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The valuation of barrier options and other path-dependent options is different from that of vanilla
options as the prices of these options are not dependent on the dynamics of the vanilla market
guotes. The local volatility and stochastic volatility models are actually calibrated to only mar-
ket vanilla options, and hence do not have the flexibility to capture the dynamics of the exotic
markets.

The class of stochastic-local volatility (SLV) models in this paper is calibrated to both vanilla and
exotic prices available on the market.

The SLV model we use here follows a Heston-like term-structure model. The reasons we choose
a Heston-like SLV model are that: 1) a square-root process for the underlying with an mean-
reverting process for the variance is widely used in the industry; 2) semi-analytic formulas (He-
ston [1993]) or fast pricing methods (Carr & Madan [1999] and Fang & Oosterlee [2008]) are
available so that we can calibrate the stochastic parameters more efficiently.

The stochastic-local volatility (SLV) model is assumed to follow Heston-like dynamics for the spot
price S; and for the stochastic variance V; as

dS; = [ra(t) — rp(1))Sudt + L(Si, )/ ViSldW}, Sp = s,
AV, = k(0 — V,)dt + A/ VidW2, Vy = v, (2.1)
AW}l - dW? = pdt.
where 74(t) is domestic interest rate and 7¢(¢) is foreign interest rate in the context of FX mar-
kets, both of which are assumed to be of term structure. We will denote r(t) = 74(t) — 7¢(¢) in

the rest of the paper. We also assume that the stochastic parameters (x, 6, A and p) in the SLV
model have term structures.

Here L(S;,t) is called leverage function, which is numerically calibrated to the market data.
L(S;, t) represents the weight of local volatility.

Now we focus on the construction of the leverage function starting from the computation of the
local volatility. Suppose we have a local volatility model

dSt == T(t)stdt + ULV(St; t)Stth (22)

Given market prices of the call options C' (K, T'|Sy), we can derive the local volatility oy (S, t)
at the maturity 7" from Dupire’s equation (see Dupire [1994])

oC oC
o (St)_ 6_T+TK8_K+TfC
LV 9 - K_2820 . .
28[(2 :7:t

(2.3)

Alternatively, given the implied volatility o,y (K, T|Sp) in the Black-Scholes formula, we can
derive the local volatility oy (S, t) from the implied volatility as (see, e.g., Wilmott [2006] and
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Gatheral [2006])

(S,1) oty + 201y T + 2ropy TK %4
oLvio,t) = >
(14 di KVT281)2 + 01y K2T (220 — dy(So, K)VT(225)2) | s e
(2.4)
where
log (So/K) + [r + o2, /2T

OIV\/T

If we want the price process of the new SLV model to mimic that of the local volatility model and
hence they generate the same pricing results for European options, i.e., the so-called market
prices, we should match the diffusion terms of the two models.

Given the transition probability of the SLV model p(S;, V;, t) and the transition probability of the
LV model prv (St t), we can connect the local volatility with the the volatility part in model (2.1)
by the following mimicking theorem:

To mimic the LV model (2.2), the diffusion term in the SLV model (2.1) follows
oLy (z,t)* = E[L(S;,1)*Vi|S, = 2] = L(x,t)*E[Vi|S, = ], (2.6)

Furthermore, the probability distribution of the LV model (2.2) is the same as the marginal prob-
ability distribution of the SLV model (2.1) and we have the relation between the transition proba-
bility densities

+oo
v (S,1) = / (S, V1)V, 27
0

We refer to Gydngy [1986] and Tachet [2011] for a detailed proof.

Since the price of vanilla options only depends on the final state of the spot price and the market
prices for vanilla options (or market implied volatilities) yield the local volatility, therefore the
pricing results for vanilla options from the new SLV model with the above properties should
match the market prices for vanilla options.

For now, we have the leverage function

ory(x,t

L(z,t) = w(@t)
E[V| Sy = 2]

which can be roughly seen as a ratio between local volatility and the conditional expectation of
stochastic volatility.

(2.8)

From the above relation (2.8), we infer that when L(S;,t) = 1 the SLV model (2.1) becomes
the pure Heston stochastic volatility model; and when the vol of vol A = 0 the process for V}
becomes deterministic with L. = % the SLV model degenerates to the pure local volatility
model.

After calibration of the stochastic parameters and the leverage function, the SLV model can be
used to reproduce the implied volatility surface and price exotic options.

We now present our implementation of calibrating the SLV model. There are two sets of parame-
ters to be calibrated, the Heston stochastic parameters (x, , A and p) and the leverage function
L.
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If we calibrate the Heston stochastic parameters to the market implied volatility data for around
ATM strikes, then the pure stochastic volatility model could explain the given market implied
volatility data. However, we should note that the pure stochastic volatility model cannot explain
the whole market implied volatility surface, especially for far-end strikes.

When the leverage function is introduced to consider the effect of the local volatility component,
it could correct the far-end implied volatilities from the stochastic volatility model in the right
direction towards the market implied volatilities. We should also note that the vol of vol A mainly
determines the impact of stochastic volatility: when the vol of vol \ stays at a high level, the
impact of the local volatility disappears; when A = 0, the local volatility dominates.

To control the impact of stochastic volatility and local volatility, a so-called mixing fraction weight
n € [0, 1] is introduced (see, e.g., Tataru & Fisher [2010] and Clark [2011]) to multiply the vol
of vol \. For calibrated stochastic parameters, when 1 = 1, the stochastic volatility component
dominates and the local volatility implied by the leverage function has little effect; when n = 0,
the local volatility component dominates; when 0 < n < 1, both work together.

For the mixing fraction weight, different researchers have very different opinions. Tataru & Fisher
[2010] propose to use the normalized risk reversal moves to infer the term structure of 7. Clark
[2011] suggest that it is typically set to be around 0.60 or 0.65.

In our implementation, we suggest to give an interval of i that could calibrate the leverage
function to the market implied volatilities within a satisfactory tolerance level and then find the
optimal by matching market prices of some exotic options.

So now the calibration procedure of the SLV model consists of two main steps: 1) find the
stochastic parameters of the pure Heston model to match given market implied volatility data; 2)
then calibrate leverage function L with a proper mixing fraction ratio 7.

For the first stage, the Heston semi-analytic pricing formula (see, e.g., Heston [1993] and Mikhailov
& Nogel [2003]), Fourier transform method (see Carr & Madan [1999]) and the COS method pro-
posed by Fang & Oosterlee [2008] can be used to achieve fast and accurate calibration for the
term-structure Heston model as long as the characteristic function of the model is available, see
Elices [2009]. A nonlinear least squares optimization (e.g., Levenberg-Marquardt algorithm) is
performed to find the optimal parameters.

The idea of calibrating the leverage function is as follows. When looking into formula (2.8) for the
leverage function, we can actually express the conditional expectation in the formula as integrals
involving transition probability densities of the SLV model. We also know that the Fokker-Planck
equation describes the evolution of this transition probability density. So if we can solve the
Fokker-Planck equation, we can evaluate the leverage function via integrals of the probability
densities.

For the second stage, once the Heston model parameters are determined by its calibration, the
mixing fraction is applied to both the vol of vol and also to the correlation p for each maturity tenor
(for which vanilla and possible exotic options are the market data input during calibration). The
local volatility surface value and the Fokker-Planck equation are computed and used to generate
the probability density function and leverage function, and then the leverage function can be
used to price the input known market vanillas and exotics, the mixing fraction that gives the
smallest overall errors is chosen. The same procedure is repeated for the next maturity until all
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maturity tenors are calibrated. In this stage, a one-dimensional nonlinear optimizer, e.g., golden
section search, can be used to optimize the mixing fraction, and the leverage function is thus
determined.

The reason for adding exotic prices to the calibration process is to match the dynamics of the
volatility surface as underlying spot moves. In the equities market, SLV models are primarily
used to completely match the observed implied volatility smiles, whereas in FX markets, SLV
models are used to represent the dynamics of volatility.

Here exotic prices are treated just like the vanilla prices: i.e. errors for exotic prices and vanillas
are minimized to find the mixing fraction by an optimizer. There is a choice for using different
weights on exotic prices to vanilla prices, for example, we can regard one exotic price is worth
three times the weight for a vanilla.

It should be noted that, as the process for V; is a square-root process, the Feller condition
2k0 > A% is required to preserve the positivity of the variance process. However, the Feller
condition is often violated in the real market (see Clark [2011] and Janek, Kluge, Weron & Wystup
[2011] for some examples in the FX markets) and this can cause wrong calculations of the
probability distribution. For example, Fang & Oosterlee [2011] have shown that when the Feller
condition is violated, the decay rate of the variance density will increase dramatically when V;
approaches zero, and hence, they propose to use the log-variance domain instead.

To maintain the positivity of the variance process, we transform the original SLV model of (S;, V)
into @ model of log-spot and log-variance as (X; = log(S;/So), Z: = log(V;/V4)) in the log-
domain, which is also scaled by the initial point (.Sg, V4).

From Ito’s lemma, we then have the SLV model for the log-spot X; and the log-variance Z; as

1 2 1

dXt = [Td(t) — Tf(t) — §L(Xt, t) ‘/;g]dt + L(Xt,t)\/ V;th s XU = O,
1 1 1
dZ, = [(K0 — =A?)— — K]dt + \—=dW?2, Zy =0 (2.9)
t [(/{ 9 )‘/t K] + \/Vt t 0 )
dW} - dW? = pdt.

Here L(X;,t) := L(Sy - e, t) = L(S;,t),S; = Sp - X and V; = Vj - €7t .

From the Fokker-Planck equation (or the Kolmogorov forward PDE) for the transition probability
density p(Xy, Z;, t) in the SLV model (2.9), we have

dp 0 1, 0 1.5 1
P = 2 lr(®) = SEVIp] = o [(60 — 5207 — Wpl+
1 0? 0? 19* ,1 (2.10)
o axe LV + gxazMelel + 555 A 5l
with the initial condition (we now have X, = 0, V5 = 0)
(X, Z,0) = §(X) - §(2), (2.1)

where 4(+) is the Dirac delta function. This is an initial value problem with free boundary condi-
tion.
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We also know that from equation (2.8)

+o00
Xt X, Z,t)dZ
L(X,t) = (Xt _ oy (X, 1) {‘o‘f o 4z (2.12)
E[V|X] ffoo Vp(X, Z,t)dZ
In particular, at time 0, we have
L(X,0) = orv(X,0) (2.13)
VAY)

Note that only the initial values of p and L are known from (2.11) and (2.13) at this stage,
whereas they are unknown for any future times. However, at a future time ¢, given p(X, Z, 0) and
L(X,0), we can solve (2.10) for p(X, Z, t) and then find L( X, t) by evaluating (2.12) afterwards.
Hence, given a series of time points to(= 0), 1, ..., tx(= T'), we can start from p(X, Z, ty) and
L(X,ty) to calculate p(X, Z, t;) by solving PDE (2.10) one step forward in time and to evaluate
L(X,t;) via equation (2.12). In this alternate procedure, we can obtain L(X,t,) as well as
p(X, Z, t,) till maturity, n = 0,1, ..., N. The procedure is illustrated in Figure 2.1.

Figure 2.1: Calibration procedure for leverage function

p(X727t0) L(Xat(])

/

p(X7 Zatl) HL(X’ tl)

—

p(X7 ZatQ) 4>L(X7t2)

p(X7 Z7tN) HL(XatN)

To solve PDE (2.10) in a finite difference framework, we discretise the transition probability
p(X, Z,t) inthe X-and Z-directions as p}'; = p(X;, Zj, ).

We assume that the transition probability p(X;, Z;,0) at the initial time can be approximated by
that of a bivariate normal distribution at a small forward time At as

(Xijfx)2 + (Zj—étz)Q _ 2p(Xi—px)(Zj—pz)

1 g e oxo
p?ﬂ —= p(X“ Z]70) It . eXp ( _ X zZ X0Z )’

2roxozy/1 — p? 2(1 - p?)
(2.14)
with ]
Ux = [7"(0) - §L(070)2U]At7 0x = L(0,0) VAL,
(2.15)
1.,.1 At
pz = [(K@—i)\Q);—H]At, oy = A gt
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As At — 0, the above probability density converges to Dirac delta function in the initial condition
(2.11).

Hence, the leverage function (2.12) can be approximated by using the trapezoidal rule as

N T T
% Zj:zl (pz‘,j + pi,j+1)AZ

L(Xi,tn) = oy (Xi, tn) ~ (2.16)
5 Zj:zl(V‘PZj + Viapi i) AZ
Given a uniformly spaced mesh, we can further simplify it as
Nz 7 70
Z(pr 4+ ph
L(Xi,t) ~ orv(Xi, tn) 25 Py i) (2.17)

& )
Zj:z1(v‘p?,j + Vj+1p2j+1)

Since we have that f_Jr;o fj;o p(X,Z,0)dZdX = 1 at the initial time, we choose a small At

such that
Nx Ny

1
Z Z Z(p?,j F D1y D P ) AXAZ & 1, (2.18)

i=1 j=1
by using the trapezoidal rule in two dimensions. At each time step, we should have similar
results.

The advantages of this approach are that: firstly, we have a number of nodes around the initial
point (0, 0) in the log-domain with non-zero probability densities by using a normal approxima-
tion, which will increase the stability in solving PDE (2.10); and secondly, this approach also
works with a non-uniform mesh.

In this section, we discuss the finite difference method used to solve Fokker-Planck equation for
the SLV model. We refer to Tavella & Randall [2000] and in't Hout & Foulson [2010] for more
details on this topic.

To solve the initial value problem (2.10), the alternating-direction-implicit (ADI) method can be
used. Tataru & Fisher [2010] suggest to use a modified Douglas scheme from in't Hout & Foulson
[2010] to solve the initial value problem (2.10) as:

A=p" 4 At [Fo(p" taar) + FL (0" ) + B (07 t)],
B — alAt,Fi(B,t,) = A — aAt, By (p" ' ta1),
C — alt, Fy(C,t,) = B — alAt, Fo(p" ', 1),
pt=C, n=1,... N,

(2.19)

with Fy, Fy and F5 representing the derivative terms in the mixed derivative, Z- and X -directions,
respectively (see expression (2.20)). The parameter « affects the stability and accuracy of the
ADI method, which lies in the range [0, 1]. When a = 0, the scheme becomes fully explicit; and
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when a = 1, itis fully implicit.

Fo(p,t) = a)?;z [ApLp],
Fi(p.t) = —f(nt — )% — gl + 2 ey (220
By(p.t) =~ [(r(0) — SL2V)p] 4+ 5 [LVi)],
Here we define At,, = t, —t,_1,n = 1,..., N as a variable step size. The reason to use a

variable time step size is that: we usually have dense market data for short maturity time less
than 1 year in the real market and sparse data for long maturity time, and the first few time steps
determines the general shape of the transition probability, hence we can use small time steps for
short maturities and large steps for long maturities so that we could obtain a good resolution of
the probability density distribution and achieve a robust calibration of the leverage function.

One must be aware however, that in the above ADI method, we will use the discrete version of the
leverage function L™ at a future time ¢,,, which is however unknown, to calculate p™. There are
several ways to approximate it. The first approach is to use the previous discrete version L" ! to
replace L". The second approach is to use the previous version of the transition probability p" !
to calculate L™ by equation (2.16). Moreover, it is noted that A, B and C are all approximates
of p™, we can use the latest approximate to replace p™ involved in the calculation of L™. Clark
[2011] suggests to use the leverage function with the same moneyness from the previous time
step to approximate L".

The transition probability density in the local volatility model should satisfy the relation pyy (X, t) =
f°° p(X, Z,t)dZ for log-spot X, which implies that alternatively we can solve the Fokker-Planck
equation for pyy to replace the integral f p(X, Z,t)dZ involved in (2.12).

Furthermore, since we do not impose boundary conditions to the initial value problem (2.10), we

will use one-sided first order derivatives and zero second derivatives for boundary points in X -
and Z-directions.

Let 7 = T —t, then the backward option pricing PDE for a payoff function u under the SLV model
(2.9) becomes:

ou g Ou 1 5 O%u O*u
o=l - LV]8X+ LV8X2+)\ Lovazt 020
Lo — byl g0 Lel O, |
2"V T Maz T vazr T T

For the above PDE (2.21), we use an ADI scheme similar to (2.19) as

A=u"" 1+ATn[G0( " T 1)+G1( L Tam 1)+GQ( )l

— aAT1,G1(B,1,) = A — aA7,G(u" Lo 1) (2.22)
C — aAT,Go(C, 1) = B — aAT,Go(u" ™, 7_1), '
u" = C, nzl,...,N,
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with

I TR S TR

v "oz 2% vazr 2"V
_ 1, 0u 1 , 0% 1

Go(u, 1) = [r(r) — §L V]a—X + §L V8X2 — §T’d(7')u + by(7).

where b;(7) are boundary conditions imposed on the mixed derivative, Z- and X -directions.
Given proper initial conditions and boundary conditions, we can solve the above PDE to obtain
option prices.

u+ by (1), (2.23)

Generally, we impose zero second derivative condition and one-sided finite difference for first
derivative. When there is a boundary condition for different option types, we normally use central
finite difference; or one-sided difference accordingly (e.g., barrier options).

For European options with strike K, we have the initial condition for the payoff as

200 = | T )0, o @2
For knock-in type barrier options, we have initial condition
u(X;, Z;,0) = 0. (2.25)
The boundary condition for a cash one-touch option with barrier B reads
b(log(B), Z;,T) = exp ( — /T rd(t)dt). (2.26)
0

For knock-in call or put options with barrier B and strike /&, we have boundary condition

v Veau(B, K,T), forcall
b(log(B),Z],T)—{ Vou(B. K. 7), forput (2.27)

Here V (B, K, T) represents the price of the European option with spot B, strike K and maturity
T.

Note that given the calibrated leverage function in terms of a mesh used in the calibration phase,
we need to interpolate the leverage function to accommodate a new spot mesh or a new time
mesh for pricing options. We suggest to use cubic spline interpolation in spot direction and linear
interpolation in time direction.

To summarize, we have the following implementation of the SLV model:
1. Calibration:

(1) For given market data including strikes and implied volatilities, calibrate the parameters
(and the initial variance) in term-structure forms for Heston stochastic volatility model.

(2) For the same market data, generate local volatility data.
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(3) With the calibrated stochastic volatility parameters and generated local volatility, cal-
ibrate term-structure mixing fraction parameters and leverage function by solving the
Fokker-Planck equation to match market implied volatilities as well as traded prices of
available market exotic options.

2. Pricing:

(1) Interpolate leverage function data along spot direction (cubic spline interpolation) or
time direction (linear interpolation).

(2) Solve backward option pricing PDE or use Monte Carlo simulation with stochastic
volatility parameters, mixing fraction parameter and interpolated leverage function.

Note that the first two steps in the calibration are independent and both steps feed the third
calibration step, see Figure 2.2.

Figure 2.2: Implementation of SLV model

Calibration

Market data including implied volatilities

Calibrate stochastic Generate local volatility
volatility parameters data

Calibrate mixing fraction parameter and leverage function to
match market implied volatilities and some exotic options

Store stochastic volatility parameters, mixing fraction
parameter and leverage function

Interpolate leverage function according to the pricing mesh

Solve backward pricing PDE or use Monte Carlo Methods

Pricing

3 Numerical Results in FX Markets

In this section, we will evaluate the pricing performance of the stochastic-local volatility model.
Here we give an example of the EUR/USD exchange rate.

3.1 Implied volatility surface

First, we calibrate the parameters of the SLV model to market data on EUR/USD. Details of
traded market prices are listed in Tables 3.1 and 3.2. We will set « = 0.5 in the ADI method to
achieve a reasonable stability.

Note that since the yields are quoted annually, we need to convert them to local forward rate,
which is a function of time so that we can use the local forward rate in the finite difference method.

The market implied volatility surface are presented in terms of strikes and maturities for 5 strikes
and 10 maturities in Figure 3.1. From Figure 3.1, we can see that EUR/USD data is left-skewed
with higher volatilities for ITM strikes than OTM strikes. In order to represent the left-skewness
of the EUR/USD data, a negative p should be used in the SLV model.

FX Option Pricing with Stochastic-Local Volatility Model | 9



Table 3.1: EUR/USD parameter settings

Domestic currency usD
Foreign currency EUR
Date 23 August, 2012
Spot 1.257 USD per EUR
Delta type Spot delta for up to 1y, driftless delta for more than 1y
ATM volatility 0-delta straddle

Table 3.2: EUR/USD market data (in %)

Maturity | Domestic yield | Foreignyield | 10-ABF | 25-ABF | ocarnm 25-ARR | 10-A RR
im 0.4074 0.0424 0.5125 0.1713 9.1500 -0.6825 -1.2175
2m 0.5148 0.1061 0.6955 0.2175 9.3250 -1.1825 -2.1150
3m 0.6619 0.2344 0.9375 0.2813 9.5500 -1.5025 -2.7300
6m 0.9526 0.4683 1.2500 0.3600 10.1250 -1.9200 -3.5525
9Im 1.1923 1.6160 1.4168 0.4200 10.6750 -2.0975 -3.9350
ly 1.1607 0.6352 1.6235 0.4675 11.1750 -2.2500 -4.2150
2y 0.5982 0.0291 1.5188 0.4425 11.6750 -2.3150 -4.3975
3y 0.7174 0.0291 1.2815 0.3688 12.0000 -2.3000 -4.3650
4y 0.7174 0.0291 1.1900 0.3565 12.1000 -2.3750 -4.5000
5y 0.7174 0.0291 1.2125 0.3750 12.2000 -2.4250 -4.6000

Figure 3.1: EUR/USD market implied volatility surface

o © o o
[
w 5~ o o
L

S~

implied vol
o
o
Y]

time

strike

We will compute the local volatility data, derived via Dupire’s formula from the supplied mar-
ket implied volatility data, see Figure 3.2, and we use the local volatility data as an input for
calibrating the leverage function.

For the calibration of the SLV model, we use the scaled log-spot X = log(S/Sy) as log-
moneyness and scaled log-variance Z = log(V/V;). Here we have S, = 1.257 and V{, = 0.008.
We calibrate the term-structure Heston model to the market implied volatility data to get the
piecewise constant stochastic parameters from the Heston model.

For the second phase, the mixing fraction weight n and the leverage function L are calibrated to
the market implied volatility surface. We use the ADI method to solve the Fokker-Planck equation
(2.10) numerically with the initial condition approximated by a bivariate normal distribution. The
transition probability at the initial time and at a future time are shown in Figure 3.3. We can see
that the fat tail in the probability distribution is noticeable in the log-domain.

The term-structure parameters of the SLV model are calibrated to the market implied volatility
surface, and are listed in Table 3.3.

Although the Heston model can reproduce the implied volatilities around ATM region, it cannot
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Figure 3.2: EUR/USD local volatility
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Table 3.3: Term-structure parameters in the SLV model for EUR/USD

X=log(S/S,)

Period K 0 A p n
0-1m 0.885 | 0.031 | 0.342 | -0.288 | 0.796
Im-2m | 0.881 | 0.030 | 0.471 | -0.534 | 0.202
2m-3m | 0.851 | 0.034 | 0.450 | -0.490 | 0.796
3m-6m | 0.816 | 0.039 | 0.430 | -0.474 | 0.502
6m-9m | 0.842 | 0.035 | 0.445 | -0.489 | 0.611
Im-1y 1.204 | 0.020 | 0.418 | -0.532 | 0.344
1y-2y | 1.268 | 0.022 | 0.396 | -0.576 | 0.608
2y-3y 1.166 | 0.022 | 0.439 | -0.610 | 0.521
3y-4y 0.989 | 0.025 | 0.477 | -0.582 | 0.448
4y-5y 0.978 | 0.022 | 0.499 | -0.516 | 0.419

-5

Z=Iog(V/VO)

X=log(S/S )

adequately match the implied volatilities at ITM or OTM regions, while the local volatility compo-
nent introduced into the stochastic volatility model can correct the reproduced implied volatilities

at ITM and OTM regions so as to match the whole implied volatility surface.

In Table 3.4, we present the calibrated implied volatilities in terms of 5 different deltas and 10
maturities with corresponding absolute errors in square brackets. The root mean square error
(RMSE) is around 7 basis points (bps), with the mean absolute error 4 bps and maximum ab-
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Table 3.4: Calibrated implied volatility surface from SLV for EUR/USD (in %)

Tenor 10-A put 25-A put ATM 25-A call 10-A call
im | 10.53[-0.26] | 9.88[0.22] 0.34[-0.19] | 9.11[-0.13] | 9.16[-0.11]
2m 11.04[0.04] | 10.12[0.02] | 9.41[-0.08] 8.94[0.01] | 8.98[-0.01]
3m | 11.89[-0.03] | 10.65[-0.07] | 9.64[-0.09] | 9.10[-0.02] | 9.15[-0.03]
6m | 13.21[-0.05] | 11.49[-0.04] | 10.12[0.01] | 9.51[0.02] | 9.61[-0.01]
om | 14.08[-0.02] | 12.15[-0.01] | 10.73[-0.05] | 10.04[0.01] | 10.12[0.00]
1y | 14.91[-0.01] | 12.78[-0.01] | 11.20[-0.02] | 10.51[0.01] | 10.69[0.01]
2y | 15.41[-0.02] | 13.31[-0.04] | 11.71[-0.04] | 10.97[-0.01] | 10.99[0.01]
3y | 15.49[-0.03] | 13.55[-0.03] | 12.03[-0.03] | 11.23[-0.01] | 11.09[0.01]
4y | 1555[-0.01] | 13.65[-0.01] | 12.11[-0.01] | 11.27[0.00] | 11.04[0.00]
5y | 15.72[-0.01] | 13.80[-0.02] | 12.21[-0.01] | 11.37[0.00] | 11.11[0.00]

solute error 26 bps. The numerical results show that the SLV model could capture the whole
surface well.

Figure 3.4 shows the leverage function for EUR/USD, which implied the changes of the ratio
between local volatility and conditional expectation of stochastic volatility.

Figure 3.4: EUR/USD leverage function

\I\IWI\HI\I\I\I\!\I\I\I\IUH\\I\I\I\I\I\I]I\I]IW!\H!!I\I\I\I\III\I\I\IHI\_NI}I\I\l\w ‘ o
IR O, - - ‘
R

time X=log(S/S,)

After calibration, we will use the SLV model to price exotic barrier options. First we compare
the pricing results from the SLV model with the local volatility model for some single-barrier cash
one-touch options. The details of the one-touch options are listed in Table 3.5.

Table 3.5: Parameter settings for EUR/USD single-barrier domestic one-touch options

Maturity 1m, 3m, 6m and 1y
Spot 1.257 USD per EUR
Payout in USD

Lower trigger | L =1,1.05,1.1,1.15and 1.2
Upper trigger U =1.275,1.3,1.35and 1.4

In Table 3.6, we present pricing results of the one-touch options from the SLV model, the pure
LV model and the pure Heston SV model. We also provide theoretical value (TV) using Black-
Scholes model with constant ATM volatility (see Hakala & Wystup [2007]) for comparison. The
reference prices are obtained from FENICS, which can be seen as the benchmark prices for
these one-touch options. The one-touch options with barriers L = 1.2 and U = 1.3 are actually
also used in the calibration phase for computing the mixing fraction and the leverage function.
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We can see that if we use only constant ATM volatility, we will misprice one-touch options, espe-
cially those with barrier far away from the spot. The pricing results of the SLV model are closer
to the reference prices and outperforms the pure LV and SV models in most cases.

Table 3.6: Pricing results of EUR/USD single-barrier domestic one-touch options

Maturity Trigger Reference Lv SLv SV TV
L=1 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000
L=1.05 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000
L=11 0.0002 0.0000 | 0.0001 | 0.0006 | 0.0000
L=1.15 0.0076 0.0046 | 0.0050 | 0.0102 | 0.0007
im L=12 0.1137 0.1200 | 0.1150 | 0.1164 | 0.0788
U =1.275 0.5718 0.5901 | 0.5706 | 0.5564 | 0.5809
U=13 0.1859 0.1943 | 0.1808 | 0.1725 | 0.1977
U=135 0.0096 0.0071 | 0.0080 | 0.0090 | 0.0065
U=14 0.0003 0.0001 | 0.0002 | 0.0004 | 0.0000
L=1 0.0011 0.0004 | 0.0004 | 0.0032 | 0.0000
L=1.05 0.0070 0.0050 | 0.0049 | 0.0111 | 0.0001
L=1.1 0.0319 0.0336 | 0.0328 | 0.0363 | 0.0032
L=1.15 0.1096 0.1262 | 0.1242 | 0.1104 | 0.0489
3m L=12 0.3274 0.3515 | 0.3456 | 0.3191 | 0.3043
U =1.275 0.7578 0.7815 | 0.7560 | 0.7290 | 0.7493
U=13 0.4450 0.4753 0.4441 0.4131 0.4569
U=1.35 0.1080 0.1174 | 0.1060 | 0.1104 | 0.1157
U=14 0.0207 0.0188 | 0.0180 | 0.0291 | 0.0176
L=1 0.0248 0.0232 | 0.0224 | 0.0286 | 0.0003
L=1.05 0.0587 0.0640 | 0.0615 | 0.0585 | 0.0047
L=11 0.1218 0.1366 | 0.1318 | 0.1170 | 0.0360
L =115 0.2414 0.2591 | 0.2507 | 0.2317 | 0.1611
6m L=12 0.4812 0.5064 | 0.4879 | 0.4617 | 0.4634
U =1.275 0.8465 0.8602 | 0.8352 | 0.8149 | 0.8207
U=13 0.6308 0.6562 | 0.6170 | 0.5789 | 0.6000
U=1.35 0.2729 0.2918 | 0.2634 | 0.2538 | 0.2681
U=14 0.1042 0.1120 | 0.1003 | 0.1001 | 0.0945
L=1 0.1087 0.1232 | 0.1197 | 0.1017 | 0.0104
L =1.05 0.1671 0.1872 | 0.1827 | 0.1600 | 0.0435
L=11 0.2577 0.2795 | 0.2718 | 0.2508 | 0.1331
L=1.15 0.4035 0.4280 | 0.4133 | 0.3934 | 0.3141
ly L=12 0.6296 0.6582 | 0.6389 | 0.6151 | 0.5961
U =1.275 0.9032 0.9051 | 0.8867 | 0.8719 | 0.8694
U=13 0.7684 0.7797 | 0.7466 | 0.7138 | 0.7092
U=135 0.5012 0.5115 | 0.4744 | 0.4399 | 0.4338
U=14 0.2866 0.2945 | 0.2693 | 0.2578 | 0.2377

We also present the pricing results for single-barrier reverse knock-in options as an example.
The details of the knock-in options are shown in Table 3.7 and the computed prices from different
models are given in Table 3.8. We can also conclude that the SLV model outperforms the other
models in most cases.

Table 3.7: Parameter settings for EUR/USD single-barrier reverse knock-in options

Maturity 1m, 3m, 6m and 1y
Spot 1.257 USD per EUR
Strike 1.255 USD per EUR

Lower trigger | L =1,1.05,1.1,1.15 and 1.2, put options
Upper trigger | U = 1.275,1.3,1.35 and 1.4, call options

We also compare the prices of one-touch and knock-in European options with different barrier
from pure LV, SLV and pure SV (Heston) models in Figure 3.5. We can see that the prices
from the SLV model is actually a non-linear combination of the prices from pure LV and pure SV
models. Similar figures can be found in Section 8.5 of Clark [2011].
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Table 3.8: Pricing results of EUR/USD single-barrier reverse knock-in options

Maturity Trigger Reference Lv SV TV
L=1 0.0000 0.0000 | 0.0000 | 0.0002 | 0.0000
L =1.05 0.0000 0.0000 | 0.0000 | 0.0002 | 0.0000
L=11 0.0000 0.0000 | 0.0000 | 0.0003 | 0.0000
L =115 0.0008 0.0004 | 0.0005 | 0.0012 | 0.0001
Im L=12 0.0063 0.0065 | 0.0063 | 0.0066 | 0.0043
U =1.275 0.0138 0.0139 | 0.0138 | 0.0136 | 0.0139
U=13 0.0086 0.0088 | 0.0083 | 0.0081 | 0.0090
U=135 0.0008 0.0006 | 0.0008 | 0.0010 | 0.0006
U=14 0.0000 0.0000 | 0.0000 | 0.0002 | 0.0000
L=1 0.0003 0.0000 | 0.0000 | 0.0013 | 0.0000
L =1.05 0.0015 0.0009 | 0.0008 | 0.0027 | 0.0000
L=11 0.0050 0.0051 | 0.0049 | 0.0061 | 0.0005
L =115 0.0117 0.0131 | 0.0129 | 0.0122 | 0.0051
3m L=12 0.0195 0.0203 | 0.0202 | 0.0197 | 0.0169
U =1.275 0.0252 0.0255 | 0.0255 | 0.0254 | 0.0245
U=13 0.0226 0.0233 | 0.0225 | 0.0221 | 0.0227
U=135 0.0102 0.0111 | 0.0100 | 0.0112 | 0.0111
U=14 0.0028 0.0027 | 0.0024 | 0.0047 | 0.0026
L=1 0.0066 0.0059 | 0.0058 | 0.0078 | 0.0001
L =1.05 0.0124 0.0130 | 0.0126 | 0.0125 | 0.0010
L=11 0.0194 0.0211 | 0.0206 | 0.0189 | 0.0055
L =115 0.0268 0.0277 | 0.0273 | 0.0263 | 0.0168
6m L=12 0.0325 0.0328 | 0.0327 | 0.0324 | 0.0273
U =1.275 0.0386 0.0386 | 0.0385 | 0.0385 | 0.0350
U=13 0.0376 0.0378 | 0.0373 | 0.0368 | 0.0342
U=135 0.0278 0.0286 | 0.0266 | 0.0269 | 0.0263
U=14 0.0155 0.0163 | 0.0148 | 0.0169 | 0.0138
L=1 0.0284 0.0309 | 0.0301 | 0.0265 | 0.0026
L =1.05 0.0354 0.0379 | 0.0374 | 0.0339 | 0.0088
L=11 0.0424 0.0438 | 0.0434 | 0.0415 | 0.0203
L =115 0.0484 0.0490 | 0.0486 | 0.0482 | 0.0329
ly L=12 0.0518 0.0520 | 0.0519 | 0.0519 | 0.0394
U =1.275 0.0605 0.0604 | 0.0604 | 0.0604 | 0.0502
U=13 0.0602 0.0602 | 0.0601 | 0.0597 | 0.0499
U=135 0.0559 0.0563 | 0.0545 | 0.0535 | 0.0459
U=14 0.0451 0.0453 | 0.0425 | 0.0428 | 0.0357

Figure 3.5: Comparison of pricing results for EUR/USD 1y barrier options
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In this paper, we presented our implementation of calibrating and pricing of the stochastic-local
volatility model for FX options. The calibration of the SLV model splits in two parts: 1) calibrate
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stochastic volatility parameters; and 2) calibrate leverage function. The first part can follow the
conventional calibration approaches for term-structure Heston model. For the second calibration
phase, a so-called mixing fraction parameter is introduced to control the weight of stochastic
volatility and is calibrated to market implied volatilities and some exotic option prices from the
market. During the second phase, the Fokker-Planck equation is solved repeatedly to produce
the leverage function. After the stochastic parameters are calibrated and the leverage function
is calculated, we can use the SLV model to price options.

Carr, P. & Madan, D. B. [1999], ‘Option valuation using the fast Fourier transform’, Journal of
Computational Finance 2(4), 61-73.

Clark, I. J. [2011], Foreign Exchange Option Pricing: A Practitioners Guide, John Wiley & Sons,
West Sussex.

Dupire, B. [1994], ‘Pricing with a smile’, Risk (January), 18-20.
Elices, A. [2009], ‘Affine concatenation’, Wilmott Journal 1(3), 155-162.

Fang, F. & Oosterlee, C. W. [2008], ‘A novel option pricing method for European options based on
Fourier-cosine series expansions’, SIAM Journal on Scientific Computing 31(2), 826—848.

Fang, F. & Oosterlee, C. W. [2011], ‘A Fourier-based valuation method for Bermudan and barrier
options under Heston’s model’, SIAM Journal on Financial Mathematics 2(1), 439-463.

Gatheral, J. [2006], The Volatility Surface: A Practitioner's Guide, John Wiley & Sons, Hoboken.

Gydngy, |. [1986], ‘Mimicking the one-dimensional marginal distributions of processes having an
Ito differential’, Probability Theory and Related Fields 71(4), 501-516.

Hakala, J. & Wystup, U., eds [2007], Foreign Exchange Risk: Models, Instruments and Strate-
gies, Risk Books, London.

Heston, S. L. [1993], ‘A closed-form solution for options with stochastic volatility with applications
to bond and currency options’, Review of Financial Studies 6(2), 327-343.

in't Hout, K. J. & Foulson, S. [2010], ‘ADI finite difference schemes for option pricing in the
Heston model with correlation’, International Journal of Numerical Analysis and Modeling
7(2), 303-320.

Janek, A., Kluge, T., Weron, R. & Wystup, U. [2011], Statistical Tools for Finance and Insurance,
2nd edn, Springer, Berlin, chapter FX Smile in the Heston Model.

Mikhailov, S. & Nogel, U. [2003], ‘Heston’s stochastic volatility model: Implementation, calibration
and some extensions’, Wilmott magazine (July), 74-79.

Tachet, R. [2011], Non-Parametric Model Calibration in Finance, PhD thesis, Ecole Centrale
Paris.

Tataru, G. & Fisher, T. [2010], Stochastic local volatility. Bloomberg.

Tavella, D. & Randall, C. [2000], Pricing Financial Instruments: The Finite Difference Method,
John Wiley & Sons, New York.

Wilmott, P. [2006], Paul Wilmott on Quantitative Finance, 2nd edn, John Wiley & Sons, West

FX Option Pricing with Stochastic-Local Volatility Model | 15



Sussex.






CONTACT US FOR FURTHER INFORMATION

t 1300363 400 CSIRO Mathematics, Informatics and Statistics
+61 3 9545 2176 Zili Zhu

e enquiries@csiro.au t +61 39545 8003

W WWW.CSiro.au e Zili.Zhu@csiro.au

w  Mathematics, Informatics and Statistics
YOUR CSIRO

Australia is founding its future on
science and innovation. Its national
science agency, CSIRO, is a
powerhouse of ideas, technologies and
skills for building prosperity, growth,
health and sustainability. It serves
governments, industries, business and
communities across the nation.


mailto: enquiries@csiro.au
http://www.csiro.au
mailto: Zili.Zhu@csiro.au
http://www.csiro.au/en/Organisation-Structure/Divisions/Mathematics-Informatics-and-Statistics.aspx

	1 Introduction
	2 Stochastic-Local Volatility Model
	2.1 The model
	2.2 Calibration of SLV model
	2.2.1 Calibration of leverage function
	2.2.2 Fokker-Planck equation
	2.2.3 Approximation of initial condition

	2.3 Finite difference scheme
	2.4 Option pricing techniques
	2.5 Complete implementation of the SLV model

	3 Numerical Results in FX Markets
	3.1 Implied volatility surface
	3.2 Pricing barrier options

	4 Summary

