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Abstract. Here we develop an option pricing method for European options based on the
Fourier-cosine series, and call it the COS method. The key insight is in the close relation of the
characteristic function with the series coefficients of the Fourier-cosine expansion of the density
function. In most cases, the convergence rate of the COS method is exponential and the computa-
tional complexity is linear. Its range of application covers different underlying dynamics, including
Lévy processes and the Heston stochastic volatility model, and various types of option contracts.
We will present the method and its applications in two separate parts. The first one is this pa-
per, where we deal with European options in particular. In a follow-up paper we will present its
application to options with early-exercise features.
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1. Introduction. Efficient numerical methods are required to rapidly price
complex contracts and calibrate various financial models.

In option pricing, it is the famous Feynman-Kac theorem that relates the con-
ditional expectation of the value of a contract payoff function under the risk-neutral
measure to the solution of a partial differential equation. In the research areas cov-
ered by this theorem, various numerical pricing techniques can be developed. In
brief, existing numerical methods can be classified into three major groups: partial-
(integro) differential equation (PIDE) methods, monte Carlo simulation and nu-
merical integration methods. Each of them has its merits and demerits for specific
applications in finance, but the methods from the latter class are often used for
calibration purposes. An important aspect of research in computational finance is
to further increase the performance of the pricing methods.

State-of-the-art numerical integration techniques have in common that they
rely on a transformation to the Fourier domain [8, 21]. The Carr-Madan method [8]
is one of the best known examples of this class. The probability density function
appears in the integration in the original pricing domain, which is not known for
many relevant pricing processes. However, its Fourier transform, the characteristic
function, is often available, for example from the Lévy-Khinchine theorem for un-
derlying Lévy processes or by other means, as for the Heston model. In the Fourier
domain it is possible to solve various derivative contracts, as long as the characteris-
tic function is available. By means of the Fast Fourier Transform (FFT), integration
can be performed with a computational complexity of O(N log2N), where N rep-
resents the number of integration points. The computational speed, especially for
plain vanilla options, makes the integration methods state-of-the-art for calibration
at financial institutions.

Quadrature rule based techniques are, however, not of the highest efficiency
when solving Fourier transformed integrals. As the integrands are highly oscillatory,
a relatively fine grid has to be used for satisfactory accuracy with the FFT.

In this paper we will focus on Fourier-cosine expansions in the context of nu-
merical integration as an alternative for the methods based on the FFT. We will
show that this novel method, called the COS method, can further improve the speed
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of pricing plain vanilla and some exotic options. Its application to American-style
products will be covered in a follow-up paper. It is due to the impressive speed
reported here for the COS method that we devote a paper to the European-style
products.

Other highly efficient techniques for pricing plain vanilla options include the
Fast Gauss Transform [6] and the double-exponential transformation [20, 25]. The
COS method can however handle more general dynamics for the underlying com-
pared to these methods. In fact, we can price a vector of strike prices simultaneously
(similar to Carr-Madan’s method). Furthermore, the COS method offers a highly
efficient way to recover the density from the characteristic function, which is of
importance for several financial applications, like calibration, the computation of
forward starting options, or static hedging.

This paper is organized as follows. In Section 2, we introduce the Fourier-cosine
expansion for solving inverse Fourier integrals. Based on this, we derive, in Section
3, the formulas for pricing European options and the Greeks. We focus on the Lévy
and the Heston price processes for the underlying. An error analysis is presented
in Section 4 and numerical results are given in Section 5.

2. Fourier Integrals and Cosine Series. The point-of-departure for pricing
European options with numerical integration techniques is the risk-neutral valuation
formula:

v(x, t0) = e−r∆tEQ [v(y, T )|x] = e−r∆t

∫

R

v(y, T )f(y|x)dy, (1)

where v denotes the option value, ∆t is the difference between the maturity, T ,
and the initial date, t0, and EQ[·] is the expectation operator under risk-neutral
measure Q. x and y are state variables at time t0 and T , respectively; f(y|x) is the
probability density of y given x, and r is the risk-neutral interest rate.

In the Carr-Madan approach [8] and its variants, the Fourier transform of a ver-
sion of valuation formula (1) is taken with respect to the log-strike price. Damping
of the payoff is then necessary as, for example, a call option is not L1-integrable with
respect to the logarithm of the strike price. The method’s accuracy depends on the
correct value of the damping parameter. A closed-form expression for the resulting
integral is available in Fourier space. To return to the time domain, quadrature
rules have to be applied to the inverse Fourier integral for which the application of
the FFT algorithm is appropriate.

The range of applications of numerical integration methods in finance has re-
cently been increased by the presentation of efficient techniques for options with
early exercise features [8, 21, 2, 3, 18]. Especially the CONV method [18] achieves
almost linear complexity, also with the help of the FFT algorithm, for Bermudan
and American options. This method can also be efficiently used for European op-
tions and numerical experiments in [18] show that the accuracy is not influenced by
the choice of the damping parameter. The difference with the Carr-Madan approach
is that the transform is with respect to the log-spot price in the CONV method in-
stead of the log-strike price (something which [17] and [23] also consider). In the
derivation of the CONV method the risk-neutral valuation formula is rewritten as
a cross-correlation between the option value and the transition density. The cross-
correlation is handled numerically by replacing the option value by its Fourier-series
expansion so that the cross-correlation is transformed to an inner product of series
coefficients. The coefficients are recovered by applying quadrature rules, combined
with the FFT algorithm. Error analysis and experimental results have demonstrated
second order accuracy and O(N log2(N)) computational complexity for European
options.

These numerical integration methods have to numerically solve certain forward
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or inverse1 Fourier integrals. The density and its characteristic function, f(x) and
φ(ω), form an example of a Fourier pair.

φ(ω) =

∫

R

eixωf(x)dx, (2)

f(x) =
1

2π

∫

R

e−iωxφ(ω)dω. (3)

Existing numerical integration methods in finance typically compute the Fourier
integrals by applying equally spaced numerical integration rules, then employing
the FFT algorithm by imposing the Nyquist relation to the grid sizes in the x- and
ω-domains,

∆x · ∆ω ≡ 2π/N,

withN representing the number of grid points. The grid values can then be obtained
in O(N log2N) operations. However, there are three disadvantages: The error
convergence of equally spaced integration rules, except for the Clenshaw-Curtis
rule, is not very high; N has to be a power of two; finally, the relation imposed on
the grid sizes prevents one from using coarse grids in both domains.

Remark 2.1. In principle we could use the Fractional FFT algorithm (FrFT),
which does not require the Nyquist relation to be satisfied, as in [9]. However,
numerical tests for several options indicated that this advantage of the FrFT did
not outweigh the speed of the FFT in general.

Remark 2.2. Alternative methods for the forward Fourier integral, based on
replacing f(x) in (2) by its Chebyshev [22] or Legendre [13] polynomial expansion,
can achieve a high accuracy with only a limited number of terms in the expansion.
However, the resulting computational complexity is typically at least quadratic.

2.1. Inverse Fourier Integral via Cosine Expansion. In this section, as a
first step, we present a different methodology for solving, in particular, the inverse
Fourier integral in (3). The main idea is to reconstruct the whole integral – not
just the integrand – from its Fourier-cosine series expansion (also called ‘cosine
expansion’), extracting the series coefficients directly from the integrand. Fourier-
cosine series expansions usually give an optimal approximation of functions with a
finite support2 [5]. In fact, the cosine expansion of f(x) in x equals the Chebyshev
series expansion of f(cos−1(t)) in t.

For a function supported on [0, π], the cosine expansion reads

f(θ) =
∑′∞

k=0
Ak · cos (kθ) with Ak =

2

π

∫ π

0

f(θ) cos(kθ)dθ, (4)

where
∑′ indicates that the first term in the summation is weighted by one-half. For

functions supported on any other finite interval, say [a, b] ∈ R, the Fourier-cosine
series expansion can easily be obtained via a change of variables:

θ :=
x− a

b− a
π; x =

b− a

π
θ + a.

It then reads

f(x) =
∑′∞

k=0
Ak · cos

(

kπ
x− a

b− a

)

, (5)

1Here we use the convention of the Fourier transform definition often seen in the financial
engineering literature. Other conventions can also be used and modifications to the methods are
then straightforward.

2The usual Fourier series expansion is actually superior when a function is periodic.
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with

Ak =
2

b− a

∫ b

a

f(x) cos

(

kπ
x− a

b− a

)

dx. (6)

Since any real function has a cosine expansion when it is finitely supported, the
derivation starts with a truncation of the infinite integration range in (3). Due to
the conditions for the existence of a Fourier transform, the integrands in (3) have
to decay to zero at ±∞ and we can truncate the integration range in a proper way
without losing accuracy.

Suppose [a, b] ∈ R is chosen such that the truncated integral approximates the
infinite counterpart very well, i.e.

φ1(ω) :=

∫ b

a

eiωxf(x)dx ≈
∫

R

eiωxf(x)dx = φ(ω). (7)

By subscripts for variables, like i in φi, we denote subsequent numerical approxi-
mations (not to be confused with subscripted series coefficients, Ak and Fk).

Comparing equation (7) with the cosine series coefficients of f(x) on [a, b] in (6),
we find that

Ak ≡ 2

b − a
Re

{

φ1

(

kπ

b− a

)

· exp

(

−i kaπ
b− a

)}

, (8)

where Re{·} denotes taking the real part of the argument. It then follows from (7)
that Ak ≈ Fk with

Fk ≡ 2

b− a
Re

{

φ

(

kπ

b− a

)

· exp

(

−i kaπ
b− a

)}

. (9)

We now replace Ak by Fk in the series expansion of f(x) on [a, b], i.e.

f1(x) =
∑′∞

k=0
Fk cos

(

kπ
x− a

b− a

)

, (10)

and truncate the series summation such that

f2(x) =
∑′N−1

k=0
Fk cos

(

kπ
x− a

b− a

)

. (11)

The resulting error in f2(x) consists of two parts: a series truncation error from
(10) to (11) and an error originating from the approximation of Ak by Fk. An
error analysis that takes these different approximations into account is presented in
Section 4.

Since the cosine series expansion of entire functions (i.e., functions without any
singularities3 anywhere in the complex plane, except at ∞) exhibits an exponen-
tial convergence [5], we can expect (11) to give highly accurate approximations to
functions that have no singularities on [a, b], with a small N .

To demonstrate this, we here evaluate equation (11), where

f(x) =
1√
2π
e−

1

2
x2

,

and determine the accuracy for different values of N . We choose [a, b] = [−10, 10]
and the maximum error is measured at x = {−5,−4, · · · , 4, 5}.

Table 1 indicates that a very small error is obtained with only a small number
of terms, N , in the expansion.

This technique is highly efficient for the recovery of the density function, see
also Section 5.

3By ‘singularity’ we mean [5] poles, fractional powers, logarithms, other branch points and
discontinuities in a function or in any of its derivatives.
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Table 1
Maximum error when recovering f(x) from φ(ω) by Fourier-cosine expansion.

N 4 8 16 32 64

error 0.25 0.11 0.0072 4.04e-07 3.33e-16

cpu time (sec.) 0.0025 0.0028 0.0025 0.0031 0.0032

3. Pricing European Options. In this section, we derive the COS formula
for European-style options by replacing the density function by its Fourier-cosine
series. We make use of the fact that a density function tends to be smooth and
therefore only a few terms in the expansion may already give a good approximation.

Since the density rapidly decays to zero as y → ±∞ in (1), we truncate the
infinite integration range without loosing significant accuracy to [a, b] ⊂ R, and we
obtain approximation v1:

v1(x, t0) = e−r∆t

∫ b

a

v(y, T )f(y|x)dy. (12)

We will give insight in the choice of [a, b] in Section 5.
In the second step, since f(y|x) is usually not known whereas the characteristic

function is, we replace the density by its cosine expansion in y,

f(y|x) =
∑′+∞

k=0
Ak(x) cos

(

kπ
y − a

b− a

)

(13)

with

Ak(x) :=
2

b− a

∫ b

a

f(y|x) cos

(

kπ
y − a

b− a

)

dy. (14)

So that

v1(x, t0) = e−r∆t

∫ b

a

v(y, T )
∑′+∞

k=0
Ak(x) cos

(

kπ
y − a

b − a

)

dy. (15)

We interchange the summation and integration, and insert the definition

Vk :=
2

b− a

∫ b

a

v(y, T ) cos

(

kπ
y − a

b− a

)

dy, (16)

resulting

v1(x, t0) =
1

2
(b − a)e−r∆t ·

∑′+∞

k=0
Ak(x)Vk. (17)

Note that the Vk are the cosine series coefficients of v(y, T ) in y. Thus, from (12)
to (17) we have transformed the product of two real functions, f(y|x) and v(y, T ),
to that of their Fourier-cosine series coefficients.

Due to the rapid decay rate of these coefficients, we further truncate the series
summation to obtain approximation v2:

v2(x, t0) =
1

2
(b − a)e−r∆t ·

∑′N−1

k=0
Ak(x)Vk. (18)

Similar to Section 2, coefficients Ak(x) defined in (14) can be approximated by
Fk(x) as defined in (9). Replacing Ak(x) in (18) by Fk(x), we obtain

v(x, t0) ≈ v3(x, t0) = e−r∆t
∑′N−1

k=0
Re

{

φ

(

kπ

b− a
;x

)

e−ikπ a
b−a

}

Vk, (19)

which is the COS formula for general underlying processes. We will subsequently
show that the Vk can be obtained analytically for plain vanilla and digital options,
and that (19) can be simplified for Lévy and the Heston models so that many strikes
can be handled simultaneously.
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3.1. Coefficients Vk for Plain Vanilla Options. Before we can use (19) for
pricing options, the payoff series coefficients, Vk, have to be recovered. We can find
analytic solutions for Vk for several contracts.

As we assume here that the characteristic function of the log-asset price is
known, we represent the payoff as a function of the log-asset price. Let us denote
the log-asset prices by

x := ln(S0/K) and y := ln(ST /K),

with St the underlying price at time t and K the strike price. The payoff for
European options, in log-asset price, reads

v(y, T ) ≡ [α ·K(ey − 1)]+ with α =

{

1 for a call,
−1 for a put.

Before deriving Vk from its definition in (16), we need two mathematical results.

Result 3.1. The cosine series coefficients, χk, of g(y) = ey on [c, d] ⊂ [a, b],

χk(c, d) :=

∫ d

c

ey cos

(

kπ
y − a

b− a

)

dy, (20)

and the cosine series coefficients, ψk, of g(y) = 1 on [c, d] ⊂ [a, b],

ψk(c, d) :=

∫ d

c

cos

(

kπ
y − a

b − a

)

dy. (21)

are known analytically.

Proof. Basic calculus shows that

χk(c, d) :=
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
d− a

b− a

)

ed − cos

(

kπ
c− a

b − a

)

ec

+
kπ

b− a
sin

(

kπ
d− a

b− a

)

ed − kπ

b− a
sin

(

kπ
c− a

b− a

)

ec

]

(22)

and

ψk(c, d) :=











[

sin
(

kπ d−a
b−a

)

− sin
(

kπ c−a
b−a

)]

b−a
kπ

k 6= 0,

(d− c) k = 0.

(23)

Focusing, for example, on a call option, we obtain

V call
k =

2

b− a

∫ b

0

K(ey − 1) cos

(

kπ
y − a

b − a

)

dy =
2

b− a
K (χk(0, b) − ψk(0, b)) ,

(24)
where χk and ψk are given by (22) and (23), respectively. Similarly, for a vanilla
put, we find

V put
k =

2

b− a
K (−χk(a, 0) + ψk(a, 0)) . (25)

Analytic expressions of Vk can also be obtained for some exotic options.

6



3.2. Coefficients Vk for Digital and Gap Options. Whereas for European
products equation (19) always applies, the coefficients Vk are different for different
payoff functions. With analytical expressions for these coefficients, the convergence
of the COS does not depend on the continuity of the payoff.

Digital options are popular in the financial markets for hedging and speculation.
They are also important to financial engineers as building blocks for constructing
more complex option products. Here, we consider the payoff of a cash-or-nothing
call option as an example, which is 0 if ST ≤ K and K if ST > K. For this contract
the ‘cash-or-nothing call’ coefficients, V cash

k , can be obtained analytically:

V cash
k =

2

b− a
K

∫ b

0

cos

(

kπ
y − a

b− a

)

dy =
2

b− a
Kψk(0, b).

We also give the formula for a so-called gap call option [14], whose payoff reads

v(y, T ) = [K(ey − 1) −Rb] · 1{ST <H} +Rb,

where 1Ψ equals 0 if Ψ is empty and 1 otherwise, and Rb is a so-called rebate and
is paid if the barrier is hit. The time-dependent version of this payoff represents
a barrier option, which will be discussed in the follow-up paper. The integral that
defines V gap

k for such payoff functions can be split into two parts:

V gap
k =

2

b− a

∫ h

0

K(ey − 1) cos

(

kπ
y − a

b − a

)

dy +
2

b− a

∫ b

h

Rb · cos

(

kπ
y − a

b− a

)

dy,

where h := ln(H/K). It then follows that

V gap
k =

2

b− a
K (χk(0, h) − ψk(0, h)) +

2

b− a
Rb · ψk(h, b). (26)

For those contracts, however, for which the Vk can only be obtained numerically,
the error convergence is dominated by the numerical rules employed.

3.3. Formula for Lévy Processes and the Heston Model. It is worth
mentioning that (19) is greatly simplified for the Lévy and the Heston models, so
that options for many strike prices can be computed simultaneously. Here we use
boldfaced values to distinguish vectors.

For Lévy processes, whose characteristic functions can be represented by

φ(ω;x) = ϕlevy(ω) · eiωx with ϕlevy(ω) := φ(ω; 0), (27)

the pricing formula is simplified to

v(x, t0) ≈ e−r∆t
∑′N−1

k=0
Re

{

ϕlevy

(

kπ

b− a

)

eikπ x−a
b−a

}

Vk. (28)

Recalling the Vk-formulas for vanilla European options in (24) and (25), we can now
present them as a vector multiplied by a scalar,

Vk = UkK,

where

Uk =

{ 2
b−a

(χk(0, b) − ψk(0, b)) for a call
2

b−a
(−χk(a, 0) + ψk(a, 0)) for a put.

(29)

As a result, the pricing formula reads4

v(x, t0) ≈ Ke−r∆t · Re

{

∑′N−1

k=0
ϕlevy

(

kπ

b− a

)

Uk · eikπ x−a
b−a

}

, (30)

4Although the Uk values are real, we keep them in the curly brackets. This allows us to
interchange Re {·} and

P′ and it simplifies the implementation in Matlab.
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where the summation can be written as a matrix-vector product if K (and therefore
x) is a vector. In the section with numerical results, we will show that with very
small N we can achieve highly accurate results.

Next, we focus on the details of the characteristic functions and refer the reader
to the literature, [10, 7, 15], for background information on these processes. In par-
ticular, for the CGMY/KoBol model, which encompasses the Geometric Brownian
Motion (GBM) and Variance Gamma (VG) models, the characteristic function of
the log-asset price is of the form:

ϕlevy(ω) = exp (iω(r − q)∆t− 1

2
ω2σ2∆t) ·

exp (∆tCΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]), (31)

where q is a continuous dividend yield and Γ(·) represents the gamma function. In
the CGMY model, the parameters should satisfy C ≥ 0, G ≥ 0,M ≥ 0 and Y < 2.
When σ = 0 and Y = 0 we obtain the Variance Gamma (VG) model; for C = 0 the
Black-Scholes model is obtained.

Remark 3.1. Equation (28) is an expression with independent variable x. It
is therefore possible to obtain the option prices for different strikes in one single
numerical experiment, by choosing a K-vector as the input vector (the same is true
for the Carr-Madan formula).

In the Heston model, the volatility, denoted by
√
ut, is modeled by a stochastic

differential equation,

dxt =
(

µ− 1
2ut

)

dt+
√
utdW1t,

dut = λ(ū − ut)dt+ η
√
utdW2t

(32)

where xt denotes the log-asset price variable and ut the variance of the asset price
process. Parameters λ ≥ 0, ū ≥ 0 and η ≥ 0 are called the speed of mean reversion,
the mean level of variance and the volatility of volatility, respectively. Furthermore,
the Brownian motions W1t and W2t are assumed to be correlated with correlation
coefficient ρ.

For the Heston model, the COS pricing equation is also simplified, since

φ(ω;x, u0) = ϕhes(ω;u0) · eiωx, (33)

with u0 the volatility of the underlying at the initial time and ϕhes(ω;u0) :=
φ(ω; 0, u0). We then find

v(x, t0, u0) ≈ Ke−r∆t · Re

{

∑′N−1

k=0
ϕhes

(

kπ

b− a
;u0

)

Uk · eikπ x−a
b−a

}

. (34)

The characteristic function of the log-asset price, ϕhes(ω;u0), reads

ϕhes(ω;u0) = exp

(

iωµ∆t+
u0

η2

(

1 − e−D∆t

1 −Ge−D∆t

)

(λ− iρηω −D)

)

·

exp

(

λv̄

η2

(

∆t(λ− iρηω −D) − 2 log(
1 −Ge−D∆t

1 −G
)

))

,

with

D =
√

(λ − iρηω)2 + (ω2 + iω)η2 and G =
λ− iρηω −D

λ− iρηω +D
.

This characteristic function is uniquely specified, since we take
√

(x + yi) such that
its real part is nonnegative, and we restrict the complex logarithm to its principal
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branch. In this case the resulting characteristic function is the correct one for all
complex ω in the strip of analycity of the characteristic function, as proven in [19].
Implementation of the COS formula is straightforward.

Remark 3.2 (The Greeks). Series expansions for the Greeks, e.g. ∆ and Γ,
can be derived similarly. Since

∆ =
∂v

∂S0
=
∂v

∂x

∂x

∂S0
=

1

S0

∂v

∂x
, Γ =

∂2v

∂S2
0

=
1

S2
0

(

− ∂v

∂S0
+
∂2v

∂S2
0

)

,

it then follows that

∆ ≈ e−r∆t
∑′N−1

k=0
Re

{

ϕ

(

kπ

b− a
;u0

)

eikπ x−a
b−a

ikπ

b − a

}

Vk

S0
(35)

and

Γ ≈ e−r∆t
∑′N−1

k=0
Re

{

ϕ

(

kπ

b− a
;u0

)

eikπ x−a
b−a

[

− ikπ

b− a
+

(

ikπ

b− a

)2
]}

Vk

S2
0

. (36)

It is also easy to obtain the formula for Vega, ∂v
∂u0

, for example, for the Heston
model (34), as u0 only appears in the coefficients:

∂v(x, t0, u0)

∂u0
≈ e−r∆t

∑′N−1

k=0
Re







∂ϕhes

(

kπ
b−a

;u0

)

∂u0
eikπ x−a

b−a







Vk. (37)

4. Error Analysis. In the derivation of the COS formula there are three steps
that introduce errors: the truncation of the integration range in the risk-neutral val-
uation formula, the substitution of the density by its cosine series expansion on the
truncated range, and the substitution of the series coefficients by the characteristic
function approximation. Therefore, the overall error consists of three parts:

1. The integration range truncation error:

ǫ1 := v(x, t0) − v1(x, t0) =

∫

R\[a,b]

v(y, T )f(y|x)dy. (38)

2. The series truncation error on [a, b]:

ǫ2 := v1(x, t0) − v2(x, t0) =
1

2
(b− a)e−r∆t

+∞
∑

k=N

Ak(x) · Vk, (39)

where Ak(x) and Vk are defined in (14) and (16), respectively.
3. The error related to approximating Ak(x) by Fk(x) in (9):

ǫ3 := v2(x, t0) − v3(x, t0)

= e−r∆t
∑′N−1

k=0
Re

{

∫

R\[a,b]

eikπ
y−a

b−a f(y|x)dy
}

Vk. (40)

We do not have to take any error in the coefficients Vk into account here, as we
have a closed form solution, at least for the plain vanilla options considered in this
paper.

The key to bound the errors lies in the decay rate of the cosine series coefficients.
The convergence rate of the Fourier-cosine series depends on the properties of the
functions on the expansion interval. We first give the definitions classifying the rate
of convergence of the series for different classes of functions, taken from [5].

9



Definition 4.1 (Algebraic Index of Convergence). The algebraic index of
convergence n(≥ 0) is the largest number for which

lim
k→∞

|Ak|kn <∞, k >> 1,

where the Ak are the coefficients of the series. An alternative definition is that if
the coefficients of a series, Ak, decay asymptotically as

Ak ∼ O(1/kn), k >> 1,

then n is the algebraic index of convergence.
Definition 4.2 (Exponential Index of Convergence). If the algebraic index of

convergence n(≥ 0) is unbounded – in other words, if the coefficients, Ak, decrease
faster than 1/kn for any finite n – the series is said to have exponential convergence.
Alternatively, if

Ak ∼ O(exp(−γkr)), k >> 1,

with γ, constant, the ‘asymptotic rate of convergence’, for some r > 0, then the
series shows exponential convergence. The exponent r is the index of convergence.

For r < 1, the convergence is called subgeometric.
For r = 1, the convergence is either called supergeometric with

Ak ∼ O(k−n exp(−(k/j) ln(k))),

(for some j > 0), or geometric with

Ak ∼ O(k−n exp(−γk)). (41)

The density of the GBM process is a typical function that has a geometrically
converging cosine series expansion.

Proposition 4.1 (Convergence of Fourier-cosine series [5] p.70-71). If g(x) ∈
C∞([a, b] ⊂ R), then its Fourier-cosine series expansion on [a, b] has geometric con-
vergence. The constant γ in (41) is determined by the location in the complex plane
of the singularities nearest to the expansion interval. Exponent n is determined by
the type and strength of the singularity.

If a function g(x), or any of its derivatives, is discontinuous, its Fourier-cosine
series coefficients show algebraic convergence. Integration-by-parts shows that the
algebraic index of convergence, n, is at least as large as n′, with the n′-th derivative
of g(x) integrable. References to the proof of this proposition are available in [5].

The following proposition further bounds the series truncation error of an alge-
braically converging series:

Proposition 4.2 (Series truncation error of algebraically converging series).
It can be shown that the series truncation error of an algebraically converging series
behaves like

∞
∑

k=N+1

1

kn
∼ 1

(n− 1)Nn−1
.

The proof can be found in [4].
With the two propositions above, we can state the following lemmas:
Lemma 4.1. Error ǫ3 merely consists of integration range truncation errors,

and can be bounded by:

|ǫ3| < |ǫ1| +Q |ǫ4| , (42)
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where Q is some constant independent of N and

ǫ4 :=

∫

R\[a,b]

f(y|x)dy.

Proof. Assuming f(y|x) to be a real function, we rewrite (40) as

ǫ3 = e−r∆t
∑′N−1

k=0
Vk

∫

R\[a,b]

cos

(

kπ
y − a

b− a

)

f(y|x)dy.

After interchanging the summation and integration, we rewrite
∑′N−1

k=0 as
(

∑′+∞

k=0 −
∑+∞

k=N

)

and replace the cosine expansion of v(y, T ) in y by v(y, T ):

ǫ3 = e−r∆t

∫

R\[a,b]

[

v(y, T ) −
+∞
∑

k=N

cos

(

kπ
y − a

b − a

)

· Vk

]

f(y|x)dy

= ǫ1 − e−r∆t

∫

R\[a,b]

[

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

· Vk

]

f(y|x)dy. (43)

According to Propositions 4.1 and 4.2, the Vk show at least algebraic convergence
and we can therefore bound the expression as follows,

∣

∣

∣

∣

∣

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

· Vk

∣

∣

∣

∣

∣

≤
+∞
∑

k=N

|Vk| ≤
Q∗

(N − 1)n−1
≤ Q∗, for N >> 1, n ≥ 1,

for some positive constant Q∗. It then follows from (43) that

|ǫ3| < |ǫ1| +Q |ǫ4|

with Q := e−r∆tQ∗ and ǫ4 :=
∫

R\[a,b] f(y|x)dy, which depends on the size of [a, b].

Thus, two of the three error components are truncation range related. When
the truncation range is sufficiently large, the overall error is dominated by ǫ2.

Equation (39) indicates that ǫ2 depends on both Ak(x) and Vk, the series co-
efficients of the density and that of the payoff, respectively. We assume that the
density is typically smoother than the payoff functions in finance and that the coef-
ficients Ak decay faster than Vk. Consequently, the product of Ak and Vk converges
faster than either Ak or Vk, and we can bound this product as follows,

∣

∣

∣

∣

∣

+∞
∑

k=N

Ak(x) · Vk

∣

∣

∣

∣

∣

≤
+∞
∑

k=N

|Ak(x)| . (44)

Error ǫ2 is thus dominated by the series truncation error of the density function.
Proposition 4.3 (Series truncation error of geometrically converging series [5]

p.48). If a series has geometrical convergence, then the error after truncation of
the expansion after (N + 1) terms, ET (N), reads

ET (N) ∼ P ∗ exp(−Nν).

Here, constant ν > 0 is called the asymptotic rate of convergence of the series, which
satisfies

ν = lim
n→∞

(− log |ET (n)|/n) ,
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and P ∗ denotes a factor which varies less than exponentially with N .
Lemma 4.2. Error ǫ2 converges exponentially in the case of density functions

g(x) ∈ C∞([a, b]).

|ǫ2| < P exp(−(N − 1)ν), (45)

where ν > 0 is a constant and P is a term that varies less than exponentially with
N . The proof of this is straightforward, applying Proposition 4.3 to (44).

Based on Proposition 4.2, we can prove the following lemma:
Lemma 4.3. Error ǫ2 for densities having discontinuous derivatives can be

bounded as follows:

|ǫ2| <
P̄

(N − 1)β−1
, (46)

where P̄ is a constant and β ≥ n ≥ 1 (n the algebraic index of convergence of Vk).
The proof of this lemma is straightforward. Note that β ≥ n is because the density
function is usually smoother than a payoff function.

Collecting the results (38), (42), (45) and (46), we can summarize that, with
a properly chosen truncation of the integration range, the overall error converges
either exponentially for density functions that belong to C∞([a, b] ⊂ R), i.e.

|ǫ| < 2 |ǫ1| +Q |ǫ4| + Pe−(N−1)ν , (47)

or algebraically for density functions with a discontinuity in one of its derivatives,
i.e.

|ǫ| < 2 |ǫ1| +Q |ǫ4| +
P̄

(N − 1)β−1
. (48)

5. Numerical Results. In this section, we perform a variety of numerical
tests to evaluate the efficiency and accuracy of the COS method. We focus on the
plain vanilla European options and consider different processes for the underlying
asset from geometric Brownian motion to the Heston stochastic volatility process
and the infinite activity Lévy processes Variance Gamma and CGMY. In the latter
case we choose a value for parameter Y close to 2, representing a distribution with
very heavy tails. We will choose long and short maturities in the tests.

The underlying density function for each individual experiment is also recovered
with the help of the cosine series based inverse technique presented in Section 2.
This may help the reader to get some insight in the relationship between the error
convergence and the properties of the densities.

We compare our results with the COS method to two of its competitors, the
Carr-Madan method [8] and the CONV method [18]. However, contrary to the
common implementations of these methods we use the Simpson’s rule for the Fourier
integrals in order to achieve fourth order accuracy. In that case the FFT can be
used for the Carr-Madan as well as for the CONV method.

By these numerical experiments and comparisons with the other methods, we
aim to demonstrate the stability and robustness of the COS method, also under
extreme conditions.

It should be noted that parameter N in the experiments to follow denotes, for
the COS method, the number of terms in the Fourier-cosine expansion, and the
number of grid points for the other two methods.

All cpu times presented, in milliseconds, are determined after averaging the
computing times obtained from 100 experiments. The computer used for all exper-
iments has an Intel(R) Pentium(R) 4 CPU, 2.80GHz with cache size 1024 KB; The
code is written in Matlab 7-4.
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Remark 5.1. Some experience is helpful when choosing the correct truncation
range and damping factor α in Carr-Madan’s method. A suitable choice appears to
be α = 0.75, for the experiments based on GBM as well as on the Heston model.

The CONV method can be used without any form of damping for the option
parameters here.

5.1. Truncation Range for COS Method. To determine the interval of
integration [a, b] within the COS method, we propose the following:

[a, b] :=

[

c1 − L
√

c2 +
√
c4, c1 + L

√

c2 +
√
c4

]

with L = 10. (49)

Here, cn denotes the n-th cumulant of ln(ST /K). The cumulants for the models
employed here are presented in Appendix A.

Cumulant c4 is included in (49), because the density functions of many Lévy
processes for short maturity, T , have sharp peaks and fat tails (correctly indicated
via c4).

Formula (49) is accurate 5 in the range T = 0.1 to T = 10. It then defines
a truncation range which gives a truncation error around 10−12. Larger values of
parameter L would require larger N to reach the same level of accuracy.

Remark 5.2. When pricing call options, the method’s accuracy exhibits some
sensitivity regarding the choice of parameter L in (49). A call payoff grows ex-
ponentially with the log-stock price and introduces a significant cancellation error
for large values of L. Put options do not suffer from this, as their payoff value is
bounded by the value K. For pricing call options, one can therefore either stay with
L ∈ [7.5, 10], or rely on the well-known put-call parity,

vcall(x, t0) = vput(x, t0) + S0e
−qT − Ke−rT . (50)

In the experiments to follow, we use (50) when pricing calls, which gives a slightly
higher accuracy than directly applying (28) with (49).

5.2. Geometric Brownian Motion, GBM. The first set of call option ex-
periments is performed under the GBM process with a short time to maturity.
Parameters selected for this test are

S0 = 100, r = 0.1, q = 0, T = 0.1, σ = 0.25. (51)

The convergence behavior at three different strike prices, K = 80, 100 and 120,
is checked.

Figure 1 shows that the recovered density function with the small maturity time
T does not have fat tails, as is commonly known. This implies that the tails of the
characteristic function in the Fourier domain are fat. As a result, the truncation
range for the Carr-Madan method in the Fourier domain has to be selected relatively
large, requiring a significantly larger value of N compared to the other two methods
to achieve the same level of accuracy.

As shown in Figure 2, the error convergence of the COS method is exponential
(geometric) and superior to that of the 4-th order CONV and Carr-Madan methods.
With N = 26, the COS results already coincide with the reference values. Further,

5A truncation rule which includes cumulant c6, such as

[a, b] :=

"

c1 − L

r

c2 +
q

c4 +
√

c6, c1 + L

r

c2 +
q

c4 +
√

c6

#

,

is more accurate for extremely short maturities, like T = 0.001. The sixth cumulant is however
relatively difficult to derive for many models.
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Fig. 1. Recovered density function of the GBM model involved in the experiments; K = 100,
other parameters as in (51).
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Fig. 2. COS vs. Carr-Madan and CONV in error convergence for pricing European call
options under GBM model

we observe that the error convergence rate is basically the same for the different
strike prices.

In Table 2, cpu time and error convergence information, comparing the COS
and the Carr-Madan method, are displayed for pricing the options at K = 80, 100
and 120 in one computation. The maximum error of the option values over the
three strike prices is presented.

Note that the results for these strikes are obtained in one single numerical
experiment for both methods. To get the same level of accuracy, the COS method
uses significantly less cpu time, which becomes more prominent when the desired
accuracy is high. For the Carr-Madan computation we have used a truncation range
of size [0, 100] in this latter experiment.6

Remark 5.3. We have observed a linear computational complexity for the COS
method by doubling N and performing the computations. This cannot be observed
in Table 2, as the biggest portion of time spent on the experiments with relatively
small N is computational overhead.

5.2.1. Cash-or-nothing Option. We confirm that the convergence of the
COS method does not depend on a discontinuity in the payoff function, provided
we have an analytic expression for the coefficients V cash

k by pricing a cash-or-nothing
call option here. The underlying process is GBM, so that an analytic solution exists.
Parameters selected for this test are

S0 = 100,K = 120, r = 0.05, q = 0, T = 0.1, σ = 0.2. (52)

6To produce the Carr-Madan results from Figure 2 with the very small errors, we needed a
larger truncation range, i.e., [0, 1200].
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Table 2
Error convergence and cpu time comparing the COS and Carr-Madan methods for European

calls under GBM, parameters as in (51); K = 80, 100, 120; Reference val. = 20.799226309 . . .,
3.659968453 . . ., and 0.044577814 . . ., respectively.

N 16 32 64 128 256

COS msec. 0.337 0.388 0.506 0.811 1.305

max. abs. err. 6.66e-03 7.17e-08 3.91e-14 3.91e-14 3.91e-14

Carr-Madan msec. 2.546 2.536 2.707 3.325 3.945

max. abs. err. 2.45e+07 1.76e+06 1.62e+03 1.62e+01 7.95e-02

Table 3 presents the exponential convergence of the COS method. Since the payoff
is bounded here, we apply the COS formula (30) directly.

Table 3
Error and cpu time for a cash-or-nothing call option with the COS method, parameters as in

(52); Reference val. = 0.273306496 . . .

N 40 60 80 100 120 140

error 2.46e-02 1.64e-02 6.35e-04 6.85e-06 2.44e-08 2.79e-11

cpu time (msec.) 0.330 0.334 0.376 0.428 0.486 0.497

5.3. The Heston Model. As a second test we choose the Heston model and
price calls with the following parameters:

S0 = 100,K = 100, r = 0, q = 0, λ = 1.5768, η = 0.5751,

ū = 0.0398, u0 = 0.0175, ρ = −0.5711. (53)

Two maturities, T = 1 and T = 0.1, are considered. Since the analytical formula
for c4 is involved (it can be obtained using Maple, but it is lengthy), we define the
truncation range, instead of (49), by

[a, b] := [c1 − 12
√

|c2|, c1 + 12
√

|c2|].

Cumulant c2 may become negative for sets of Heston parameters that do not satisfy
the Feller condition, i.e., 2ūλ > η2. We therefore use the absolute value of c2.
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Fig. 3. Recovered density functions of the Heston experiments, parameters as in (53).

Figure 3 presents the recovered density functions. It shows that T = 1 gives
rise to a sharper-peaked density than T = 10, as expected.

In this test, we compare the COS method with the Carr-Madan method, which
is often used for the calibration of the Heston model in industry. The option price
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reference values are obtained by the Carr-Madan method using N = 217 points,
and the truncated Fourier domain is set to [0, 1200] for the experiment with T = 1
and to [0, 500] for T = 10.

Tables 4 and 5 illustrate the high efficiency of the COS method compared to
the Carr-Madan method.

Table 4
Error convergence and cpu times for the COS and Carr-Madan methods for calls under the

Heston model with T = 1, parameters as in (53); Reference val. = 5.785155450 . . .

COS Carr-Madan

N error time (msec.) N error time (msec.)

64 -4.92e-03 0.747 256 -2.29e+06 4.981

96 -2.99e-04 0.840 512 2.31e+01 7.048

128 1.94e-05 1.036 1024 -2.61e-01 11.35

160 2.99e-06 1.222 2048 -2.14e-03 20.45

192 -3.17e-07 1.532 4096 3.76e-07 38.02

Table 5
Error convergence and cpu time for the COS and Carr-Madan methods for calls under the

Heston model with T = 10, parameters as in (53); Reference val. = 22.318945791 . . .

COS Carr-Madan

N error time (msec.) N error time (msec.)

32 7.40e-03 0.567 128 -1.99e+06 3.970

64 -5.02e-05 0.632 256 1.36e+05 4.714

96 1.40e-07 0.895 512 3.27e+01 6.877

128 4.92e-10 1.047 1024 -2.61e-01 11.95

160 -1.85e-10 1.378 2048 -2.15e-03 20.89

Note the very different values ofN , that the two methods require for satisfactory
convergence. All cpu times are given in milli-seconds. The COS method appears to
be approximately a factor 20 faster than the Carr-Madan method for the same level
of accuracy. The convergence rate of the COS method is somewhat slower for the
short maturity example, as compared to the 10 years maturity. This is due to the
fact that the density function for the latter case is smoother, as seen in Figure 3.
The COS convergence rate for T = 1 is, however, still exponential in the Heston
model.

Additionally, for a fair comparison, we mimic the calibration situation, in which
around 20 strikes are priced simultaneously. We repeat the experiment for T = 1
but now with 21 consecutive strikes, K = 50, 55, 60, · · · , 150, see the results in
Table 6. The maximum error over all strike prices is presented. With N = 160,
the COS method can price all options for 21 strikes highly accurately, within 0.5
milli-seconds.

Table 6
Error convergence and cpu time for calls under the Heston model by the COS and Carr-Madan

method, pricing 21 strikes, with T = 1, parameters as in (53).

N 32 64 96 128 160

COS cpu time (msec.) 0.852 1.446 2.039 2.641 3.220

max. abs. err. 1.43e-01 6.75e-03 4.52e-04 2.61e-05 4.40e-06

N 512 1024 2048 4096 8192

Carr-Madan cpu time (msec.) 7.436 12.84 20.36 37.69 76.02

max. error 4.70e+06 6.69e+01 2.61e-01 2.15e-03 2.08e-07
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5.4. Variance Gamma, VG. As a next example we price call options under
the Variance Gamma process, which belongs to the class of infinite activity Lévy
processes. The VG process is usually parameterized with parameters σ, θ and ν
related to C,G and M in (31) through

C =
1

ν
, G =

θ

σ2
+

√

θ2

σ4
+

2

νσ2
, M = − θ

σ2
+

√

θ2

σ4
+

2

νσ2
, (54)

The parameters selected in the numerical experiments are

K = 90, S0 = 100, r = 0.1, q = 0, σ = 0.12, θ = −0.14, ν = 0.2, L = 10. (55)

This case has been chosen because a relatively slow convergence was reported for the
CONV method for very short maturities in [18]. Here, we compare the convergence
for T = 1 and for T = 0.1 year.

Figure 4 presents the difference in shape of the two recovered density functions.
For T = 0.1, the density is much more peaked. Note that for T = 0.1 the error
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(b) Zoom in

Fig. 4. Recovered density functions for the VG model and two maturity dates; K = 90, other
parameters as in (55).

Table 7
Convergence of the COS method for a call under the VG model with K = 90 and other

parameters as in (55).

T = 0.1; Reference val. = 10.993703187 . . . T = 1; Reference val. = 19.099354724 . . .

N error time(msec.) N error time(msec.)

64 -1.66e-03 0.489 32 -6.57e-04 0.456

128 4.35e-04 0.770 64 2.10e-06 0.534

256 4.55e-05 1.196 96 -3.32e-08 0.662

512 -1.13e-06 2.218 128 4.19e-10 0.748

1024 2.52e-08 3.665 160 -1.88e-11 1.002

convergence of the COS method is algebraic instead of exponential. This is in
agreement with the recovered density function in Figure 4, which is clearly not in
C∞([a, b] ⊂ R). In the extreme case, we would observe a delta function-like function
for T → 0.

We also plot the errors in Figure 5, comparing the convergence of the COS
method to that of the CONV method7. The convergence rate of the COS method
for T = 1 is significantly faster than that of the CONV method, but for T = 0.1
the convergence is comparable.

7The Simpson rule did not improve the convergence rate here.
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Fig. 5. Convergence of the COS method for VG model

5.5. CGMY Process. Finally, we evaluate the method’s convergence for calls
under the CGMY model. It has been reported in [1, 24] that PIDE methods have
difficulty solving the cases for which parameter Y ∈ [1, 2]. Therefore we evaluate
the COS method with Y = 0.5, Y = 1.5 and Y = 1.98, respectively. The other
parameters are selected as follows:

S0 = 100,K = 100, r = 0.1, q = 0, C = 1, G = 5,M = 5, T = 1. (56)

In Figure 6, the recovered density functions for the three cases are plotted. For
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Fig. 6. Recovered density functions for the CGMY model with different values of Y ; other
parameters as in (56).

large values of Y the tails of the density function are fatter and the center of the
distribution shifts.

Reference values for the numerical experiments are computed by the COS
method with N = 214, as there are no reference values available for the latter
cases. The numerical results are presented in Tables 8 and 9, for Y = 0.5 and
Y = 1.5, respectively.

Again, the COS method converges exponentially, which is faster than the 4th
order convergence of the CONV method. With a relatively small value of N , i.e.
N ≤ 100, the COS results are accurate up to 7 digits. The computational time
spent is less than 0.1 millisecond. Comparing Tables 8 and 9, we notice that the
convergence rate with Y = 1.5 is faster than that of Y = 0.5, because density
functions from fat-tailed distributions can often be well represented by cosine basis
functions. In Table 10, for example, with Y = 1.98 we need very small values of
N for high accurate call option prices. No other pricing method, to our knowledge,
can price options for very large Y ≈ 2, accurately in a robust way.

6. Conclusions and Discussion. In this paper we have introduced an option
pricing method based on Fourier-cosine series expansions, the COS method, for
pricing European-style options. The method can be used as long as a characteristic
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Table 8
Comparison of the COS and CONV methods in accuracy and speed for CGMY with Y = 0.5

and other parameters as in (56); Reference val. = 19.812948843 . . .

COS CONV

N error time (msec.) N error time (msec.)

32 1.36e-02 0.7 64 1.53e-02 0.8

48 5.61e-04 0.7 128 5.31e-04 1.0

64 3.32e-05 0.8 256 3.15e-05 1.6

80 2.57e-06 0.8 512 1.62e-06 2.7

96 2.44e-07 1.1 1024 -1.82e-07 5.2

112 2.68e-08 1.0 2048 -2.71e-07 10.0

Table 9
Comparison of the COS and CONV methods in accuracy and speed for CGMY with Y = 1.5

and other parameters from (56); Reference val. = 49.790905469 . . . .

COS CONV

N error time (msec.) N error time (msec.)

8 2.40e-01 0.5 64 1.21e-02 0.8

16 -4.92e-02 0.6 128 7.12e-04 1.1

24 -1.73e-03 0.6 256 4.37e-05 1.8

32 -1.23e-05 0.7 512 2.81e-06 3.1

40 -2.16e-08 0.7 1024 1.49e-07 5.4

48 -3.60e-11 0.8 2048 6.49e-10 10.3

Table 10
The COS method for CGMY model with Y = 1.98 and other parameters as in (56); Reference

val. = 99.999905510 . . .

N 8 16 24 32 40 48

msec. 0.6 0.6 0.7 0.7 0.7 0.8

error -6.36e-01 2.65e-02 1.00e-04 4.29e-06 3.25e-09 1.18e-11

function for the underlying price process is available. The COS method is based on
the insight that the series coefficients of many density functions can be accurately
retrieved from their characteristic functions. As such, one can decompose a density
function into a linear combination of cosine functions. It is this decomposition that
makes the numerical computation of the risk-neutral valuation formula easy and
highly efficient.

Derivation of the COS method has been accompanied by an error analysis. In
several numerical experiments, the convergence rate of the COS method has shown
to be exponential, in accordance with the analysis. When the density function of
the underlying process has a discontinuity in one of its derivatives an algebraic
convergence is expected and was observed. The computational complexity of the
COS method is linear in the number of terms, N , chosen in the Fourier-cosine series
expansion. Very fast computing times were reported here for the Heston and Lévy
models. With N < 150, all numerical results (except for VG model with very short
maturities) are accurate up to 8 digits, in less than 0.5 milliseconds of cpu time.
By recovering the density function we can estimate the convergence behavior of our
numerical method.

The generalization to high dimensional option pricing problems is not trivial,
because an analytic formula for the coefficients Vk cannot easily be obtained. The
Vk should then be recovered numerically, which has an impact on the convergence
rate of the COS method. This is part of our future research.
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Appendix A. Cumulants of ln(St/K). The cumulants, cn, are defined by
the cumulant-generating function g(t):

g(t) = log(E(et·X)),

for some random variable X . The cumulants are given by the derivatives, at zero,
of g(t). We present the cumulants c1, c2 and c4, needed to determine the truncation
range in (49). They are given, for the price processes discussed in this manuscript,
in Table 11.
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Table 11
Cumulants, cn, of ln(St/K) for different models of the underlying; and w, the drift correction

term, which satisfies exp(−wt) = ϕ(−i, t).

GBM c1 = µT

c2 = σ2T

c4 = 0

w = 0

Heston c1 = µT + (1 − e−λT ) ū−u0

2λ
− 1

2
ūT

c2 = 1

8λ3

`

ηTλe−λT (u0 − ū)(8λρ − 4η)

+λρη(1 − e−λT )(16ū − 8u0)

+2ūλT (−4λρη + η2 + 4λ2)

+η2((ū − 2u0)e−2λT + ū(6e−λT − 7) + 2u0)

+8λ2(u0 − ū)(1 − e−λT )
´

w = 0

VG c1 = (µ + θ)T

c2 = (σ2 + νθ2)T

c4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)T

w = 1

ν
ln(1 − θν − σ2ν/2)

CGMY c1 = µT + CTΓ(1 − Y )
`

MY −1 − GY −1
´

c2 = σ2T + CTΓ(2 − Y )
`

MY −2 + GY −2
´

c4 = CTΓ(4 − Y )
`

MY −4 + GY −4
´

w = −CΓ(−Y )[(M − 1)Y − MY + (G + 1)Y − GY ]
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