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Abstract

The COS method proposed in Fang and Oosterlee (2008), although highly
efficient, may lack robustness for a number of cases. In this paper, we present
a Stable pricing of call options based on Fourier cosine series expansion. The
Stability of the pricing methods is demonstrated by error analysis, as well as
by a series of numerical examples, including the Heston stochastic volatility
model, Kou jump-diffusion model, and CGMY model.

1 Introduction

A fundamental problem of option pricing is the explicit computation of discounted
expected value which arise as prices of derivatives. Efficient methods to compute
such expectations are crucial in particular for calibration purposes. During a cal-
ibration procedure in each iteration step typically a large number of model prices
has to be computed and compared to market prices. Therefore, a fast yet accurate
compute method is demanded.

A method which almost always works to get expectations is Monte Carlo sim-
ulation. Its disadvantage is that it is computer intensive and therefore too slow
for many purposes. Another classical approach is to represent prices as solutions
of partial (integro-) differential equations (PDEs. This approach applies to a wide
range of valuation problems, in particular it allows to compute prices of American
options as well. Nevertheless the numerical solution of PIDEs rests on sophisticated
discretization methods and corresponding programs. A third approach is numerical
integration methods. The latter type of methods is attractive from both practice
and research point of view, as the fast computational speed, especially for plain
vanilla options, makes it useful for calibration at financial institutions.

Usually numerical integration techniques are combined with the Fourier trans-
form or Hilbert transform, and therefore, the numerical integration methods are
often referred to as the “transform methods”. The initial references for Fourier
transform methods to compute option prices are Carr and Madan (1999) and Raible
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(2000). Whereas the first mentioned authors consider Fourier transforms of appro-
priately modified call prices and then invert these, the second author starts with
representing the option price as a convolution of the modified payoff and the log
return density, then derives the bilateral Laplace transform and finally inverts the
resulting product. In both cases the result is an integral which can be evaluated
numerically fast.

A recent contribution to the transform method category is the COS method
proposed in Fang and Oosterlee (2008)—a numerical approximation based on the
Fourier cosine series expansion. Fang and Oosterlee (2008) show that the conver-
gence rate for this method is exponential with linear computational complexity in
most cases. The method was then used to price early-exercise and discrete barrier
options in Fang and Oosterlee (2009), Asian options in Zhang and Oosterlee (2013),
and Bermudan options in the Heston model in Fang and Oosterlee (2011).

As Fang and Oosterlee (2008) and Zhang and Oosterlee (2011) pointed: When
pricing call options with the COS method, the method’s accuracy may exhibit sen-
sitivity regarding the choice of the domain size in which the series expansion is
defined. A call payoff grows exponentially with the log-stock price which may intro-
duce significant cancellation errors for large domain sizes. Put options do not suffer
from this, as their payoff value is bounded by the strike value. For pricing European
calls, one can employ the well-known put-call parity or put-call duality and price
calls via puts.

In this paper, we present a stable pricing of call options based on Fourier cosine
series expansion. Since the conditional probability density function f(y|x) of the
underlying decays to zero rapidly as y → ±∞, eαyf(y|x) still decays to zero rapidly
for appropriate values α. We take Fourier cosine series expansion for eαyf(y|x)
which allows us damping payoff function of option by a factor e−αy. Therefore the
growth rate of e−αyg(y) is decreased when α > 0 and the cancellation error for large
values of L is reduced. The robustness of the pricing methods is demonstrated by
error analysis, as well as by a series of numerical examples, including the Heston
stochastic volatility model, Kou jump-diffusion model and CGMY model.

The outline of the paper is as follows: In Section 2 we present the option pricing
problem and explain stable Cos methods for the option pricing problem. The error
analysis is also presented in this section. Section 3 then presents a variety of numer-
ical results, confirming our robust version of the COS valuation method. Finally,
Section 6 is devoted to conclusions.

2 Stable Cos methods for Pricing European Call

Option

Let (Ω,F , {Ft}0≤t≤T , P ) be a filtered probability space, where P is a risk neutral
measure, F = {Ft}0≤t≤T satisfies the usual hypotheses of completeness and right
continuity, T > 0 a finite terminal time. The asset price process {St}0≤t≤T is a
stochastic process on the filtered probability space (Ω,F ,F, P ). Let us consider a
European type claim whose payoff at maturity T is given by g(YT ), where g(·) is a
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function on R, Yt = log(St/K) and K is the strike price. The value of such claim at
time 0 is given by the risk-neutral option valuation formula

v(0, x) = e−rTE[g(YT )|x] = e−rT

∫ ∞

−∞

g(y)fT (y|x)dy, (1)

where x = Y0 is the current state, fT (y|x) is the conditional density function, r is
the risk-free rate. We assume that the characteristic function of {Yt}0≤t≤T is known,
which is the usually case, and the integrand is integrable, which is common for most
problems we deal with.

First, for given x, we truncate the infinite integration ranges to some interval
[a, b] ⊂ R without loosing significant accuracy and obtain approximation v1

v(0, x) ≈ v1(0, x) , e−rT

∫ b

a

g(y)fT (y|x)dy (2)

As Fang and Oosterlee (2008), [a, b] can be taken [a, b] as

a =c1[YT ]− L

√
c2[YT ] +

√
c4[YT ]

b =c1[YT ] + L

√
c2[YT ] +

√
c4[YT ]

(3)

where cn[YT ] denotes the n-th cumulant of YT .

2.1 Fang-Oosterlee Cos method

In Fang-Oosterlee Cos method, the conditional density function is approximated on
a truncated domain, by a truncated Fourier cosine expansion, which recovers the
conditional density function from its characteristic function as follows:

fT (y|x) ≈
2

b− a

N−1∑

k=0

′Re

[
ϕT

(
kπ

b− a
, x

)
exp

(
− ikπ

a

b− a

)]
cos

(
kπ

y − a

b− a

)
, (4)

with ϕT (u, x) the characteristic function of fT (y|x) and Re[·] means taking the real
part of the argument. The

∑′ indicates that the first term in the summation is
weighted by one-half.

Replacing fT (y|x) by its approximation (4) in Equation (3) and interchanging
integration and summation gives the COS formula for computing the values of Eu-
ropean options:

v(0, x) = e−r∆t

N−1∑

k=0

′Re

[
ϕT

(
kπ

b− a
, x

)
exp

(
− ikπ

a

b− a

)]
Vk, (5)

where:

Vk =
2

b− a

∫ b

a

g(y) cos

(
kπ

y − a

b− a

)
dy,
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are the Fourier cosine coefficients of g(y), that are available in closed form for sev-
eral payoff functions, like for plain vanilla puts and calls, but also for example for
discontinuous payoffs like for digital options.

It was shown in Fang and Oosterlee (2008), that, with integration interval [a, b]
chosen sufficiently wide, the series truncation error dominates the overall error.
For conditional density functions fT (y|x) ∈ C∞((a, b) ⊂ R), the method converges
exponentially; otherwise convergence is algebraically.

However, when pricing call options, the solution’s accuracy exhibits sensitivity
regarding the size of this truncated domain. This holds specifically for call options
under fat-tailed distributions, like under certain Lévy jump processes, or for options
with a very long time to maturity.1 A call payoff grows exponentially in log-stock
price which may introduce cancellation errors for large domain sizes. A put option
does not suffer from this (see Fang and Oosterlee (2009)), as their payoff value is
bounded by the strike value. In Fang and Oosterlee (2008), European call options
were therefore priced by means of European put option computations, in combina-
tion with the put-call parity:

vcall(0, x) = vput(0, x) + Ste
−qT ) −Ke−rT , (6)

where vcall(0, x) and vput(0, x) are the call and put option prices, respectively, and q
is again the dividend rate. The parity lead to robust formulas for pricing European
call options by the COS method.

2.2 Stable Cos method

In this section, we present a robust pricing of European call options by Fourier-cosine
series expansion. Since the density fT (y|x) decays to zero rapidly as y → ±∞, we
first modify the density fT (y|x) by multiplying a factor eαy, then take Fourier-cosine
expansion for eαyfT (y|x) which reads as

eαyfT (y|x) =

∞∑

n=0

′

AT (un, x) cos[un(y − a)] := f̃T (y|x) (7)

where α ∈ R, un = nπ/(b− a), and

AT (u, x) =
2

b− a

∫ b

a

eαyfT (y|x) cos[u(y − a)]dy. (8)

Then replace the density fT (y|x) by e−αyf̃T (y|x) in (2), so we obtain

v1(0, x) = e−rT

∫ b

a

e−αyg(y)
∞∑

n=0

′

AT (un, x) cos[un(y − a)]dy

1This is mainly the case when we consider real options or insurance products with a long life
time.
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We interchange the summation and integration, and insert the define

VT (u) ≡
2

b− a

∫ b

a

e−αyg(y) cos[u(y − a)]dy (9)

resulting

v1(0, x) =
b− a

2
e−rT

∞∑

n=0

′

AT (un, x)VT (un) (10)

Remark 1. When payoff function g(y) grows exponentially, we can choose α > 0
such that the growth rate of e−αyg(y) is decreased and therefore the cancellation
error for large values of L is reduced. α can thus be seen as a damping factor.

Next, we truncate the series summation, resulting in approximation v3

v1(0, x) ≈ v2(0, x) ,
b− a

2
e−rT

N−1∑

n=0

′

AT (un, x)VT (un) (11)

Finally, same as Fang and Oosterlee (2008), for u ∈ R, the coefficients AT (u, x) are
approximated by

AT (u, x) =
2

b− a

∫ ∞

−∞

eαyfT (y|x) cos[u(y − a)]dy

=
2

b− a
Re

[
e−iuaφ̃T (u− iα)

]
(12)

where φ̃T (·) is the conditional characteristic function of YT , given Y0 = x. Denotes

XT = YT −x, and φT (u) the characteristic function of XT . Then φ̃T (u) = eiuxφT (u).
Thus

AT (u, x) =
2

b− a
Re

[
e−iuaei(u−iα)xφT (u− iα)

]

=
2eαx

b− a
Re

[
eiu(x−a)φT (u− iα)

]
(13)

Replacing AT (u, x) by AT (u, x) in (11), we obtain

v2(0, x) ≈ v3(0, x) ,
b− a

2
e−rT

N−1∑

n=0

′

AT (un, x)VT (un) (14)

2.3 Error Analysis

In this subsection we give error analysis for the stable COS pricing method. First,
we analyze the local error, i.e., the error in the continuation values at each time step.
A similar error analysis has been performed in [13], where, however, the influence
of the call payoff function on the global error convergence was omitted. Here, we
study the influence of the payoff function and the integration range on the error
convergence.
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It has been shown, in Fang and Oosterlee (2008), that the error of the COS
method for the error in the continuation value consists of three parts, denoted by
ε1, ε2 and ε3, respectively.

Error ε1 is the integration range error

|ε1(x, [a, b])| = e−rT

∫

R\[a,b]

g(y)fT (y|x)dy,

which depends on the payoff function and the integration range.
Error ε2 is the series truncation error on [a, b], which depends on the smoothness

of the probability density function of the underlying processes:

ε2(x;N, [a, b]) := e−rT

∞∑

k=N

Re

[
e−ikπ a

b−a

∫ b

a

eikπ
y

b−a eαyfT (y|x)dy

]
Vk. (15)

For probability density functions fT (y|x) ⊂ C∞[a, b], we have

|ε2(x,N, [a, b])| < P exp(−(N − 1)ν),

where N is the number of terms in the Fourier cosine expansions, ν > 0 is a constant
and P is a term which varies less than exponentially with respect to N . When the
probability density function has a discontinuous derivative, then the Fourier cosine
expansions converge algebraically,

|ε2(x,N, [a, b])| <
P

(N − 1)β−1
,

where P is a constant and β ≥ 1 is the algebraic index of convergence.
Error ε3 is the error related to the approximation of the Fourier cosine coefficients

of the density function in terms of its characteristic function, which reads

|ε3(x,N, [a, b])| = e−rT

N−1∑

j=0

′

Re

[ ∫

R\[a,b]

eikπ
y−a

b−a eαyfT (y|x)dy

]
Vk.

It can be shown that

|ε3(x,N, [a, b])| < e−rTQ1

∫

R\[a,b]

eαyf(y|x)dy,

where Q1 is a constant independent of N and T .
We denote by

I1 =

∫

R\[a,b]

g(y)fT (y|x)dy, I2 =

∫

R\[a,b]

eαyfT (y|x)dy,

so that ε1 = e−rT I1, ε3 < e−rTQ1I2. ε3 can be controlled by I2 Integral I1 then
depends on the payoff function and the integration range, whereas I2 depends only
on the integration range.
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For a call option, g(y) = K(ey − 1)+, we have ∀y, e−αyg(y) ≤ Q2(α) when α > 1
where Q2(α) depends on α, so that it follows directly that

I1 ≤ Q2(α)I2, (16)

and ε1 can be controlled by I2 and α. So overall errors are controlled by means of
parameter α, L and N .

Generally, for a call option, a large α reduces the cancellation errors of payoff
function, but may lead to I2 increase. For a fixed L, when f(y|x) has fat tails, I2
may be dominated, so α must be small.

2.4 The Analytic Solution for coefficient VT (u)

The coefficient VT (u) in (7) has analytic solution for several contracts. In order to
recover the coefficient VT (u), we first give following formulae

χ(u, v; c, d) ≡

∫ d

c

evy cos[u(y − a)]dy

=
1

v2 + u2

{
− vevc cos[u(c− a)]− uevc sin[u(c− a)]

+ vevd cos[u(d− a)] + uevd sin[u(d− a)]
}

(17)

For European call, g(y) = K(ey − 1)+, we have

V call
T (u) =

2

b− a

∫ b

a

e−αyK(ey − 1)+ cos[u(y − a)]dy

=
2K

b− a

(
χ(u, 1− α; 0, d)− χ(u,−α; 0, d)

)
. (18)

Similarly, for European put, g(y) = −K(ey − 1)+, we find

V put
T (u) =−

2

b− a

∫ b

a

e−αyK(ey − 1)+ cos[u(y − a)]dy

=
2K

b− a

(
− χ(u, 1− α; a, 0) + χ(u,−α; a, 0)

)
. (19)

3 Numerical Results

In this section, we perform a variety of numerical tests to evaluate the efficiency
and accuracy of the Stable COS method. The CPU used is an Intel(R) Core(TM)
i7-6700 CPU (3.40GHz Cache size 8MB) with an implementation in Matlab 7.9.
Appendix contains Matlab code for implementing the Stable COS method to price
European Call and Put options.

We focus on the plain vanilla European call options and consider different models
for the underlying asset from the the Heston stochastic volatility model, Kou jump-
diffusion model, and CGMY model.
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Table 2 presents the characteristic functions of ln(St/S0) for various models. The
parameters of various models for numerical experiment are given by Table 3. In the
CGMY model we choose Y = 1.5 and 1.98 in the tests.

Table 2: Characteristic functions of ln(St/S0) for various models.
Model Characteristic function

Heston φt(u) = eAt(u)+Bt(u)+Ct(u)

At(u) = iu(r − q)t

Bt(u) =
2ζ(u)(1−e−ξ(u)t)V0

2ξ(u)−(ξ(u)−γ(u))(1−e−ξ(u)t)

Ct(u) = −κθ
σ2

[
2 log

( 2ξ(u)−(ξ(u)−γ(u))(1−e−ξ(u)t)
2ξ(u)

)
+ (ξ(u)− γ(u))t

]

ζ(u) = − 1
2 (iu+ u2)

ξ(u) =
√
γ(u)− 2σ2ζ(u)

γ(u) = κ− iρσu

Kou φt(u) = exp{iuµt− 1
2σ

2u2t+ λt
(

pη1

η1−iu
+ (1−p)η2

η2+iu
− 1

)}

µ = r − q − 1
2σ

2 − λ
(

pη1

η1−1 + qη2

η2+1 − 1
)

CGMY φt(u) = eiuµt exp{CtΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ]}
µ = r − q − CΓ(−Y )

(
(M − 1)Y −MY + (G+ 1)Y −GY

)

Table 3: Model parameters of various models in numerical experiment
Common for all Models S0 = 100, r = 0.1, q = 0
Model parameters
Heston κ = 0.85, θ = 0.302, σ = 0.1, ρ = −0.7, V0 = 0.252

Kou σ = 0.16, p = 0.4, η1 = 10, η2 = 5, λ = 5
CGMY 1 C = 1, G = 5, M = 5, Y = 1.5
CGMY 2 C = 1, G = 5, M = 5, Y = 1.98
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Figure 1: Damping parameter α and truncation parameter L for Stable Cos method.
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Figure 2: Damping parameter α and truncation parameter L for Stable Cos method
when T = 0.1.

We compare our results with the Stable COS methods to two of Cos method,
the direct Cos method and put-call parity Cos method in which the put price is cal-
culated first, then by put-call parity, call price is obtained. We reference Stable Cos
to Stable COS method, Put-Call Cos to put-call parity Cos method, and Direct Cos
to the direct Cos method. We have three kinds Cos methods.

3.1 Damping Factors and Truncation Range

In this subsection we consider the choice of the damping parameter α and truncation
interval [a, b]. In order to illustrate the result numerically, we have chosen different
values of α and K = 80, T = 1 for all models considered in this paper to generate
the graphs given in Figure 1 by Stable Cos method. The reference value for the
European option can be found from Table 5.

Figures 1 presents European call option values under different damping param-
eters α and range of Truncation parameters L. In Figure 1, the option values ob-
tained by Stable Cos method. Figures 1 shows that option values are stable under
α ∈ [1.0001, 1.2] for all cases by Stable Cos method, and for most cases, L ∈ [6, 18] is
reasonable except that the probability density function of the underlying is governed
by fat tails. For fat tail cases, option values are stable under L ∈ [17, 25]. Figures 3
and 4 show that such results are also robust for different T -values.

3.2 accuracy, efficiency and robustness of R Cos

Now we examine the accuracy, efficiency and robustness of our robust Cos methods
by a series of numerical examples. For further comparison, we use Carr-Madan
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Figure 3: Damping parameter α and truncation parameter L for Stable Cos method
when T = 20.

method (Carr and Madan (1999)) to calculate call price for various models. In
case of the Carr-Madan method, we use FFT method to calculate call prices with
grid points N = 216 and damping factor α = 0.75, and apply cubic interpolation
to obtain desirable price. Moreover, we also use Fourier transform method (FTM)
(Eberlein, Glau and Papapantoleon (2010)) to calculate call price. In later case, we
use matlab built-in function quadgk to calculate the integrals with integral interval
[−5000, 5000] and damping factor α = 1.1 for Heston, Kou, and CGMY 1 and
damping factor α = 1.015 for CGMY 2.

In the experiments, the parameters of Cos methods is given by Table 4 where
the values of α, L and N are included for various models. These parameters are
chosen such that same accuracy is obtained as as possible. Table 5 presents values
of European call option to round ten decimals for a series of strike prices with T = 1
using Stable Cos method, Put-call Cos method, direct Cos method, FFT method
and Fourier transform method. From Table 5, we can get the impression that the
same accuracy is obtained by Stable Cos method and Put-call Cos method.

Table 4 The method parameters for calculating
call price by Three kinds of Cos methods

Stable Cos Put-Call Cos Direct Cos
Model Damping L N L N L N

Heston 1.1 7 110 7 110 7 110
Kou 1.1 7 140 11 210 10 210
CGMY 1 1.001 10 50 10 50 13 80
CGMY 2 1.001 17 80 10 70

For efficiency comparison, we calculate the absolute errors of values of call option
for a series of N using four kinds of Cos methods with K = 100 and T = 1. The
other method parameters is given by Table 4 and the reference values is given in
Table 6. The computing results are plotted in Figure 4. As shown in Figure 4,
the error convergence of Stable Cos method is same as or superior to that of Put-
Call Cos method except CGMY 2, where error convergence of Stable Cos is sightly
inferior to that of Put-Call Cos but still exponential.

The convergence results are not sensitive for different T -values. Figure 5 and
6 present error convergence results for CGMY 1 with T = 5 and CGMY 2 with
T = 0.1 by Stable Cos and Put-Call Cos methods. As shown in Figure 5 and 6,
error convergence results do not change much as T changes.
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Table 5 Values of Option Price in Various Models with T = 1
Strike Stable Cos Put-Call Cos Direct Cos FTM FFT

Heston Model
80 29.0763658809 29.0763658809 29.0763658809 29.0763658809 29.0761596018
85 25.3190242256 25.3190242256 25.3190242256 25.3190242256 25.3182564563
90 21.8125703138 21.8125703138 21.8125703138 21.8125703138 21.8118590739
95 18.5866087601 18.5866087601 18.5866087601 18.5866087601 18.5863467950
100 15.6621055646 15.6621055646 15.6621055646 15.6621055646 15.6621055646
105 13.0502592738 13.0502592738 13.0502592738 13.0502592738 13.0499484651
110 10.7523654075 10.7523654075 10.7523654075 10.7523654075 10.7513381775
115 8.7605509099 8.7605509099 8.7605509099 8.7605509099 8.7590733973
120 7.0591610639 7.0591610639 7.0591610639 7.0591610639 7.0581882812

Kou Model
80 34.9170704483 34.9170704483 34.9170704483 34.9170704483 34.9170564801
85 31.9123200707 31.9123200707 31.9123200707 31.9123200707 31.9123052075
90 29.0794136987 29.0794136987 29.0794136987 29.0794136987 29.0793943989
95 26.4197703718 26.4197703718 26.4197703718 26.4197703718 26.4197774446
100 23.9335400091 23.9335400091 23.9335400091 23.9335400091 23.9335400091
105 21.6196765651 21.6196765651 21.6196765651 21.6196765651 21.6196851589
110 19.4760004471 19.4760004471 19.4760004471 19.4760004471 19.4759675797
115 17.4992412865 17.4992412865 17.4992412865 17.4992412865 17.4992369744
120 15.6850612076 15.6850612076 15.6850612077 15.6850612076 15.6850931891

CGMY 1
80 55.5877500641 55.5877500641 55.5877500089 55.5877500641 55.5877433925
85 54.0282287092 54.0282287092 54.0282286548 54.0282287092 54.0281877377
90 52.5459973200 52.5459973200 52.5459972649 52.5459973200 52.5459627032
95 51.1352855665 51.1352855665 51.1352855100 51.1352855665 51.1352741113
100 49.7909054685 49.7909054685 49.7909054141 49.7909054685 49.7909054685
105 48.5081777104 48.5081777104 48.5081776544 48.5081777104 48.5081662419
110 47.2828690189 47.2828690189 47.2828689625 47.2828690189 47.2828329497
115 46.1111387169 46.1111387169 46.1111386614 46.1111387169 46.1110877016
120 44.9894929189 44.9894929189 44.9894928638 44.9894929189 44.9894576019

CGMY 2
80 99.9999155240 99.9999155240 99.9999155240 99.9999155240
85 99.9999129093 99.9999129092 99.9999129092 99.9999129093
90 99.9999103728 99.9999103728 99.9999103728 99.9999103728
95 99.9999079083 99.9999079083 99.9999079082 99.9999079083
100 99.9999055101 99.9999055101 99.9999055100 99.9999055101
105 99.9999031733 99.9999031732 99.9999031732 99.9999031733
110 99.9999008935 99.9999008935 99.9999008935 99.9999008935
115 99.9998986670 99.9998986669 99.9998986669 99.9998986670
120 99.9998964902 99.9998964902 99.9998964901 99.9998964902

Note: FTM reference to Fourier transform method (Eberlein, Glau and Papapantoleon (2010)).

Finally, we consider the robustness of our methods. For given the method pa-
rameters in Table 4, we calculate values of call price by Stable Cos method and
Put-Call Cos method for range of L-values L. The computing results are shown in
Figure 7. From Figure 7, we find that size of the integration interval is almost same
for two methods, so our method has same robustness as Put-Call Cos method.
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Figure 4: Convergence of Stable Cos method, Put-Call Cos method and Direct Cos
method.

Table 6 The reference values for calculate the absolute errors
for four kinds of Cos methods with K = 100 and T = 1

Model reference values
Heston 15.6621055645751
Kou 23.9335400090856
CGMY 1 49.7909054685239
CGMY 2 99.9999055100654

Note: The reference values are obtained by Put-Call Cos with N = 60000.

4 Conclusions

In this paper, we present a robust pricing of call options based on Fourier cosine series
expansion. The robust COS method exhibits an exponential convergence in N for
density functions in C∞[a, b] and an impressive computational speed. With a limited
number, N , of Fourier cosine coefficients, it produces highly accurate results. We
also present error analysis for this method, showing that error convergence is easily
obtained. Robust pricing, insensitive of the choice of the size of the integration range
is achieved for call options. The accuracy, efficiency and robustness of our robust
Cos methods are demonstrated by error analysis, as well as by a series of numerical
examples, including Heston stochastic volatility model, Kou jump-diffusion model,
and CGMY model.
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Figure 5: Convergence of Stable Cos method and Put-Call Cos method for CGMY 1
with T = 5.
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Figure 6: Error convergence of Stable Cos method and Put-Call Cos method for
CGMY 2 with T = 0.1.
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