
MAFS525 – Computational Methods for Pricing Structured Prod-

ucts

4.4. Hull-White interest rate model

The Hull-White model for the instantaneous short rate rt is

drt = [φ(t)− αrt] dt + σ dZt.

• Analytic procedure of fitting the initial term structure of bond prices

• Calibration of interest rate trees against market discount curves

• Extension to other interest rate models

• Pricing of interest rate products using the calibrated interest rate

trees.
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Analytic procedure of fitting the initial term structures of bond

prices

• In the Hull-White short rate model, φ(t) in the drift term is the only

time dependent function in the model. Under the risk neutral measure

Q, the short rate rt is assumed to follow

drt = [φ(t)− αrt] dt + σ dZt,

where α and σ are constant parameters. The model possesses the

mean reversion property. We illustrate the analytic procedure for

the determination of φ(t) using the information of the current term

structure of bond prices.

• The governing equation for the bond price B(r, t;T ) is given by

∂B

∂t
+

σ2

2

∂2B

∂r2
+ [φ(t)− αr]

∂B

∂r
− rB = 0.
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• We assume that the bond price function is of the form

B(t, T ) = ea(t,T )−b(t,T )r.

Solving the pair of ordinary differential equations for a(t, T ) and b(t, T ),

we obtain

b(t, T ) =
1

α

[
1− e−α(T−t)

]

a(t, T ) =
σ2

2

∫ T

t
b2(u, T ) du−

∫ T

t
φ(u)b(u, T ) du.

Our goal is to determine φ(T ) in terms of the current term structure

of bond prices B(r, t;T ).

Applying the relation:

lnB(r, t;T ) + rb(t, T ) = a(t, T ),

we have
∫ T

t
φ(u)b(u, T ) du =

σ2

2

∫ T

t
b2(u, T ) du− lnB(r, t;T )− rb(t, T ). (1)
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• To solve for φ(u), the first step is to obtain an explicit expression for∫ T

t
φ(u) du.

• This can be achieved by differentiating
∫ T

t
φ(u)b(u, T ) du with respect

to T and subtracting the terms involving
∫ T

t
φ(u)e−α(T−t) du.

• The derivative of the left hand side of Eq. (1) with respect to T gives

∂

∂T

∫ T

t
φ(u)b(u, T ) du = φ(u)b(u, T )

∣∣∣∣∣
u=T

+
∫ T

t
φ(u)

∂

∂T
b(u, T ) du

=
∫ T

t
φ(u)e−α(T−u) du,
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We equate the derivatives on both sides to obtain

∫ T

t
φ(u)e−α(T−u) du =

σ2

α

∫ T

t
[1− e−α(T−u)]e−α(T−u) du

− ∂

∂T
lnB(r, t;T )− re−α(T−t). (2)

We multiply Eq. (1) by α and add it to Eq. (2) to obtain

∫ T

t
φ(u) du =

σ2

2α

∫ T

t
[1− e−2α(T−u)] du− r

− ∂

∂T
lnB(r, t;T )− α lnB(r, t;T ).
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By differentiating the above equation with respect to T again, we obtain

φ(T ) in terms of the current term structure of bond prices B(r, t;T ) as

follows:

φ(T ) =
σ2

2α
[1− e−2α(T−t)]− ∂2

∂T2
lnB(r, t;T )

− α
∂

∂T
lnB(r, t;T ).

• Alternatively, one may express φ(T ) in terms of the current term

structure of forward rates F (t, T ).

• Recall that − ∂

∂T
lnB(r, t;T ) = F (t, T ) so that we may rewrite φ(T ) in

the form

φ(T ) =
σ2

2α
[1− e−2α(T−t)] +

∂

∂T
F (t, T ) + αF (t, T ).
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Calibration of interest rate trees against market discount curves

The interest rates on the Hull-White tree are ∆-period rates, not the

same as the instantaneous short rate r. Let R(t) denote the ∆t-period

rate at time t. Recall

B(r, t) = a(t, T )e−b(t,T )r

so that

e−R∆t = a(t, t + ∆t)e−b(t,t+∆t)r.

Hence, r(T ) and R(t) are related by

r(t) =
R(t)∆t + ln a(t, t + ∆t)

b(t, t + ∆t)
.

• We assume that the ∆t-rate, R, follows the same process as r:

dR = [θ(t)− aR] dt + σ dZ.

Clearly, this is reasonable in the limit as ∆t tends to zero.
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Tree construction procedures

Unlike the usual trinomial trees used in equity pricing, the calibrated in-

terest rate trees are distorted. The size of the displacement is the same

for all nodes at a particular time t, but it is not usually the same for nodes

at two different times.

• The first stage in building a tree for this model is to construct a tree

for a variable R∗ that is initially zero and follow the process

dR∗ = −aR∗ dt + σ dZ.

We build a symmetrical tree similar to Figure 2 for R∗.

• In the second stage, we build the tree for R that calibrates to the

initial term structures of bond prices.
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• This process is symmetrical about R∗ = 0. The variable R∗(t +∆t)−
R∗(t) is normally distributed. If those terms of higher order than ∆t

are ignored, the expected value of R∗(t + ∆t)−R∗(t) is σ2∆t.

• We define ∆R as the spacing between interest rates on the tree and

set

∆R = σ
√

3∆t.

This proves to be a good choice of ∆R from the viewpoint of error

minimization.

• Our objective during the first stage of this procedure is to build a tree

similar to that shown in Figure 2 for R∗. To do this, we must resolve

which of the three branching methods shown in Figure 1 will apply

at each node. This will determine the overall geometry of the tree.

Once this is done, the branching probabilities must also be calculated.
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Which of the three branching models shown in Figure 1 will apply at each

node?

Figure 1. Alternative branching methods in a trinomial tree.
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• Define (i, j) as the node where t = i∆t and R∗ = j∆R. The variable

i is a positive integer and j is a positive or negative integer. The

branching method used at a node must lead to the probabilities on all

three branches being positive. Most of the time, the branching shown

in Figure 1(a) is appropriate.

• When a > 0, it is necessary to switch from the branching in Figure 1(a)

to the branching in Figure 1(c) for a sufficiently large j. Similarly, it is

necessary to switch from the branching in Figure 1(a) to the branching

in Figure 1(b) when j is sufficiently negative.
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• Define jmax as the value of j where we switch from the Figure 1(a)

branching to the Figure 1(c) branching to the jmin as the value of j

where we switch from the Figure 1(a) branching to the Figure 1(b)

branching.

• The probabilities are always positive if we set jmax equal to the small-

est integer greater than 0.184/(a∆t) and jmin equal to −jmax.
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• Define pu, pm, and pd as the probabilities of the highest, middle, and

lowest branches emanating from the node. The probabilities are cho-

sen to match the expected change and variance of the change in R∗
over the next time interval ∆t. The probabilities must also sum to

unity. This leads to three equations in the three probabilities.

• The mean change in R∗ in time ∆t is −aR∗∆t and the variance of the

change is σ2∆t. At node (i, j), R∗ = j∆r.

• If the branching has the form shown in Figure 1(a), the pu, pm, and

pd at node (i, j) must satisfy the following three equations:

pu∆R− pd∆R = −aj∆R∆t

pu∆R2 + pd∆R2 = σ2∆t + a2j2∆R2∆t2

pu + pm + pd = 1.
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Using ∆R = σ
√

3∆t, the solution to these equations is

pu =
1

6
+

1

2
(a2j2∆t2 − aj∆t)

pm =
2

3
− a2j2∆t2

pd =
1

6
+

1

2
(a2j2∆t2 + aj∆t).

Similarly, if the branching has the form shown in Figure 1(b), the proba-

bilities are

pu =
1

6
+

1

2
(a2j2∆t2 + aj∆t)

pm = −1

3
− a2j2∆t2 − 2aj∆t

pd =
7

6
+

1

2
(a2j2∆t2 + 3aj∆t).
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Finally, if the branching has the form shown in Figure 1(c), the probabil-

ities are

pu =
7

6
+

1

2
(a2j2∆t2 − 3aj∆t)

pm = −1

3
− a2j2∆t2 + 2aj∆t

pd =
1

6
+

1

2
(a2j2∆t2 − aj∆t).
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One can readily derive conditions on j for the transition probabilities to

be strictly positive.

(i) For normal branching

−
√

2/3

a∆t
< j <

√
2/3

a∆t
;

(ii) For upward branching

−1−
√

2/3

a∆t
< j <

−1 +
√

2/3

a∆t
;

(iii) For downward branching

1−
√

2/3

a∆t
< j <

1 +
√

2/3

a∆t
.

Define jmax as the smallest integer greater than (1 −
√

2/3/(a∆t) ≈
0.184/(a∆t), and take jmin = −jmax. Normal branching is used for

jmin < j < jmax, downward branching is used for extreme positive value

j = jmax, upward branching is used for extreme negative value j = jmin.
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Numerical example – Forward induction procedure

• To illustrate the first stage of the tree construction, suppose that

σ = 0.01, a = 0.1, and ∆t = 1 year. In this case, ∆R = 0.01
√

3 =

0.0173, jmax is set equal to the smallest integer greater than 0.184/0.1,

and jmin = −jmax. This means that jmax = 2 and jmin = −2 and

the tree is as shown in Figure 2. The probabilities on the branches

emanating from each node are shown below the tree and are calculated

using the equations above for pu, pm and pd.

• Note that the probabilities at each node in Figure 2 depend only on

j. For example, the probabilities at node B are the same as the

probabilities at node F . Furthermore, the tree is symmetrical. The

probabilities at node D are the mirror image of the probabilities at

node B.

17



Figure 2. Tree for R∗ in Hull-White Model (first stage)
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Second Stage

• The second stage in the tree construction is to convert the tree for

R∗ into a tree for R. This is accomplished by displacing the nodes

on the R∗-tree so that the initial term structure of interest rates is

exactly matched.

• Define

α(t) = R(t)−R∗(t).

We calculate the α’s iteratively so that the initial term structure is

matched exactly.

• Define αi as α(i∆t), the value of R at time i∆t on the R-tree minus

the corresponding value of R∗ at time i∆t on the r∗-tree.

• Define Qi,j as the present value of a security that pays off $1 if node

(i, j) is reached and zero otherwise. The αi and Qi,j can be calculated

using forward induction in such a way that the initial term structure

is matched exactly.
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Illustration of the Second Stage

• The value of Q0,0 is 1.0. The value of α0 is chosen to give the right

price for a zero-coupon bond maturing at time ∆t. That is, α0 is set

equal to the initial ∆t-period interest rate.

• Because ∆t = 1 in this example, α0 = 0.03824. This defines the

position of the initial node on the R-tree in Figure 3.

• The next step is to calculate the values of Q1,1, Q1,0, and Q1,−1.

There is a probability of 0.1667 that the (1,1) node is reached and

the discount rate for the first time step is 3.82%. The value of Q1,1

is therefore 0.1667e−0.0382 = 0.1604. Similarly, Q1,0 = 0.6417 and

Q1,−1 = 0.1604.
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Zero rates for the example in Figures 2 and 3

Maturity Rate (%)

0.5 3.430

1.0 3.824

1.5 4.183

2.0 4.512

2.5 4.812

3.0 5.086
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• Once Q1,1, Q1,0, and Q1,−1 have been calculated, we are in a position

to determine α1. This is chosen to give the right price for a zero-

coupon bond maturity at time 2∆t. Because ∆R = 0.01732 and

∆t = 1, the price of this bond as seen at node B is e−(α1+0.01732).

• Similarly, the price as seen at node C is e−α1 and the price as seen at

node D is e−(α1−0.01732). The price as seen at the initial node A is

therefore

Q1,1e−(α1+0.01732) + Q1,0e−α1 + Q1,−1e−(α1−0.01732).
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From the initial term structure, this bond price should be e−0.04512×2 =

0.9137. Substituting for the Q’s in the above equation, we obtain

0.1604e−(α1+0.01732) + 0.6417e−α1 + 0.1604e−(α1−0.01732) = 0.9137

or

eα1(0.1604e−0.01732 + 0.6417 + 0.1604e0.01832) = 0.9137

or

α1 = ln

[
0.1604e−0.01732 + 0.6417 + 0.1604e0.01732

0.9317

]
= 0.05205.

This means that the central node at time ∆t in the tree for R corresponds

to an interest rate of 5.205% (see Figure 3).
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Figure 3. Tree for R in Hull-White Model (second stage)
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• The next step is to calculate Q2,2, Q2,1, Q2,0, Q2,−1, and Q2,−2. The

calculations can be shortened by using previously determined Q values.

• Consider Q2,1 as an example. This is the value of a security that

pays off $1 if node F is reached and zero otherwise. Node F can be

reached only from nodes B and C. The interest rates at these nodes

are 6.937% and 5.205%, respectively. The probabilities associated

with the B-F and C-F branches are 0.6566 and 0.1667.

25



• The value at node B of a security that pays $1 at node F is therefore

0.6566e−0.06937. The value at node C is 0.1667e−0.05205.

• The variable Q2,1 is 0.6566e−0.06937 times the present value of $1

received at node B plus 0.1667e−0.05205 times the present value of $1

received at node C; that is,

Q2,1 = 0.6566e−0.0693× 0.1604 + 0.1667e−0.05205× 0.6417 = 0.1998.

Similarly, Q2,2 = 0.0182, Q2,0 = 0.4736, Q2,−1 = 0.2033, and Q2,−2 =

0.0189.
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The next step in producing the R-tree in Figure 3 is to calculate α2. After

that, the Q3,j’s can then be computed. We can then calculate α3; and

so on.

Formulas for α’s and Q’s

To express the approach more formally, we suppose that the Qi,j have

been determined for i ≤ m (m ≥ 0). The next step is to determine αm so

that the tree correctly prices a zero-coupon bond maturing at (m+1)∆t.

The interest rate at node (m, j) is αm + j∆R, so that the price of a

zero-coupon bond maturing at time (m + 1)∆t is given by

pm+1 =
nm∑

j=−nm

Qm,j exp[−(αm + j∆R)∆t]

where nm is the number of nodes on each side of the central node at time

m∆t.
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The solution to this equation is

αm =
ln

∑nm
j=−nm

Qm,je
−j∆R∆t − lnPm+1

∆t
.

Once αm has been determined, the Qi,j for i = m + 1 can be calculated

using

Qm+1,j =
∑

k

Qm,kq(k, j) exp[−(αm + k∆R)∆t]

where q(k, j) is the probability of moving from node (m, k) to node (m +

1, j) and the summation is taken over all values of k for which this is

nonzero.
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Extension to other models

The procedure that has just been outlined can be extended to more

general models of the form

df(r) = [θ(t)− af(r)] dt + σ dZ.

The family of models has the property that they can fit any term structure.

As before, we assume that the ∆t period rate, R, follows the same process

as r:

df(R) = [θ(t)− af(R)] dt + σ dZ.
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We start by setting x = f(R), so that

dx = [θ(t)− ax] dt + σ dZ.

The first stage is to build a tree for a variable x∗ that follows the same

process as x except that θ(t) = 0 and the initial value is zero. The

procedure here is identical to the procedure already outlined for building

a tree such as that in Figure 2.

As in Figure 3, we then displace the nodes at time i∆t by an amount αi

to provide an exact fit to the initial term structure. The equations for

determining αi and Qi,j inductively are slightly different from those for

the f(R) = R case.
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Figure 4. Tree for lognormal model
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• The value of Q at the first node, Q0,0, is set equal to 1.

• Suppose that the Qi,j have been determined for 1 ≤ m(m ≥ 0).

• The next step is to determine αm so that the tree correctly prices an

(m + 1)∆t zero-coupon bond.

• Define g as the inverse function of f so that the ∆t-period interest

rate at the jth node at time m∆t is

g(αm + j∆x).

• The price of a zero-coupon bond maturing at time (m+1)∆t is given

by

Pm+1 =
nm∑

j=−nm

Qm,j exp[−g(αm + j∆x)∆t].
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• This equation can be solved using a numerical procedure such as

Newton-Raphson. The value α0 of α when m = 0, is f(R(0)).

• Once αm has been determined, the Qi,j for i = m+1 can be calculated

using

Qm+1,j =
∑

k

Qm,kq(k, j) exp[−g(αm + k∆x)∆t]

where q(k, j) is the probability of moving from node (m, k) to node

(m + 1, j) and the summation is taken over all values of k where this

is nonzero.

• Figure 4 shows the results of applying the procedure to the model

d ln(r) = [θ(t)− a ln(r)] dt + σ dZ

when a = 0.22, σ = 0.25,∆t = 0.5, and the zero rates are as in the

Table.
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Various choices of f(R)

• When f(r) = r we obtain the Hull-White model.

• When f(r) = ln r we obtain the Black-Karasinksi model. —in most

circumstances these two models appear to perform about equally well

in fitting market data on actively traded instruments such as caps and

European swap options.

• The main advantage of the f(r) = r model is its analytic tractability.

Its main disadvantage is that negative interest rates are possible.
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• In most circumstances, the probability of negative interest rates oc-

curring under the model is very small, but some analysts are reluctant

to use a model where there is any chance at all of negative interest

rates.

• The f(r) = ln r model has no analytic tractability, but has the ad-

vantage that interest rates are always positive. Another advantage is

that traders naturally think in terms of σ’s arising from a lognormal

model rather than σ’s arising from a normal model.
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• There is a problem in choosing a satisfactory model for countries with

low interest rates.

• The normal model is unsatisfactory because, when the initial short

rate is low, the probability is unsatisfactory because the volatility of

rates (i.e., the σ parameter in the lognormal model) is using much

greater when rates are low than when they are high.

• For example, a volatility of 100% might be appropriate when the short

rate is less than 1%, while 20% might be appropriate when it is 4%

or more.

• A model that appears to work well is one where f(r) is chosen so that

rates are lognormal for r less than 1% and normal for r greater than

1%.
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Pricing of interest rate products

Once the Arrow-Debreu prices are available, it becomes straightforward

to price any interest rate products based on the calibrated interest rate

trees.

In the continuous version, the Arrow-Debreu price G(r,0; r, T ) is defined

by

G(r0,0; r, T ) = E0


exp

(
−

∫ T

0
ru du

)
δ(rT − r)

∣∣∣∣∣
rt=0=r0


 .

This corresponds to the value at time 0, given current state r0, of a

riskless security that pays one dollar if state rT = r is attained at any

later time T > 0.
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More theoretical formulas

The zero-coupon bonds are given by

P (0, T ) =
∫ ∞
0

G(r0,0; r, T ) dr.

Continuity relation:

G(r0,0; ri, Ti) =
∫ ∞
0

G(r0,0; ri−1, Ti−1)G(ri−1, Ti−1; ri, Ti) dri−1.

Price of a discount bond at time t ≥ 0 (any time later than current time),

with time to maturity of ∆t, conditional on the short rate having value r

at time t is given by

P (r, t; t + ∆t) = Et


exp

(
−

∫ t+∆t

t
ru ds

) ∣∣∣∣∣
rt=r




=
∫ ∞
0

G(r, t; rT , T = t + ∆t) drT .
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Under the discrete calibrated interest rate tree, the conditional zero-

coupon bonds are obtained from

P (j, Ti, Ti+n) =
j+n∑

k=j−n

G(j, Ti; k, Ti+n),

where the 2n + 1 Arrow-Debreu prices (conditional on beginning at a jth

node at time Ti and ending at node k = j−n, · · · , j + n at time Ti+n) are

computed by the general forward recursion relation

G(i, j; k, Ti+m) =
∑

S;|s|≤i+m−1

p(k, s)e−r(s,i+m−1)∆tG(j, Ti; s, Ti+m−1),

where p(k, s) are the nodal transition probabilities. Note that the starting

node is index s and the ending node is index k.

39



Pricing of a caplet

C
(I)
PI0

(RK, Ti) =
i∑

j=−i

G(0,0; j, Ti)C
(τ)(j, i)

a caplet valued at current time T0 and maturity at time Ti of tenor τ =

n∆t.

The initial leg starting from the current time node r(0,0) gives the

Arrow-Debreu prices G(0,0; j, Ti) at each jth node r(j, i) at time Ti. The

payoff vector of the caplet with jth component C(τ)(j, i) (for the jth

node at time Ti) is obtained by summing all the Arrow-Debrue prices

G(j, Ti; k, Ti+n)(k = j, · · · , j + n) that are conditional on starting at the

node r(j, i) at time Ti and ending at nodes r(k, i+n) at time Ti+n for the

period of the caplet.
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