–alpha, a–numeric
3 Gender k–masculine, v–feminine, h–neuter
4 Number e–singular, f–plural
5 Case n–nominative, o–accusative, þ–dative, e–genitive
1 Word class s–verb (except for past participle)
2 Mood n–infinitive, b–imperative, f–indicative, v–subjunctive,

s–supine, l–persent participle
3 Voice g–active, m–middle
4 Person 1–1st person, 2–2nd person, 3–3rd person,
5 Number e–singular, f–plural
6 Tense n–present, þ–past
1 Word class s–verb (past participle)
2 Mood þ–past participle
3 Voice g–active, m–middle
4 Gender k–masculine, v–feminine, h–neuter
5 Number e–singular, f–plural
6 Case n–nominative, o–accusative, þ–dative, e–genitive
1 Word class a–adverb and preposition
2 Category a–does not govern case, u–exclamation,

o–governs accusative, þ–governs dative, e–governs genitive
3 Degree m–comparative, e–superlative
1 Word class c–conjunction
2 Category n–sign of infinitive, t–relative conjunction,
1 Word class e–foreign word
1 Word class x–unanalyzed word

29

