
RobotframeworkExtensions

v. 0.10.0

Holger Queckenstedt

06.04.2023

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Description 2

2.1 Keywords . 2

2.1.1 pretty print . 2

2.1.2 normalize path . 5

3 Collection.py 7

3.1 Class: Collection . 7

3.1.1 Keyword: pretty print . 7

3.1.2 Keyword: normalize path . 8

4 Appendix 9

5 History 10

A

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The RobotframeworkExtensions extend the functionality of the Robot Framework by some useful keywords.

This covers for example string operations like normalizing a path and a pretty print method (especially for composite
Python data types).

The sources of the RobotframeworkExtensions are available in GitHub.

Informations about how to install the RobotframeworkExtensions can be found in the README.

The RobotframeworkExtensions keywords are implemented in Python (as PythonExtensionsCollection) and
the implementation can also be found in GitHub.

Informations about how to install the PythonExtensionsCollection can be found in the README.

1

https://github.com/test-fullautomation/robotframework-extensions-collection
https://github.com/test-fullautomation/robotframework-extensions-collection/blob/develop/README.rst
https://github.com/test-fullautomation/python-extensions-collection
https://github.com/test-fullautomation/python-extensions-collection/blob/develop/README.rst

CHAPTER 2. DESCRIPTION

Chapter 2

Description

2.1 Keywords

The Collection module of the RobotframeworkExtensions is the interface between the PythonExtension-
sCollection and the RobotFramework AIO and contains the keyword definitions that can be imported in the following
way:

Library RobotframeworkExtensions.Collection WITH NAME rf.extensions

We recommend to use WITH NAME to shorten the long library name a little bit. That will make the robot code
easier to read.

2.1.1 pretty print

The pretty_print keyword logs the content of parameters of any Python data type. Simple data types are logged
directly. Composite data types are resolved before.

The output contains for every parameter:

� the type

� the total number of elements inside (e.g. the number of keys inside a dictionary)

� the counter number of the current element

� the value

The trace level for output is INFO . The output is also returned as list of strings.

2

CHAPTER 2. DESCRIPTION 2.1. KEYWORDS

Example

The following RobotFramework AIO code defines - step by step - a parameter of composite data type (nested arrays
and dictionaries) and prints the content of this with pretty_print :

set_test_variable @{aItems1} ${33}
... XYZ

set_test_variable @{aItems} A
... ${22}
... ${True}
... ${aItems1}

set_test_variable &{dItems1} A=${1}
... B=${2}

set_test_variable &{dItems} K1=value
... K2=${aItems}
... K3=${10}
... K4=${dItems1}

rf.extensions.pretty_print ${dItems}

Result

[DOTDICT] (4/1) > {K1} [STR] : 'value'
[DOTDICT] (4/2) > {K2} [LIST] (4/1) > [STR] : 'A'
[DOTDICT] (4/2) > {K2} [LIST] (4/2) > [INT] : 22
[DOTDICT] (4/2) > {K2} [LIST] (4/3) > [BOOL] : True
[DOTDICT] (4/2) > {K2} [LIST] (4/4) > [LIST] (2/1) > [INT] : 33
[DOTDICT] (4/2) > {K2} [LIST] (4/4) > [LIST] (2/2) > [STR] : 'XYZ'
[DOTDICT] (4/3) > {K3} [INT] : 10
[DOTDICT] (4/4) > {K4} [DOTDICT] (2/1) > {A} [INT] : 1
[DOTDICT] (4/4) > {K4} [DOTDICT] (2/2) > {B} [INT] : 2

Every line of output has to be interpreted strictly from left to right.

For example the meaning of the fifth line of output

[DOTDICT] (4/2) > {K2} [LIST] (4/4) > [LIST] (2/1) > [INT] : 33

is:

� The type of input parameter dItems is dotdict

� The dictionary contains 4 keys

� The current line gives information about the second key of the dictionary

� The name of the second key is K2

� The value of the second key is of type list

� The list contains 4 elements

� The current line gives information about the fourth element of the list

� The fourth element of the list is of type list

� The list contains 2 elements

� The current line gives information about the first element of the list

� The first element of the list is of type int and has the value 33

Types are encapsulated in square brackets, counter in round brackets and key names are encapsulated in curly brackets.

3

CHAPTER 2. DESCRIPTION 2.1. KEYWORDS

Prefix strings

Prefix strings (sPrefix) can be used to give the lines of output a meaning, or they are used just to print also the
name of the pretty printed variable (oData).

Example

rf.extensions.pretty_print ${dItems} PrefixString

Result

PrefixString : [DOTDICT] (4/1) > {K1} [STR] : 'value'
PrefixString : [DOTDICT] (4/2) > {K2} [LIST] (4/1) > [STR] : 'A'
PrefixString : [DOTDICT] (4/2) > {K2} [LIST] (4/2) > [INT] : 22
PrefixString : [DOTDICT] (4/2) > {K2} [LIST] (4/3) > [BOOL] : True
PrefixString : [DOTDICT] (4/2) > {K2} [LIST] (4/4) > [LIST] (2/1) > [INT] : 33
PrefixString : [DOTDICT] (4/2) > {K2} [LIST] (4/4) > [LIST] (2/2) > [STR] : 'XYZ'
PrefixString : [DOTDICT] (4/3) > {K3} [INT] : 10
PrefixString : [DOTDICT] (4/4) > {K4} [DOTDICT] (2/1) > {A} [INT] : 1
PrefixString : [DOTDICT] (4/4) > {K4} [DOTDICT] (2/2) > {B} [INT] : 2

4

CHAPTER 2. DESCRIPTION 2.1. KEYWORDS

2.1.2 normalize path

The normalize_path keyword normalizes local paths, paths to local network resources and internet addresses.

Background

It’s not easy to handle paths - and especially the path separators - independent from the operating system.

Under Linux it is obvious that single slashes are used as separator within paths. Whereas the Windows explorer uses
single backslashes. In both operating systems web addresses contains single slashes as separator when displayed in
web browsers.

Using single backslashes within code - as content of string variables - is dangerous because the combination of a
backslash and a letter can be interpreted as escape sequence - and this is maybe not the effect a user wants to have.

To avoid unwanted escape sequences backslashes have to be masked (by the usage of two of them: "\\"). But
also this could not be the best solution because there are also applications (like the Windows explorer) that are not
able to handle masked backslashes. They expect to get single backslashes within a path.

Preparing a path for best usage within code also includes collapsing redundant separators and up-level references.
Python already provides functions to do this, but the outcome (path contains slashes or backslashes) depends on the
operating system. And like already mentioned above also under Windows backslashes might not be the preferred
choice.

It also has to be considered that redundant separators at the beginning of an address of a local network resource
(like \\server.com) and or inside an internet address (like https:\\server.com) must not be collapsed!

Unfortunately the Python function normpath does not consider this context.

To give the user full control about the format of a path, independent from the operating system and independent if
it’s a local path, a path to a local network resource or an internet address, the keyword normalize_path provides
lot’s of parameters to influence the result.

Example 1

Variable containing a path with:

� different types of path separators

� redundant path separators (but backslashes have to be masked in the definition of the variable, this is not an
unwanted redundancy)

� up-level references

set_test_variable ${sPath} C:\\\\subfolder1///../subfolder2\\\\\\\\../subfolder3\\\\

Printing the content of sPath shows how the path looks like when the masking of the backslashes is resolved:

C:\\subfolder1///../subfolder2\\\\../subfolder3\\

Usage of the normalize_path keyword:

${sPath} rf.extensions.normalize_path ${sPath}

Result (content of sPath):

C:/subfolder3

In case we need the Windows version (with masked backslashes instead of slashes):

${sPath} rf.extensions.normalize_path ${sPath} bWin=${True}

Result (content of sPath):

C:\\subfolder3

The masking of backslashes can be deactivated:

${sPath} rf.extensions.normalize_path ${sPath} bWin=${True} bMask=${False}

5

CHAPTER 2. DESCRIPTION 2.1. KEYWORDS

Result (content of sPath):

C:\subfolder3

Example 2

Variable containing a path of a local network resource (path starts with two masked backslashes):

set_test_variable ${sPath} \\\\anyserver.com\\\\part1//part2\\\\part3/part4

Result of normalization:

//anyserver.com/part1/part2/part3/part4

Example 3

Variable containing an internet address:

set_test_variable ${sPath} http:\\\\anyserver.com\\\\part1//part2\\\\part3/part4

Result of normalization:

http://anyserver.com/part1/part2/part3/part4

6

CHAPTER 3. COLLECTION.PY

Chapter 3

Collection.py

The Collection module is the interface between the PythonExtensionsCollection and the Robot Framework.

This library containing the keyword definitions, can be imported in the following way:

Library RobotframeworkExtensions.Collection WITH NAME rf.extensions

3.1 Class: Collection

Imported by :

from RobotframeworkExtensions.Collection import Collection

Module main class

3.1.1 Keyword: pretty print

The pretty print keyword logs the content of parameters of any Python data type (input: oData).

Simple data types are logged directly. Composite data types are resolved before.

The output contains for every parameter:

� the type

� the total number of elements inside (e.g. the number of keys inside a dictionary)

� the counter number of the current element

� the value

The trace level for output is INFO.

The output is also returned as list of strings.

Arguments:

� oData

/ Condition: required / Type: any Python type /

Data to be pretty printed

� sPrefix

/ Condition: optional / Type: str / Default : None /

If not None, this prefix string is added to every output line.

Returns:

� listOutLines (list)

/ Type: list /

List of strings containing the resolved data structure of oData (same content as printed to console).

7

CHAPTER 3. COLLECTION.PY 3.1. CLASS: COLLECTION

3.1.2 Keyword: normalize path

The normalize path keyword normalizes local paths, paths to local network resources and internet addresses

Arguments:

� sPath

/ Condition: required / Type: str /

The path to be normalized

� bWin

/ Condition: optional / Type: bool / Default : False /

If True then the returned path contains masked backslashes as separator, otherwise slashes

� sReferencePathAbs

/ Condition: optional / Type: str / Default : None /

In case of sPath is relative and sReferencePathAbs (expected to be absolute) is given, then the returned
absolute path is a join of both input paths

� bConsiderBlanks

/ Condition: optional / Type: bool / Default : False /

If True then the returned path is encapsulated in quotes - in case of the path contains blanks

� bExpandEnvVars

/ Condition: optional / Type: bool / Default : True /

If True then in the returned path environment variables are resolved, otherwise not.

� bMask

/ Condition: optional / Type: bool / Default : True (requires bWin=True) /

If bWin is True and bMask is True then the returned path contains masked backslashes as separator.

If bWin is True and bMask is False then the returned path contains single backslashes only - this might be
required for applications, that are not able to handle masked backslashes.

In case of bWin is False bMask has no effect.

Returns:

� sPath

/ Type: str /

The normalized path (is None in case of sPath is None)

8

CHAPTER 4. APPENDIX

Chapter 4

Appendix

About this package:

Table 4.1: Package setup

Setup parameter Value

Name RobotframeworkExtensions

Version 0.10.0

Date 06.04.2023

Description Additional Robot Framework keywords

Package URL robotframework-extensions-collection

Author Holger Queckenstedt

Email Holger.Queckenstedt@de.bosch.com

Language Programming Language :: Python :: 3

License License :: OSI Approved :: Apache Software License

OS Operating System :: OS Independent

Python required >=3.0

Development status Development Status :: 4 - Beta

Intended audience Intended Audience :: Developers

Topic Topic :: Software Development

9

https://github.com/test-fullautomation/robotframework-extensions-collection
mailto:Holger.Queckenstedt@de.bosch.com

CHAPTER 5. HISTORY

Chapter 5

History

0.1.0 01/2022

Initial version

0.2.0 03/2022

Setup maintenance

0.3.0 05/2022

Documentation tool chain switched to GenPackageDoc

0.4.0 24.05.2022

- Documentation rebuild with GenPackageDoc v. 0.13.0
- Code maintenance

0.5.0 31.05.2022

Adapted to GenPackageDoc v. 0.15.0

0.6.0 02.06.2022

- Documentation rebuild with GenPackageDoc v. 0.16.0
- Code maintenance

0.7.0 28.06.2022

PythonExtensionsCollection updated to version 0.8.0

0.8.0 27.07.2022

History reworked (requires GenPackageDoc v. 0.26.0 at least)

0.9.0 29.03.2023

Prefix parameter added to keyword pretty print

0.10.0 06.04.2023

Added logging of pretty print output to console

RobotframeworkExtensions.pdf

Created at 08.06.2023 - 12:23:03

by GenPackageDoc v. 0.40.3

10

	1 Introduction
	2 Description
	2.1 Keywords
	2.1.1 pretty_print
	2.1.2 normalize_path

	3 Collection.py
	3.1 Class: Collection
	3.1.1 Keyword: pretty_print
	3.1.2 Keyword: normalize_path

	4 Appendix
	5 History

