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We analyze in detail calibration and pricing performed within the framework of local stochastic
volatility LSVmodels, which have become the industry market standard for FX and equity markets.
We present the main arguments for the need of having such models, and address the question whether
jumps have to be included. We include a comprehensive literature overview, and focus our exposition
on important details related to calibration procedures and option pricing using PDEs or PIDEs derived
from LSV models.
We describe calibration procedures, with special attention given to usage and solution of corre-

sponding forward Kolmogorov PDE/PIDE, and outline powerful algorithms for estimation of model
parameters. Emphasis is placed on presenting practical details regarding the setup and the numerical
solution of both forward and backward PDEs/PIDEs obtained from the LSVmodels. Consequently
we discuss speci�cs (based on our experience and best practices from literature) regarding choice of
boundary conditions, construction of nonuniform spatial grids and adaptive temporal grids, selection
of e�cient and appropriate �nite di�erence schemes (with possible enhancements), etc. We also show
how to practically integrate speci�c features of various types of �nancial instruments within calibration
and pricing settings.
We consider all questions and topics identi�ed as most relevant during the selection, calibration and

pricing procedures associated with local stochastic volatility models, providing answers (to the best of
our knowledge), and present references for deeper understanding and for additional perspectives. In a
nutshell, it is our intention to present here an e�ective roadmap for a successful LSV journey.
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1 Introduction

The selection of an appropriate model to successfully price and hedge �nancial instruments is based
on a careful study of the characteristics for both the �nancial structure to be considered, and the
market in which we have to risk manage the position. The quantitative �nance literature has initially
considered local volatility LV and stochastic volatility SV models as means of explaining the observed
market smile. Besides their di�ering qualities of �tting the market data, these two approaches are
fundamentally di�erent in terms of their assumptions regarding the behavior of underlying, re�ected
for example in the di�erent types of forward smile generated over future times, and usually lead to
di�erent attributes of risk sensitivities generated.
However, the need for better models became apparent eventually, given the observed drawbacks for

both LV models and SVmodels in conjunction with various asset classes (such as FX, equities or
equities) and/or various �nancial instruments (e.g., barrier and touch options). As described in Clark
[2011], a purely stochastic volatility model generates the same smile irrespective of the initial level
of spot, and therefore is a �sticky-delta� model � the smile stays anchored at points corresponding to
the speci�ed deltas, while a local volatility model parametrized by a local volatility function clearly
depends on the spot level (and its initial level), and is therefore �sticky-strike�. Consequently local
stochastic volatility LSV models were introduced in the literature to combine the best characteristics
of both LV and SV models, while minimizing their downsides.
The LSV literature contains di�erent viewpoints of modeling and calibration approaches: relying

on trinomial tree method Jex et al. [1999], universal volatility model combining LV , SV and jump
di�usion models Lipton [2002, 2001], Lipton and McGhee [2002], Lipton et al. [2014], log-normal model
for spot process and volatility process with zero correlation Ren et al. [2007], term-structure model
with log-normal process for volatility Tataru and Fisher [2010], Monte Carlo based approaches for cal-
ibration Henry-Labordere [2009], van der Stoep et al. [2013], Guyon and Henry-Labordere [2013], cali-
bration based on McKean's particle method Guyon and Henry-Labordere [2011, 2013], hyperbolic-local
hyperbolic model Jackel and Kahl [2010], a stochastic volatility following a mean-reverting Ornstein-
Uhlenbeck process Choi et al. [2012], adding stochastic interest rate to price long-dated FX options
Deelstra and Rayee [2012], incorporating jumps Pagliarani and Pascucci [2012], Sepp [2011a,b], Lip-
ton and McGhee [2002], Numerix [2013], Itkin [2014a], Heston LSV with constant parameters Clark
[2011], Engelmann et al. [2012] or time dependent parameters Tian et al. [2013], Tian [2013], relying
on a parametric approach with a forward process for the construction of the leverage function Murex
[2011], Wystup [2011], adding local volatility component to an unspanned volatility term structure
model Halperin and Itkin [2013], incorporating a mixing weight parameter describing the correlation
between spot and slope of the smile Reghai et al. [2012b].
The literature also includes references to approximation formulae useful for faster calibration: based

on a heat kernel expansion on a Riemann manifold Henry-Labordere [2005], explicit implied volatilities
for multifactor LSV under �ve di�erent model dynamics: CEV local volatility, quadratic local volatility,
Heston stochastic volatility, 3/2 stochastic volatility, and SABR local-stochastic volatility Lorig et al.
[2014], pricing basket options in a local-stochastic volatility model with jumps Shiraya and Takahashi
[2013], analytical approximations of vanilla prices based on appropriate regularization of the payo� and
a suitably perturbed model Bompis [2013], analytical expressions for vanilla option prices and implied
Black volatilities for any parametric LSV model, using perturbative expansion techniques Jackel and
Kahl [2010], closed-form series expansion in powers of correlation Lipton et al. [2014], etc.

2 Why use LSV models?

We mention the most important requirements that should be satis�ed by any selection and implemen-
tation of a model in order to provide competitive pricing and hedging results:
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• Consistency with the observed market dynamics

• Consistency with vanilla option prices

• Consistency with market prices of liquid exotic options

• Stable, robust and fast enough calibration of model parameters

• E�cient and stable calculation of prices and Greeks

While all these provisions have to be accounted for, the �rst three requirements are especially relevant
when selecting the model, while the last two provide motivation for selection of numerical methods
employed in calibration and/or pricing.

2.1 Advantages and disadvantages of LV and SV models

To understand why there was a need for LSVmodels, let us start by describing the advantages and
disadvantages of both LV models and SVmodels, following ideas from Sepp [2011a,b]:

1. LV models

a) Advantages

i. consistent with today's market prices by construction

ii. calibration may not require numerical optimization

b) Disadvantages

i. tend to replicate rather poorly some characteristics of market dynamics for spot and
volatility (implied volatility tends to move too much given a change in the spot, no
mean-reversion e�ect)

ii. impossible to tune-up the volatility of the implied volatility, as there is simply no
parameter for that

iii. forward volatility implied by LV model is not realistic, since it �attens out

iv. changes in the underlying imply a general parallel shift of the smile (approximately)
under LV models, while market experience indicates that often smiles are �sticky� and
remain invariant under many types of changes

2. SV models

a) Advantages

i. tend to be more in line with the market dynamics

ii. equipped to model the term-structure (through mean-reversion parameters) and the
volatility of the variance (through vol-of-vol parameters)

iii. forward volatility implied by SV model has a much more realistic behavior

b) Disadvantages

i. calibration is done by least squares optimization, and requires special attention to ensure
stability of parameters

ii. any change in either mean reversion or vol-of-vol requires re-calibration of other param-
eters

iii. usually does not �t well short term market skew/smile
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The LSV model aims to incorporate the advantages (and eliminate the disadvantages) of both LV
models and SV models, by allowing some of the smile to come from stochastic volatility and some to
come from a local volatility contribution.
For additional perspectives we encourage the reader to consult practitioner references Crosby [2013],

Sepp [2011a,b], Tan [2012], Clark [2011], Lipton [2002], Lipton et al. [2014].

2.2 Motivating example

Let us consider the pricing of Double No Touch (DNT) options with LV and SV models, similar to
Crosby [2013], Lipton and McGhee [2002].
DNT options are the most actively traded barrier options in FX markets. These options pay one

unit of domestic currency at expiry if the spot FX rate (quoted as the number of units of domestic
currency per unit of foreign currency) never trades equal to or outside a lower barrier level nor an
upper barrier level. If either the lower barrier level or the upper barrier level are touched or breached
prior to expiry, the option expires worthless. The market prices of DNT options on major currency
pairs are widely available to market-making banks, and thus a needed requirement for any model in
FX markets is to provide prices that match well enough these market prices.
Let us consider that a LVmodel was calibrated to the market prices of vanilla options and then used

to price DNT options,. It was observed that the resulting model DNT option prices are less than the
market prices, i.e., a LVmodel tends to under-price DNT options relative to the market prices. On
the other hand, if a SV model was calibrated to the market prices of vanilla options and then used
to price DNT options, it was noticed that the resulting model DNT option prices are greater than the
market prices, i.e., a stochastic volatility model tends to over-price DNT options relative to the market
prices. In either case, the degree of mispricing was found to be well in excess of the bid-o�er spread.
The above observations were described as fairly robust regardless which type of stochastic volatility

model is chosen and which currency pair is chosen (at least for major currency pairs). Adding a
compound Poisson jump process may give a more realistic �t to the short-term skew/smile but it does
not change the broad conclusion regarding DNT option prices.
To put it another way, a local volatility model tends to under-price DNT options relative to the

market prices, a stochastic volatility model tends to overprice DNT options relative to the market
prices, so we want to �mix� the two models into a LSV model, with a �mixing� parameter calibrated
such that we match the market prices of DNT options.

2.3 Do we really need to incorporate jumps in a LSV model?

While the enhancement of adding jumps is often invoked as a mechanism to increase the smile in the
short end over that of a pure stochastic or local-stochastic volatility model, and thus to improve the
�tting to market data, this improvement comes with various costs, such as:

• calibration procedure has to be augmented to include jump parameters

• pricing is done by a partial integro-di�erential equation (PIDE) rather than a PDE.

Thus the main question is whether LSV model can accurately describe the market smile at all expiries
without paying the price of incorporating jumps. The literature is divided on this topic, with some
practitioners Numerix [2013], Lipton and McGhee [2002], Sepp [2011a,b], VolMaster [2014] have con-
sidered necessary to add jumps to SLV models for both FX and equities markets, while others have
found that a LSV model without jumps may be su�cient Murex [2011], Tataru and Fisher [2010],
Clark [2011]. It is clear, though, that jumps are necessary in some situations, as explained next.
It is mentioned in Sepp [2011a,b] that market prices of exotic equity options depending on forward

vol (e.g., cliquet options) imply very steep forward skews, so the value of vol-of-vol parameter must be
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very large. However, LSV model with a large vol-of-vol parameter cannot be calibrated consistently
to given local volatility. In such situations one way for the calibration to provide prices which match
well both exotics and vanilla options is to add infrequent but large negative jumps.
In Sepp [2011a] it is shown that LV models, SV models and jump di�usion JD models are not

consistent with the implied volatility skew observed in options on the VIX index. Moreover, while only
the SV model with appropriately chosen jumps can �t the implied VIX skew, results indicate that
solely the LSV model with jumps can �t both Equity and VIX option skews.
It is argued in Henrotte [2012] that any mixture of local and stochastic volatility cannot fully describe

all relevant phenomena observed in equity derivatives space, with ample evidence that jumps add
critical features to the dynamics of the underlying that cannot be tackled under a smooth di�usion
setting. Short-dated options are all about jumps and, for the popular weekly options, even small
jumps can make a huge di�erence. Rare, but catastrophic, events cannot be ignored either, and can
be described as very large jumps, not only on the underlying price, but also on the volatility.

2.4 Regime switching as a more parsimonious alternative

If jumps are needed to be added to LSV model, a more parsimonious approach is to rely on regime
switching concepts instead of incorporating jump di�usion components into the model. This would
reduce the complexity of the model, both from theoretical (e.g.,Henrotte [2012]) and computational
(e.g., Henrotte [2012], Andreasen and Dahlgren [2006], Andersen [2010]) points of view. For a regime
switching model with M regimes and N factors, the reduction in computational e�ort is achieved
because we end up solving M coupled PIDEs of dimension N − 1 instead of a PIDE in N dimensions.
Although done in the context of pricing electricity derivatives and respectively commodity derivatives,
and not relying on a LSV model, the references Andreasen and Dahlgren [2006], Andersen [2010]
provide very good examples of computational e�ciency obtained when using regime switching models.

3 LSV models

We start by outlining generic speci�cations that we need to consider for a good LSVmodel, and then
describe various LSV models presented in the literature.

3.1 Generic speci�cations for a LSV model

We follow Sepp [2011a,b] to describe such speci�cations:

1. Global factors - specify factors relevant for product risk: stochastic volatility, stochastic
interest rate, jumps, default risk, etc

a) Estimate or calibrate model parameters for the dynamics of these factors using either his-
torical or market data

b) Parameters are updated infrequently

2. Local factors - specify local factors for either parametric or non parametric local volatility
or local drift (for quantos)

a) Parameters of local factors are updated frequently (on the run) to �t the risk-neutral dis-
tributions implied by market prices of vanilla options

3. Mixing weight - specify mixing weight γ between stochastic and local volatilities

a) γ multiplies vol-of-vol

b) γ multiplies both vol-of-vol and correlation
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3.2 Lipton model

Described in Lipton [2002], Lipton and McGhee [2002], Lipton et al. [2014], this model is representative
for a class of LSV models which combines a mean reverting process for the volatility or the variance
(like in Heston model), with a general local volatility function acting as multiplication factor for the
stochastic volatility. The combination is done through a mixing ratio γ which multiplies the vol of vol
parameter. It also incorporates jumps, and is formulated as:

dS(t)

S(t)
= (rd − rf − λ$) dt+ σL (t, S(t))

√
V (t)dWS(t) + (exp [J ]− 1) dN(t) (3.1)

dV (t) = κ (θ − V (t)) dt+ γ
√
V (t)dWV (t)

< dWS , dWV > = ρ

with S(t) the spot FX rate, rd and rf the domestic and foreign interest rates, λ the intensity rate
of Poisson process N(t), WS and WV Brownian processes correlated by ρ, V (t) stochastic variance,
$ , E [exp [J ]− 1] and σL (t, S(t)) denotes a local volatility function.
We note that the model is the same as Heston SV plus jump when σL (t, S(t)) ≡ 1 , and the same

as Dupire LV plus jumps when γ ≡ 0.
This model was introduced in Lipton [2002]; since then it has become popular among both practi-

tioners and academics, e.g., Andersen and Hutchings [2009] and references therein. A version without
jumps was implemented by a well-known software provider Murex under the name of Tremor.

3.3 Model with Heston-like dynamics

It combines a mean reverting process for the variance (like in Heston model) and a general local
volatility function, using a mixing ratio parameter γ to multiply the vol of vol parameter

dS(t)

S(t)
= (rd(t)− rf (t)) dt+ L (t, S(t))

√
V (t)dW (1)(t) (3.2)

dV (t) = κ(t) (θ(t)− V (t)) dt+ γ · ξ(t)
√
V (t)dW (2)(t)

Cov
(
dW (1)(t), dW (2)(t)

)
= ρ(t)dt

Models belonging to this class are described in Tian et al. [2013], with Heston parameters κ, θ, ξ, ρ
assumed to have term structure, or in Clark [2011], where the Heston parameters are constant.

3.4 Model with SABR-like dynamics

It was described in Reghai et al. [2012b]. We note that the mixing ratio parameter γ multiplies both
the vol of vol parameter and the correlation

dS(t)

S(t)
= L (t, S(t)) · f (t, S(t), σ(t)) · dW (1)(t) (3.3)

dσ(t) = γ · ξ(t) · dW (2)(t)

Cov
(
dW (1)(t), dW (2)(t)

)
= ρ(t)dt
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3.5 Tremor model

It models Wystup [2013] the forward as

df (t, T ) =
√
v(t)g (f (t, T )) dW (1)(t) (3.4)

dv(t) = κ (θ − v(t)) dt+ γ · ξ
√
v(t)dW (2)(t)

g(f) = min
[
a+ b · f + c · f2, cap · f

]
Cov

(
dW (1)(t), dW (2)(t)

)
= ρdt

with f (t, T ) the forward to maturity T as seen from t, v(t) the variance process, θ long term variance
set to v(0) the initial instantaneous variance, κ the rate of mean reversion and ξ vol of vol. We also
have the mixing ratio γ to multiply the vol of vol parameter.
The model is done along the same lines as Universal volatility model described in Lipton [2002],

which included an additional jump component in the spot dynamics, and is given in Eq. 3.1.

3.6 Hyp-hyp model

It was argued in Jackel and Kahl [2010, 2007] that the main reason for Heston model (and possibly
its extensions with CEV for local volatility) to emerge as the most popular model at the time was not
not that it matches the market dynamics in a particularly realistic way, but rather the existence of
analytical prices which can be used in calibration. Moreover, according to references given in Jackel
and Kahl [2010], it turns out that Heston model is not as analytically solvable as �rst thought, nor that
its numerical implementation by means of Monte Carlo simulations or �nite di�erence solving is as
trivial as one might hope. Research into the scaling of volatility of volatility as a function of the level
of volatility seemed to suggest that the stochasticity of volatility observed in the market is probably
closer to the SABR. However, SABR model has its own drawbacks, with some of them detailed in
Jackel and Kahl [2010].
Thus it was argued that there is a need for a new stochastic volatility model designed to have the

same desirable properties as all the above, but fewer, or ideally none, of the undesirable ones. Such
a model, introduced in Jackel and Kahl [2010, 2007], combined hyperbolic parametric local vol and
hyperbolic stochastic vol

dx = σ0 · f(x) · g (y) dW (1)(t) (3.5)

dy = −κydt+ α
√

2κdW (2)(t)

f(x) =

(
1− β + β2

)
· x+ (β − 1) ·

[
−β +

√
x2 + β2 (1− x2)

]
β

g(y) = y +
√
y2 + 1

Cov
(
dW (1)(t), dW (2)(t)

)
= ρdt

where x is the �nancial observable that underlies the given derivatives pricing problem and y is the
driver of volatility, with β > 0 a parameter.
Since both f(·) and g(·) are hyperbolic versions of conic sections this model was referred to as the

hyperbolic-local hyperbolic-stochastic volatility model, or the Hyp-Hyp model.
The local volatility functional f(x) was designed to resemble the CEV functional form xβ of local

volatility at the forward, up to second order. Unlike the CEV or the displaced di�usion functional
form of local volatility, the hyperbolic functional f(x) not only converges to zero for small x, but also
has �nite slope for x → 0, as well as positive slope for x → ∞. When no stochasticity of volatility
is present, the local volatility functional gives rise to �nite positive implied volatilities for options for
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very high and very low strikes, as a consequence of its zero value at zero, �nite slope at zero, and �nite
positive slope for large x. Unlike the CEV and displaced di�usion models, it does not give rise to the
underlying stochastic process attaining or even crossing zero, which is of considerable convenience for
both numerical implementations as well as for pricing of forward options.
The stochastic volatility component of the new model was designed to balance the ideal: to be as

close as possible to the case of absolute volatility of volatility scaling like σp with p ≈ 1, while avoiding
the fat tails of a log-normal distribution for volatility in order to circumvent any moment explosions.
The chosen hyperbolic functional g(y) shares level, slope, and curvature with the exponential function
in y = 0, but di�ers as of the third derivative. It can be seen that whiles the hyperbolic form gives
rise to a density that resembles closely the log-normal distribution reasonably near the bulk of the
distribution, it has much thinner tails for very low and very high values of volatility, which is precisely
what was desired to be achieved with the selection of this particular functional form.

3.7 VolMaster model

It is described in Wystup [2013]

dS(t) =
(
rd(t)− rf (t)

)
S(t)dt+ σ(t)S(t)dW (1)(t) (3.6)

dV (t) = κ(t) (ln (z(t)θ(t))− lnV (t))V (t)dt+ ξ(t)dW (2)(t)

L(t) = f (S(t), χ(t), ρ(t), t)

σ(t) = min [cap, z(t) (ω(t)V (t) + (1− ω(t))L(t))]

Cov
(
dW (1)(t), dW (2)(t)

)
= ρ(t)dt

with S(t) the spot price, σ(t) volatility, V (t) stochastic volatility, κ(t) mean reversion speed of
stochastic volatility, θ(t) the equilibrium level of stochastic volatility, ξ(t) vol of vol, z(t) volatility
drift factor, L(t) local volatility function, ω(t) stochastic volatility weight.

3.8 Exponential Levy model

This model assumes the underlying asset price to be driven by an exponential Levy process

S(t) = S(0) exp (L(t)) (3.7)

L(t) = χt+ σW (1)(t) + Z(t)

with Levy triplet (χ, σ, ν) and χ expressed as

χ = r − q − 0.5σ2 −
ˆ
R

(
ex − 1− x · 1|x|<1

)
ν(dx)

with ν(dx) a Levy measure. Moreover, it assumes that σ(t) , L(S, t)
√
v(t) is a combination

between a local volatility function L(S, t) and square root of stochastic variance v(t), as described in
Itkin [2014a], with v(t) having dynamics given by

dv(t) = κ (v∞ − v(t)) dt+ γξv(t)dW (2)(t) (3.8)

Cov
(
dW (1)(t), dW (2)(t)

)
= γρ(t)dt

with parameter β determining a mean-reverting CEV process for V (t) and assumed to be a calibrated
parameter of the model.
A version of the model was given in Pagliarani and Pascucci [2012] as
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dX(t) =
(
r − µ1 − 0.5σ2 (t,X(t−)) · v(t)

)
dt+ σ (t,X(t−)) dW (1)(t) + Z(t) (3.9)

dv(t) = κ (θ − v(t)) dt+ γ · ξ
√
v(t)

(
ρdW (1)(t) +

√
1− ρ2dW (2)(t)

)
where Z(t) is a pure jump Levy process with Levy triplet (µ1, 0, ν) and σ(t,X) is local volatility

function.

3.9 Tataru and Fisher model

It was described in Tataru and Fisher [2010]

dS(t)

S(t)
= (rd(t)− rf (t)) dt+ L (t, S(t)) v(t)dW (1)(t) (3.10)

dv(t) = κ (θ − v(t)) dt+ ξv(t)dW (2)(t)

Cov
(
dW (1)(t), dW (2)(t)

)
= ρ(t)dt

where the local volatility L and stochastic volatility V are mixed using γ ∈ [0, 1] for

ξ = γξMAX

ρ = γρ

3.10 Sepp model

It was described in Sepp [2011b,a]

dS(t) = µ(t)S (t−) dt+ L (t−, S(t−)) · ϑ (t−, Y (t−)) · S (t−) · dW (1)(t)

+
((
e−ν − 1

)
dN(t) + λνdt

)
· S (t−) (3.11)

dY (t) = −κ · Y (t) · dt+ γ · ξ · dW (2)(t) + η · dN(t)

Cov
(
dW (1)(t), dW (2)(t)

)
= γ · ρ(t) · dt

with S(t) the underlying and Y (t) the factor for instantaneous stochastic volatility, L(t, S) the local
volatility function, κ mean reversion, ξ vol of vol , N(t) a Poisson process with intensity λ.
We note that the mixing ratio γ multiplies both the vol of vol parameter and the correlation.
The jumps in S(t) and Y (t) are assumed to be simultaneous and discrete, with magnitudes −ν < 0

and η > 0, while the volatility mapping ϑ (t, Y (t)) is de�ned as

ϑ (t, Y (t)) = exp [Y (t)− V [Y (t)]]

with V [Y (t)] the variance of Y (t). For ρ = 0, we have E [ϑ (t, Y (t)) |Y (0) = 0] = 1, so that ϑ (t, Y (t))
introduces "volatility-of-volatility" e�ect without a�ecting the local volatility close to the spot

4 Calibration of LSV model

While calibration of each model has speci�c characteristics and ��ner points�, there are common aspects
of an LSV calibration which will be presented in this chapter. We describe these common character-
istics for a LSV model which incorporates a leverage function to mix the LV and SV components,
and provide details on enhancing the calibration procedure when LSV is extended to include jumps,
represented via jump di�usion processes, Levy processes or regime switching.
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4.1 Common calibration procedure

A two-stage calibration procedure is most common Clark [2011], Tan [2012], Tian et al. [2013]:

1. Calibrate the purely stochastic volatility model to market data

2. Calibrate the local volatility correction (the �leverage function�) through optimal selection of
mixing ratio parameter γ

When we calibrate the purely stochastic volatility model, the resulting model can match well the market
data around ATM and in intermediate regions, but has troubles matching the behavior for the wings,
especially for far ITM and OTM strikes. This behavior is improved using the local volatility correction
(the �leverage function�), which pushes the pure stochastic volatility model in the right direction
towards market implied volatilities. Thus we would have 2 sets of parameters to be calibrated:

• parameters of SV dynamics

• parameters of leverage function

Without signi�cant loss of generality we exemplify the procedure for a Heston-like LSVmodel, as
described by Eqs. (3.2).

4.1.1 Calibrate the purely stochastic volatility model

The purely stochastic volatility component of LSV model is obtained by setting the leverage function
to unity function L (t, S) ≡ 1 and the mixing ratio parameter to 1: γ = 1.
Calibrating parameters of stochastic volatility models is a topic that have been extensively studied

in the literature. While such a calibration has to usually overcome issues of theoretical, numerical and
computational nature, many of these challenges were already dealt with in the literature, and will not
be addressed here.
Regarding calibration of Heston model, the reader may consult Zeliade [2011], Rouah [2013], Ben-

hamou et al. [2010] for e�cient approaches for models with constant and, respectively, time dependent
parameters.

4.1.2 Calibrate the leverage function and mixing ratio parameter

The leverage function pushes the implied volatilities generated by the stochastic volatility model to-
wards market implied volatilities. This calibration is based on solving a 2D Fokker Planck (forward
Kolmogorov) PDE, with the value of the mixing ratio parameter γ being determined through matching
the price of some exotic options or by historical estimation.
As shown in Appendix A, the leverage function can be found using following formula

L(x, t) = σLV (x, t)

√ ´∞
0 pLSV (t, x, y) dy´∞

0 t · pLSV (t, x, y) dy
(4.1)

with σLV (x, t) local volatility function and pLSV (t, S(t), V (t)) transition probability of LSV model.
Thus we see that in order to calculate the leverage function we need to determine the local volatility
function and the transition probability density function.
Details on how to obtain the local volatility function are given in Appendix B.
We also know that the Fokker-Planck equation describes the evolution of the transition probability

density (see Appendix C). To exemplify, we consider the Heston LSV model given in (3.2), after being
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enhanced with following change of variables to avoid issues with Feller condition being violated Tian
et al. [2013], Clark [2011]

x(t) = ln
S(t)

S(0)
(4.2)

z(t) = ln
v(t)

v(0)

Then we obtain the following Fokker-Planck (forward Kolmogorov) PDE:

∂P

∂t
= − ∂

∂x

[(
r(t)− 0.5L2 (x, t) exp (z) v0

)
P
]

+
∂2

∂z∂x

[
γ2ξρL (x, t)P

]
(4.3)

− ∂

∂z

[((
κθ − 0.5γ2ξ2

) 1

exp (z) v0
− κ
)
P

]
+0.5

∂2

∂x2

[
L2 (x, t) exp (z) v0P

]
+ 0.5

∂2

∂z2

[
γ2ξ2

exp (z) v0
P

]
P (x, z, 0) = δ (x− x0) δ (z − z0)

where δ (·) is Dirac function and x0 = z0 = 0.
In conclusion, if we solve the Fokker-Planck equation numerically, we can evaluate the leverage

function via integrals of probability density function.
Finally we have all the ingredients to calibrate the leverage function and mixing ratio parameter.

We follow the approach described in section 6.8.3 of Clark [2011], which is along the same lines as
bootstrapping an yield curve, however attempting to infer a surface L(x, t) rather than a curve.
Suppose that we have market data for a sequence of N timepoints {0, t1, t2, · · · , tN}. The approach

is to solve Eq. (4.3) numerically, marching forward timestep by timestep, and after each iteration in
the solution of (4.3) to re�ne the function L(x, t) by use of (4.1). Thus we obtain the following steps:

1. Start at time t = 0 with an initial local volatility correction L(x, 0) = 1 for all x

2. Apply a forward time stepping scheme for (4.3) to go to next time point

3. Re�ne the function L(x, t) by use of (4.1), at each required level of X, taking numerical integrals
in the variance dimension. Then update the di�usion, convection and force terms in (4.3).

We apply the mixing ratio parameter γ to the vol of vol (and possibly to correlation) for each maturity,
with the market data input given by vanilla and perhaps exotic option prices. The local volatility data
and the Fokker-Planck equation are used to generate probability density function, while corresponding
leverage function is utilized to price the input market vanillas and exotics. We perform one dimensional
optimization to identify the value of the mixing ratio parameter γ that gives the smallest overall error,
and the procedure is repeated for the next maturity.
When solving Fokker-Planck PDE, potential numerical issues may appear Clark [2011]:

• The initial condition for the Fokker�Planck equation is highly singular. This issue can be ad-
dressed by

� having an aggressively nonuniform mesh to pack more mesh points in around (x0, v0) in the
spatial dimension, and t = 0 in the time dimension.

� use bivariate normal distribution density function with a very small time step to approximate
the Dirac delta function, as inTian et al. [2013]

• Certain markets (e.g., FX) will require a nontrivial correlation, which can be problematic for
some �nite di�erence schemes
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• If the Feller condition is violated, then probability mass will tend to pile up against the v = 0
boundary. A nonuniform mesh in variance with a concentration of points in a boundary layer
adjoining v = 0 helps considerably in such a situation.

• The calibration works best for shorter dated maturities for currency pairs with relatively sym-
metric smiles. For longer dated calibrations to skewed currency pairs, such as USDJPY and
EURJPY, we �nd that the numerics are much more challenging

4.2 Calibration of jump parameters

If jump processes are incorporated into the model (via jump di�usion, Levy processes, or regime
switching), the corresponding jump parameters have to be estimated using historical data, e.g., Sepp
[2011a,b], and not part of the regular calibration. Since we expect jumps to be rare, extreme events,
an optimal value provided by optimizer of 100 jumps per year would not match the observed data,
although it may be perfectly valid answer from a purely numerical point of view.
Estimation can also be done through �ltering, which combines maximum likelihood method with a

�lter or other algorithms, such as

• EM (expectation maximization) algorithm Erlwein [2008], Weron [2009, 2006]

• Kim Filter Weron [2006], Bloechlinger [2008]

• Baum Welch algorithm Mitra [2009]

• Hamilton �lter Burger et al. [2008]

Our recommendation is to use the Kim �lter, which combines the Kalman �lter, the Hamilton �lter
and a collapsing procedure. It is an optimal estimator in the sense that no other estimator based on
a linear function of the information set yields a smaller mean square error. The reader is referred to
Appendix I, to chapter 5 of Erlwein [2008] and to Kim and Nelson [1999] for additional details.

4.3 Calibration using Markovian projection

This approach Piterbarg. [2007] moves away from the direct solution of the LSV model and derives
closed-form approximations, via the Markovian projection, to prices of European options on various
underlyings. Work on Markovian projections in the context of the SLV models has also been presented
in Henry-Labordere [2009], where a so-called �e�ective local volatility� was derived.
The Markovian projections can be widely applied but require a number of conditional expectations

to be determined. Very often these expectations are not available analytically and brute-force assump-
tions need to be imposed so that approximations can be de�ned. Although mathematically appealing
the Markovian projection technique preserves only marginal densities and does not keep marginal dis-
tributions of orders higher than one intact. Due to this, prices of securities depending on stock values
at multiple times, such as American options and barriers, may signi�cantly di�er between the original
model and the projected model.

4.4 Other speci�c calibration approaches

Ren et al. [2007] proposed a stochastic volatility model driven by a lognormal volatility process and
developed a tailor-made algorithm for solving the corresponding Kolmogorov forward PDE. Their
approach is based on an algorithm described in Lipton [2002]. An extension of this technique to the
Heston LSV was presented in Engelmann et al. [2012], which employed a �nite volume scheme for the
model evaluation.
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Levenberg-Marquardt optimization technique for a non-linear Fokker-Planck equation was applied in
Tataru and Fisher [2010]. Another approach for simulation was proposed in Deelstra and Rayee [2012].
By assuming zero correlation between the volatility process and the underlying asset it is possible to
e�ciently simulate the extended Schöbel-Zhu model.

4.5 Remarks on numerical calibration

Having a successful calibration relies on more than just selecting a model to accurately capture the
behavior and characteristics of a speci�c market. There are various aspects of the calibration procedure
that one needs to pay special attention to, such as:

• which instruments are included in calibration procedure

• formulation of the cost functional which has to be minimized

• stability and e�ciency of numerical optimizer

It is an industry preferred practice to use primarily out-of-the-money options for calibration, due to
their greater liquidity and model sensitivity compared to their in-the-money counterparts. The cost
functional is constructed to incorporate either weighted di�erences between prices given by the model
and prices seen in the market, or weighted di�erences of corresponding implied volatilities. The cost
functional is usually based on a L2−norm, although other norms have been considered, while the
choice of using either prices or implied volatilities is determined by the quantity (price or vol) which
is provided directly by the model.
Practitioners usually compute the calibration weights as inverse proportional to

• the square of the bid-ask spreads, to give more importance to the most liquid options

• the square of the Black-Scholes vegas

• a combination of the 2 approaches.

In some papers it is argued that it is statistically optimal (minimal variance of the estimates) to choose
the weights as the inverse of the variance of the residuals, which is then considered to be proportional
to the inverse of squared bid�ask spread.
The optimization problem to be solved is not well-posed in vast majority of practical calibrations

encountered in quantitative �nance.In other words, there may be many local minima, one of which is
located by the �solver", as opposed to the global minimum, the results may be highly sensitive to the
starting point of the �solver" algorithm, and small changes in calibration inputs may result in large
changes in values of parameters provided by the �solver�.
This issue can be addressed in various ways, such as

1. adding a regularization parameter to the cost functional, possibly of Tikhonov type, to increase
convexity of the augmented cost functional

2. employing a better optimizer

3. incorporating historical data into calibration.

Let us consider an example of calibrating a model which incorporates jumps. Since we expect jumps
to be rare, extreme events, an optimal value provided by optimizer of 100 jumps per year would not
match the observed data, although it may be acceptable from a purely numerical point of view. In fact,
it is likely we would expect a few (e.g., less than 5) jumps per year on the average. This gives a very
rough estimate of the real-world physical measure jump intensity rate, with more re�ned estimates
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obtained from �ltering of time-series data (which is roughly counting the number of jumps per year
bigger than a speci�ed number of standard deviations). One could also use time-series data to estimate
the mean jump size, and we may probably expect the estimates of the mean jump size to be equivalent
(in magnitude) to, say, at least 2 standard deviation daily moves (the sign can be determined from the
slope of the implied volatility as a function of strike).
Other examples of incorporating historical data into calibration include

• relying on previous day's calibrated parameters (or an average over N previous days) as initial
guesses for the numerical calibration

• estimating mean reversion levels, �vol-of-vol� parameters, or correlation values.

Such parameter estimates are very rough and approximate but, nonetheless, it should be possible to
\guesstimate" many (if not all) parameter values (at least to the right order of magnitude) before the
calibration takes place. For example, we might expect mean-reversion rates to re�ect characteristic
time-scales for speci�c markets. Let us assume such time-scales to be 3 months to 3 years for FX
markets and 3 years to 40 years for interest-rate markets. This might translate into mean-reversion
rates (at least for single-factor models with a single mean-reversion rate - we might have to modify
our reasoning if there are two mean-reversion rates) of the order of magnitude of 0.33 to 4.0 for FX
options models with mean-reverting stochastic volatility and of the order of magnitude of 0.025 to 0.33
for interest-rate derivatives models.
The choice of the optimizer is also extremely important, for both stability and e�ciency reasons.

Gradient based optimizers, for example, are likely to get stuck in a local minimum and are in addition
dependent on the initial parameter guess. To avoid this issue, the calibration may be done using some
stochastic global optimization routine, such as Di�erential Evolution, which is considered the most
robust, and utilized for �nancial calibrations Bloch and Coello [2010], Vollrath and Wendland [2009],
Gilli and Schumann [2010], Schatz [2011], Ardia et al. [2011], Le Floc'h [2014b], FINCAD [2007].
However, relying solely on global optimization is much more computationally demanding. Thus the

recommended approach is to use a hybrid optimizer, which combines a global optimizer with a local
optimizer.. First we run a global optimizer such as Di�erential Evolution for a few iterations. In the
second stage we run a local optimizer, using as initial guess the output from the global optimizer.
The reader is also referred to chapter 7 of Homescu [2011b] for additional discussion and references

related to this topic.

5 Pricing using LSV model

Depending whether the LSV model includes jumps or not, we obtain a pricing PIDE or respectively
PDE. We discuss each type next.

5.1 PDE approach

The generic pricing PIDE for value of option U (t, S, Y ) is given by

∂U

∂t
= L (t, S, Y )

U (t, S, Y ) = Payoff(S)
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5.1.1 Example: Pricing PDE for Heston LSV model

The resulting pricing PIDE,Tian [2013], Tian et al. [2013], using transformations shown in (4.2):

∂U

∂t
= 0.5 [L(t, x)]2 V (t)

∂2U

∂x2
+
(
rd(t)− rf (t)− 0.5 [L(t, x)]2 V

) ∂U
∂x

+0.5γ2ξ2 1

V (t)

∂2U

∂z2
+

[(
κθ − 0.5ξ2

) 1

V (t)
− κ
]
∂U

∂z

+ρ · γ · ξ · L(t, x)
∂2U

∂x∂z
− rd(t)U

5.1.2 Example: Pricing PDE for Lipton LSV model

We consider the Lipton model(3.1) as given in Lipton et al. [2014], namely without jumps and with
forward price as underlying:

dF (t) = σL (F (t))
√
v(t)dWF (t) (5.1)

dv(t) = κ (θ − v(t)) dt+ γ
√
v(t)dWv(t)

dWFdWv = ρdt

with initial conditions

F (0) = F0

v(0) = v0

A properly normalized system of SDEs can be written as follows:

dF̃ (t̄) = σ̃L

(
F̃ (t̄)

)√
ṽ(t̄)dWF (t̄) (5.2)

dṽ(t̄) = κ̃ (1− ṽ(t̄)) dt̄+ γ̃
√
ṽ(t̄)dWv(t̄)

dWFdWv = ρdt̄

with corresponding initial conditions

F (0) = 1

v(0) = v̄0

where normalized (dimensionless) quantities have following formulas:

t̄ = Σ2t

dWF (t̄) = ΣdWF (t)

dWV (t̄) = ΣdWV (t)

F̃ (t̄) =
F (t)

F0

ṽ(t̄) =
v(t)

v0

σ̃L

(
F̃ (t̄)

)
=

σL

(
F̃ (t̄) · F0

)
σL (F0)
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κ̃ =
κ

Σ2

γ̃ =
γ

Σ
√
θ

ṽ(t̄) =
v(t)

θ

with

Σ ,
σL(F0)

√
θ

F0

Then the corresponding normalized PDE has time independent coe�cients, and after introducing
τ = T − t we obtain the following forward PDE (for simplicity we have omitted bars and ∼ from the
notation of variables) :

∂V

∂τ
=
vσ2

L (F )

2

∂2V

∂F 2
+ ργvσL (F )

∂2V

∂F∂v
+
γ2v

2

∂2V

∂v2
+ κ (1− v)

∂V

∂v
(5.3)

To simplify Eq.(5.3) we use Liouville transformation (see Lipton [2001], Lipton et al. [2014])

(F, V ) =⇒ (X,U)

dF

σL(F )
= dX

X =

ˆ F

1

dF

σL (F )

V = U
√
σL

and we obtain

∂U

∂τ
=

vU

2

∂2U

∂X2
+
γ2v

2

∂2U

∂v2
+

[
κ−

(
κ−

ργσ
′
L

2

)
v

]
∂U

∂v
(5.4)

+ργv
∂2U

∂X∂v
+

1

8

(
2σLσ

′′
L −

(
σ
′
L

)2
)
U

where ′ , d/dF

5.1.3 Examples of e�cient solvers for 2D PDEs in �nance

There is a large body of research (from both academics and practitioners) on topic of e�cient solvers
for 2D PDEs arising in computational �nance. Some representative papers are mentioned in the list
below:

• Heston: de Graaf [2012]

• SABR: Sheppard [2007], de Graaf [2012]

• Hull-White: Sheppard [2007]

• Heston LSV : Tian et al. [2013], Ait-Haddou [2013], Tian [2013]

• quadratic LSV : Lipton et al. [2014]
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5.2 PIDE approach

The generic pricing PIDE for value of option U (t, S, Y ) is given by

∂U

∂t
= L (t, S, Y ) + J (t, S, Y )

U (t, S, Y ) = Payoff(S)

5.2.1 Example: Pricing PIDE for Sepp model

The resulting pricing PIDE is

∂U

∂t
= 0.5 [L(t, S)ϑ(t, Y )S]2

∂2U

∂S2
+ µ(t)S

∂U

∂S
+ 0.5γ2ξ2(Y )

∂2U

∂Y 2

+κ
∂U

∂Y
+ ργξL(t, S)ϑ(t, Y )S

∂2U

∂S∂Y

+λ

[ˆ
R

ˆ
R
U
(
SeJ , Y + Υ

)
$ (J) ς (Υ ) dJdΥ − νS ∂U

∂S
− U

]
where jump sizes in Sand Y have pdf's $ (J) and ς (Υ ), while ν is jump compensator

5.2.2 Example: Pricing PIDE for exponential Levy model

With notation x = ln S(t)
S(0) , the resulting pricing PIDE for an European option (see Itkin [2014a]) of

the model given by Eqs. (3.7) and (3.8) :

∂U

∂t
= 0.5v

∂2U

∂x2
+ (r − 0.5v)

∂U

∂x
+ 0.5γ2ξ2v2β ∂

2U

∂v2

+κ (v∞ − v)
∂U

∂v
+ γρξvβ+1L(x, t)

∂2U

∂x∂v
− rC

+

ˆ
R

[
U (x+ y, v, t)− U(x, v, t)− (ey − 1)

∂U

∂x

]
ν(dy)

U (x, v, 0) = Payoff(x)

v(0) = v0

5.2.3 E�cient �nite di�erence solvers for 2D PIDEs

E�cient �nite di�erence solvers for 2D PIDEs arising in computational �nance were obtained for
following models:

• Exponential Levy LSV : Itkin [2014a]

• Jump di�usion LSV : Sepp [2011b,a]

• Jump-di�usion models with Inverse Normal Gaussian, Hyperbolic and Meixner jumps: Itkin
[2014b]

5.2.4 PIDEs corresponding to regime switching models

We would like to explicitly mention the pricing PIDEs corresponding to regime switching models which
are increasingly used in quant �nance Henrotte [2012], Andersen [2010], Andreasen and Dahlgren [2006].
Such models reduce complexity by having a �nite number of jumps, yet provide a rich enough framework
because each regime is a jump-di�usion process with its own level of volatility, jump structure, jump
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intensity, etc. They also provide large computational savings, given that for a regime switching model
with N factors and M regimes we end up solving M separate PDEs (or PIDEs) of dimension N − 1
instead of one PIDE of dimension N . Examples of e�cient �nite di�erence solvers for 2D PIDEs regime
switching include Andreasen and Dahlgren [2006], Andersen [2010].

5.3 E�cient Monte Carlo approach

An e�cient simulation of a general stochastic-local volatility model is described in van der Stoep et al.
[2013]. The method is based on approximating a conditional expectation in a non-parametric way
which is intuitive and easy to implement. This approximation is embedded in a simulation scheme
based on the QE scheme Andersen [2007].
The main di�erence for Monte Carlo simulation between the pure Heston and the Heston LSV

models lies in the fact that the variance of the latter is not only driven by the stochastic volatility,
but also by the local volatility component, which is state-dependent. This requires an additional
�freezing approximation", which is not present in the derivation of the original QE scheme. Numerical
experiments on vanilla options and forward starting options show that the additional approximation
still yields an accurate simulation scheme.

6 Pricing �nancial options using PDE/PIDE approach

We can divide the �nancial options into 4 major categories Wilmott [2006]:

1. Path independent, e.g., European vanilla or digital options

2. Strong path dependent, such as Asian, lookback or cliquet options. They have payo�s that
depend on some property of the asset price path in addition to the value of the underlying at
the present moment in time, and their pricing needs at least one more independent variable

3. Weak path dependent, e.g., single and double barrier and touch options; no new independent
variable is needed for pricing

4. Early exercise, such as American and Bermudan options

For all these types of options the pricing PDE/PIDE will have the initial condition given by the payo�
of the option, and boundary conditions appropriately given:

• on variance/volatility boundaries due to asymptotic model behavior

• on the boundaries corresponding to underlying due to

� characteristics of the �nancial instrument

� to asymptotic model behavior

6.1 Pricing path independent options

Pricing setup is straightforward for European vanilla options. However, we need to pay attention
to digital options, due to non-smooth payo�. The reader is referred to Appendix F for details on
treatment.of these types of payo�s.
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6.2 Pricing strong path dependent options

In many cases their pricing is done through introduction of additional state variables Tavella and
Randall [2000], Andersen and Piterbarg [2010], Lipton [2001].
For example, if we consider a continuously sampled Asian option, its payo� depends on

I(t) =

ˆ t

0
h (x(s)) ds

Then the value of option u = u (t, x(t), I(t)) satis�es PDE

∂u

∂t
+ a(x, t)

∂2u

∂x2
+ b(x, t)

∂u

∂x
+h(x)∂u∂I = r(t, x)u

u(0, x, I) = g (x, I)

This PDE is convection dominated in I−direction, and thus numerical schemes have to be selected
accordingly. Additional complications may arise when h(x) is of di�erent order of magnitude compared
to other coe�cients.
Discretely sampled Asian option is much more commonly traded instrument, with payo� depending

on

I(t) =
Nav∑
i=1

h (x (Ti)) (Ti+1 − Ti)

We incorporate this feature as described in Appendix F, through a jump condition:

V (Tk+1, Xi, I) = V (Tk, Xi, i+ h (Xi) (Ti+1 − Ti)) (6.1)

In-between schedule dates we have dI(t) = 0 and thus we can solve PDE without term involving I

∂u

∂t
+ a(x, t)

∂2u

∂x2
+ b(x, t)

∂u

∂x
= r(t, x)u

In other words, if we assume that I−direction is discretized with NI points, then we need to solve
NI di�erent 1D PDEs, with information exchanged at {Tk} dates through (6.1), making sure to use a
higher order interpolator.

6.3 Pricing weak path dependent options

For barrier options which are continuously monitored, the boundaries of spatial grid given by barrier
level(s) and min/max attainable value for underlying on [0, T ], while rebates (i.e., payment if barrier is
hit) are implemented as Dirichlet BCs. We can use barrier option parity to price Knock-out/Knock-In.
The pricing approach can be extended Tavella and Randall [2000], Randall [2010], Andersen and

Piterbarg [2010] in various ways to cover step-up/step-down barriers

• use di�erent spatial grids over [0, T ∗] and [T ∗, T ], with interpolation (at least third order accurate)
from one spatial grid to another

• use same spatial grid, with both H and H∗ on grid; solve smaller system of equations after time
loop reaches T ∗

For barrier options discretely monitored we need to allow the option price V to �di�use� outside interval
given by barrier level(s) Tavella and Randall [2000], Randall [2010], Andersen and Piterbarg [2010].
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Barrier jump condition (BJC) have to be imposed at each observation time Tk. Here is an example
for Up-And-Out, with barrier H:

Vi (Tk+1) =

{
Vi (Tk) , if Xi < H

0, otherwise

Since BJC likely to produce discontinuity in V around H, we need to apply Rannacher time stepping
plus grid shifting past each Tk
We can also extend the approach to cover step-up/step-down barriers and rebates. As an example,

for Double Knock-Out with barriers HL, HU we have:

Vi (Tk+1) =

{
Vi (Tk) +R (Tk, Xi) , if HL < Xi < HU

R (Tk, Xi) , otherwise

Touch options have discontinuous payo�s, and thus have a special treatment. The reader is referred
to Appendix F for more details.

6.4 Pricing early exercise options

Depending on the type of monitoring, the early exercise option can be split into 2 main classes:

• Discrete monitoring, represented by Bermudan options

• Continuous monitoring, represented by American options

If exercise values determined by a deterministic function h(t, x), then early exercise options can be easily
priced in a PDE/PIDE setting Toivanen [2010], Salmi and Toivanen [2012], Ikonen and Toivanen [2009],
Tavella and Randall [2000], Forsyth and Vetzal [2002], Oosterlee et al. [2005], d' Halluin et al. [2004],
Du�y [2006], Andersen and Piterbarg [2010]. It relies on solving a linear complementarity problem

∂u
∂t − L [u] ≤ 0

u(x, t) ≥ h(t, x)

u(T, x) = g(x)

L [u] · (u(x, t)− h(t, x)) = 0

(6.2)

There are 2 distinct regions when pricing an early exercise option:

1. continuation region: option price satis�es the pricing PDE, and its value is greater than the
intrinsic value of the option

2. early exercise region: option value is simply equal to the intrinsic value.

This suggests a straightforward way of adapting FD solver to price American options:

• At each time step FD solver produces a solution

• check each value against option intrinsic value; take larger value at each node

This approach is most common in the literature and was found to approximate relatively well the
optimal early-exercise behavior.
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However, it is not as accurate as the one based on operator splitting Ikonen and Toivanen [2009],
Toivanen [2010], which reformulates the problem (6.2) using Lagrange variable λ:

∂u
∂t − L [u] = λ

u(x, t) ≥ g(x)

u(T, x) = g(x)

λ · (u(x, t)− h(t, x)) = 0

λ ≥ 0

Its discrete version becomes
B · U (m+1) = C · U (m) + ∆tλ(m+1)

λ(m+1) ≥ 0

U (m+1) ≥ g
λ(m+1) ·

(
U (m+1) − h

)
= 0

(6.3)

The operator splitting method has two fractional time steps:

1. predictor-corrector to �nd U (m+1) through intermediate variable V

2. U (m+1) and λ(m+1) are updated to satisfy constraints

Formulas in (6.3) may be interpreted in component-wise manner
U

(m+1)
i − Vi −∆t

(
λ

(m+1)
i − λ(m)

i

)
= 0

λ
(m+1)
i ≥ 0

U
(m+1)
i ≥ gi

λ
(m+1)
i

(
U

(m+1)
i − gi

)
= 0

We set the initial value of λ to zero: λ(0) = 0, since U
(0)
i = gi

After combining the equations we obtain

λ
(m+1)
i

(
Vi −∆t

(
λ

(m+1)
i − λ(m)

i

)
− gi

)
= 0

After some calculations, we end up with 2 cases

• lf Vi − λ(m)
i ∆t < gi {

λ
(m+1)
i = λ

(m)
i + gi−Vi

∆t

U
(m+1)
i = 0

• lf Vi − λ(m)
i ∆t < gi {

λ
(m+1)
i = 0

U
(m+1)
i = Vi − λ(m)

i ∆t

Pricing Bermudan options is similar, with only di�erence that it has to incorporate discrete monitoring
(as discussed in Appendix F).
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7 Numerical solution of PDEs and PIDEs

For main references of PDE/PIDE in quantitative �nance we refer the reader to Tavella [2002], Tavella
and Randall [2000], Du�y [2006], Lipton [2001], Andersen and Piterbarg [2010], Achdou and Pironneau
[2005], Cont and Tankov [2004], Itkin [2014a], and references herein.
For main references of numerical solution of PDE/PIDE in computational science and engineering

we refer the reader to Strikwerda [2004], Thomas [2010, 1999], Kopriva [2009], LeVeque [2005, 2007],
Trefethen [2001], Langtangen [2003], Roache [1998], Li and Chen [2008], Zienkiewicz et al. [2013], and
references herein.
A general 2D PDE with mixed derivative term could be formulated as{

∂U
∂t = cx

∂U
∂x + cxx

∂2U
∂x2

+ cy
∂U
∂y + cyy

∂2U
∂y2

+ cxy
∂2U
∂x∂y + c1U + c0 = 0, ∀0 ≤ t ≤ T

U(x, y; 0) = U0(x, y)
(7.1)

7.1 Major types of numerical methods

We describe the major numerical approaches considered in the literature to solve PDEs/PIDEs:

• Finite Difference Methods (FDM), with major references Du�y [2006], LeVeque [2007],
Tavella and Randall [2000], Thomas [2010]

� local Taylor expansion to approximate the derivatives

� functions represented by their values at grid points

• Finite Element Methods (FEM), with major references Topper [2005], Achdou and
Pironneau [2010], Zienkiewicz et al. [2013]

� di�erential equation solved in its integral (weak) form

� functions are represented in terms of basis functions

� at �rst glance unnecessarily complex, but very �exible

• Finite Volume Methods (FVM), with major references Versteeg and Malalasekera [2007],
Engelmann et al. [2012]

� divides domain into �volumes�, employs ��ow rate� across surfaces of �volume�; better suited
for hyperbolic PDEs

• Spectral methods (SM), with major references Trefethen [2001], Kopriva [2009]

� functions represented as a sum of basis functions

• Method of lines (MoL), with major references Schiesser and Gri�ths [2009]

� all but one variable is discretized; solve system of ODEs

• Multigrid, with major references Trottenberg et al. [2000]

� solve using a hierarchy of discretizations
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7.2 Finite di�erence schemes for PDEs

While we need to discuss primarily 2D PDEs, we would like to start by mentioning 1D schemes regularly
used in quantitative �nance, depending on the PDE type:

• Di�usion dominated PDE:

� θ-scheme: includes explicit, implicit, Crank-Nicolson

� Alternating Direction Explicit (ADE)

� Yanenko splitting

� predictor corrector

• Convection dominated PDE

� upwinding

� exponentially �tted

� �ux limiting

We should note that our recommendation does not include the regular θ−scheme, although this scheme
may be the most commonly described in courses of quantitative �nance or in the literature. That is
due to the drawbacks of this scheme, in terms of Greeks behavior, requiring the original scheme needs
to be enhanced in order to provide satisfactory Greeks (see for example Giles and Carter [2006]).
However, the corresponding enhancement may increase the computational cost to a level where other
schemes (which already have better stability properties) become quite competitive, and thus there is
no compelling reason to use θ-scheme in such situations.
Regarding 2D PDEs, they can be divided into 2 main classes:

• without mixed derivatives cxy = 0:

• with mixed derivatives cxy 6= 0

We note that special attention needs to be paid to the discretization of boundary conditions which
incorporate spatial or time derivatives, and that particular treatment choices will greatly a�ect the
performance of the �nite di�erence solver.
The main schemes considered for 2D PDEs are:

• Alternating Direction Implicit (ADI)

• Enhanced Yanenko

• Predictor corrector (which includes Craig Sneyd)

Additional advanced time discretization schemes are described in Appendix H.
We note that the most commonly used schemes in literature and by practitioners are various types

of ADI schemes as well as Craig-Sneyd scheme, which belongs to class of predictor-corrector methods.
While they work �ne for PDE without mixed derivative, for the case of PDE with mixed derivative
the Craig-Sneyd scheme is usually considered, given that ADI scheme may not be completely suitable
(it requires commutativity between partial derivative operators).
However, it is our experience that Craig-Sneyd cannot handle to full satisfaction some situations,

especially for various FX markets with pronounced skew (e.g., USD/JPY or USD/developing world
currencies), or for Heston models with parameters which violate Feller condition. In these cases
alternative methods, such as enhanced Yanenko or more specialized predictor corrector methods, may
need to be considered.
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7.2.1 Alternating Direction Implicit scheme

We rewrite PDE as
∂u

∂t
+ (L1 + L2)u = f

The main idea of Alternating Direction Implicit (ADI) scheme is to split the simultaneous appli-
cation of two operators (here L1,L2) into 2 sequential operator applications. However, it requires
commutativity between operators. The computational advantage of the decomposition is as follows:
only 1 operator in LHS =⇒ tridiagonal systems of equations =⇒ great e�ciency gain.
All ADI schemes will alternate the �implicit� directions:

1. �rst step: x−direction is fully implicit while y−direction is fully explicit

2. second step: y−direction is fully implicit while x−direction is fully explicit

The order of convergence is O
(
∆t2 + ∆x2 + ∆y2

)
7.2.2 Enhanced Yanenko scheme

The original Yanenko scheme can be described as, with t̄m , tm+tm+1

2

Vi,j − U (m)
i,j

∆t
= a1(t̄m, Xi, Yj)δ

2
XVi,j + b1 (t̄m, Xi, Yj) δXVi,j

+a12 (t̄m, Xi, Yj) δXY U
(m)
i,j

U
(m+1)
i,j − Vi,j

∆t
= a2(tm+1, Xi, Yj)δ

2
Y U

(m+1)
i,j

+b2 (tm+1, Xi, Yj) δY U
(m+1)
i,j + a12 (t̄n, Xi, Yj) δXY Vi,j

An enhanced Yanenko scheme (incorporating exponential �tting) was proposed in Sheppard [2007]

Vi,j − U (m)
i,j

∆t
= Ψi,j

[
t̄m, a1, b1,max

(
h−X , h

+
X

)]
δ2
XVi,j

+b1 (t̄m, Xi, Yj) δXVi,j + a12 (t̄m, Xi, Yj) δXY U
(m)
i,j

U
(m+1)
i,j − Vi,j

∆t
= Ψi,j

[
tm+1, a2, b2,max

(
h−Y , h

+
Y

)]
δ2
XU

(m+1)
i,j

+b2 (tm+1, Xi, Yj) δY U
(m+1)
i,j + a12 (t̄n, Xi, Yj) δXY Vi,j

with

Ψi,j [t, a, b, h] ,
b (t,Xi, Yj) · h

2
coth

(
b (t,Xi, Yj) · h
2 · a (t,Xi, Yj)

)
7.2.3 Predictor corrector scheme

This scheme incorporates the mixed derivative operator L̂1,2 into a regular ADI scheme. The most
popular example used by �nance practitioners is Enhanced Craig-Sneyd Craig and Sneyd [1988] scheme,
with λ ∈ [0, 1].

It has order of convergence: O
(

(∆x+ ∆y)2 + 1{θ 6= 1
2}∆t+ 1{λ 6= 1

2}∆t+ ∆t2
)
, and is stable if θ ≥ 1

2

and 1
2 ≤ λ ≤ θ. If properly implemented, this scheme was reported to be only 30%-40% slower than

Douglas-Rachford ADI scheme Andersen and Piterbarg [2010].
The scheme employs two intermediate variables: V in predictor step and Z in corrector step.
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The predictor step consists of solving iteratively for V using U (m)

(
1− θ∆tL̂1

(
τ θm, y = Yj

))
V

(1#)
i,j =

(
(1− θ) ∆tL̂1

(
τ θm, y = Yj

))
U

(m)
i,j

+
(

1 + ∆t · L̂2

(
τ θm, x = Xi

)
+ ∆t · L̂12

(
τ θm

))
U

(m)
i,j(

1− θ∆tL̂2

(
τ θm, x = Xi

))
V

(2#)
i,j = V

(1#)
i,j − θ∆tL̂2

(
τ θm, x = Xi

)
U

(m)
i,j

During the corrector step we solve for U (m+1) using V(
1− θ∆tL̂1

(
τ θm, y = Yj

))
Zi,j =

(
(1− θ) ∆tL̂1

(
τ θm, y = Yj

))
U

(m)
i,j

+
(

1 + (1− λ) ∆t · L̂12

(
τ θm

))
U

(m)
i,j + λ∆t · L̂12

(
τ θm

)
V

(2#)
i,j(

1− θ∆tL̂2

(
τ θm, x = Xi

))
U

(m+1)
i,j = Zi,j − θ∆tL̂2

(
τ θim, x = Xi

)
U

(m)
i,j

We note that the iteration in predictor step may contain more than one step, if necessary.

7.3 Galerkin-Ritz method

The Galerkin-Ritz method is one of the most fundamental tools of modern computing. Its origins lie
in Hilbert's �direct� approach to the variational calculus of Euler Lagrange and in the thesis of Walther
Ritz, who died 100 years ago at the age of 31 after a long battle with tuberculosis Gander and Wanner
[2012]. It is one of the main fundamental blocks for the class of �nite element methods.
This method allowed Lipton et al. [2014] to obtain a good representation of the mixed derivative

term without the time-averaging step (as done in the �nite di�erent approach) when solving a PDE
derived from LSVmodel.
The method relies on choosing a convenient basis {ek} in, say, x direction and representing the

solution of the PDE through elements of the basis:

U (t, x, y) =
∞∑
k=1

Uk (t, y) ek(x)

although in practice one does not consider an in�nite series, but a truncated one:

U (t, x, y) =
M∑
k=1

Uk (t, y) ek(x)

A possible choice for the basis is given by the set of eigenfunctions of operator
∂2

∂x∂y
supplied with

homogenous boundary conditions at x = XL and x = XU :

ek (x) = sin [ξk (x−XL)]

ξk ,
πk

XU −XL

We can now think of U(t, x, y) as a vector function of two variables (t, y) with vector components
parametrized by the index k.
As a result, the two-factor parabolic PDE is replaced with a coupled system of one-factor parabolic

PDEs. This system is solved by treating the cross term fully explicitly, allowing usage the standard
technique for solving scalar one-factor parabolic PDEs with non-zero source terms.
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If the number of grid point in the x direction is NX and the number of terms in the truncated
series is M , then in general computational savings are of order NX

M , since the Galerkin-Ritz method
requires solving M equations, while a typical ADI method requires solving NX equations. Moreover,
if maturity of the problem under consideration is long, one can safely choose M to be small given that
higher order modes decay very rapidly, and add very little to the overall solution.
For more details the reader is referred to Lipton et al. [2014].

7.4 Finite di�erence scheme for PIDEs

Let us consider a 2D PIDE for u = u(t, x, y)

∂u

∂t
+DX [u] + IntegralY [u] = 0

Main references for numerical schemes to solve pricing PIDEs include Tavella and Randall [2000],
Voltchkova [2010], Cont and Tankov [2004], Tankov [2009], Andersen and Andreasen [2000], Itkin and
Carr [2009], d' Halluin et al. [2005], Cont and Voltchkova [2005], Matache et al. [2005]
Schemes depend on how J

[
U (m)

]
is computed, and two main approaches have been considered:

1. obtain J as solution of separate PDE (e.g., applied to Merton model)

2. obtain J as numerical approximation (e.g., applied to Kou, VG, CGMY models)

Itkin [2014a,b] and references herein provide a comprehensive overview of methods considered in the
literature:

• discretization of the PIDE that is implicit in di�erential terms and explicit in integral term

• Picard iterations for computing the integral equation

• a second-order accurate, unconditionally-stable operator splitting (ADI) method that does not
require an iterative solution of an algebraic equation at each time step

• schemes based on operator splitting

7.4.1 Predictor corrector scheme

As the name implies, the scheme relies on two steps

• Predictor step: solve for intermediate W using U (m):[
1

∆t
+

1

2
D

(m+1)
X

]
W =

[
1

∆t
+

1

2
D

(m)
X

]
U (m) + +J

[
U (m)

]
• Corrector step: solve for U (m+1) using W :[

1

∆t
+

1

2
D

(m+1)
X

]
U (m+1) =

[
1

∆t
+

1

2
D

(m)
X

]
U (m)

+ J

[
1

2
U (m) +

1

2
W

]
Additional predictor corrector schemes are presented in Sepp [2011b,a], and include extensions of Craig
Sneyd, Hundsdorfer-Verwer and in't Hout-Foulon schemes.
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7.4.2 Itkin scheme

Second order schemes in both space and time are constructed in Itkin [2014a,b] and applied to models
with jumps and discrete dividend. This method has 3 steps:

1. Transform a linear non-local integro-di�erential operator (jump operator) into a local nonlinear
(fractional) di�erential operator. Thus the jump-di�usion operator is represented as a sum of
the linear and non-linear parts.

2. Splitting a space operator into di�usion and jumps parts, providing a second-order approximation
in time.

3. Apply �nite-di�erence approximations to the non-linear jump operator.

7.5 Boundary conditions

If PDE/PIDE is considered on a spatial domain Ω , let us denote the boundary by ∂Ω. The boundary
conditions for xB ∈ ∂Ω may be of various types:

• Dirichlet:u
(
xB, t

)
= gB(xB, t)

• Neumann: ∂u
∂X

(
xB, t

)
= gB(xB, t)

• Robin: αB (t,X) · u
(
xB, t

)
+ βB

(
xB, t

)
· ∂u∂X

(
xB, t

)
= gB(xB, t)

• May involve derivatives of order ≥ 2, e.g. ∂2u
∂X2 (x, t) = gB(xB, t)

We use Fichera theory to identify subsets of boundary ∂Ω where it is necessary or not to explicitly
specify BCs. If no BCs are allowed use the degenerated pricing PDE on that boundary.
We also address the special case of specifying boundary conditions for Fokker-Planck (forward Kol-

mogorov) PDE, which may be quite more challenging compared to identifying boundary conditions for
backward PDEs.

7.5.1 Explicit or implicit boundary conditions?

We use Fichera theory for BCs Du�y [2009], Du�y and Kienitz [2009]. We describe it in the general
case of a N−dimensional PDE
The characteristic form Ψ of the PDE

L [u] ,
N∑
i=1

N∑
j=1

aij
∂2u

∂xi∂xj
+

N∑
i=1

bi
∂u

∂xi
+ c = f

is de�ned as Ψ ,
∑N

i=1

∑N
j=1 aijξiξj , ∀ξ = (ξ1, · · · , ξN ) ∈ RN

We are interested in subsets ΣΨ=0 ⊂ Σ on which Ψ = 0
Fichera function is de�ned as

ϕ ,
N∑
i=1

(
bi −

N∑
k=1

∂aik
∂xk

)
νi (7.2)

where νi is i−th component of inward normal ν on Σ.
Then we have 2 situations:

• On Σϕ=0 no explicitly BCs are allowed when ϕ ≥ 0; In this case we use degenerate PDE

• We explicitly give BC when ϕ < 0
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For a parabolic PDE we focus on elliptic part given by L [u] and use same reasoning
Here is an example from Du�y [2009] which relies on pricing PDE in CIR model

∂B

∂t
+

1

2
σ2r

∂2B

∂r2
+ (a− cr) ∂B

∂r
− rB = 0 (7.3)

The Fichera function given by (7.2) has the formula

ϕ =
(
(a− cr)− 0.5σ2

)
ν

Thenν is inward unit normal at r = 0 ( ν = 1) and at r = 1 ( ν = −1)
We only consider the characteristic boundary at r = 0

Σ2 : ϕ < 0 → σ >
√

2a (explicitly given BC)

Σ0 : ϕ ≤ 0 → σ =
√

2a (Degenerate PDE)

Σ1 : ϕ > 0 → σ <
√

2a (Degenerate PDE)

The degenerate PDE is obtained by setting r = 0 in (7.3):

∂B

∂t
+ a

∂B

∂r
= 0

Ekstrom et al. [2009], Ekstrom and Tysk [2011] provide additional examples of such endogenous
boundary conditions, directly obtained from PDE.

7.5.2 Boundary conditions for forward Kolmogorov PDE

For some models, especially ones based on CIR processes, resulting PDEs may have numerical dif-
�culties related to implementation of re�ecting boundary at zero. In the absence of an absorbing
mass of zero, it is typically acceptable (although sometimes inaccurate) to impose a condition of zero
second derivatives at the boundary. However, a better method is described in Lucic [2008], based on
application of a zero �ux procedure.
For the backward PDEs arising in �nance this problem is not as severe, and is typically handled by

dropping out some of the terms of the original PDE at the boundary. The situation changes, however,
for Fokker-Planck (forward) PDEs, where additional care is needed, due to potentially explosive nature
of the density of the stochastic process in the vicinity of the origin.
Lucic [2008] extends the Feller's result from one dimension to two dimensions. The original result

was applied to a 1D PDE of the form

∂p

∂t
= 0.5η2 ∂

2

∂v2
(vp)− ∂

∂v
(λ (v̄ − v) p) (7.4)

p(0, v) = δ (v − v0)

which arises as the Fokker-Planck equation for the well-known CIR stochastic process

dv(t) = λ (v̄ − v(t)) dt+ η
√
v(t)dW (t)

Then the origin is (instantaneously) re�ecting, regular, and attainable if η2 > 2λv̄, and unattainable,
non-attracting boundary otherwise.This is the well-known Feller condition.
It was shown that Eq. (7.4) has the density of v(t) as the unique solution when so-called �zero �ux"

boundary condition f(t) = 0 is imposed, where �ux f(t) at boundary v = 0 is de�ned as

f(t) ,

[
0.5η2 ∂

∂v
(vp)− λ (v̄ − v) p

] ∣∣
v=0
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This relationship is derived by taking the time derivative (and changing the order of integration and
di�erentiation) of the formula

´∞
0 p(t, y)dy = 1, and relying on the fact that

lim
y→∞

p(y) = lim
y→∞

∂p

∂y
= 0

This reasoning can be extended by analogy to obtain the following zero �ux boundary condition for
the forward PDE of LSV model (3.2):

0.5η2 ∂

∂V
(V · p)− κp (θ(t)− V ) + γρξV

∂

∂S
(L(t, S) · p) = 0

at p (x, V, t) |V=0, as given in chapter 4 of Lucic [2008].

7.6 (Semi-) in�nite spatial domain

Two main approaches are considered in the literature Tavella and Randall [2000], Tavella [2002], Du�y
[2006], Andersen and Piterbarg [2010], Lipton [2001]:

• domain truncation

• transformation of variables.

We describe next details of each approach.

7.6.1 Domain truncation

The values of ±∞ are replaced in computational grid by probabilistic lower/upper limits, de�ned as
lowest/highest attainable value of underlying S(t) on time interval given by option expiry. We use
exact con�dence interval if available, otherwise approximate con�dence interval based on �average�
values for drift and di�usion components of SDE.
We give an example from Andersen and Piterbarg [2010], for the Black-Scholes-Merton model de�ned

by r, σ. The in�nite interval is transformed into the following numerical domain:

(−∞,∞)⇒
[
S̄ − ασ

√
T , S̄ + ασ

√
T
]
, α ∈ [3, 5]

We have a probability of 2Φ(−α) for underlying falling outside interval
[
S̄ − ασ

√
T , S̄ + ασ

√
T
]
,

where Φ (·) is the normal distribution function.
For the general PDE we �nd an approximate con�dence interval. One possibility is to rely on

�average� values for drift µ (X, t) and di�usion σ(X, t) functions of SDE describing underlying dynamics:

dX(t) = µ(X, t)dt+ σ(X, t)dW

7.6.2 Transformation of variables

Reference Du�y [2009] transforms PDE on semi-in�nite interval into a PDE on unit interval [0, 1],
arguing that it allows more clarity for imposing BCs at transformed near and far �elds. Here are some
examples of transformations

y =
x

x+ α
y = tanhx

y =
1

1 + αx

y = e−αx
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7.7 Spatial grid

We consider the spatial grid xL = X1 < X2 < · · · < XN−1 < XN = xU . We concentrate on the
nonuniform grid (since uniform grid is a special case), which is needed:

• to align spatial grid to particular values (barriers, strike...), for increased stability for Greeks

• to concentrate grid points in regions important for PDE

• to reduce computational cost

Construction of non-uniform spatial grid is described in Appendix D.

7.8 Temporal grid

We partition the time interval [0, T ] into M grid points t1 = 0 < t1 < · · · < tM = T , and denote

∆tm , tm+1 − tm

The simplest type is based on having equally spaced time points. Alternatively we can use adaptive

time stepping, to concentrate timesteps around each of important trade dates
{

0, T
(1)
Trade, · · · , T

(NT )
Trade

}
.

We exemplify with a formula from section 2.8.1 of ?

Tj =
T

χK−j
, j = 1...K

with typical values K = 3, χ = 4. Then the time grid for interval [Tj , Tj+1] is given as

tji = Tj + i
Tj+1 − Tj
bM/Kc

while important trade dates falling into [Tj , Tj+1] were also added.
Time stepsize is controlled in Forsyth and Vetzal [2002] as:

∆tm = C

min
i

max
{∥∥∥Um−1

j

∥∥∥ ,∥∥∥Umj ∥∥∥ , D}∥∥∥Umj − Um−1
j

∥∥∥
∆tm−1

with C target relative change, D scale of option value.

8 AAD for speed and more speed

AAD stands for Adjoint Automatic Di�erentiation or for Adjoint Algorithmic Di�erentiation. It is a
very powerful computer science technique that was applied to various areas of computational science
in the last 25 years, and recently became one of the main tools employed by quant �nance practitioners
to greatly reduce the computational speed (even by several orders of magnitude) for both calibration
and calculation of risk. We include a list of references related to AAD in �nance Capriotti and Giles
[2012, 2011, 2010], Capriotti and Lee [2013], Homescu [2011a], Henrard [2013], Reghai [2014], Savine
[2014], Andreasen [2014], Denson and Joshi [2010], Joshi and Yang [2010].
Automatic Differentiation (AD), also known as Algorithmic Di�erentiation, is a chain-

rule-based technique for evaluating the derivatives with respect to the input variables of functions
de�ned by a high-level language computer program. AD relies on the fact that all computer pro-
grams, no matter how complicated, use a �nite set of elementary (unary or binary, e.g. sin(·), sqrt(·))
operations as de�ned by the programming language. The value or function computed by the program is
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simply a composition of these elementary functions. The partial derivatives of the elementary functions
are known, and the overall derivatives can be computed using the chain rule.
AD has two basic modes of operations, the forward mode and the reverse mode. In the forward mode

the derivatives are propagated throughout the computation using the chain rule, while the reverse mode
computes the derivatives for all intermediate variables backwards (i.e., in the reverse order) through
the computation. In the literature,AD forward mode is sometimes referred to as tangent linear mode,
while AD reverse mode is denoted as adjoint mode.
The adjoint method is advantageous for calculating the sensitivities of a small number of outputs

with respect to a large number of input parameters. The forward method is advantageous in the
opposite case, when the number of outputs (for which we need sensitivities) is larger compared to the
number of inputs.
When compared to regular methods (such as �nite di�erencing) for computing sensitivities, AD

has 2 main advantages: reduction in computational time and computing the results up to machine
precision. The reduction in computational time is assured by a theoretical result Griewank and Walther
[2008]that states that the cost of the reverse mode is smaller than �ve times the computational cost
of a regular run. The computational cost of the adjoint approach is independent of the number of
inputs for which we want to obtains the sensitivities with respect to, whereas the cost of the tangent
linear approach increases linearly with the number of inputs. Regarding accuracy, AD computes the
derivatives exactly (up to machine precision) while �nite di�erences incur truncation errors. The size of
the step h needed for �nite di�erence varies with the current value of of input parameters, making the
problem of choosing h, such that it balances accuracy and stability, a challenging oneHomescu [2011c].
AD on the other hand, is automatic and time need not be spent in choosing step-size parameters, etc.
The AD approach is generic, in the sense that it can be applied in conjunction with any analytical

or numerical method (�nite di�erence, Monte Carlo, etc) used for pricing, preserving the numerical
properties of the original method (stability, convergence, accuracy etc). While its development requires
some e�ort, its main advantages (accuracy up to machine precision and, respectively, speedup by one
or more orders of magnitude) justify the development cost in our point of view.
The 2 main areas that AAD is deployed in quantitative �nance are:

1. calibration

2. risk calculation

8.1 AAD for calibration

Since AAD is extremely powerful especially when very many sensitivities have to be calculated, one
can imagine how AAD can be extremely useful towards reducing the computational cost when the
calibration procedure relies on optimization algorithms which are gradient (and possibly Hessian)
based.
An even more powerful application of AAD within the calibration framework was presented in

Henrard [2011, 2013], and relies on combining the adjoint approach and the implicit function

theorem. It is applicable for the 2 main categories of calibration procedures:

• solve a nonlinear system of equations

• minimize a cost functional

For details the reader is referred to Henrard [2013].
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8.2 AAD for risk calculation

AAD can be employed to compute both �rst order and second order Greeks, such as deltas, vegas,
correlation vegas (cegas), rhos, gammas, volgas, credit sensitivities, counterparty credit risk etc. As-
suming we have to compute risk sensitivities with respect to N quantities, AAD can compute the
corresponding N �rst order Greeks with a computational cost that is no more than 10 · = , where = is
the computer time needed for a single price calculation, while the N2 second order Greeks are obtained
in no more than 10 ·N · = .
It might be easier to visualize the computational savings by exemplifying with some numbers. Let

us assume that we calibrate a LSVmodel to a matrix of market data volatilities with 40 expiries and
9 strikes and that the computational time for a single price calculation with calibrated LSV model is
0.12 seconds. If we compute the corresponding vegas using central �nite di�erence approximation, the
total computational cost will be 40× 9× 0.12 = 43.2 seconds. If we compute the corresponding vegas
with AAD, total computational cost will not exceed 10× 0.12 = 1.2 seconds.

9 Conclusion

We have analyzed in detail calibration and pricing performed within the framework of local stochastic
volatility LSV models, which have become the industry market standard for FX and equity markets.
We have presented the main arguments for the need of having such models, and have addressed the
question whether jumps have to be included. We include a comprehensive literature overview, and
focus our exposition on important details related to calibration procedures and option pricing using
PDEs or PIDEs derived from LSV models.
We have described in detail calibration procedures, with special attention given to usage and so-

lution of corresponding forward Kolmogorov PDE/PIDE, and have outlined powerful algorithms for
estimation of model parameters. Emphasis was placed on practical details regarding the setup and
the numerical solution of both forward and backward PDEs/PIDEs obtained from the LSV models.
Consequently we have discussed speci�cs (based on our experience and best practices from literature)
regarding choice of boundary conditions, construction of nonuniform spatial grids and adaptive tempo-
ral grids, selection of e�cient and appropriate �nite di�erence schemes (and possible enhancements),
etc. We have also shown how to practically integrate speci�c features of various types of �nancial
instruments within calibration and pricing settings.
We have considered all questions and topics identi�ed as most relevant during the selection, calibra-

tion and pricing procedures associated with local stochastic volatility models, providing answers (to
the best of our knowledge), and have presented references for deeper understanding and for additional
perspectives. In a nutshell, it was our intention to present here an e�ective roadmap for a successful
LSV journey.
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Appendix A: Connecting LSV leverage function and local volatility

We exemplify the connection formula for the LSV model with Heston-like dynamics; the same proce-
dure can be easily applied for LSV model constructed with other SV models.
If we want the price process of the LSV model to mimic that of the local volatility model and hence

they generate the same pricing results for European options, we should match the di�usion terms of
the two models. Noting that the local volatility σLV (K,T ) is the square root of the expectation of
the future instantaneous variance at time T , conditional on spot S(T ) = K, we can connect the LSV
leverage function and the local volatility by a mimicking theorem Des Combes [2011], Clark [2011], Tian
et al. [2013], given the transition probability pLSV (t, S(t), V (t)) of the LSV model and the transition
probability pLV (t, S(t)) of the LV model.
Essentially, to mimic the local volatility model, the di�usion term in the LSVmodel follows

σ2
LV (x, t) = E

[
L2 (t, S(t))V (t)|S(t) = x

]
= L2 (x, t)E [V (t)|S(t) = x]

Furthermore, the probability distribution of the LV model is the same as the marginal probability
distribution of the LSV model and we have the relation between the transition probability densities

pLV (t, x) =

ˆ ∞
0

pLSV (t, x, y) dy

We refer to Des Combes [2011] for a detailed proof.
Thus we obtain

L(x, t) =
σLV (x, t)√

E [V (t)|S(t) = x]
= σLV (x, t)

√ ´∞
0 pLSV (t, x, y) dy´∞

0 t · pLSV (t, x, y) dy

We also refer the reader to the pioneering work of Lipton [2002].
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Appendix B: Local volatility function

According to Sepp [2011b], the local volatility function can have:

• a parametric form

� specify a functional form, such as CEV, shifted lognormal, quadratic, etc

� calibrated by bootstrap and least squares

� for markets with less liquid quotes

• a non-parametric form

� obtained either from Dupire equation or from implied volatility surface

� for markets with liquid options

As an example of a parametric form we consider the one presented in Sepp [2011b]:

σLV (t, S) = σATM (t) · σSKEW (t, S) · σSMILE (t, S)

with σATM the ATM forward volatility, σSKEW speci�ed as ratio of 2 CEVs using a skew parameter
β(t) and a weight parameter q ∈ (0, 1)

σSKEW (t, S) =
1

2

[
(1 + q) + (1− q) tanh

(
1 + q

1− q
(β(t)− 1) ln

S

S0

)]
and the smile function is assumed quadratic, with α(t) a smile parameter

σSMILE (t, S) =

√
1 +

[
α(t) ln

S

S0

]2

As for non-parametric form, the local volatility function can be derived from market prices of the
call options using Dupire formula

σLV (t, S) =

√√√√ ∂C
∂T + (rd − rf )K ∂C

∂K + rfC
K2

2
∂2C
∂K2

∣∣∣∣
K=S,T=t

or from implied volatility surface Gatheral [2006]

σLV (t, S) =

√√√√√ σ2
IV + 2σIV T

∂σIV
∂T + 2 (rd − rf )σIVK

∂σIV
∂K(

1 + d1 (S,K)K
√
T ∂σIV

∂K

)2
+ σIVK2T

[
∂2σIV
∂K2 − d1 (S,K)

√
T
(
∂σIV
∂K

)2
]∣∣∣∣
K=S,T=t

with

d1 (S,K) =
ln S

K +
[
r + σ2

IV

]
T

σIV
√
T

For a good overview of procedures to construct an implied volatility surface we refer the reader to
Homescu [2011b].
Although local volatility model was introduced 20 years ago , there are new developments (see Reghai

et al. [2012a] and references herein) that the reader should be made aware of.

43

Electronic copy available at: https://ssrn.com/abstract=2448098



A common approach is to start by designing an interpolation method to complete the discrete market
prices and obtain a continuous implied volatility surface. It is then di�erentiated in the Dupire formula
to obtain the local volatility. At �rst sight it provides a simple and explicit method to calibrate a single-
factor di�usion model to equity vanilla options. However it requires the availability of a continuum of
option prices across strikes and maturities. One is therefore lead to solve the problem of completing
the discrete set of market prices in a non-arbitrage free manner. However, the problem may not be
trivial. Practical implementation of the Dupire model therefore fails to be robust, especially when
applied on a large population of underlyings and under stressed markets.
Very robust approaches are proposed in Andreasen and Huge [2011], Lipton and Sepp [2011], Reghai

et al. [2012a]:

• Andreasen and Huge [2011] proposes a methodology that uses an implicit nite di�erence scheme
in a novel way to construct an arbitrage free surface from a discrete set of option prices observed
on the market. The standard Dupire formula can then be safely applied.

• Lipton and Sepp [2011] directly starts from specifying a process model and uses transform meth-
ods to quickly calibrate a tiled local volatility surface to a particular set of sparse market data.

• Reghai et al. [2012a] propose to calibrate the local volatility on a discrete set of benchmark
prices using a �xed point algorithm. Besides its general applicability, the algorithm also has
the property that the calibration inputs are not required to be well-posed, which is useful in
highly volatile markets; large and brutal intra-day moves of the spot often create occurrences of
arbitrage in the implied volatility surface leading to breaks in the Dupire local volatility model.
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Appendix C: Fokker-Planck equation for the LSV model

To exemplify, we consider the Heston LSV model given in (3.2) modi�ed with following change of
variables to avoid issues with Feller condition being violated Tian et al. [2013]

X(t) = ln
S(t)

S(0)

Z(t) = ln
V (t)

V (0

After various manipulations shown in section 6.8.2 of Clark [2011], we obtain the following Fokker-
Planck (forward Kolmogorov) PDE Tian et al. [2013]:

∂P

∂t
= − ∂

∂X

[(
r(t)− 0.5L2 (X, t) exp (Z)V0

)
P
]
− ∂

∂Z

[((
κθ − 0.5γ2ν2

) 1

exp (Z)V0
− κ
)
P

]
+0.5

∂2

∂X2

[
L2 (X, t) exp (Z)V0P

]
+ 0.5

∂2

∂Z2

[
γ2ν2

exp (Z)V0
P

]
+

∂2

∂Z∂X

[
γ2νρL (X, t)P

]
P (X,Z, 0) = δ (X −X0) δ (Z − Z0)

where δ (·) is Dirac function and X0 = Z0 = 0.
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Appendix D: Constructing a non-uniform spatial grid

There are various approaches in the literature to construct nonuniform grids. We describe below several
of them, with {Pi} denoting clustering points

• solving ODE from Tavella and Randall [2000], Tavella [2002], with α, β given constants

dS

dξ
=

A[
NP∑
k=1

1

α2
k + (S(ξ)− Pk)2

] 1
2

(D.1)

S(0) = X1

S(1) = XN

• solving ODE from Randall [2010], with α, β given constants

dS

dξ
=

A[
NP∑
k=1

α2 + (S(ξ)− Pk)2

α2β2 + (S(ξ)− Pk)2

] 1
2

(D.2)

S(0) = X1

S(1) = XN

The above ODEs may be solved using an algorithm described in Tian et al. [2013], which uses Runge-
Kutta 4th-order method.
A secondary transformation is then applied, to place speci�ed points either exactly at grid points or

at grid midpoints (especially useful for digital trades). It follows the algorithm:

• Given N + 1 points Sj = S (ξj) , 0 ≤ ξj ≤ 1, from (D.1), de�ne

ξ∗k = ξj(k) +
(
ξj(k)+1 − ξj(k)

) Pk − Sj(k)

Sj(k)+1 − Sj(k)
(D.3)

ξ̃k =
bξ∗k ·Nc
N − 1

+
βk

2 · (N − 1)

where the index j(k) is de�ned as

j(k) = min
j

{∥∥Sj(k) − Pk
∥∥ , Sj(k) ≤ Pk

}
• Then Pk lies either

� ON the grid (if βk = 0 )

� MIDWAY between grid points (if βk = 1 )

• We �t the spline interpolatorψ (ξ) to the set of points
{

(0, 0) ,
(
ξ∗1 , ξ̃1

)
, · · · ,

(
ξ∗N , ξ̃N

)
, (1, 1)

}
• Then we let Sj = S (ψ (ξj)) , obtaining the desired grid point concentration and correct relation-
ship with set of critical points
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The following �gure shows an example of a 2D nonuniform grid
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Appendix E: Enhancements of �nite di�erence approach

We describe various enhancements of �nite di�erence approach to sole PDEs/PIDEs.

Compact �nite di�erence schemes

The compact �nite di�erence schemes Lele [1992], During and Fournie [2012], Shukla and Zhong [2005]
provide much higher order of convergence with relatively similar computational e�ort compared to
regular schemes using the same spatial stencil.
For example a compact scheme for Heston model is described in During and Fournie [2012] that is

fourth order accurate in space and second order accurate in time. To show how such a scheme can be

obtained, let us start with central FD approx (stepsize h) to d2y
dx2

= g, namely

yj+1 − 2yj + yj−1

h2
− h2

12
y

(4)
j +O

(
h4
)

= gj (E.1)

Another way to write error term is to use original equation

h2

12
y

(4)
j =

h2

12
g

(2)
j =

h2

12

[
gj+1 − 2gj + gj−1

h2
− h2

12
g

(4)
j +O

(
h4
)]

Inserting into original �nite di�erence equation (E.1)

yj+1 − 2yj + yj−1

h2
= gj +

gj+1 − 2gj + gj−1

h2
+O

(
h4
)

Time extrapolation

This approach can increase the order of time convergence in a straightforward way, with little additional
development e�ort. To exemplify, let us consider a scheme with time convergence order of O (∆t)

U (m+1) = L∆t

[
U (m)

]
+ Θ(m)

The main idea to obtain an order of convergence of :O
(
∆t3

)
is to obtain U (m+3) in di�erent ways,

then match expansions

U
(m+3)
(1) = L∆tL∆tL∆t

[
U (m)

]
+ Θ

(m)
(1)

U
(m+3)
(2) = L2∆tL∆t

[
U (m)

]
+ Θ

(m)
(2)

U
(m+3)
(13) = L∆tL2∆t

[
U (m)

]
+ Θ

(m)
(3)

U
(m+3)
(4) = L3∆t

[
U (m)

]
+ Θ

(m)
(4)

By matching expansions to 2nd, 3rd order, we obtain the solution with O
(
∆t3

)
order of time con-

vergence

U (m+3) =
9

2
U

(m+3)
(1) − 9

4
U

(m+3)
(2) − 9

4
U

(m+3)
(13) + U

(m+3)
(4)
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Appendix F: Incorporating special features of �nancial instruments

We describe how to deal in the implementation with special characteristics of �nancial instruments.

Discrete monitoring

Most of the literature considers options with continuous monitoring. However, most traded �nancial
instruments have discretely monitored features, such as barrier, touch, Asian, Bermudan options.
To handle these features the numerical solution needs to be allowed to �di�use� outside of region
determined by trade-speci�c spatial points (e.g., barriers for barrier option), as described in Andersen
and Piterbarg [2010].
The trade-speci�c conditions enforced only at monitoring times, and thus all trade observation dates
{Tk} have to be contained in the time grid, with multiple time steps between [Tk, Tk+1]
A �jump condition� may be imposed at each observation time Tk, linking values at Tk with values

at Tk−1 Tavella and Randall [2000], Andersen and Piterbarg [2010].

Coupon-paying securities and dividends

Their corresponding characteristics are integrated into the solver through a jump condition ?. Let
payment at time Tk be p (Tk, x). Then

Vi (Tk+1) = Vi (Tk) + p (Tk, Xi)

It is a little more complicated for case of instrument which does not pay coupons, but is written on
a security that does. If we consider a stock paying dividend, say d (Tk, x), the underlying X will have
a discontinuity at Tk: x(Tk+1) = x(Tk)− d(Tk, x). Then the jump condition becomes

V (Tk+1, Xi) = V (Tk, Xi − d (Tk, Xi))

Values V (Tk, Xi − d (Tk, Xi)) are found by interpolation in X−direction of {Vi (Tk)}, using higher
order (not linear) interpolator.

Treatment of nonsmooth payo�s

Discontinuities in the payo� function (or its derivatives) may cause inaccuracies for numerical schemes,
as well as poor estimates of Greeks (e.g., Delta and Gamma). To minimize these issues various
enhancements were considered in the literature Pooley et al. [2003], Giles and Carter [2006], Tavella
and Randall [2000], Tavella [2002], Du�y [2006], Andersen and Piterbarg [2010], Kienitz and Wetterau
[2012], Chan and Joshi [2013], Giles [2008], such as:

• Rannacher time marching

• Averaging of initial conditions (continuity correction)

• Grid shifting

• Vibrato
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Continuity correction and Grid shifting

If spectrum of g(x) contains frequencies higher than Nyquist frequency 1
2∆x , then the information is

lost when g(x) sampled on mesh {xj}. Important features of payo� are lost between grid points and
erratic behavior when location of critical points changes relative to spatial grid (�odd-even� e�ect).
The continuity correction at xj uses average value of function over interval centered in xj

2

xj+1 − xj−1

ˆ 0.5(xj+xj+1)

0.5(xj+xj−1)
g(x)dx

Grid shifting approach is useful for options with discontinuous payo� (e.g., digital options). This
approach relies on spatial grid constructed such that the x−values where payo� (or its derivatives) are
discontinuous are exactly midway between grid nodes.

Rannacher time marching

Stability of Greeks may require very small timesteps. Due to smoothing property of parabolic PDE,
the solution is usually quite smooth shortly before expiry. This observation is exploited in Rannacher
time marching enhancement, which replaces a few timesteps at the start by implicit Euler steps, as
mentioned in Pooley et al. [2003].
An improvement described in Giles and Carter [2006] replaces each of �rst 2 timesteps by 2 implicit

Euler timesteps of half the stepsize. This enhancement produces su�cient damping to high-frequency
errors to give stable deltas and gammas.
Plots from Giles and Carter [2006] are illustrative of results before and after the procedure:

Figure .1: Results before (left column) and after (right column)
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Appendix G: Spatial discretization formulas

We start with formulas for 1D operators, and then show formulas for 2D operators.

Formulas for 1D operators

For the 1D domain [xL, xU ] we consider the spatial grid given by {Xj}, with xL = X1 < X2 < · · · <
XN−1 < XN = xU .
We introduce the following notations

h+
j , Xj+1 −Xj

h−j , Xj −Xj−1

ϕ−j , h−j

(
h−j + h+

j

)
ϕ0
j , h−j h

+
j

ϕ+
j , h+

j

(
h−j + h+

j

)
and [

∂Umj
∂x

]+

,
Umj+1 − Umj

h+
j[

∂Umj
∂x

]−
,

Umj − Umj−1

h−j

Various types of spatial discretization methods can be considered

Second order central di�erence discretization

We discretize the spatial derivatives as follows

∂u

∂x
(Xj , tm) ≈

h−j

[
∂Um

j

∂x

]+
+ h+

j

[
∂Um

j

∂x

]−
h+
j + h−j

= −
h+
j

ϕ−j
Umj−1 +

h+
j − h

−
j

ϕ0
j

Umj +
h−j

ϕ+
j

Umj+1

∂2u

∂x2
(Xj , tm) ≈

[
∂Um

j

∂x

]+
−
[
∂Um

j

∂x

]−
1
2(h+

j + h−j )

=
2

ϕ−j
Umj−1 −

2

ϕ0
j

Umj +
2

ϕ+
j

Umj+1

First order (to the right) di�erence discretization

We discretize the spatial derivatives as follows

∂u

∂x
(Xj , tm) ≈ − 1

h+
j

Umj +
1

h+
j

Umj+1

∂2u

∂x2
(Xj , tm) ≈ − 2

h+
j

(
h+
j + h+

j+1

)Umj − 2

h+
j h

+
j+1

Umj+1 +
2

h+
j+1

(
h+
j + h+

j+1

)Umj+2
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First order (to the left) di�erence discretization

We discretize the spatial derivatives as follows

∂u

∂x
(Xj , tm) ≈ − 1

h−j
Umj−1 +

1

h−j
Umj

∂2u

∂x2
(Xj , tm) ≈ − 2

h−j−1

(
h−j−1 + h−j

)Umj−2 −
2

h−j−1h
−
j

Umj−1 +
2

h−j

(
h−j−1 + h−j

)Umj
Spatial discretization operator

Let us consider that the spatial operator is de�ned as

L[u] = a(x, t)
∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(x, t)u+ f (x, t)

Assuming spatial derivatives are discretized using central �nite di�erence, the expression of the
spatial discretization operator L̃x becomes

L̃x[Umj ] = amj (
2

ϕ−j
Umj−1 −

2

ϕ0
j

Umj +
2

ϕ+
j

Umj+1)

+ bmj (−
h+
j

ϕ−j
Umj−1 +

h+
j − h

−
j

ϕ0
j

Umj +
h−j

ϕ+
j

Umj+1)

+ cmj U
m
j + fmj

For the special case of uniform grid (with ∆X , Xj+1 −Xj) we obtain the familiar discretization

L̃x[Umj ] = amj
Umj+1 − 2Umj + Umj−1

∆X2
+ bmj

Umj+1 − Umj−1

2∆X
+ cmj U

m
j + fmj

Formulas for 2D operators

For the 2D domain [xL, xR] × [yD, yU ] we consider the spatial grid given by {(Xj , Yk)}, with xL =
X1 < X2 < · · · < XN−1 < XN = xR and yD = Y1 < Y2 < · · · < YP−1 < YP = yU .
We introduce the following notations

∆X+
j , Xj+1 −Xj

∆X−j , Xj −Xj−1

∆Y +
k , Yk+1 − Yk

∆Y −k , Yk − Yk−1

ϕ−j , ∆X−j

(
∆X−j +∆X+

j

)
ϕ0
j , ∆X−j ∆X

+
j

ϕ+
j , ∆X+

j

(
∆X−j +∆X+

j

)
χ−j , ∆Y −k

(
∆Y −k +∆Y +

k

)
χ0
j , ∆Y −k ∆Y

+
k

χ+
j , ∆Y −k

(
∆Y −k +∆Y +

k

)
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Second order central di�erence discretization

We discretize the spatial derivatives as follows

∂u

∂x
(Xj , Yk, tm) ≈ −

∆X+
j

ϕ−j
Umj−1,k +

∆X+
j −∆X

−
j

ϕ0
j

Umj,k +
∆X−j

ϕ+
j

Umj+1,k

∂2u

∂x2
(Xj , Yk, tm) ≈

2

ϕ−j
Umj−1,k −

2

ϕ0
j

Umj,k +
2

ϕ+
j

Umj+1,k

∂u

∂y
(Xj , Yk, tm) ≈ −

∆Y +
k

χ−k
Umj,k−1 +

∆Y +
k −∆Y

−
k

χ0
k

Umj,k +
∆Y −k
χ+
k

Umj,k+1

∂2u

∂y2
(Xj , Yk, tm) ≈

2

χ−k
Umj,k−1 −

2

χ0
k

Umj,k +
2

χ+
k

Umj,k+1

∂2u

∂y∂x
(Xj , Yk, tm) ≈

∆X+
j ∆Y

+
k

ϕ−j χ
−
k

Umj−1,k−1 −

(
∆X+

j −∆X
−
j

)
∆Y +

k

ϕ−j χ
0
k

Umj,k−1 −
∆X−j ∆Y

+
k

ϕ−j χ
+
k

Umj+1,k−1

−
∆X+

j

(
∆Y +

k −∆Y
−
k

)
ϕ0
jχ
−
k

Umj−1,k +

(
∆X+

j −∆X
−
j

) (
∆Y +

k −∆Y
−
k

)
ϕ0
jχ

0
k

Umj,k

+
∆X−j

(
∆Y +

k −∆Y
−
k

)
ϕ0
jχ

+
k

Umj+1,k

−
∆X+

j ∆Y
−
k

ϕ+
j χ
−
k

Umj−1,k+1 +

(
∆Y +

k −∆Y
−
k

)
∆Y −k

ϕ+
j χ

0
k

Umj,k+1 +
∆X−j ∆Y

−
k

ϕ+
j χ

+
k

Umj+1,k+1

First order (to the right) di�erence discretization

We discretize the spatial derivatives as follows

∂u

∂x
(Xj , Yk, tm) ≈ − 1

∆X+
j

Umj,k +
1

∆X+
j

Umj+1,k

∂2u

∂x2
(Xj , Yk, tm) ≈ − 2

∆X+
j

(
∆X+

j +∆X+
j+1

)Umj,k − 2

∆X+
j ∆X

+
j+1

Umj+1,k +
2

∆X+
j

(
∆X+

j +∆X+
j+1

)Umj+2,k

∂u

∂y
(Xj , Yk, tm) ≈ − 1

∆Y +
k

Umj,k +
1

∆Y +
k

Umj,k+1

∂2u

∂y2
(Xj , Yk, tm) ≈ − 2

∆Y +
k

(
∆Y +

k +∆Y +
k+1

)Umj,k − 2

∆Y +
k ∆Y

+
k+1

Umj,k+1 +
2

∆Y +
k

(
∆Y +

k +∆Y +
k+1

)Umj,k+2

First order (to the left) di�erence discretization

We discretize the spatial derivatives as follows

∂u

∂x
(Xj , Yk, tm) ≈ − 1

∆X−j
Umj−1,k +

1

∆X−j
Umj,k

∂2u

∂x2
(Xj , Yk, tm) ≈ − 2

∆X−j

(
∆X−j +∆X−j−1

)Umj−2,k −
2

∆X−j ∆X
−
j−1

Umj−1,k +
2

∆X−j

(
∆X−j +∆X−j−1

)Umj,k
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∂u

∂y
(Xj , Yk, tm) ≈ − 1

∆Y −k
Umj,k−1 +

1

∆Y −k
Umj,k

∂2u

∂y2
(Xj , Yk, tm) ≈ − 2

∆Y −k
(
∆Y −k +∆Y −k−1

)Umj,k−2 −
2

∆Y −k ∆Y
−
k−1

Umj,k−1 +
2

∆Y −k
(
∆Y −k +∆Y −k−1

)Umj,k
Spatial discretization operator

Let us consider that the spatial operator is de�ned as

L[u] = a(x, y, t)
∂2u

∂x2
+ b(x, y, t)

∂u

∂x

+c(x, y, t)
∂2u

∂y2
+ d(x, y, t)

∂u

∂y
+ e(x, y, t)

∂2u

∂x∂y

+g(x, y, t)u+ f (x, y, t)

Assuming spatial derivatives are discretized using central �nite di�erence, the expression of the
spatial discretization operator L̃ becomes

L̃[Umj ] = amj,k

(
2

ϕ−j
Umj−1,k −

2

ϕ0
j

Umj,k +
2

ϕ+
j

Umj+1,k

)

+ bmj,k

(
−
∆X+

j

ϕ−j
Umj−1,k +

∆X+
j −∆X

−
j

ϕ0
j

Umj,k +
∆X−j

ϕ+
j

Umj+1,k

)

+ cmj,k

(
2

χ−k
Umj,k−1 −

2

χ0
k

Umj,k +
2

χ+
k

Umj,k+1

)
+ dmj,k

(
−
∆Y +

k

χ−k
Umj,k−1 +

∆Y +
k −∆Y

−
k

χ0
k

Umj,k +
∆Y −k
χ+
k

Umj,k+1

)

+ emj,k ×

∆X+
j ∆Y

+
k

ϕ−j χ
−
k

Umj−1,k−1 −

(
∆X+

j −∆X
−
j

)
∆Y +

k

ϕ−j χ
0
k

Umj,k−1 −
∆X−j ∆Y

+
k

ϕ−j χ
+
k

Umj+1,k−1

−
∆X+

j

(
∆Y +

k −∆Y
−
k

)
ϕ0
jχ
−
k

Umj−1,k +

(
∆X+

j −∆X
−
j

) (
∆Y +

k −∆Y
−
k

)
ϕ0
jχ

0
k

Umj,k +
∆X−j

(
∆Y +

k −∆Y
−
k

)
ϕ0
jχ

+
k

Umj+1,k

−
∆X+

j ∆Y
−
k

ϕ+
j χ
−
k

Umj−1,k+1 +

(
∆Y +

k −∆Y
−
k

)
∆Y −k

ϕ+
j χ

0
k

Umj,k+1 +
∆X−j ∆Y

−
k

ϕ+
j χ

+
k

Umj+1,k+1

)
+ gmj,kU

m
j,k + fmj,k
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Appendix H: Advanced time discretization schemes

While θ-scheme is the most commonly deployed time discretization scheme in quantitative �nance, it
needs to be enhanced Pooley et al. [2003], Giles and Carter [2006], Tavella and Randall [2000], Tavella
[2002] to address drawbacks when used for pricing some �nancial instruments. However, even those
enhancements are not enough in some cases, such as when pricing American or Bermudan options
Le Floc'h [2014a]. Thus there is a need for considering better time discretization schemes, and we
present below some of them.
The Lawson-Morris-Gourlay scheme was applied to solving SABR PDE in Le Floc'h and

Kennedy [2014]. It is a local Richardson extrapolation in time of second and third order, and it is a
faster alternative to the standard Richardson extrapolation because the tridiagonal matrix stemming
out of the �nite di�erence discretization can be reused, while keeping L-stability and thus strong
damping properties.
The TR-BDF2 scheme has been applied to �nance in the context of American option pricing

Le Floc'h [2014a]. It is second order accurate in time, L-stable, and fully implicit Runge�Kutta
method, with 2 stages:

1. apply the (weighted) trapezoidal rule (TR)

2. apply the second order backward di�erence scheme (BDF2)

The Lawson-Swayne scheme was considered for SABR PDE in Le Floc'h and Kennedy [2014] as
a slightly faster second order unconditionally stable scheme. The scheme consists of applying two
implicit Euler steps followed by extrapolation on the values at those two steps.
The following plots (from Le Floc'h and Kennedy [2014]) attest to better e�ciency of Lawson-Swayne

scheme (labeled LS) and TR-BDF2 scheme (labeled TRBDF2).

Figure .2: Results from Le Floc'h [2014a]
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Appendix I: Parameter estimation using Kim �lter

Since the Kalman �lter is the main ingredient of the Kim �lter, we start with its description.
The Kalman �lter is an iterative process. To use it, the model has to be expressed in a state-space

form characterized by:

• transition equation: describes dynamics of state variables for which there are no empirical data

• measurement equation: represents the relationship linking the observable variables with the non-
observable variables

Thus, the Kalman �lter makes it possible to evaluate the non-observable variables, and it updates their
values at each step using the new information. The Kalman �lter is an e�cient estimator for a state
vector (of a linear dynamic system perturbed by Gaussian white noise, using measurements that are
linear functions of the system state but corrupted by additive Gaussian white noise.
It is essentially a set of equations that implements a predictor-corrector type estimator for the

unobserved state variables. During the prediction step, the Kalman �lter forms an optimal predictor
of the unobserved state variable, given all the information available up to previous time point, to
compute prior estimates. During the updating step, new information becomes available and is used
to update the prior estimates. The resulting values are called posterior estimates.

In a similar manner we construct for Kim �lter prior and posterior estimates for the unobserved
state vector and its associated mean square error, based on historical observations and conditional on
the regime at current and previous time.
The Kim �lter has the following 5 major steps:

1. The prior estimates are calculated using the regime-speci�c transition equations

2. Compute prediction errors

3. Compute the Kalman gains corresponding to each error term

4. Update the prior estimates

5. The posterior estimates are collapsed by applying a Hamilton �lter

Collapsing the posterior estimates enable us to handle the curse of dimensionality, since they do not
depend anymore on the regime at time (they incorporate that information through a weighted average).
at a previous observation time point.
The whole algorithm incorporates maximum likelihood in the following way. We start with a fea-

sible choice of the parameters and initial state vector, with given covariance matrix. The prediction
equations are used to give the prior estimates. Given the historical market information on the observ-
able variables, the prediction error and its corresponding mean square error are then determined and
the prior estimates are updated. When the last observation is reached, the log-likelihood is evaluated
and a new parameter set is chosen such that the log-likelihood value is maximized (using a numerical
optimizer). The algorithm stops when the di�erence between values of log-likelihood function at two
consecutive iterations is smaller than speci�ed tolerance.
The next �gure illustrates the whole algorithm. While it is true that the �gure (shown on page 93

in Bloechlinger [2008]) presents the �owchart of an algorithm that includes not the Kim �lter but the
regular Kalman �lter (which has only 4 steps), we hope that it provides su�cient visual aid for the
reader. The main di�erence is given by the additional collapsing step, but otherwise the algorithm is
similar.
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