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Applying AI power to predict syntheses of novel materials requires high-quality, large-scale

datasets. Extraction of synthesis information from scientific publications is still challenging,

especially for extracting synthesis actions, because of the lack of a comprehensive labeled dataset

using a solid, robust, and well-established ontology for describing synthesis procedures. In this

work, we propose the first unified language of synthesis actions (ULSA) for describing ceramics

synthesis procedures. We created a dataset of 3,040 synthesis procedures annotated by domain

experts according to the proposed ULSA scheme. To demonstrate the capabilities of ULSA, we

built a neural network-based model to map arbitrary ceramics synthesis paragraphs into ULSA

and used it to construct synthesis flowcharts for synthesis procedures. Analysis for the flowcharts

showed that (a) ULSA covers essential vocabulary used by researchers when describing synthesis

procedures and (b) it can capture important features of synthesis protocols. This work is an

important step towards creating a synthesis ontology and a solid foundation for autonomous

robotic synthesis.
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1 Introduction

In the past decade, we have witnessed the growing success of data-driven and artificial intelligence (AI)-

based methodologies promoting breakthroughs in predicting materials structure, properties, and functionality

[1, 2, 3]. Nonetheless, adapting the power of AI to predict and control materials synthesis and fabrication is

still challenging and requires substantial effort in gathering high-quality large-scale datasets. One approach to

gather such datasets of synthesis parameters and conditions would be running high-throughput experiments.

This requires a costly setup and substantial human labor and expertise, and is typically limited to a small part

of chemical space. Another way to acquire the data or augment existing datasets is to extract information

about materials synthesis from the wealth of scientific publications (e.g. papers, archives, patents) available

online.

Scientific text mining has received its recognition in the past few years [4, 5, 6], providing the materials

science community with datasets on a variety of materials and their properties [7, 8, 9] as well as synthesis

protocols [10, 11, 12]. Nonetheless, a majority of these text mining studies have been focused on extracting

chemical entities such as material names, formulas, properties, and other characteristics [13, 14, 15, 16, 17].

There have only been a few attempts to extract information about chemical synthesis and reactions and

compile them into the flowchart of synthesis actions [18, 12, 19, 20]. This is largely due to the lack of

comprehensive labeled datasets or annotation schema needed to train algorithms. Indeed, publicly available

large-scale collections of standardized labeled data for named entities recognition (NER) tasks are well

established in the biochemical and biomedical domains (GENIA [21], CHEMDNER [22]). Materials science

datasets are less standardized and mainly task-specific [23, 24, 25]. To the best of our knowledge, the only

publicly available annotated corpus of materials synthesis protocols was published by Mysore et al. [12]. It

contains 230 labeled synthesis paragraphs with labels assigned to material entities, synthesis actions, and

other synthesis attributes.

A major obstacle in annotating synthesis actions in the text corpora is the lack of a solid, robust, and

well-established ontology for describing synthesis procedures in materials science [26]. Indeed, researchers

prefer to vaguely sketch “methods” sections of the manuscript in general human-readable language rather

than follow a specific protocol. This significantly impacts reproducibility of the results, not to mention
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ambiguity in understanding even when read by a human expert [26]. While such ambiguity is inconvenient

for human readers, the growing interest in automated AI-guided materials synthesis demands a robust and

unified language for describing synthesis protocols in order to make them applicable to autonomous robotic

platforms [27, 28, 29].

In this work, we propose a unified language of synthesis actions (ULSA) to describe solid-state, sol-gel,

precipitation, and solvo-/hydrothermal synthesis procedures. We also present a labeled dataset of 3,040

synthesis sentences created using the proposed ULSA schema. To verify applicability of the ULSA and

the dataset, we trained a neural network-based model that identifies a sequence of synthesis actions in a

paragraph, maps them into the ULSA, and builds a graph of the synthesis procedure (Figure 1). Analysis

of the graphs from thousands of paragraphs has shown that this ULSA vocabulary is large enough to

obtain high-accuracy extraction of synthesis actions as well as to pick the important features of each of the

aforementioned synthesis types. The dataset and the script for building such a synthesis flowchart is publicly

available. We anticipate that these results will be widely used by the researchers interested in scientific text

mining and will help to achieve a breakthrough in predictive and AI-guided autonomous materials synthesis.

2 Methodology

2.1 Unified Language of Synthesis Actions and annotation scheme

To unify terminology used to describe a synthesis procedure, we defined 8 action terms that unambiguously

identify a type of synthesis action. Every action word (or multi-word phrase) in the dataset is mapped to

the corresponding action term according to the following rule: the word (or multi-word phrase) is recognized

as an action if it (a) results in modification of the state of the material or mixture during the synthesis or

(b) carries a piece of information affecting the outcome of the synthesis procedure. The action terms used

within the unified language are explained below. In each example, the text underlined is the word or phrase

that is annotated.

• Starting: A word or a multi-word phrase that marks the beginning of a synthesis procedure. Specifi-

cally, this often indicates which materials will be produced. For example: “PMN-PT was synthesized

by the columbite precursor method”, “Solid-state synthesis was used to prepare the target material”,
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“The powder was obtained after the aforementioned procedure”.

• Mixing: A word or a multi-word phrase that marks the combination of different materials (in a solid or

liquid phase) to form one substance or mass. For example: “Precursors were weighted and ball -milled”,

“Precursors were mixed in appropriate amounts”, “Sb2O3 is added to the solution”, “The solution was

neutralized”, “The mixture was stabilized by the addition of sodium citrate”.

• Purification: A word or a multi-word phrase that marks the separation of the sample phases. This

also includes drying of a material. For example: “Samples were exfoliated from substrates”, “The liquid

was discarded and the remaining product was filtered off and washed several times with distilled water”,

“The precursors were heated in order to remove the moisture”, “The precipitation was collected by

washing the solution in distilled water”.

• Heating: A word or a multi-word phrase that marks increasing or maintaining high temperature for

the purpose of obtaining a specific sample phase or promoting a reaction rather than drying a sample.

For example: “The powder sample was annealed to obtain a crystalline phase”, “The mixture was

subjected to heating at 240 °C for 24 h”.

• Cooling: A word or a multi-word phrase that marks rapid, regular, or slow cooling of a sample.

For example: “The product was cooled down to room temperature in the furnace”, “The sample was

quenched rapidly in the solid CO2”, “The products was left to cool down to room temperature”.

• Shaping: A word or a multi-word phrase that marks the compression of powder or forming the sample

to a specific shape. For example: “The powder was pressed into circular pellets”, “The powder was

then pelletized with a uniaxial press”.

• Reaction: A word or a multi-word phrase that marks a transformation without any external action.

For example: “The sample was left to react for 6 hrs”, “The temperature was kept at 1000 K”, “The

solution was maintained at 200 K for 12 hrs”.

• Miscellaneous: A word or a multi-word phrase that marks an action done on a sample that either

does not induce any transformation of the sample or does not belong to any of the above classes. “The
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pellets were placed in a sealed alumina crucible”, “The reaction vessel was wrapped with aluminum

foil”, “The sample was sealed in a tube”, “The gel was transferred to an oven”.

2.2 Dataset annotation

To annotate synthesis paragraphs with the unified language of synthesis actions (ULSA), we selected 535 syn-

thesis paragraphs from the database of 420K full-text publications acquired previously [11]. The paragraphs

where chosen to proportionally represent four major types of ceramics synthesis: solid-state, sol-gel, solvo-

/hydrothermal, and precipitation. The details of the content acquisition and synthesis type classification

have been described in previous papers [11, 30].

The 535 paragraphs consisted of 3,781 tokenized sentences [14]. First, each sentence was classified as

either related to synthesis or not related to synthesis. The latter case usually contains sentences about

product characterization and other details. Next, we isolated 3,040 synthesis sentences and assigned labels

to each word or multi-word phrase in the sentence on the basis of the ULSA protocol with annotation schema

described in Section 2.1. Only words and phrases describing synthesis actions were annotated. The final

dataset consists of these 3,040 labeled synthesis sentences. All annotations were performed using a custom

Amazon Mechanical Turk-based server.

2.3 Annotation decisions and ambiguous cases

The ULSA was developed based on the authors’ own experiences with the extraction of information from

materials synthesis paragraphs [11] and extensive communication with experimentalists actively involved in

various types of materials synthesis research. The annotation schema and the choice of action terms were

designed to provide maximum flexibility to future users and allow them to adjust the schema according their

preferences and tasks. For example, the annotated multi-word phrases such as “subjected to heating”, “left

to react”, and “heated to evaporate” were handled as one entity. This way, they can be split into individual

terms or modified later with a simple set of rules to make a customized labeled dataset.

It is important to keep in mind that we mapped words into the terms of synthesis action per sentence,

meaning that we used only information in the context of a given sentence to make a decision about the

annotation of a word, rather than the whole paragraph. The reason for this choice is the multiple and
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diverse possibilities to combine and augment sentences leading to different meanings of the terms. The

interpretation of the whole text or paragraph is an entirely separate field of research that is outside the

scope of this work.

We chose to annotate those words that are characteristic of a synthesis procedure or result in the trans-

formation of a substance. In other words, those actions which are usually performed by default are not

annotated. For example, in the sentence “the solution was sealed in an autoclave”, no terms would be anno-

tated as actions since the sealing step for hydrothermal synthesis is considered a default step. Similarly, in

the sentence “the precursors were weighed and mixed,” the term “weighed” is not a synthesis action since it

is to be expected in synthesis, while “mixing” is a synthesis action because it may have a specific condition

and transform the sample, or can be preceded by calcination of the precursors in other syntheses.

The exclusion from this rule is the Starting action. Even terms belonging to this action do not bring

any special information or explicit action to the synthesis, we chose to distinguish “starting” actions because

in a substantial number of cases they can serve as flags to separate multiple synthesis procedures from one

another. An illustration of this situation is when precursors are prepared prior to synthesizing a target

material, as in sol-gel synthesis.

For the annotation of Mixing synthesis actions, we did not differentiate between powder mixing, ball

milling (grinding), addition of droplets, or dissolving of substances. In many situations, this precise definition

depends on the solubility of reactants and mixing environment, as well as on other details of the procedure

that are never explicitly mentioned in the text. We leave it up to a user to create their own application-based

definitions of these mixing categories. Nonetheless, in the application below we provide a rule-based example

of how these types of synthesis actions can be identified in the text.

The Miscellaneous action term was introduced to make room for those synthesis actions that are

not typical or do not fall into any other category but nevertheless appear as a synthesis action within

our definitions. While Miscellaneous action terms can be easily confused with Reaction actions or non-

actions, the decision depends on the sentence context and can be arbitrarily extended or removed by a user.

Comparing “the sample was kept in the cruicible” and “the sample was kept overnight,” the former is not a

synthesis action while the latter should be considered an important synthesis step.
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Ambiguous situations as in the ones mentioned above are ubiquitous in descriptions of syntheses. A sub-

stantial amount of these situations occur when authors try to be wordy or use flowery language when writing

the synthesis methods. Unfortunately, this often presents a challenge for accurate machine interpretation of

the text. We accounted for some of these cases when annotated the data as described below.

First, implicit mentions of synthesis actions (i.e. when a past participle form of a verb is used as a

descriptive adjective referring to an already processed material) is the most frequent source of confusion. We

chose to annotate these as synthesis actions. For example: “the calcined powder was pressed and annealed.”

In this sentence, the descriptive adjective calcined could be either a restatement of the fact that there was

a calcination step or it could be additional information which had not been mentioned previously. These

situations can be later resolved with a rule-based approach, hence we leave it as a task for users of the data.

The situation when a method is specified along with the synthesis action is also common. In a phrase

of the form “transformed by a specific procedure,” we consider only the key action (the transformation) as

a synthesis action. For example: “the precipitates were separated by centrifugation.” When required, the

method can be retrieved with a set of simple rules.

Redundant action phrases are also abundant in many descriptions of the procedures. In a phrase of form

“subjected to a process”, we considered only the processing verb as a synthesis action. For example: “the

samples were subjected to an initial calcination process.”

Finally, phrases that attempt to reason the purpose of the action, such as “left to react”, “brought to a

boil”, “heated to evaporate,” are considered as one synthesis action. This is done for the purpose of providing

flexibility to a user and to let them make a decision on how to treat these cases.

2.4 Synthesis terms mapping

We used lookup table (baseline) and neural network models to map synthesis sentences into the ULSA.

2.4.1 Baseline model

Two baseline models were implemented, both based on a lookup table. For the lookup table, we chose

the most frequent words used to describe synthesis steps in the “methods” section of the papers. The first

baseline model matches every token against the lookup table and assigns the corresponding action term if
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any appear. The second baseline model uses information about the part of speech of a given word (assigned

by SpaCy [31]) and matches only verbs against the lookup table.

2.4.2 Word embeddings

Word embeddings were used as a vectorized representation of the word tokens for the neural network model.

To create an embedding, we trained a Word2Vec model [32] implemented in the Gensim library [33]. We used

∼420K paragraphs describing four synthesis types: solid-state, sol-gel, solvo-/hydrothermal and precipitation

synthesis. The paragraphs were obtained as described in our previous work [11]. Prior to training, the text

was normalized and tokenized using ChemDataExtractor [14]. Conjunctive adverbs describing consequences,

such as “therefore”, “whereas”, and “next”, were removed from the text. All quantity tokens were replaced

with a keyword <NUM>, and all chemical formulas were replaced with keyword <CHEM>. All words that occur

less than 5 times in the text corpus were replaced with the keyword <UNK>. We found that skip-gram with

negative sampling loss (n = 10) performed best, and the final embedding dimension was set to 100.

2.4.3 Neural network model

We used a bi-directional long short-term memory (bi-LSTM) neural network model to map synthesis tokens

into the aforementioned action terms. The model was implemented using the Keras library (https://keras.io/)

with latent dimensionality 32 and dropout probability 0.2. Word embeddings were used as model input. The

categorical cross-entropy was calculated as the loss function. The labeled dataset was split into training,

test, and validation sets using a 70:20:10 split, respectively. Early stopping was used to obtain the best

performance.

2.5 Data analysis

2.5.1 Reassignment of mixing terms

For data analysis, we separated Mixing synthesis action terms into Dispersion Mixing and Solution

Mixing whenever there was enough information to distinguish between the two, otherwise they were left

as Mixing action. Here, Dispersion Mixing is identified either by explicit “dispersion” action words or

by words such as “grinding” or “milling” plus any liquid environment. Solution Mixing is identified by a
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list of specific action words such as “dissolve”, “dropwise added”, and others. For this, we constructed and

traversed the dependency trees of the sentences using SpaCy library [31] and used dictionaries of common

solution and mixing terms.

2.5.2 Constructing synthesis flowchart for paragraphs

For every paragraph in the set, we then applied the bi-LSTM mapping model (Section 2.4) to extract the

sequence of action terms from every sentence. Next, we merged all the synthesis actions obtained from all

sentences within the paragraph into a synthesis flowchart. This was performed with a rule-based approach

by traversing grammar trees and analysing the surrounding words of each action term and comparing them

to the words and action terms of the previous sentence. Finally, the flowchart of synthesis actions for a

given paragraph was converted into an adjacency matrix. For this, synthesis action terms were ordered and

assigned to rows and columns of the matrix and initialized with zeros, resulting in a 10 by 10 matrix for every

paragraph (8 action terms from vocabulary of ULSA plus two additional terms for Mixing term). Whenever

there was a step from action i to action j, the corresponding value in the matrix was incremented by 1. The

matrices for all paragraphs were flattened and merged together for further principal component analysis.

3 Results

3.1 Code and data availability

The dataset of 3,040 annotated synthesis sentences as well as the processing scripts are available

at CederGroupHub/synthesis-action-retriever at https://doi.org/10.5281/zenodo.5644302. In the dataset,

each record contains the raw sentence tokens concatenated with a space between each token and a list of

objects, each containing a token and the tag assigned to that token. For example:

{

"annotations" :

[

{

"tag" : token_tag,

"token" : token

}
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],

"sentence" : sentence

}

The repository also contains a script for training a bi-LSTM model that can be used to map words into

action terms. Users are not limited to using only the provided dataset, but can augment their usage with

other labeled data as long as they satisfy the data format described above. Finally, we also share scripts

used for the inference of synthesis actions terms and for building synthesis flowcharts for a list of paragraphs.

Examples of model application are available as well.

3.2 Dataset statistics

The quantitative characteristics of the set are provided in Table 1 and displayed in Figure 2. Briefly, 535

synthesis paragraphs resulted in 3,781 sentences of which 3,040 describe actual synthesis procedures. While

we tried to maintain an even distribution of the action terms in the labeled set, it is still highly skewed

toward Mixing and Purification actions. This is not surprising, since mixing of precursors occupies any

synthesis procedure and purification is required in almost any non-solid-state method for ceramics synthesis.

Heating is the next most prevalent synthesis action since it is also one of the basic operations in ceramic

synthesis.

To probe the robustness of ULSA and our annotation schema, we asked 6 human experts to annotate

the same paragraphs in our dataset and used Fleiss’ kappa score to estimate the inter-annotator agreement

between the annotations [34]. In general, the Fleiss’ kappa score evaluates the degree from -1 to 1 to which

different annotators agree with one another above the agreement expected by pure chance. A positive

Fleiss’ kappa indicates good agreement, scores close to zero indicates near randomness in categorization,

and negative scores indicate conflicting annotations. This is a generalized reliability metric and is useful for

agreement between three or more annotators across three or more categories.

Table 2 lists the Fleiss’ kappa scores for agreement between human experts annotating the sentences

according to the schema described in Section 2.1. The table shows good agreement on distinguishing synthesis

sentences from non-synthesis sentences, as well as for all and for each individual synthesis action, including

non-actions. The agreement across all action terms is 0.83. Among those, the action terms with lower scores
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are Shaping and Miscellaneous. The low score for Miscellaneous is expected since a wide range of actions

which do not induce a transformation in the sample could be mapped into this category. The Shaping action

term can also be associated with many synthesis operations. For instance, granulating procedures that break

a sample into smaller chunks could be considered a Shaping action; at the same time, a bench chemist could

consider “granulation” to be Mixing action term since it requires performing a grinding operation to obtain

the new shape. Less ambiguous actions terms, such as Heating and Mixing, showed higher agreement.

3.3 Mapping synthesis procedures into a unified language of synthesis actions

3.3.1 Mapping model

As a first approach for mapping of synthesis paragraphs into ULSA, we used dictionary lookup constructed

as described in Section 2.4.1. We use the labeled dataset of 3,040 sentences to assess the performance of

the model. We considered two options: mapping of all sentence words and mapping the verbs only. In both

cases, the overall accuracy of the prediction (i.e. F1 score) is ∼60-70% (Table 3). Nonetheless, mapping of

all words shows relatively good recall and poor precision, while mapping of only verbs improves the precision

but diminishes recall.

These results moved us toward considering a recurrent neural network model for mapping paragraphs

into ULSA. The bi-LSTM model combined with word embeddings (Section 2.4.3) was trained on the labeled

dataset of 3,040 sentences. The bi-LSTM model significantly improves mapping accuracy, yielding >90%

F1 score. It is important to notice here that all the metrics for baseline and neural network models were

computed per sentence, i.e. we evaluated the whole sentence being mapped correctly rather than individual

terms.

There are a few reasons why the bi-LSTM model outperforms plain dictionary lookup. First, researchers

use diverse vocabulary to describe synthesis procedures, hence there are unlimited possibilities in constructing

a lookup table. For instance, “heating” can be referred as “calcining”, “sintering”, “firing”, “burning”, “heat

treatment”, and so on. In this case, a word embedding model helps to significantly improve the score even

for those terms that have never appeared in training set (e.g. “degas”, “triturate”). Second, a given

verb is defined as a synthesis action term largely based on the context. Prominent examples are “heating
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rate”, “mixing environment”, “ground powder”, etc. That is well captured by the recurrent neural network

architecture. Lastly, synthesis actions are not only denoted by verb tokens, but also by nouns, adjectives,

and gerunds. This can be also learnt by the neural network better than by a set of rules.

In summary, we designed a neural network-based model that maps any synthesis paragraph into ULSA

with high accuracy and significantly outperforms a plain dictionary lookup approach.

3.3.2 Analysis of action embeddings

To analyse how well the ULSA represents the space of synthesis operations commonly used when describing

ceramics synthesis processes, we plotted a 2D projection of the word embeddings calculated with a t-SNE

approach. The results are shown in Figure 3. To achieve a clear representation, we only analysed those

verbs that appear more than 10 times. We then mapped these paragraphs into ULSA by using the bi-LSTM

model. Those verbs that were assigned with a ULSA label are color-coded in the figure correspondingly, the

other non-synthesis action terms are colored in grey.

First, we observe that the verbs mapped into ULSA and hence representing synthesis actions are all

grouped in the top-left corner of the projection. Indeed, analysis of the individual words in the rest of

the space showed that those are the words that generally appear in synthesis paragraphs but do not carry

any information about the synthesis procedure. For instance, these are verbs denoting characterization

of a material (“detect”, “quantify”, “examine”, “measure”), naming of a sample (“denoted”, “referred”,

“named”, “labeled”) or referring to a table or figure. The blob of dots in the middle of the plot are all words

that were either mis-tokenized during text segmentation or mistakenly recognized as verbs by the SpaCy

algorithm. In the embeddings mapping, these words are replaced with the <UNK> token.

A second interesting observation is that the embeddings of firing (blue dots), pelletizing (purple dots)

and grinding into powder (orange dots) are all located next to each other. This agrees well with the fact

that those actions together describe solid-state synthesis processes. Oppositely, the verbs describing solution

mixing (orange dots) are in close proximity with the verbs referring to purification or drying (green dots).

Similarly, verbs indicating cooling processes (magenta dots) and the verbs referring to reaction processes

(red dots) are clustered together. This agrees with the often encountered constructions of “left to cool” or

“kept and then cooled” describing the final steps of a given synthesis.
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Taken together, these results demonstrate that (a) the embeddings model we created reflects well the

similarity of the verbs used for synthesis descriptions and (b) the vocabulary of ULSA covers all common

synthesis actions used in ceramics synthesis.

3.3.3 Analysis of graphs clustering

As we showed above, ULSA can capture well the vocabulary commonly used for the description of synthesis

and, further, we were able to design a high-accuracy model that maps arbitrary synthesis descriptions into

ULSA. However, we want also to make sure that unification of synthesis actions still allows for distinguishing

between ceramics synthesis types. For that purpose, we constructed synthesis flowcharts for 4,000 paragraphs

(1,000 per each synthesis type) randomly pulled from the set of 420K ceramics synthesis paragraph (see

Section 2.5.2 for procedure description). For constructing the flowchart for a synthesis (represented by an

adjacency matrix), we used the synthesis action terms assigned to each sentence in a paragraph. Additionally,

we augmented Mixing actions with two categories, Dispersion Mixing and Solution Mixing, by using

heuristics and dictionary lookup (Section 2.5.1). It is important to note here that we assume a linear order

of synthesis actions, i.e. that the sequence of sentences and synthesis actions in a paragraph corresponds to

the true sequence of synthesis steps done during experiment. According to our estimation, this assumption

is violated only in 2% of paragraphs in the 420K paragraphs set.

All the adjacency matrices were flattened and concatenated, resulting in a matrix of size 100×4000, i.e.

10×10 matrix per each of 4,000 paragraphs, where 10 is the size of the ULSA vocabulary with two additional

mixing actions. Next, principal component analysis was used to perform dimensionality reduction of the

matrix.

Figure 4 displays the projection of the 1st and 2nd principal components for each synthesis flowchart

with different colors corresponding to different types of syntheses. A few observations can be made from

the plot. First, the data points corresponding to solid-state synthesis are narrowly clustered along a line

with negative slope unlike the other synthesis types which are spread widely and whose linear fittings have

positive inclination. Second, the clusters of data points for precipitation and hydrothermal synthesis almost

completely overlap and partially overlap with sol-gel synthesis, while overlapping with solid-state synthesis

is negligible.
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These two observations agree well with the standard procedures associated with each of the four synthesis

types. Indeed, solid-state syntheses usually operate with mixing powder precursors, firing the mixture, and

obtaining final products; sol-gel synthesis is considered as a solid-state synthesis with solution-assisted mixing

of precursors; hydrothermal and precipitation syntheses usually involve preparation of the sample in solution,

then filtering (purification) to separate the liquid and obtain the final product instead of including a firing

step.

To get further insights, we sampled and compared synthesis procedures along each of the fitted lines.

The results show that the 1st principle component correlates with the involvement of solution mixing for

precursors. In other words, the larger and more positive the data point along the 1st principle component,

the more steps of dissolving and mixing precursors in solution as well as purification that data point involves.

This agrees well with the fact that solid-state synthesis mostly operates with powders while hydrothermal

and precipitation procedures are solution-based procedures, and sol-gel syntheses exist in between.

The 2nd principal component corresponds to the level of complexity of the syntheses procedure. The

larger and more positive the data point along the 2nd principle component, the more synthesis steps become

involved in the process. Interestingly, all four synthesis types exhibit simple synthesis procedures (fewer

steps) and complex synthesis procedures (many steps). Nonetheless, solid-state synthesis has the largest

deviation compared to hydrothermal and precipitation synthesis since solid-state procedures can involve

multiple heating and re-grinding steps for the sample to obtain the desired material phase while in solution

synthesis this can often be achieved in one or two steps.

4 Discussion and Conclusions

In this work, we aim to fill the gap in automated synthesis information extraction from scientific publications

by proposing a unified language for synthesis actions (ULSA). We used the ULSA on an annotated set of

3,040 sentences about ceramics synthesis including solid-state, sol-gel, precipitation and solvo-/hydrothermal

syntheses. The dataset is publicly available and can be easily customized by researchers accordingly to fit

their application. As an example of such application, we used a recurrent neural network and grammar

parsing to build a mapping model that converts written synthesis procedures into a ULSA-based synthesis

15



flowchart. Analysis of the results demonstrates that the ULSA vocabulary spans the essential set of words

used by researchers to describe synthesis procedures in scientific literature and that the flowchart representa-

tion of synthesis constructed using ULSA can capture important synthesis features and distinguish between

solid-state, sol-gel, precipitation and solvo-/hydrothermal synthesis methods.

Despite these promising results, the ULSA scheme still suffers from imperfections and can be significantly

improved in the future. First, we only demonstrated that it works for ceramics synthesis, and synthesis

techniques such as deposition, crystal growth, and others may require extending the ULSA vocabulary or

reconsidering the definitions of some terms. Second, the scheme and methodology will benefit from a robust

approach to distinguish between various mixing procedures. This includes separation between, for example,

dissolving precursors and dispersive mixing in a liquid environment, using ball-milling to homogenize the

sample and using high-energy ball-milling to actually achieve the final product, adding reagents to promote

reaction and adding precursors to compensate for loss due to volatility, and other cases. We have demon-

strated that the details of mixing are important for distinguishing between ceramics synthesis methods using

simple heuristics, however, the scheme will benefit from a high-fidelity approach. Nonetheless, we anticipate

that our results and the ULSA schema will help researchers to develop a data-oriented methodology to

predict synthesis routes of novel materials.

Efficient and controllable materials synthesis is a bottleneck in technological breakthroughs. While pre-

dicting materials with advanced properties and functionality has been brought to a state-of-the-art level

with the development of computational and data-driven approaches, the design and optimization of syn-

thesis routes for those materials is still a tedious experimental task. The progress in inorganic materials

synthesis is mainly impeded due to (a) lack of publicly available large-scale repositories with high-quality

synthesis data and (b) lack of ontology and standardization for communication on synthesis protocols. In-

deed, the first matter arises from the fact that the vast majority of experimental data gets buried in lab

notebooks and is never published anywhere. As a result, researchers are liable to perform redundant and

wasteful experimental screenings through those parameters of synthesis that have already been performed by

someone, but are not reported. Even published experimental procedures face the problem of ambiguity of the

language used by researchers. This creates a major challenge in acquiring synthesis data from publications
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by automated approaches including text mining.

The advantage of the paradigm we establish in this work is that it brings us closer to addressing important

questions in materials synthesis: “How should we think about the synthesis process?”, “What is the minimum

information required to unambiguously identify a synthesis procedure?”, and “Can synthesis be thought of as

a combination of fixed action blocks augmented with attributes such as temperature, time, and environment,

or are there other important aspects that have to be taken into account?”. These questions will become

crucial when transitioning towards AI-driven synthesis.

Recent developments in autonomous robotic synthesis and the attempts to “close the feedback loop” in

making decisions for the next synthesis step make the question of synthesis ontology and unification especially

important [27, 35, 28]. Indeed, while theoretical decision-making and AI-guided systems can operate with

abstract synthesis representations, implementation of this methodology to an autonomous robotic platform

will require well-defined and robust mapping onto a fixed set of manipulations and devices available to

the robot. The unified language we propose in this work can become a solid foundation for the future

development in this direction.
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Tables

Amount

Paragraphs used for annotation 535

Per synthesis type:

– solid-state synthesis 199

– sol-gel synthesis 51

– solvo-/ hydrothermal synthesis 148

– precipitation 137

Total sentences 3781

Synthesis sentences 3040

Action tokens 5547

Per action category:

– starting 619

– mixing 1853

– purification 1080

– heating 973

– cooling 259

– shaping 225

– reaction 232

– miscellaneous 306

Table 1: Quantitative characteristics of the dataset chosen for annotation with ULSA schema.
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Score

Identification of synthesis sentences 0.69

Action terms tagging 0.83

Per action terms:

– starting 0.82

– mixing 0.86

– purification 0.79

– heating 0.84

– cooling 0.88

– shaping 0.59

– reaction 0.66

– miscellaneous 0.45

– no action 0.87

Table 2: Fleiss’ kappa score for inter-annotator agreement using ULSA scheme.

Model Precision Recall F1 score

Baseline 1 0.54 0.61 0.57

– solid-state 0.53 0.72 0.61

– sol-gel 0.57 0.75 0.65

– hydrothermal 0.54 0.53 0.54

– precipitation 0.55 0.50 0.53

Baseline 2 0.84 0.50 0.63

– solid-state 0.84 0.54 0.66

– sol-gel 0.79 0.62 0.69

– hydrothermal 0.84 0.47 0.61

– precipitation 0.84 0.44 0.54

bi-LSTM 0.90 0.88 0.89

– solid-state 0.90 0.90 0.90

– sol-gel 0.88 0.86 0.87

– hydrothermal 0.90 0.86 0.88

– precipitation 0.90 0.91 0.91

Table 3: Performance of baseline and bi-LSTM models for mapping synthesis sentence into ULSA terms.

In Baseline 1, all words in the sentence are matched against a lookup table. In Baseline 2, only verbs tagged

by SpaCy are matched against the lookup table. The quantities are computed per sentence, i.e. the number

of sentences with all the action tokens identified and assigned correctly.
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Figures

   Target material was synthesized using solid-state 

method. Li2CO3, Mn2O3, TiO2, and LiF were mixed in 

ethanol using a planetary ball mill at a rate of 180 rpm 

for 12 h. The precursors were then dried at 70 °C 

overnight and pelletized. The pellets were sintered at 

1000 °C under Ar atmosphere for 4 h.
Starting
Mixing
Purification
Heating
Cooling
Shaping
Reaction
Miscellaneous

ANNOTATED 
DATASET

MIXING

PURIFICATION

SHAPING

HEATING

precursors

pellets

Li2CO3, Mn2O3, 
TiO2, and LiF

WORDS EMBEDDINGS
RNN

GRAMMAR PARSING

70 °C, 
overnight

12 h

1000 °C, 
Ar, 4 h

DATA ANALYSIS

Figure 1: Schematic workflow of data annotation, extraction and analysis. First, the set of

paragraphs were annotated using an Amazon Mechanical Turk engine. Highlighted in green are the action

token that were annotated and then extracted using a neural network model. Other highlighted tokens and

phrases (i.e. synthesis action attributes and subjects) were obtained using rule-based sentence parsing solely

for the purpose of data analysis and are not presented in the annotated dataset. The obtained labeled dataset

is stored as single JSON file and is also used for training a neural network model to identify synthesis actions

in the text. Obtained synthesis actions, attributes and subjects were converted into synthesis flowcharts that

was further used for data analysis.
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- all sentences
- synthesis sentences

(a) (b) (c)

Figure 2: Qualitative characteristics of the annotated dataset. (a): Number of sentences per

paragraph (blue), including sentences related to synthesis procedure (red). (b): Number of all tokens per

sentence in the annotated set. (c): Number of tokens denoting a synthesis action per sentence in the

annotated set.
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 - Starting
 - Mixing
 - Purification
 - Heating
 - Shaping
 - Cooling
 - Reaction
 - Other verbs

named, referred, 
denoted, ...

tokenization 
artifacts (UNK)

solution
mixing

pelletizing

re-grinding

sintering

filtering

characterization: 
detect, quantify, 

examine...

Figure 3: 2D projection of word embeddings vectors. Shown are the most frequent verb tokens

encountered in the set of 420K paragraphs describing a synthesis procedure. Highlighted in different colors

are the vectors that correspond to the common verbs from the categories of synthesis actions used for

annotation. Other prominent clusters of vectors are denoted with circles and labeled by a common term.

Dimensionality reduction was performed using t-SNE approach.
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- solid-state synthesis
- sol-gel synthesis
- precipitation synthesis
- hydrothermal synthesis

Figure 4: Visualization of the first two principal components for the adjacency matrices of

synthesis action graphs. Each dot on the plot represent a synthesis graph colored according to its type.

Dash lines display linear fitting of each data subset and show the overall direction for clustering of each

synthesis graph. Note that the lines were shifted to have a common origin for representation purposes while

preserving the slope.
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