
Machine Learning Operations (MLOps):  
Overview, Definition, and Architecture 

Dominik Kreuzberger 
 KIT 

 Germany 
dominik.kreuzberger@alumni.kit.edu 

Niklas Kühl 
 KIT 

 Germany 
 kuehl@kit.edu 

 Sebastian Hirschl 
  IBM† 

  Germany 
  sebastian.hirschl@de.ibm.com

ABSTRACT 
The final goal of all industrial machine learning (ML) projects is to 
develop ML products and rapidly bring them into production. 
However, it is highly challenging to automate and operationalize 
ML products and thus many ML endeavors fail to deliver on their 
expectations. The paradigm of Machine Learning Operations 
(MLOps) addresses this issue. MLOps includes several aspects, 
such as best practices, sets of concepts, and development culture. 
However, MLOps is still a vague term and its consequences for 
researchers and professionals are ambiguous. To address this gap, 
we conduct mixed-method research, including a literature review, 
a tool review, and expert interviews. As a result of these 
investigations, we provide an aggregated overview of the necessary 
principles, components, and roles, as well as the associated 
architecture and workflows. Furthermore, we furnish a definition 
of MLOps and highlight open challenges in the field. Finally, this 
work provides guidance for ML researchers and practitioners who 
want to automate and operate their ML products with a designated 
set of technologies. 

KEYWORDS 
CI/CD, DevOps, Machine Learning, MLOps, Operations, 
Workflow Orchestration 

1 Introduction  
Machine Learning (ML) has become an important technique to 

leverage the potential of data and allows businesses to be more 
innovative [1], efficient [13], and sustainable [22]. However, the 
success of many productive ML applications in real-world settings 
falls short of expectations [21]. A large number of ML projects 
fail—with many ML proofs of concept never progressing as far as 
production [30]. From a research perspective, this does not come as 
a surprise as the ML community has focused extensively on the 
building of ML models, but not on (a) building production-ready 
ML products and (b) providing the necessary coordination of the 
resulting, often complex ML system components and infrastructure, 
including the roles required to automate and operate an ML system 
in a real-world setting [35]. For instance, in many industrial 
applications, data scientists still manage ML workflows manually 
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to a great extent, resulting in many issues during the operations of 
the respective ML solution [26].  

To address these issues, the goal of this work is to examine how 
manual ML processes can be automated and operationalized so that 
more ML proofs of concept can be brought into production. In this 
work, we explore the emerging ML engineering practice “Machine 
Learning Operations”—MLOps for short—precisely addressing 
the issue of designing and maintaining productive ML. We take a 
holistic perspective to gain a common understanding of the 
involved components, principles, roles, and architectures. While 
existing research sheds some light on various specific aspects of 
MLOps, a holistic conceptualization, generalization, and 
clarification of ML systems design are still missing. Different 
perspectives and conceptions of the term “MLOps” might lead to 
misunderstandings and miscommunication, which, in turn, can lead 
to errors in the overall setup of the entire ML system. Thus, we ask 
the research question: 

RQ: What is MLOps? 
To answer that question, we conduct a mixed-method research 

endeavor to (a) identify important principles of MLOps, (b) carve 
out functional core components, (c) highlight the roles necessary to 
successfully implement MLOps, and (d) derive a general 
architecture for ML systems design. In combination, these insights 
result in a definition of MLOps, which contributes to a common 
understanding of the term and related concepts.  

In so doing, we hope to positively impact academic and 
practical discussions by providing clear guidelines for 
professionals and researchers alike with precise responsibilities. 
These insights can assist in allowing more proofs of concept to 
make it into production by having fewer errors in the system’s 
design and, finally, enabling more robust predictions in real-world 
environments. 

The remainder of this work is structured as follows. We will first 
elaborate on the necessary foundations and related work in the field. 
Next, we will give an overview of the utilized methodology, 
consisting of a literature review, a tool review, and an interview 
study. We then present the insights derived from the application of 
the methodology and conceptualize these by providing a unifying 
definition. We conclude the paper with a short summary, 
limitations, and outlook. 
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2 Foundations of DevOps 
In the past, different software process models and development 

methodologies surfaced in the field of software engineering. 
Prominent examples include waterfall [37] and the agile manifesto 
[5]. Those methodologies have similar aims, namely to deliver 
production-ready software products. A concept called “DevOps” 
emerged in the years 2008/2009 and aims to reduce issues in 
software development [9,31]. DevOps is more than a pure 
methodology and rather represents a paradigm addressing social 
and technical issues in organizations engaged in software 
development. It has the goal of eliminating the gap between 
development and operations and emphasizes collaboration, 
communication, and knowledge sharing. It ensures automation 
with continuous integration, continuous delivery, and continuous 
deployment (CI/CD), thus allowing for fast, frequent, and reliable 
releases. Moreover, it is designed to ensure continuous testing, 
quality assurance, continuous monitoring, logging, and feedback 
loops. Due to the commercialization of DevOps, many DevOps 
tools are emerging, which can be differentiated into six groups 
[23,28]: collaboration and knowledge sharing (e.g., Slack, Trello, 
GitLab wiki), source code management (e.g., GitHub, GitLab), 
build process (e.g., Maven), continuous integration (e.g., Jenkins, 
GitLab CI), deployment automation (e.g., Kubernetes, Docker), 
monitoring and logging (e.g., Prometheus, Logstash). Cloud 
environments are increasingly equipped with ready-to-use DevOps 
tooling that is designed for cloud use, facilitating the efficient 
generation of value [38]. With this novel shift towards DevOps, 
developers need to care about what they develop, as they need to 
operate it as well. As empirical results demonstrate, DevOps 
ensures better software quality [34]. People in the industry, as well 
as academics, have gained a wealth of experience in software 
engineering using DevOps. This experience is now being used to 
automate and operationalize ML. 

3 Methodology 
To derive insights from the academic knowledge base while 

also drawing upon the expertise of practitioners from the field, we 
apply a mixed-method approach, as depicted in Figure 1. As a first 
step, we conduct a structured literature review [20,43] to obtain an 
overview of relevant research. Furthermore, we review relevant 
tooling support in the field of MLOps to gain a better understanding 
of the technical components involved. Finally, we conduct semi-
structured interviews [33,39] with experts from different domains. 
On that basis, we conceptualize the term “MLOps” and elaborate 
on our findings by synthesizing literature and interviews in the next 
chapter (“Results”). 

3.1 Literature Review 
To ensure that our results are based on scientific knowledge, we 

conduct a systematic literature review according to the method of 
Webster and Watson [43] and Kitchenham et al. [20]. After an 
initial exploratory search, we define our search query as follows: 
((("DevOps" OR "CICD" OR "Continuous Integration" OR 

"Continuous Delivery" OR "Continuous Deployment") AND 

"Machine Learning") OR "MLOps" OR "CD4ML"). We query the 

scientific databases of Google Scholar, Web of Science, Science 
Direct, Scopus, and the Association for Information Systems 
eLibrary. It should be mentioned that the use of DevOps for ML, 
MLOps, and continuous practices in combination with ML is a 
relatively new field in academic literature. Thus, only a few peer-
reviewed studies are available at the time of this research. 
Nevertheless, to gain experience in this area, the search included 
non-peer-reviewed literature as well. The search was performed in 
May 2021 and resulted in 1,864 retrieved articles. Of those, we 
screened 194 papers in detail. From that group, 27 articles were 
selected based on our inclusion and exclusion criteria (e.g., the term 
MLOps or DevOps and CI/CD in combination with ML was 
described in detail, the article was written in English, etc.). All 27 
of these articles were peer-reviewed. 

3.2 Tool Review 
After going through 27 articles and eight interviews, various 

open-source tools, frameworks, and commercial cloud ML services 
were identified. These tools, frameworks, and ML services were 
reviewed to gain an understanding of the technical components of 
which they consist. An overview of the identified tools is depicted 
in Table 1 of the Appendix. 

3.3 Interview Study 
To answer the research questions with insights from practice, 

we conduct semi-structured expert interviews according to Myers 
and Newman [33]. One major aspect in the research design of 
expert interviews is choosing an appropriate sample size [8]. We 
apply a theoretical sampling approach [12], which allows us to 
choose experienced interview partners to obtain high-quality data. 
Such data can provide meaningful insights with a limited number 
of interviews. To get an adequate sample group and reliable 
insights, we use LinkedIn—a social network for professionals—to 
identify experienced ML professionals with profound MLOps 
knowledge on a global level. To gain insights from various 
perspectives, we choose interview partners from different 
organizations and industries, different countries and nationalities, 
as well as different genders. Interviews are conducted until no new 
categories and concepts emerge in the analysis of the data. In total, 
we conduct eight interviews with experts (α - θ), whose details are 
depicted in Table 2 of the Appendix. According to Glaser and 
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Figure 1. Overview of the methodology 
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Strauss [5, p.61], this stage is called “theoretical saturation.” All 
interviews are conducted between June and August 2021.  

With regard to the interview design, we prepare a semi-
structured guide with several questions, documented as an 
interview script [33]. During the interviews, “soft laddering” is 
used with “how” and “why” questions to probe the interviewees’ 
means-end chain [39]. This methodical approach allowed us to gain 
additional insight into the experiences of the interviewees when 
required. All interviews are recorded and then transcribed. To 
evaluate the interview transcripts, we use an open coding scheme 
[8]. 

4 Results 
We apply the described methodology and structure our resulting 

insights into a presentation of important principles, their resulting 
instantiation as components, the description of necessary roles, as 
well as a suggestion for the architecture and workflow resulting 
from the combination of these aspects. Finally, we derive the 
conceptualization of the term and provide a definition of MLOps. 

4.1 Principles 
A principle is viewed as a general or basic truth, a value, or a 

guide for behavior. In the context of MLOps, a principle is a guide 
to how things should be realized in MLOps and is closely related 
to the term “best practices” from the professional sector. Based on 
the outlined methodology, we identified nine principles required to 
realize MLOps. Figure 2 provides an illustration of these principles 
and links them to the components with which they are associated. 

 

P1 CI/CD automation. CI/CD automation provides continuous 
integration, continuous delivery, and continuous deployment. It 
carries out the build, test, delivery, and deploy steps. It provides 
fast feedback to developers regarding the success or failure of 
certain steps, thus increasing the overall productivity 
[15,17,26,27,35,42,46] [α, β, θ].  

P2 Workflow orchestration. Workflow orchestration 
coordinates the tasks of an ML workflow pipeline according to 
directed acyclic graphs (DAGs). DAGs define the task execution 
order by considering relationships and dependencies 
[14,17,26,32,40,41] [α, β, γ, δ, ζ, η]. 

P3 Reproducibility. Reproducibility is the ability to reproduce 
an ML experiment and obtain the exact same results [14,32,40,46] 
[α, β, δ, ε, η]. 

P4 Versioning. Versioning ensures the versioning of data, 
model, and code to enable not only reproducibility, but also 
traceability (for compliance and auditing reasons) [14,32,40,46] [α, 
β, δ, ε, η]. 

P5 Collaboration. Collaboration ensures the possibility to 
work collaboratively on data, model, and code. Besides the 
technical aspect, this principle emphasizes a collaborative and 
communicative work culture aiming to reduce domain silos 
between different roles [14,26,40] [α, δ, θ].  

P6 Continuous ML training & evaluation. Continuous 
training means periodic retraining of the ML model based on new 
feature data. Continuous training is enabled through the support of 
a monitoring component, a feedback loop, and an automated ML 
workflow pipeline. Continuous training always includes an 
evaluation run to assess the change in model quality [10,17,19,46] 
[β, δ, η, θ].  

P7 ML metadata tracking/logging. Metadata is tracked and 
logged for each orchestrated ML workflow task. Metadata tracking 
and logging is required for each training job iteration (e.g., training 
date and time, duration, etc.), including the model specific 
metadata—e.g., used parameters and the resulting performance 
metrics, model lineage: data and code used—to ensure the full 
traceability of experiment runs [26,27,29,32,35] [α, β, δ, ε, ζ, η, θ]. 

P8 Continuous monitoring. Continuous monitoring implies 
the periodic assessment of data, model, code, infrastructure 
resources, and model serving performance (e.g., prediction 
accuracy) to detect potential errors or changes that influence the 
product quality [4,7,10,27,29,42,46] [α, β, γ, δ, ε, ζ, η].  

P9 Feedback loops. Multiple feedback loops are required to 
integrate insights from the quality assessment step into the 
development or engineering process (e.g., a feedback loop from the 
experimental model engineering stage to the previous feature 
engineering stage). Another feedback loop is required from the 
monitoring component (e.g., observing the model serving 
performance) to the scheduler to enable the retraining 
[4,6,7,17,27,46] [α, β, δ, ζ, η, θ]. 

4.2 Technical Components 
After identifying the principles that need to be incorporated into 

MLOps, we now elaborate on the precise components and 
implement them in the ML systems design. In the following, the 
components are listed and described in a generic way with their 
essential functionalities. The references in brackets refer to the 
respective principles that the technical components are 
implementing. 

C1 CI/CD Component (P1, P6, P9). The CI/CD component 
ensures continuous integration, continuous delivery, and 
continuous deployment. It takes care of the build, test, delivery, and 
deploy steps. It provides rapid feedback to developers regarding the 
success or failure of certain steps, thus increasing the overall 
productivity [10,15,17,26,35,46] [α, β, γ, ε, ζ, η]. Examples are 
Jenkins [17,26] and GitHub actions (η). 

Source Code 
Repository 

CI/CD 
Component

Workflow 
Orchestration 
Component

Feature
Stores

Model Training 
Infrastructure

Model 
Registry

ML Metadata 
Stores

Monitoring 
Component

Model Serving 
Component

PRINCIPLES

P1 CI/CD automation
P2 Workflow orchestration
P3 Reproducibility
P4 Versioning of data, code, model
P5 Collaboration
P6 Continuous ML training & evaluation
P7 ML metadata tracking
P8 Continuous monitoring
P9 Feedback loops

P1

P6
P9

P4

P5

P2

P3

P6

P6

P3
P4

P3

P4

P8

P9

P4

P7

P1

COMPONENT

Figure 2. Implementation of principles within technical 
components 



MLOps: Overview, Definition, and Architecture Kreuzberger, Kühl, and Hirschl 
 

 
 

C2 Source Code Repository (P4, P5). The source code 
repository ensures code storing and versioning. It allows multiple 
developers to commit and merge their code [17,25,42,44,46] [α, β, 
γ, ζ, θ]. Examples include Bitbucket [11] [ζ], GitLab [11,17] [ζ], 
GitHub [25] [ζ ,η], and Gitea [46]. 

C3 Workflow Orchestration Component (P2, P3, P6). The 
workflow orchestration component offers task orchestration of an 
ML workflow via directed acyclic graphs (DAGs). These graphs 
represent execution order and artifact usage of single steps of the 
workflow [26,32,35,40,41,46] [α, β, γ, δ, ε, ζ, η]. Examples include 
Apache Airflow [α, ζ], Kubeflow Pipelines [ζ], Luigi [ζ], AWS 
SageMaker Pipelines [β], and Azure Pipelines [ε]. 

C4 Feature Store System (P3, P4). A feature store system 
ensures central storage of commonly used features. It has two 
databases configured: One database as an offline feature store to 
serve features with normal latency for experimentation, and one 
database as an online store to serve features with low latency for 
predictions in production [10,14] [α, β, ζ, ε, θ]. Examples include 
Google Feast [ζ], Amazon AWS Feature Store [β, ζ], Tecton.ai and 
Hopswork.ai [ζ]. This is where most of the data for training ML 
models will come from. Moreover, data can also come directly 
from any kind of data store. 

C5 Model Training Infrastructure (P6). The model training 
infrastructure provides the foundational computation resources, 
e.g., CPUs, RAM, and GPUs. The provided infrastructure can be 
either distributed or non-distributed. In general, a scalable and 
distributed infrastructure is recommended [7,10,24–
26,29,40,45,46] [δ, ζ, η, θ]. Examples include local machines (not 
scalable) or cloud computation [7] [η, θ], as well as non-distributed 
or distributed computation (several worker nodes) [25,27]. 
Frameworks supporting computation are Kubernetes [η, θ] and Red 
Hat OpenShift [γ]. 

C6 Model Registry (P3, P4). The model registry stores 
centrally the trained ML models together with their metadata. It has 
two main functionalities: storing the ML artifact and storing the ML 
metadata (see C7) [4,6,14,17,26,27] [α, β, γ, ε, ζ, η, θ]. Advanced 
storage examples include MLflow [α, η, ζ], AWS SageMaker 
Model Registry [ζ], Microsoft Azure ML Model Registry [ζ], and 
Neptune.ai [α]. Simple storage examples include Microsoft Azure 
Storage, Google Cloud Storage, and Amazon AWS S3 [17]. 

C7 ML Metadata Stores (P4, P7). ML metadata stores allow 
for the tracking of various kinds of metadata, e.g., for each 
orchestrated ML workflow pipeline task. Another metadata store 
can be configured within the model registry for tracking and 
logging the metadata of each training job (e.g., training date and 
time, duration, etc.), including the model specific metadata—e.g., 
used parameters and the resulting performance metrics, model 
lineage: data and code used [14,25–27,32] [α, β, δ, ζ, θ]. Examples 
include orchestrators with built-in metadata stores tracking each 
step of experiment pipelines [α] such as Kubeflow Pipelines [α,ζ], 
AWS SageMaker Pipelines [α,ζ], Azure ML, and IBM Watson 
Studio [γ]. MLflow provides an advanced metadata store in 
combination with the model registry [32,35]. 

 

C8 Model Serving Component (P1). The model serving 
component can be configured for different purposes. Examples are 
online inference for real-time predictions or batch inference for 
predictions using large volumes of input data. The serving can be 
provided, e.g., via a REST API. As a foundational infrastructure 
layer, a scalable and distributed model serving infrastructure is 
recommended [7,11,25,40,45,46] [α, β, δ, ζ, η, θ]. One example of 
a model serving component configuration is the use of Kubernetes 
and Docker technology to containerize the ML model, and 
leveraging a Python web application framework like Flask [17] 
with an API for serving [α]. Other Kubernetes supported 
frameworks are KServing of Kubeflow [α], TensorFlow Serving, 
and Seldion.io serving [40]. Inferencing could also be realized with 
Apache Spark for batch predictions [θ]. Examples of cloud services 
include Microsoft Azure ML REST API [ε], AWS SageMaker 
Endpoints [α, β], IBM Watson Studio [γ], and Google Vertex AI 
prediction service [δ]. 

C9 Monitoring Component (P8, P9). The monitoring 
component takes care of the continuous monitoring of the model 
serving performance (e.g., prediction accuracy). Additionally, 
monitoring of the ML infrastructure, CI/CD, and orchestration are 
required [7,10,17,26,29,36,46] [α, ζ, η, θ]. Examples include 
Prometheus with Grafana [η, ζ], ELK stack (Elasticsearch, 
Logstash, and Kibana) [α, η, ζ], and simply TensorBoard [θ]. 
Examples with built-in monitoring capabilities are Kubeflow [θ], 
MLflow [η], and AWS SageMaker model monitor or cloud watch 
[ζ]. 

4.3 Roles 
After describing the principles and their resulting instantiation 

of components, we identify necessary roles in order to realize 
MLOps in the following. MLOps is an interdisciplinary group 
process, and the interplay of different roles is crucial to design, 
manage, automate, and operate an ML system in production. In the 
following, every role, its purpose, and related tasks are briefly 
described: 

R1 Business Stakeholder (similar roles: Product Owner, 
Project Manager). The business stakeholder defines the business 
goal to be achieved with ML and takes care of the communication 
side of the business, e.g., presenting the return on investment (ROI) 
generated with an ML product [17,24,26] [α, β, δ, θ].  

R2D2Solution Architect (similar role: IT Architect). The 
solution architect designs the architecture and defines the 
technologies to be used, following a thorough evaluation [17,27] [α, 
ζ].  

R3 Data Scientist (similar roles: ML Specialist, ML 
Developer). The data scientist translates the business problem into 
an ML problem and takes care of the model engineering, including 
the selection of the best-performing algorithm and hyperparameters 
[7,14,26,29] [α, β, γ, δ, ε, ζ, η, θ].  

R4 Data Engineer (similar role: DataOps Engineer). The data 
engineer builds up and manages data and feature engineering 
pipelines. Moreover, this role ensures proper data ingestion to the 
databases of the feature store system [14,29,41] [α, β, γ, δ, ε, ζ, η, 
θ]. 
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 R5 Software Engineer. The software engineer applies 
software design patterns, widely accepted coding guidelines, and 
best practices to turn the raw ML problem into a well-engineered 
product [29] [α, γ]. 

R6 DevOps Engineer. The DevOps engineer bridges the gap 
between development and operations and ensures proper CI/CD 
automation, ML workflow orchestration, model deployment to 
production, and monitoring [14–16,26] [α, β, γ, ε, ζ, η, θ]. 

R7 ML Engineer/MLOps Engineer. The ML engineer or 
MLOps engineer combines aspects of several roles and thus has 
cross-domain knowledge. This role incorporates skills from data 
scientists, data engineers, software engineers, DevOps engineers, 
and backend engineers (see Figure 3). This cross-domain role 
builds up and operates the ML infrastructure, manages the 
automated ML workflow pipelines and model deployment to 
production, and monitors both the model and the ML infrastructure 
[14,17,26,29] [α, β, γ, δ, ε, ζ, η, θ]. 

 

  

5 Architecture and Workflow 
On the basis of the identified principles, components, and roles, we 
derive a generalized MLOps end-to-end architecture to give ML 
researchers and practitioners proper guidance. It is depicted in 
Figure 4. Additionally, we depict the workflows, i.e., the sequence 
in which the different tasks are executed in the different stages. The 
artifact was designed to be technology-agnostic. Therefore, ML 
researchers and practitioners can choose the best-fitting 
technologies and frameworks for their needs.  

As depicted in Figure 4, we illustrate an end-to-end process, 
from MLOps project initiation to the model serving. It includes (A) 
the MLOps project initiation steps; (B) the feature engineering 
pipeline, including the data ingestion to the feature store; (C) the 
experimentation; and (D) the automated ML workflow pipeline up 
to the model serving.  

(A) MLOps project initiation. (1) The business stakeholder 
(R1) analyzes the business and identifies a potential business 
problem that can be solved using ML. (2) The solution architect 
(R2) defines the architecture design for the overall ML system and, 
decides on the technologies to be used after a thorough evaluation. 
(3) The data scientist (R3) derives an ML problem—such as 
whether regression or classification should be used—from the 
business goal. (4) The data engineer (R4) and the data scientist (R3) 
work together in an effort to understand which data is required to 
solve the problem. (5) Once the answers are clarified, the data 
engineer (R4) and data scientist (R3) collaborate to locate the raw 
data sources for the initial data analysis. They check the distribution, 
and quality of the data, as well as performing validation checks. 
Furthermore, they ensure that the incoming data from the data 
sources is labeled, meaning that a target attribute is known, as this 
is a mandatory requirement for supervised ML. In this example, the 
data sources already had labeled data available as the labeling step 
was covered during an upstream process. 

(B1) Requirements for feature engineering pipeline. The 
features are the relevant attributes required for model training. 
After the initial understanding of the raw data and the initial data 
analysis, the fundamental requirements for the feature engineering 
pipeline are defined, as follows: (6) The data engineer (R4) defines 
the data transformation rules (normalization, aggregations) and 
cleaning rules to bring the data into a usable format. (7) The data 
scientist (R3) and data engineer (R4) together define the feature 
engineering rules, such as the calculation of new and more 
advanced features based on other features. These initially defined 
rules must be iteratively adjusted by the data scientist (R3) either 
based on the feedback coming from the experimental model 
engineering stage or from the monitoring component observing the 
model performance. 

(B2) Feature engineering pipeline. The initially defined 
requirements for the feature engineering pipeline are taken by the 
data engineer (R4) and software engineer (R5) as a starting point to 
build up the prototype of the feature engineering pipeline. The 
initially defined requirements and rules are updated according to 
the iterative feedback coming either from the experimental model 
engineering stage or from the monitoring component observing the 
model’s performance in production. As a foundational requirement, 
the data engineer (R4) defines the code required for the CI/CD (C1) 
and orchestration component (C3) to ensure the task orchestration 
of the feature engineering pipeline. This role also defines the 
underlying infrastructure resource configuration. (8) First, the 
feature engineering pipeline connects to the raw data, which can be 
(for instance) streaming data, static batch data, or data from any 
cloud storage. (9) The data will be extracted from the data sources. 
(10) The data preprocessing begins with data transformation and 
cleaning tasks. The transformation rule artifact defined in the 
requirement gathering stage serves as input for this task, and the 
main aim of this task is to bring the data into a usable format. These 
transformation rules are continuously improved based on the 
feedback.  
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Figure 3. Roles and their intersections contributing to the 
MLOps paradigm 



 
 
Figure 4. End-to-end MLOps architecture and workflow with functional components and roles 

 
(11) The feature engineering task calculates new and more 

advanced features based on other features. The predefined feature 
engineering rules serve as input for this task. These feature 
engineering rules are continuously improved based on the feedback. 
(12) Lastly, a data ingestion job loads batch or streaming data into 
the feature store system (C4). The target can either be the offline or 
online database (or any kind of data store). 

(C) Experimentation. Most tasks in the experimentation stage 
are led by the data scientist (R3). The data scientist is supported by 
the software engineer (R5). (13) The data scientist (R3) connects to 
the feature store system (C4) for the data analysis. (Alternatively, 
the data scientist (R3) can also connect to the raw data for an initial 
analysis.) In case of any required data adjustments, the data 
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scientist (R3) reports the required changes back to the data 
engineering zone (feedback loop).  

(14) Then the preparation and validation of the data coming 
from the feature store system is required. This task also includes 
the train and test split dataset creation. (15) The data scientist (R3) 
estimates the best-performing algorithm and hyperparameters, and 
the model training is then triggered with the training data (C5). The 
software engineer (R5) supports the data scientist (R3) in the 
creation of well-engineered model training code. (16) Different 
model parameters are tested and validated interactively during 
several rounds of model training. Once the performance metrics 
indicate good results, the iterative training stops. The best-
performing model parameters are identified via parameter tuning. 
The model training task and model validation task are then 
iteratively repeated; together, these tasks can be called “model 
engineering.” The model engineering aims to identify the best-
performing algorithm and hyperparameters for the model. (17) The 
data scientist (R3) exports the model and commits the code to the 
repository. 

As a foundational requirement, either the DevOps engineer (R6) 
or the ML engineer (R7) defines the code for the (C2) automated 
ML workflow pipeline and commits it to the repository. Once either 
the data scientist (R3) commits a new ML model or the DevOps 
engineer (R6) and the ML engineer (R7) commits new ML 
workflow pipeline code to the repository, the CI/CD component 
(C1) detects the updated code and triggers automatically the CI/CD 
pipeline carrying out the build, test, and delivery steps. The build 
step creates artifacts containing the ML model and tasks of the ML 
workflow pipeline. The test step validates the ML model and ML 
workflow pipeline code. The delivery step pushes the versioned 
artifact(s)—such as images—to the artifact store (e.g., image 
registry). 

(D) Automated ML workflow pipeline. The DevOps engineer 
(R6) and the ML engineer (R7) take care of the management of the 
automated ML workflow pipeline. They also manage the 
underlying model training infrastructure in the form of hardware 
resources and frameworks supporting computation such as 
Kubernetes (C5). The workflow orchestration component (C3) 
orchestrates the tasks of the automated ML workflow pipeline. For 
each task, the required artifacts (e.g., images) are pulled from the 
artifact store (e.g., image registry). Each task can be executed via 
an isolated environment (e.g., containers). Finally, the workflow 
orchestration component (C3) gathers metadata for each task in the 
form of logs, completion time, and so on. 

Once the automated ML workflow pipeline is triggered, each of 
the following tasks is managed automatically: (18) automated 
pulling of the versioned features from the feature store systems 
(data extraction). Depending on the use case, features are extracted 
from either the offline or online database (or any kind of data store). 
(19) Automated data preparation and validation; in addition, the 
train and test split is defined automatically. (20) Automated final 
model training on new unseen data (versioned features). The 
algorithm and hyperparameters are already predefined based on the 
settings of the previous experimentation stage. The model is 
retrained and refined. (21) Automated model evaluation and 

iterative adjustments of hyperparameters are executed, if required. 
Once the performance metrics indicate good results, the automated 
iterative training stops. The automated model training task and the 
automated model validation task can be iteratively repeated until a 
good result has been achieved. (22) The trained model is then 
exported and (23) pushed to the model registry (C6), where it is 
stored e.g., as code or containerized together with its associated 
configuration and environment files. 

For all training job iterations, the ML metadata store (C7) 
records metadata such as parameters to train the model and the 
resulting performance metrics. This also includes the tracking and 
logging of the training job ID, training date and time, duration, and 
sources of artifacts. Additionally, the model specific metadata 
called “model lineage” combining the lineage of data and code is 
tracked for each newly registered model. This includes the source 
and version of the feature data and model training code used to train 
the model. Also, the model version and status (e.g., staging or 
production-ready) is recorded. 

Once the status of a well-performing model is switched from 
staging to production, it is automatically handed over to the 
DevOps engineer or ML engineer for model deployment. From 
there, the (24) CI/CD component (C1) triggers the continuous 
deployment pipeline. The production-ready ML model and the 
model serving code are pulled (initially prepared by the software 
engineer (R5)). The continuous deployment pipeline carries out the 
build and test step of the ML model and serving code and deploys 
the model for production serving. The (25) model serving 
component (C8) makes predictions on new, unseen data coming 
from the feature store system (C4). This component can be 
designed by the software engineer (R5) as online inference for real-
time predictions or as batch inference for predictions concerning 
large volumes of input data. For real-time predictions, features 
must come from the online database (low latency), whereas for 
batch predictions, features can be served from the offline database 
(normal latency). Model-serving applications are often configured 
within a container and prediction requests are handled via a REST 
API. As a foundational requirement, the ML engineer (R7) 
manages the model-serving computation infrastructure. The (26) 
monitoring component (C9) observes continuously the model-
serving performance and infrastructure in real-time. Once a certain 
threshold is reached, such as detection of low prediction accuracy, 
the information is forwarded via the feedback loop. The (27) 
feedback loop is connected to the monitoring component (C9) and 
ensures fast and direct feedback allowing for more robust and 
improved predictions. It enables continuous training, retraining, 
and improvement. With the support of the feedback loop, 
information is transferred from the model monitoring component 
to several upstream receiver points, such as the experimental stage, 
data engineering zone, and the scheduler (trigger). The feedback to 
the experimental stage is taken forward by the data scientist for 
further model improvements. The feedback to the data engineering 
zone allows for the adjustment of the features prepared for the 
feature store system. Additionally, the detection of concept drifts 
as a feedback mechanism can enable (28) continuous training. For 
instance, once the model-monitoring component (C9) detects a drift 
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in the data [3], the information is forwarded to the scheduler, which 
then triggers the automated ML workflow pipeline for retraining 
(continuous training). A change in adequacy of the deployed model 
can be detected using distribution comparisons to identify drift. 
Retraining is not only triggered automatically when a statistical 
threshold is reached; it can also be triggered when new feature data 
is available, or it can be scheduled periodically. 

6 Conceptualization 
With the findings at hand, we conceptualize the literature and 

interviews. It becomes obvious that the term MLOps is positioned 
at the intersection of machine learning, software engineering, 
DevOps, and data engineering (see Figure 5 in the Appendix). We 
define MLOps as follows: 

MLOps (Machine Learning Operations) is a paradigm, 

including aspects like best practices, sets of concepts, as well as a 

development culture when it comes to the end-to-end 

conceptualization, implementation, monitoring, deployment, and 

scalability of machine learning products. Most of all, it is an 

engineering practice that leverages three contributing disciplines: 

machine learning, software engineering (especially DevOps), and 

data engineering. MLOps is aimed at productionizing machine 

learning systems by bridging the gap between development (Dev) 

and operations (Ops). Essentially, MLOps aims to facilitate the 

creation of machine learning products by leveraging these 

principles: CI/CD automation, workflow orchestration, 

reproducibility; versioning of data, model, and code; 

collaboration; continuous ML training and evaluation; ML 

metadata tracking and logging; continuous monitoring; and 

feedback loops. 

7 Open Challenges 
Several challenges for adopting MLOps have been identified 

after conducting the literature review, tool review, and interview 
study. These open challenges have been organized into the 
categories of organizational, ML system, and operational 
challenges. 

Organizational challenges. The mindset and culture of data 
science practice is a typical challenge in organizational settings [2]. 
As our insights from literature and interviews show, to successfully 
develop and run ML products, there needs to be a culture shift away 
from model-driven machine learning toward a product-oriented 
discipline [γ]. The recent trend of data-centric AI also addresses 
this aspect by putting more focus on the data-related aspects taking 
place prior to the ML model building. Especially the roles 
associated with these activities should have a product-focused 
perspective when designing ML products [γ]. A great number of 
skills and individual roles are required for MLOps (β). As our 
identified sources point out, there is a lack of highly skilled experts 
for these roles—especially with regard to architects, data engineers, 
ML engineers, and DevOps engineers [29,41,44] [α, ε]. This is 
related to the necessary education of future professionals—as 
MLOps is typically not part of data science education [7] [γ]. 

Posoldova (2020) [35] further stresses this aspect by remarking that 
students should not only learn about model creation, but must also 
learn about technologies and components necessary to build 
functional ML products.  

Data scientists alone cannot achieve the goals of MLOps. A 
multi-disciplinary team is required [14], thus MLOps needs to be a 
group process [α]. This is often hindered because teams work in 
silos rather than in cooperative setups [α]. Additionally, different 
knowledge levels and specialized terminologies make 
communication difficult. To lay the foundations for more fruitful 
setups, the respective decision-makers need to be convinced that an 
increased MLOps maturity and a product-focused mindset will 
yield clear business improvements [γ]. 

ML system challenges. A major challenge with regard to 
MLOps systems is designing for fluctuating demand, especially in 
relation to the process of ML training [7]. This stems from 
potentially voluminous and varying data [10], which makes it 
difficult to precisely estimate the necessary infrastructure resources 
(CPU, RAM, and GPU) and requires a high level of flexibility in 
terms of scalability of the infrastructure [7,26] [δ]. 

Operational challenges. In productive settings, it is 
challenging to operate ML manually due to different stacks of 
software and hardware components and their interplay. Therefore, 
robust automation is required [7,17]. Also, a constant incoming 
stream of new data forces retraining capabilities. This is a repetitive 
task which, again, requires a high level of automation [18] [θ]. 
These repetitive tasks yield a large number of artifacts that require 
a strong governance [24,29,40] as well as versioning of data, model, 
and code to ensure robustness and reproducibility [11,27,29]. 
Lastly, it is challenging to resolve a potential support request (e.g., 
by finding the root cause), as many parties and components are 
involved. Failures can be a combination of ML infrastructure and 
software [26]. 

8 Conclusion 
With the increase of data availability and analytical capabilities, 

coupled with the constant pressure to innovate, more machine 
learning products than ever are being developed. However, only a 
small number of these proofs of concept progress into deployment 
and production. Furthermore, the academic space has focused 
intensively on machine learning model building and benchmarking, 
but too little on operating complex machine learning systems in 
real-world scenarios. In the real world, we observe data scientists 
still managing ML workflows manually to a great extent. The 
paradigm of Machine Learning Operations (MLOps) addresses 
these challenges. In this work, we shed more light on MLOps. By 
conducting a mixed-method study analyzing existing literature and 
tools, as well as interviewing eight experts from the field, we 
uncover four main aspects of MLOps: its principles, components, 
roles, and architecture. From these aspects, we infer a holistic 
definition. The results support a common understanding of the term 
MLOps and its associated concepts, and will hopefully assist 
researchers and professionals in setting up successful ML projects 
in the future.   



MLOps: Overview, Definition, and Architecture Kreuzberger, Kühl, and Hirschl 
 

 
 

REFERENCES 
 
[1] Muratahan Aykol, Patrick Herring, and Abraham Anapolsky. 2020. 

Machine learning for continuous innovation in battery technologies. Nat. 
Rev. Mater. 5, 10 (2020), 725–727. 

[2] Lucas Baier, Fabian Jöhren, and Stefan Seebacher. 2020. Challenges in the 
deployment and operation of machine learning in practice. 27th Eur. Conf. 
Inf. Syst. - Inf. Syst. a Shar. Soc. ECIS 2019 (2020), 0–15. 

[3] Lucas Baier, Niklas Kühl, and Gerhard Satzger. 2019. How to Cope with 
Change? Preserving Validity of Predictive Services over Time. In Hawaii 
International Conference on System Sciences (HICSS-52), Grand Wailea, 
Maui, Hawaii, USA. 

[4] Amitabha Banerjee, Chien Chia Chen, Chien Chun Hung, Xiaobo Huang, 
Yifan Wang, and Razvan Chevesaran. 2020. Challenges and experiences 
with MLOps for performance diagnostics in hybrid-cloud enterprise 
software deployments. OpML 2020 - 2020 USENIX Conf. Oper. Mach. 
Learn. (2020), 7–9. 

[5] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward 
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew 
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve 
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. 2001. 
Manifesto for Agile Software Development. (2001). 

[6] Benjamin Benni, Blay Fornarino Mireille, Mosser Sebastien, Precisio 
Frederic, and Jungbluth Gunther. 2019. When DevOps meets meta-
learning: A portfolio to rule them all. Proc. - 2019 ACM/IEEE 22nd Int. 
Conf. Model Driven Eng. Lang. Syst. Companion, Model. 2019 (2019), 
605–612. DOI:https://doi.org/10.1109/MODELS-C.2019.00092 

[7] Lucas Cardoso Silva, Fernando Rezende Zagatti, Bruno Silva Sette, Lucas 
Nildaimon Dos Santos Silva, Daniel Lucredio, Diego Furtado Silva, and 
Helena De Medeiros Caseli. 2020. Benchmarking Machine Learning 
Solutions in Production. Proc. - 19th IEEE Int. Conf. Mach. Learn. Appl. 
ICMLA 2020 (2020), 626–633. 
DOI:https://doi.org/10.1109/ICMLA51294.2020.00104 

[8] Juliet M. Corbin and Anselm Strauss. 1990. Grounded theory research: 
Procedures, canons, and evaluative criteria. Qual. Sociol. 13, 1 (1990), 3–
21. DOI:https://doi.org/10.1007/BF00988593 

[9] Patrick Debois. 2009. Patrick Debois - devopsdays Ghent. Retrieved March 
25, 2021 from https://devopsdays.org/events/2019-ghent/speakers/patrick-
debois/ 

[10] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Tilmann Rabl, and Volker 
Markl. 2019. Continuous deployment of machine learning pipelines. Adv. 
Database Technol. - EDBT 2019-March, (2019), 397–408. 
DOI:https://doi.org/10.5441/002/edbt.2019.35 

[11] Grigori Fursin. 2021. Collective knowledge: organizing research projects 
as a database of reusable components and portable workflows with 
common interfaces. Philos. Trans. A. Math. Phys. Eng. Sci. 379, 2197 
(2021), 20200211. DOI:https://doi.org/10.1098/rsta.2020.0211 

[12] Barney Glaser and Anselm Strauss. 1967. The discovery of grounded 
theory: strategies for qualitative research.  

[13] Mahendra Kumar Gourisaria, Rakshit Agrawal, G M Harshvardhan, 
Manjusha Pandey, and Siddharth Swarup Rautaray. 2021. Application of 
Machine Learning in Industry 4.0. In Machine Learning: Theoretical 
Foundations and Practical Applications. Springer, 57–87. 

[14] Akshita Goyal. 2020. MLOps - Machine Learning Operations. Int. J. Inf. 
Technol. Insights Transform. (2020). Retrieved April 15, 2021 from 
http://technology.eurekajournals.com/index.php/IJITIT/article/view/655/7
69 

[15] Tuomas Granlund, Aleksi Kopponen, Vlad Stirbu, Lalli Myllyaho, and 
Tommi Mikkonen. 2021. MLOps Challenges in Multi-Organization Setup: 
Experiences from Two Real-World Cases. (2021). Retrieved from 
http://arxiv.org/abs/2103.08937 

[16] Willem Jan van den Heuvel and Damian A. Tamburri. 2020. Model-driven 
ml-ops for intelligent enterprise applications: vision, approaches and 
challenges. Springer International Publishing. 
DOI:https://doi.org/10.1007/978-3-030-52306-0_11 

[17] Ioannis Karamitsos, Saeed Albarhami, and Charalampos Apostolopoulos. 
2020. Applying devops practices of continuous automation for machine 
learning. Inf. 11, 7 (2020), 1–15. 
DOI:https://doi.org/10.3390/info11070363 

[18] Bojan Karlaš, Matteo Interlandi, Cedric Renggli, Wentao Wu, Ce Zhang, 
Deepak Mukunthu Iyappan Babu, Jordan Edwards, Chris Lauren, Andy 
Xu, and Markus Weimer. 2020. Building Continuous Integration Services 
for Machine Learning. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. 
Data Min. (2020), 2407–2415. 
DOI:https://doi.org/10.1145/3394486.3403290 

[19] Rupesh Raj Karn, Prabhakar Kudva, and Ibrahim Abe M. Elfadel. 2019. 
Dynamic autoselection and autotuning of machine learning models for 
cloud network analytics. IEEE Trans. Parallel Distrib. Syst. 30, 5 (2019), 

1052–1064. DOI:https://doi.org/10.1109/TPDS.2018.2876844 
[20] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John 

Bailey, and Stephen Linkman. 2009. Systematic literature reviews in 
software engineering - A systematic literature review. Inf. Softw. Technol. 
51, 1 (2009), 7–15. DOI:https://doi.org/10.1016/j.infsof.2008.09.009 

[21] Rafal Kocielnik, Saleema Amershi, and Paul N Bennett. 2019. Will you 
accept an imperfect ai? exploring designs for adjusting end-user 
expectations of ai systems. In Proceedings of the 2019 CHI Conference on 
Human Factors in Computing Systems, 1–14. 

[22] Ana De Las Heras, Amalia Luque-Sendra, and Francisco Zamora-Polo. 
2020. Machine learning technologies for sustainability in smart cities in the 
post-covid era. Sustainability 12, 22 (2020), 9320. 

[23] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo 
Meirelles. 2019. A survey of DevOps concepts and challenges. ACM 
Comput. Surv. 52, 6 (2019). DOI:https://doi.org/10.1145/3359981 

[24] Yan Liu, Zhijing Ling, Boyu Huo, Boqian Wang, Tianen Chen, and Esma 
Mouine. 2020. Building A Platform for Machine Learning Operations from 
Open Source Frameworks. IFAC-PapersOnLine 53, 5 (2020), 704–709. 
DOI:https://doi.org/10.1016/j.ifacol.2021.04.161 

[25] Alvaro Lopez Garcia, Viet Tran, Andy S. Alic, Miguel Caballer, Isabel 
Campos Plasencia, Alessandro Costantini, Stefan Dlugolinsky, Doina 
Cristina Duma, Giacinto Donvito, Jorge Gomes, Ignacio Heredia Cacha, 
Jesus Marco De Lucas, Keiichi Ito, Valentin Y. Kozlov, Giang Nguyen, 
Pablo Orviz Fernandez, Zdenek Sustr, Pawel Wolniewicz, Marica 
Antonacci, Wolfgang Zu Castell, Mario David, Marcus Hardt, Lara Lloret 
Iglesias, Germen Molto, and Marcin Plociennik. 2020. A cloud-based 
framework for machine learning workloads and applications. IEEE Access 
8, (2020), 18681–18692. 
DOI:https://doi.org/10.1109/ACCESS.2020.2964386 

[26] Lwakatare. 2020. From a Data Science Driven Process to a Continuous 
Delivery Process for Machine Learning Systems. Lect. Notes Comput. Sci. 
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 
12562 LNCS, (2020), 185–201. DOI:https://doi.org/10.1007/978-3-030-
64148-1_12 

[27] Lwakatare. 2020. DevOps for AI - Challenges in Development of AI-
enabled Applications. (2020). 
DOI:https://doi.org/10.23919/SoftCOM50211.2020.9238323 

[28] Ruth W. Macarthy and Julian M. Bass. 2020. An Empirical Taxonomy of 
DevOps in Practice. In 2020 46th Euromicro Conference on Software 
Engineering and Advanced Applications (SEAA), IEEE, 221–228. 
DOI:https://doi.org/10.1109/SEAA51224.2020.00046 

[29] Sasu Mäkinen, Henrik Skogström, Eero Laaksonen, and Tommi 
Mikkonen. 2021. Who Needs MLOps: What Data Scientists Seek to 
Accomplish and How Can MLOps Help? Ml (2021). Retrieved from 
http://arxiv.org/abs/2103.08942 

[30] Rob van der Meulen and Thomas McCall. 2018. Gartner Says Nearly Half 
of CIOs Are Planning to Deploy Artificial Intelligence. Retrieved 
December 4, 2021 from https://www.gartner.com/en/newsroom/press-
releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-to-
deploy-artificial-intelligence 

[31] Steve Mezak. 2018. The Origins of DevOps: What’s in a Name? - 
DevOps.com. Retrieved March 25, 2021 from https://devops.com/the-
origins-of-devops-whats-in-a-name/ 

[32] Antonio Molner Domenech and Alberto Guillén. 2020. Ml-experiment: A 
Python framework for reproducible data science. J. Phys. Conf. Ser. 1603, 
1 (2020). DOI:https://doi.org/10.1088/1742-6596/1603/1/012025 

[33] Michael D. Myers and Michael Newman. 2007. The qualitative interview 
in IS research: Examining the craft. Inf. Organ. 17, 1 (2007), 2–26. 
DOI:https://doi.org/10.1016/j.infoandorg.2006.11.001 

[34] Pulasthi Perera, Roshali Silva, and Indika Perera. 2017. Improve software 
quality through practicing DevOps. In 2017 Seventeenth International 
Conference on Advances in ICT for Emerging Regions (ICTer), 1–6. 

[35] Alexandra Posoldova. 2020. Machine Learning Pipelines: From Research 
to Production. IEEE POTENTIALS (2020). 

[36] Cedric Renggli, Luka Rimanic, Nezihe Merve Gürel, Bojan Karlaš, 
Wentao Wu, and Ce Zhang. 2021. A Data Quality-Driven View of MLOps. 
1 (2021), 1–12. Retrieved from http://arxiv.org/abs/2102.07750 

[37] Winston W. Royce. 1970. Managing the Development of Large Software 
Systems. (1970). 

[38] Martin Rütz. 2019. DEVOPS: A SYSTEMATIC LITERATURE 
REVIEW. Inf. Softw. Technol. (2019). 

[39] Ulrike Schultze and Michel Avital. 2011. Designing interviews to generate 
rich data for information systems research. Inf. Organ. 21, 1 (2011), 1–16. 
DOI:https://doi.org/10.1016/j.infoandorg.2010.11.001 

[40] Ola Spjuth, Jens Frid, and Andreas Hellander. 2021. The machine learning 
life cycle and the cloud: implications for drug discovery. Expert Opin. 
Drug Discov. 00, 00 (2021), 1–9. 
DOI:https://doi.org/10.1080/17460441.2021.1932812 



MLOps Kreuzberger, Kühl, and Hirschl 
 

 

[41] Damian A. Tamburri. 2020. Sustainable MLOps: Trends and Challenges. 
Proc. - 2020 22nd Int. Symp. Symb. Numer. Algorithms Sci. Comput. 
SYNASC 2020 (2020), 17–23. 
DOI:https://doi.org/10.1109/SYNASC51798.2020.00015 

[42] Chandrasekar Vuppalapati, Anitha Ilapakurti, Karthik Chillara, Sharat 
Kedari, and Vanaja Mamidi. 2020. Automating Tiny ML Intelligent 
Sensors DevOPS Using Microsoft Azure. Proc. - 2020 IEEE Int. Conf. Big 
Data, Big Data 2020 (2020), 2375–2384. 
DOI:https://doi.org/10.1109/BigData50022.2020.9377755 

[43] Jane Webster and Richard Watson. 2002. Analyzing the Past to Prepare for 
the Future: Writing a Literature Review. MIS Q. 26, 2 (2002), xiii–xxiii. 
DOI:https://doi.org/10.1.1.104.6570 

[44] Chaoyu Wu, E. Haihong, and Meina Song. 2020. An Automatic Artificial 
Intelligence Training Platform Based on Kubernetes. ACM Int. Conf. 
Proceeding Ser. (2020), 58–62. 
DOI:https://doi.org/10.1145/3378904.3378921 

[45] Geum Seong Yoon, Jungsu Han, Seunghyung Lee, and Jong Won Kim. 
2020. DevOps Portal Design for SmartX AI Cluster Employing Cloud-
Native Machine Learning Workflows. Springer International Publishing. 
DOI:https://doi.org/10.1007/978-3-030-39746-3_54 

[46] Yue Zhou, Yue Yu, and Bo Ding. 2020. Towards MLOps: A Case Study 
of ML Pipeline Platform. Proc. - 2020 Int. Conf. Artif. Intell. Comput. Eng. 
ICAICE 2020 (2020), 494–500. 
DOI:https://doi.org/10.1109/ICAICE51518.2020.00102 

 
  



MLOps: Overview, Definition, and Architecture Kreuzberger, Kühl, and Hirschl 
 

 
 

Appendix 
Table 1. List of evaluated technologies 

 
Technology 
Name 

Description Sources 

Open-source 
examples 

TensorFlow 
Extended 

TensorFlow Extended (TFX) is a configuration framework 
providing libraries for each of the tasks of an end-to-end ML 
pipeline. Examples are data validation, data distribution 
checks, model training, and model serving. 

[7,10,26,46] [δ, θ]  

Airflow Airflow is a task and workflow orchestration tool, which can 
also be used for ML workflow orchestration. It is also used 
for orchestrating data engineering jobs. Tasks are executed 
according to directed acyclic graphs (DAGs). 

[26,40,41] [α, β, ζ, η] 

Kubeflow Kubeflow is a Kubernetes-based end-to-end ML platform. 
Each Kubeflow component is wrapped into a container and 
orchestrated by Kubernetes. Also, each task of an ML 
workflow pipeline is handled with one container. 

[26,35,40,41,46] [α, β, γ, δ, ζ, η, θ] 
 
 

MLflow MLflow is an ML platform that allows for the management 
of the ML lifecycle end-to-end. It provides an advanced 
experiment tracking functionality, a model registry, and 
model serving component. 

[11,32,35] [α, γ, ε, ζ, η, θ] 
 
 

Commercial 
examples 

Databricks 
managed 
MLflow 

The Databricks platform offers managed services based on 
other cloud providers’ infrastructure, e.g., managed 
MLflow. 

[26,32,35,40] [α, ζ] 

Amazon 
CodePipeline 

Amazon CodePipeline is a CI/CD automation tool to 
facilitate the build, test, and delivery steps. It also allows one 
to schedule and manage the different stages of an ML 
pipeline. 

[18] [γ] 

Amazon 
SageMaker 

With SageMaker, Amazon AWS offers an end-to-end ML 
platform. It provides, out-of-the-box, a feature store, 
orchestration with SageMaker Pipelines, and model serving 
with SageMaker endpoints. 

[7,11,18,24,35] [α, β, γ, ζ, θ]  

Azure DevOps 
Pipelines 

Azure DevOps Pipelines is a CI/CD automation tool to 
facilitate the build, test, and delivery steps. It also allows one 
to schedule and manage the different stages of an ML 
pipeline. 

[18,42] [γ, ε] 

Azure ML Microsoft Azure offers, in combination with Azure DevOps 
Pipelines and Azure ML, an end-to-end ML platform. 

[6,24,25,35,42] [α, γ, ε, ζ, η, θ] 
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GCP - Vertex 
AI 

GCP offers, along with Vertex AI, a fully managed end-to-
end platform. In addition, they offer a managed Kubernetes 
cluster with Kubeflow as a service. 

[25,35,40,41] [α, γ, δ, ζ, θ] 

IBM Cloud 
Pak for Data 

(IBM Watson 
Studio) 

IBM Cloud Pak for Data combines a list of software in a 
package that offers data and ML capabilities. 

[41] [γ] 

 
Table 2. List of interview partners 

Interviewee 
pseudonym 

Job Title Years of 
experience with 
DevOps 

Years of 
experience with 
ML 

Industry Company Size 
(number of 
employees) 

Alpha (α) Senior Data Platform 
Engineer  

3 4 Sporting Goods / Retail 60,000 

Beta (β) Solution architect / 
Specialist for ML and AI 

6 10 IT Services / Cloud 
Provider / Cloud 
Computing 

25,000 

Gamma (γ) AI Architect / Consultant  5 7 Cloud Provider 350,000 

Delta (δ) Technical Marketing & 
Manager in ML / AI 

10 5 Cloud Provider 139,995 

Epsilon (ε) Technical Architect - Data 
& AI 

1 2 Cloud Provider 160,000 

Zeta (ζ) ML engineering 
Consultant 

5 6 Consulting Company 569,000 

Eta (η) Engineering Manager in 
AI / Senior Deep Learning 
Engineer  

10 10 Conglomerate (multi-
industry) 

400,000 

Theta (θ) ML Platform Product 
Lead 

8 10 Music / audio streaming 6,500 
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Figure 5. Intersection of disciplines of the MLOps paradigm 
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