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Abstract. This documents details the derivation of the one factor spot price stochastic differential equation
(SDE) by adding additional steps to the Clewlow and Strickland derivation (see Appendix A in reference [1]).
Also discussed are several finite difference numerical schemes to solve the derived SDEs that are compared to the
analytical solution of European call and put options; apologies in advance for grammatical errors, typos and lack
of mathematical rigour.

1. Derivation

The derivation of the spot process starts from the one factor forward price SDE and adopting
the notation from Clewlow and Strickland as detailed in reference [1] such that

dF(t,T)
T = o), (1)

Let n =1In(F(¢t,T)) and applying Ito’s lemma such that

dn 1 .d%n
dn = —5dF + iﬁ[dFP, (2)
where g—g = % and f—z = —%; using equation (1) for dF, the above equation can be rewritten

dn(F(LT)) = o(t, T)d=(t) — é [o2(t, 1)d:2(0)]
= ot T)ds(t) — %az(t,T)dt.

Assuming that dz?(t) = dt generally gives the correct formulae, see Wilmott for example (cf.
reference [8]). Changing the short hand notation of the above SDE to the integral form to give

In(F(t,T)) — In(F(0,T)) = _% /0 2w, T)du + /0 ' (. T)dz(u):

the first integral is generally referred to as a Lesbesgue integral and the second integral is of Ito
type with respect to scalar Brownian motion process z(t). Taking the exponential of both sides
of the above equation such that

F(t,T) = F(0,T) exp <_; /0 ' 02 (u, T)dlu + /0 t a(u,T)dz(u)) | (3)

Setting T' = t gives the spot process as

S(t) = F(t,t) = F(0,t) exp (—; /Ot o?(u, t)du + /Ot o(u, t)dz(u)) (4)

ClewlowStricklandOneFactorSDE.tex; 16/03/2010; 11:44; p.1
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and taking logarithms using the above equation now gives

In(S(t)) = In(F(0,t)) — ;/Ot o?(u,t)du + /Ot o(u,t)dz(u). (5)

The next step is to apply Ito’s lemma to equation (5) for the change in spot price S as a function
of time ¢t and the Weiner process z such that

oS oS 1 0?8
t) = —dt + ——dz(t) + =———dt.
ds(t) atd + Oz(t)dz( )+ 28z(t)2d (6)
The last two terms in the above equation are given by
S 0’8 _

from the partial differentiation of (5) using the last integral; noting that

028 0 08 0
= = t,t)S(t)).
92(0)2  92(1) (82(t)> g2 CHDSW)

The next step is to derive the partial derivative of S with respect to time ¢ from equation (5)
to give

08 Oln(F(0,t)) 1 , /t 0o t do ]

— =5() | ———= — =o°(t,t) — t)—d —d ; 8

5 =50 | B =St - [otwn Tt [ Sast) (®)
note that the additional term after the partially differentiated logarithm of the forward curve is

from Leibniz’s rule determined from the Lebesgue integral in equation (5). Substituting equations
(8) and (7) into equation (6) gives

dS  [0ln(F(0,t)) 1 , /t 0o t 0o ]
el { & 5o = [ otun) G+ [ S d
+o(t, t)dz(t) + %02(75, t)dt. (9)
Simplifying the above equation now gives the spot price SDE as
dS  [0In(F(0,t)) /t Jo /t 0o }
S~ [ 5t ; U(u,t)adu—i— A adz(u) dt + o(t,t)dz(t). (10)

In order to derive a tractable spot price process, the next step is to apply a term structure. For
the single factor model, the following relationships are applied:

o(t,T) = ocexp(—a(T —1t)), (11)
a"gT’T) — —acexp(—a(T — 1), (12)

where o is the cash volatility and « is the mean reversion rate. Substituting equations (11) and
(12) into equation (10) with T' = ¢ gives

s = [ [ resp-alt — g exp(-alt - w)du-

/Ot o exp(—al(t — u))dz=(u) | dt + od=(t).
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Simplifying such that

dS  [9In(F(0,t))
S(t) [ ot

t
+ ao? / exp(—2a(t — u))du—
0

¢
aa/ exp(—af(t — u))dz(u)} dt + odz(t)
0
and evaluating the Lesbesgue integral to give

as dIn(F(0,t)) 1 u=t
50 = [ ot + ao? [204 exp(—2a(t — u))} -

—ao /Ot exp(—a(t — u))dz(u)] dt + odz(t).

Simplifying again to give

n o? '
;(‘j) _ [81 (gt(o’t)) + 5 [1 — exp(—2at)] — Ozo’/o exp(—a(t — u))dz(u)] dt

+odz(t). (13)

The next step is to determine the Ito integration term. This is done by substituting equations
(11) and (12) into equation (5) to give

I(S(t)) = n(F(0,¢)) — ;/Ot o2 exp(—2a(t — u))du + /Ot o oxp(—alt —u))dz(u).  (14)

Evaluating the Lesbesgue integral gives

u=t

n(S(t)) = In(F(0,4)) — %02 [;a exp(—2a(t — u))}

and simplifying such that
2

In(S(t)) = In(F(0,1)) [1 — exp(—2at)] + /Ot oexp(—a(t —u))dz(u). (16)

4a
Hence the relationship for the Ito integral is given as
t 2
U/ exp(—a(t —u))dz(u) = In(S(t)) — In(F(0,t)) + Z—a [1 — exp(—2at)]. (17)
0

In order to complete the relationship for spot price SDE, equation (17) is substituted into
equation (13) that gives

dS  |[0W(F(0,t)) o
S o T2l

2

a (111(5’(15)) —In(F(0,t)) + Z—a [1— exp(—2at)]>

1 — exp(—2at)] —

dt + odz(t).

Simplifying the above equation gives the spot price SDE as

ds [8111(17(0, t)) 2 ] dt

SO 5+ an(F(O,1) ~ In(S1) + % [1 — exp(—2at)]

+odz(t). (18)
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4 Ahmos Sansom

This is the same spot price process given in Energy Derivatives by Clewlow and Strickland (see
[2] in Section 8.5) and detailed further in the Valuing Energy options papers, see Appendix A
in reference [1].

1.1. LOGARITHM COORDINATES OF THE SPOT PRICE

Generally, the logarithm change in spot price is applied in the numerical approximation to
simulate the spot process as discussed below. In order to derive the logarithm change in spot
price, the derivation starts from equation (5) and using Ito’s lemma such that V' = In(S(t)) to
give

oV oV 1 0%V
dV = —dt+ ——dz(t) + - —— 1
V=% om0t 2502 (19)
The last two terms in the above equation are now given by
ov 0%V
=o(t,t d = 0. 20
o)~ OBt and s (20)

The next step is to derive the partial derivative of V' with respect to time ¢ from equation (5)
to give

%‘;:[‘W_;g?(t,t) / (u, 1) du+/—dz ]; (21)

simplifying now gives the spot price SDE as

dIn(S(t)) = [aln(gio’t))_;g(t,t)—/ o (u, t) du+/t 0 o) }
+a(t,t)d (t). (22)

It is noted that the logarithm form of the spot price has an additional o term when compared
to equation (10). Including the above term structure and following the above integrations gives
the spot price relationship as

2
dln§ = [aln(l;i(),t)) + a(In(F(0,t)) —In(S(¢))) — JZ 1+ exp(—2at)]1 dt

+odz(t) (23)

and is applied in the discretized form discussed in the following section. The logarithm trans-
formation of spot price is applied in the tree building procedure in Clewlow and Strickland, see
reference [1] that details the same equation.

2. Discretized Spot Price

This section discusses a range of numerical schemes that are applied to solve the above derived
SDEs; see reference [3] that details the first four schemes implemented below.

2.1. CASE 1: TRANSFORMED EXPLICIT EULER SCHEME

The logarithm transformation of the spot price is a good starting point since the convergence
is generally more stable as discussed in Jackel (see reference [5]) and is the initial scheme
investigated.
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One factor spot price model 5

The discretization applies the Euler approach in equal time steps for the spot price such that
S(t) = S(nAt) defined as the subscript notation S,, and similarly for the forward curve, hence

(In(F,) — In(F,—1))
At

o2

4

InS, —InS,_; = +a(In(Frp_1) — In(Sp—1)) —

[1+ exp(—2a(n — 1)At)}] At + oeV/At, (24)

where € is the standard normally distributed random variable. The model is based on daily data
such that At =1 and simplifying the above relationship by taking exponentials to give

2

Sy = SIYEY R, exp [—2 [1+exp(—2a(n —1))] + oe] . (25)

The above discretized equation requires the initial condition Syo = Fj. Extending the model to
smaller time steps is discussed below.

2.2. CASE 2: EXpLICIT EULER SCHEME

For comparison purposes, the discretized form of the non logarithmic spot price given by equation
(18) using the Euler approach is

Sp = Sn—1[1+ (In(F,/Fn—1)/At —aln(Fp_1/Sp—1)+

2
% [1 — exp(—2a(n — 1))]) At + aex/At) . (26)
Simplifying for the daily discretization such that At =1 gives
Sp = Sn—1[1+ (In(F,/Fn—1) —aln(F,_1/Snh-1)+
2
UZ [1 — exp(—2a(n — 1))] + ae> (27)

and is applied in the validation section.

2.3. CASE 3: TRANSFORMED SEMI IMPLICIT EULER SCHEME

This scheme is similar to Case 1 accept that the logarithms of F'(0,¢) and S(¢) are made implicit
such that

2
S}LJraAt = S,_1exp ([ln(Fﬂ/Fﬂl) + aln(Fn) _ O-Z (1 + exp(—2a(n — 1)At))‘| At

At
+oeVAt).  (28)

Again, the simplified daily scheme is given by

2

Site — G, F L FHexp [_‘1 [1+ exp(—2a(n —1))] + o€ . (29)

The same initial conditions are applied
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2.4. CASE 4: WEAK PREDICTOR-CORRECTOR SCHEME

The next discretization details the a weak predictor-corrector scheme such that the spot process
is only updated in the drift term. The predictor and corrector scheme is given by

— 2 |
Sp = Sp—1€xp ([m(FnA/fn_l) +aln(F,—1/Sn-1) — UZ (14 exp(—2a(n — 1)At))| At
+oeV At) .

At

Sp = Sp—1€xp (lln(Fn/M + aln(Fy_1/S,) — 22 (1 + exp(—2a(n — 1)At))| At

+aex/_A7) . (30)

Setting At to unity gives

02

S, = St po=lF, exp [—4 [1 4 exp(—2a(n —1))] + aen] ,

2

S, = n_lé:L_aFr'f‘__lan exp [—Z [1 4 exp(—2a(n —1))] + o€, (31)

Note that the same random variable is used in each step.

2.5. INTERPOLATION

In order to achieve convergence and stability of any finite difference scheme, the discretized time
step is an important component; refer to standard finite difference text books in reference [7] or
[6]. Stochastic differential equations are no different, as observed in the case study in reference
[3] when solving the Heston stochastic volatility model; for example they show that decreasing
the time step generally increases the accuracy of the numerical scheme. Note that just increasing
the number of simulations will not reduce the discretization bias.

The main problem when dealing with forward curve data is that the granularity is often daily
and what is actually required is data that corresponds to the discretized time step. The solution
adopted in the examples below is to simply linearly interpolate the forward curve at the required
time step. Note that the spot price at the daily granularity will still be based on the actual
forward curve and not from an interpolated point.

3. Monte Carlo Example
The following example details a spot price path that has applied the mean reversion value
a = 0.06 and cash volatility ¢ = 0.04; the spot process applies the daily power forward curve

profiled below into the discretized logarithm coordinates spot equation (25) from the Euler
scheme.
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(a) Daily Power Forward Curve. (b) Selected daily spot price path.

Figure 1. 0 = 0.04 and o = 0.06: example of Power forward curve converted to spot price.

The simulation was implemented in Matlab using the Mersenne Twister random number
generator.

4. Validation

The spot price process can be validated by pricing European options using the analytical formula
derived by Black and Scholes and comparing the result to the Monte Carlo valuation.

The analytical formula for a standard European call option is given by:
C(t,S(t); K,T) = P(t,T)[F(t,T)N(h) - KN(h — V)], (32)

where P(t,T) is the T-maturity discount factor, F'(t,T) is the forward curve at maturity, N()
is the standardised normal distribution, K is the strike price,
- In(F(t,T)/K)+ 3w 2

h= Vo and w = g—a [1 —exp(—2a(T —1t)]. (33)

The analytical formula for a standard European put option is given by:
P(t,S(t); K,T) = P(t, T)[KN(=h + vw) — F(t, T)N(=h)], (34)
where h and w are defined by equations (33). The details of the derivation of the call and put

analytical forms are discussed in reference [2].

The following valuations of the call and put options in the numerical results section are based
on a strike price of £53.51 per MWh which is the first forward curve price such that the options
are at the money; the maturities are set from 1 to 730 days with ¢ = 0.04 and o = 0.06. Note
that the discount factor is set to unity for simplicity.
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5. Numerical Results

In order to determine the accuracy of the Monte Carlo results based on the different finite
difference schemes, the value of the option prices are averaged over the maturities 2 to 730 days
(effectively valuing an Asian option maturing in 730 days averaged over 729 days) and using
the above volatility parameters. The number of simulations is increased and the time step is
decreased to highlight the convergence as summarised below. Note that all the results are listed
in the appendix in greater detail. Note that the relative error is the basis of the validation which
is defined as the absolute difference between the Monte Carlo simulate price and the analytical
price that is referenced to the analytical price to obtain the percentage.

The first set of results detail the Euler scheme based on the logarithm transformation from
equation (24) and comparing these results with the Euler scheme based on the non-transformed
scheme from equation (26) highlight how the transformation improves the accuracy of valuing
the options. It is noted that the logarithm transformation would give a similar order of conver-
gence if the Milstein scheme involving higher orders of the Ito-Taylor expansion were applied
to equation (18), the initial derived spot price process. The transformation and the Milstein
scheme effectively make the discretization equations exact to order O(At); see discussion in
Jackel, reference [5].

It is noted that the Euler scheme based on the non-transformed spot equation can be improved
considerably by reducing the time step; however the improvement is at a cost to increasing the
number of iterations that will obviously increase the run time.

The following plots show the relative error to the analytical solution where the call and put
options have been averaged to simplify the comparison of the schemes. The labelling on the
figure refer to: Euler scheme on equation (18) (Euler); Euler scheme on the logarithm transformed
coordinates SDE (T. Euler); Semi implicit scheme on the logarithm transformation SDE (Semi
I) and the weak predictor-corrector scheme (P-C).

Relative error using 100,000 simulations

Relative Error

Eular
RC
Seril

7/ T.Hller

Time step
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mSemil
aop-c
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Scheme

Relative Error

Relative error using 50,000 simulations
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Gerril

Time Step

oT. Buler
B Serri |
ORG
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Scheme

(a) 100,000 Simulations.

(b) 50,000 Simulations.

Figure 2. Numerical relative errors of the different schemes.

Note that the above plots have been truncated at 1.0% such that the Euler results have relative
errors greater than 1.0%. The Transformed Euler scheme appears to give the best results closely
followed by semi implicit scheme based on the above simulations; note that having a time step
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of unit clearly leads to discrtisation bias; see discussion of bias errors in Glasserman (reference
[4]) and requires a smaller time step to reduce this bias.

6. Conclusions

This document has detailed the derivation of the one factor Clewlow and Strickland spot price
model and has lead to several numerical Monte Carlo models. The simulated spot prices have
been validated by the Black and Scholes analytical formulae for European call and put options
for a range of numerical schemes. Of the schemes implemented, the FEuler logarithm transfor-
mation gave the most favourable results of the finite difference schemes. It is noted that further
improvements to all the implemented schemes could be made by decreasing the time step and
is dependent on the level of accuracy required and the time requirements since decreasing the
time step will clearly lead to an increase in computational time.

Note that further variance reduction techniques can be applied such as implementing a Sobol

sequence for example. It is also noted that other numerical approaches can be implemented,
however the document aim is to investigate finite difference schemes.
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Appendix
A. Numerical Results

The following tables list the results of each scheme having time steps 1, 0.25, 0.0625 and 0.03125
respectively for each scheme.

A.1. TRANSFORMED EXPLICIT EULER SCHEME

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0588 0.86% 5.1363 5.1593  0.45%
4,000 2.0413 2.0686 1.34% 5.1363 5.1542  0.35%
10,000 2.0413 2.0600 0.92% 5.1363 51713  0.68%
15,000 2.0413 2.0555 0.70% 5.1363 5.1651 0.56%
20,000 2.0413 2.0754  1.67% 5.1363 5.1507 0.28%
50,000 2.0413 2.0742 1.61% 5.1363 5.1506 0.28%
100,000 2.0413 2.0662 1.22% 5.1363 5.1548 0.36%

Figure 3. Case 1: At =1, 0 = 0.04 and o = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0516  0.50% 5.1363 5.1323 0.08%
4,000 2.0413 2.0577  0.80% 5.1363 5.1361 0.00%
10,000 2.0413 2.0527  0.56% 5.1363 5.1359 0.01%
15,000 2.0413 2.0546  0.65% 5.1363 5.1358 0.01%
20,000 2.0413 2.0539  0.62% 5.1363 5.1348 0.03%
50,000 2.0413 2.0497 0.41% 5.1363 5.1424 0.12%
100,000 2.0413 2.0476  0.31% 5.1363 5.1432  0.13%

Figure 4. Case 1: At = 0.25, 0 = 0.04 and o = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0318 0.47% 5.1363 51261 0.08%
4,000 2.0413 2.0368 0.22% 5.1363 5.1318 0.00%
10,000 2.0413 2.0392 0.10% 5.1363 5.1366 0.01%
15,000 2.0413 2.0546  0.65% 5.1363 5.1358 0.01%
20,000 2.0413 2.0539 0.62% 5.1363 5.1348 0.03%
50,000 2.0413 2.0381 0.16% 5.1363 5.1407  0.09%
100,000 2.0413 2.0380 0.16% 5.1399 5.1432  0.07%

Figure 5. Case 1: At = 0.0625, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.
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Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0318 0.47% 5.1363 51261 0.08%
4,000 2.0413 2.0368 0.22% 5.1363 5.1318 0.00%
10,000 2.0413 2.0392 0.10% 5.1363 5.1366 0.01%
15,000 2.0413 2.0546 0.65% 5.1363 5.1358 0.01%
20,000 2.0413 2.0539 0.62% 5.1363 5.1348 0.03%
50,000 2.0413 2.0381 0.16% 5.1363 5.1407  0.09%
100,000 2.0413 2.0380 0.16% 5.1399 5.1432  0.07%

Figure 6. Case 1: At = 0.03125, 0 = 0.04 and o = 0.06: Average of option prices over maturities 2 to 730 days.

A.2. ExpLICIT EULER SCHEME WITH NO TRANSFORMATION

Call £/MWh Put £/MWh

Sims Analytical Monte  Error  Analytical Monte  Error

2,000 2.0413 1.2441  39.05% 5.1363 6.7664 31.74%
4,000 2.0413 1.2349  39.50% 5.1363 6.7789  31.98%
10,000 2.0413 1.2332  39.59% 5.1363 6.7708  31.82%
15,000 2.0413 1.2356  39.47% 5.1363 6.7703 31.81%
20,000 2.0413 1.2365 39.43% 5.1363 6.7655 31.72%
50,000 2.0413 1.2347  39.51% 5.1363 6.7711  31.83%
100,000 2.0413 1.2337  39.56% 5.1363 6.7722  31.85%

Figure 7. Case 2: At =1, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte  Error  Analytical Monte FError

2,000 2.0413 1.7977  11.93% 5.1363 5.5251 7.57%
4,000 2.0413 1.8040 11.62% 5.1363 5.5291 7.65%
10,000 2.0413 1.7994 11.85% 5.1363 5.5287  7.64%
15,000 2.0413 1.8011 11.77% 5.1363 5.5286  7.64%
20,000 2.0413 1.8003 11.81% 5.1363 5.5276  7.62%
50,000 2.0413 1.7968 11.98% 5.1363 5.56355 7.77%
100,000 2.0413 1.7950 12.07% 5.1363 5.5364 7.79%

Figure 8. Case 2: At = .25, 0 = 0.04 and o = 0.06: Average of option prices over maturities 2 to 730 days.
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Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 1.9653  3.72% 5.1363 52237 1.70%
4,000 2.0413 1.9703  3.48% 5.1363 52294 1.81%
10,000 2.0413 1.9728  3.36% 5.1363 52341  1.90%
15,000 2.0413 1.9698  3.50% 5.1363 52334 1.89%
20,000 2.0413 1.9716  3.41% 5.1363 5.2362 1.94%
50,000 2.0413 1.9717  3.41% 5.1363 5.2383 1.99%
100,000 2.0413 1.9717  3.41% 5.1363 52374 1.97%

Figure 9. Case 2: At = 0.0625, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0153 1.27% 5.1363 5.1857 0.96%
4,000 2.0413 2.0119 1.44% 5.1363 51812 0.87%
10,000 2.0413 2.0112 1.47% 5.1363 51902 1.05%
15,000 2.0413 2.0058 1.74% 5.1363 5.1952  1.15%
20,000 2.0413 2.0054 1.76% 5.1363 51978 1.20%
50,000 2.0413 2.0059 1.73% 5.1363 5.1922 1.09%
100,000 2.0413 2.0043 1.81% 5.1363 5.1903 1.05%

Figure 10. Case 2: At = 0.03125, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.

A.3. TRANSFORMED SEMI IMPLICIT EULER SCHEME

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 1.9880 2.61% 5.1363 5.1456  0.18%
4,000 2.0413 2.0042 1.82% 5.1363 5.1322 0.08%
10,000 2.0413 2.0160 1.24% 5.1363 5.1119 0.48%
15,000 2.0413 2.0111  1.48% 5.1363 5.1157  0.40%
20,000 2.0413 2.0167 1.21% 5.1363 51170 0.38%
50,000 2.0413 2.0141 1.33% 5.1363 5.1151 0.41%
100,000 2.0413 2.0136 1.36% 5.1363 5.1166 0.38%

Figure 11. Case 3: At =1, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.
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14 Ahmos Sansom

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0379  0.17% 5.1363 51236 0.25%
4,000 2.0413 2.0441 0.14% 5.1363 51274 0.17%
10,000 2.0413 2.0391 0.11% 5.1363 51272 0.18%
15,000 2.0413 2.0409 0.02% 5.1363 5.1270 0.18%
20,000 2.0413 2.0360 0.05% 5.1363 51261 0.20%
50,000 2.0413 2.0141 0.26% 5.1363 5.1337  0.05%
100,000 2.0413 2.0340 0.36% 5.1363 5.1345 0.04%

Figure 12. Case 3: At = 0.25, 0 = 0.04 and « = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0284 0.63% 5.1363 51239 0.24%
4,000 2.0413 2.0334  0.39% 5.1363 51296 0.13%
10,000 2.0413 2.0358 0.27% 5.1363 5.1344 0.04%
15,000 2.0413 2.0328 0.42% 5.1363 5.1337  0.05%
20,000 2.0413 2.0346 0.33% 5.1363 5.1365 0.00%
50,000 2.0413 2.0346  0.33% 5.1363 5.1385 0.04%
100,000 2.0413 2.0346 0.33% 5.1363 5.1377 0.03%

Figure 13. Case 3: At = 0.0625, 0 = 0.04 and o = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 2.0472  0.29% 5.1363 5.1359 0.01%
4,000 2.0413 2.0437  0.12% 5.1363 5.1315 0.09%
10,000 2.0413 2.0430 0.08% 5.1363 5.1405 0.08%
15,000 2.0413 2.0375  0.19% 5.1363 5.1453 0.18%
20,000 2.0413 2.0372  0.20% 5.1363 5.1479  0.23%
50,000 2.0413 2.0376  0.18% 5.1363 5.1424 0.12%
100,000 2.0413 2.0360 0.26% 5.1363 5.1405 0.08%

Figure 14. Case 3: At = 0.03125, 0 = 0.04 and « = 0.06: Average of option prices over maturities 2 to 730 days.

A.4. WEAK PREDICTOR-CORRECTOR SCHEME
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One factor spot price model 15

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 1.9294 5.48% 5.1363 51103 0.51%
4,000 2.0413 1.9455  4.69% 5.1363 5.0968 0.77%
10,000 2.0413 1.9570 4.13% 5.1363 50764 1.17%
15,000 2.0413 1.9522  4.36% 5.1363 5.0802 1.09%
20,000 2.0413 1.9576  4.10% 5.1363 5.0815 1.07%
50,000 2.0413 1.9551  4.22% 5.1363 5.0796 1.10%
100,000 2.0413 1.9546  4.25% 5.1363 5.0811 1.07%

Figure 15. Case 4: At =1, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 1.9294 5.48% 5.1363 5.1103 0.51%
4,000 2.0413 1.9455  4.69% 5.1363 5.0968 0.77%
10,000 2.0413 1.9570 4.13% 5.1363 50764 1.17%
15,000 2.0413 1.9522  4.36% 5.1363 5.0802 1.09%
20,000 2.0413 1.9576  4.10% 5.1363 5.0815 1.07%
50,000 2.0413 1.9551  4.22% 5.1363 5.0796 1.10%
100,000 2.0413 1.9546  4.25% 5.1363 5.0811 1.07%

Figure 16. Case 4: At = 0.25, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 1.9294 5.48% 5.1363 5.1103 0.51%
4,000 2.0413 1.9455  4.69% 5.1363 5.0968 0.77%
10,000 2.0413 1.9570 4.13% 5.1363 50764 1.17%
15,000 2.0413 1.9522  4.36% 5.1363 5.0802 1.09%
20,000 2.0413 1.9576  4.10% 5.1363 5.0815 1.07%
50,000 2.0413 1.9551  4.22% 5.1363 5.0796 1.10%
100,000 2.0413 1.9546  4.25% 5.1363 5.0811 1.07%

Figure 17. Case 4: At =1, 0 = 0.04 and a = 0.06: Average of option prices over maturities 2 to 730 days.
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16 Ahmos Sansom

Call £/MWh Put £/MWh

Sims Analytical Monte Error Analytical Monte Error

2,000 2.0413 1.9294 5.48% 5.1363 51103 0.51%
4,000 2.0413 1.9455  4.69% 5.1363 5.0968 0.77%
10,000 2.0413 1.9570 4.13% 5.1363 50764 1.17%
15,000 2.0413 1.9522  4.36% 5.1363 5.0802 1.09%
20,000 2.0413 1.9576  4.10% 5.1363 5.0815 1.07%
50,000 2.0413 1.9551  4.22% 5.1363 5.0796 1.10%
100,000 2.0413 1.9546  4.25% 5.1363 5.0811 1.07%

Figure 18. Case 4: At = 0.03125, 0 = 0.04 and « = 0.06: Average of option prices over maturities 2 to 730 days.
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