
FICOFICO R©R©Xpress OptimizationXpress Optimization

36.01
Last update 30 April 2020

FICO R© Xpress Optimizer Python interface
User’s manual

©1983–2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair IsaacCorporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose,reproduce, make derivative works, use, or allow others to use it except solely for internal evaluationpurposes to determine whether to purchase a license to the software described in this documentation, oras otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate).Use of this documentation and the software described in it must conform strictly to the foregoingpermitted uses, and no other use is permitted.
The information in this documentation is subject to change without notice. If you find any problems in thisdocumentation, please report them to us in writing. Neither FICO nor its affiliates warrant that thisdocumentation is error-free, nor are there any other warranties with respect to the documentation exceptas may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,express or implied, including, but not limited to, non-infringement, merchantability and fitness for aparticular purpose. Portions of this documentation and the software described in it may contain copyrightof various authors and may be licensed under certain third-party licenses identified in the software,documentation, or both.
In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, orconsequential damages, including lost profits, arising out of the use of this documentation or the softwaredescribed in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO andits affiliates have no obligation to provide maintenance, support, updates, enhancements, or modificationsexcept as required to licensed users under a license agreement.
FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registeredtrademark of Fair Isaac Corporation in other countries. Other product and company names herein may betrademarks of their respective owners.
Xpress Optimizer
Deliverable Version: A
Last Revised: 30 April 2020
Version 36.01

Contents

1 Introduction 11.1 Outline . 11.2 Installing the Python Xpress module . 11.2.1 Installation from the Python Package Index (PyPI) 21.2.2 Installation from Conda . 21.2.3 Troubleshooting the installation . 2
2 Modeling an optimization problem 32.1 Getting started . 32.2 Creating a problem . 32.3 Variables . 4Variable names and Python objects . 52.4 Constraints . 62.5 Objective function . 82.6 Compact formulation . 82.7 Special Ordered Sets (SOSs) . 92.8 Indicator constraints . 92.9 Piecewise linear functions . 102.10 General constraints . 112.11 Using loadproblem for efficiency . 122.12 Modeling and solving nonlinear problems . 132.13 Solving a problem . 152.14 Querying a problem . 152.15 Reading and writing a problem . 182.16 Hints for building models efficiently . 182.17 Exceptions . 19
3 Using Python numerical libraries 213.1 Using NumPy in the Xpress Python interface . 213.2 Products of NumPy arrays . 23
4 Controls and Attributes 244.1 Controls . 244.2 Examples . 254.3 Attributes . 254.4 Examples . 264.5 Accessing controls and attributes as object members . 26
5 Using Callbacks 295.1 Introduction . 29
6 Examples of use 316.1 Creating simple problems . 316.1.1 Generating a small Linear Programming problem 316.1.2 A Mixed Integer Linear Programming problem . 326.2 Modeling examples . 33

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

6.2.1 A simple model . 336.2.2 Using IIS to investigate an infeasible problem . 336.2.3 Modeling a problem using Python lists and vectors 346.2.4 A knapsack problem . 346.2.5 A Min-cost-flow problem using NumPy . 356.2.6 A nonlinear model . 366.2.7 Finding the maximum-area n-gon . 366.2.8 Solving the n-queens problem . 376.2.9 Solving Sudoku problems . 376.3 Examples using NumPy . 386.3.1 Using NumPy multidimensional arrays to create variables 386.3.2 Using the dot product to create arrays of expressions 396.3.3 Using the Dot product to create constraints and quadratic functions 396.3.4 Using NumPy to create quadratic optimization problems 406.4 Advanced examples: callbacks and problem querying, modifying, and analysis 406.4.1 Visualize the branch-and-bound tree of a problem 406.4.2 Query and modify a simple problem . 426.4.3 Change a problem after solution . 436.4.4 Comparing the coefficients of two equally sized problems 446.4.5 Combining modeling and API functions . 456.4.6 A simple Traveling Salesman Problem (TSP) solver 466.4.7 Solving a nonconvex MIQCQP . 486.5 Translated Mosel examples . 57
7 Reference Manual 597.1 Using this chapter . 59Format of the reference . 607.2 Global methods of the Xpress module . 607.3 Methods of the class problem . 617.4 Methods for branching objects . 637.5 Methods for adding/removing callbacks of a problem object 637.6 Methods to be used within a callback of a problem object 64object.extractLinear . 65object.extractQuadratic . 66xpress.abs . 67xpress.acos . 68xpress.addcbmsghandler . 69xpress.And . 70xpress.asin . 71xpress.atan . 72xpress.cos . 73xpress.Dot . 74xpress.erf . 76xpress.erfc . 77xpress.evaluate . 78xpress.examples . 80xpress.exp . 81xpress.featurequery . 82xpress.free . 83xpress.getbanner . 84xpress.getcheckedmode . 85xpress.getdaysleft . 86xpress.getlasterror . 87xpress.getlicerrmsg . 88xpress.getversion . 89

Fair Isaac Corporation Confidential and Proprietary Information ii

Contents

xpress.init . 90xpress.log . 91xpress.log10 . 92xpress.manual . 93xpress.max . 94xpress.min . 95xpress.Or . 96xpress.pwl . 97xpress.Prod . 98xpress.removecbmsghandler . 99xpress.setarchconsistency . 100xpress.setcheckedmode . 101xpress.setdefaults . 102xpress.setdefaultcontrol . 103xpress.sign . 104xpress.sin . 105xpress.sqrt . 106xpress.Sum . 107xpress.tan . 108xpress.user . 109xpress.vars . 110problem.addcbbariteration . 112problem.addcbbarlog . 114problem.addcbchecktime . 115problem.addcbchgbranchobject . 116problem.addcbcutlog . 117problem.addcbdestroymt . 118problem.addcbgapnotify . 119problem.addcbgloballog . 121problem.addcbinfnode . 122problem.addcbintsol . 123problem.addcblplog . 124problem.addcbmessage . 125problem.addcbmipthread . 126problem.addcbnewnode . 127problem.addcbnodecutoff . 128problem.addcboptnode . 129problem.addcbpreintsol . 130problem.addcbprenode . 131problem.addcbusersolnotify . 132problem.addcoefs . 133problem.addcols . 135problem.addConstraint . 137problem.addcuts . 138problem.adddfs . 139problem.addgencons . 140problem.addIndicator . 141problem.addmipsol . 142problem.addpwlcons . 143problem.addqmatrix . 144problem.addrows . 145problem.addsetnames . 146problem.addSOS . 147problem.addtolsets . 148problem.addVariable . 149

Fair Isaac Corporation Confidential and Proprietary Information iii

Contents

problem.addvars . 150problem.basisstability . 151problem.btran . 152problem.calcobjective . 153problem.calcreducedcosts . 154problem.calcslacks . 155problem.calcsolinfo . 156problem.cascade . 157problem.cascadeorder . 158problem.chgbounds . 159problem.chgcoef . 160problem.chgcoltype . 161problem.chgcascadenlimit . 162problem.chgccoef . 163problem.chgdeltatype . 164problem.chgdf . 165problem.chgglblimit . 166problem.chgmcoef . 167problem.chgmqobj . 168problem.chgnlcoef . 169problem.chgobj . 170problem.chgobjsense . 171problem.chgqobj . 172problem.chgqrowcoeff . 173problem.chgrhs . 174problem.chgrhsrange . 175problem.chgrowstatus . 176problem.chgrowtype . 177problem.chgrowwt . 178problem.chgtolset . 179problem.chgvar . 180problem.construct . 182problem.copy . 183problem.copycallbacks . 184problem.copycontrols . 185problem.crossoverlpsol . 186problem.delcoefs . 187problem.delConstraint . 188problem.delcpcuts . 189problem.delcuts . 190problem.delgencons . 191problem.delindicators . 192problem.delpwlcons . 193problem.delqmatrix . 194problem.delSOS . 195problem.deltolsets . 196problem.delVariable . 197problem.delvars . 198problem.dumpcontrols . 199problem.estimaterowdualranges . 200problem.evaluatecoef . 201problem.evaluateformula . 202problem.fixglobals . 203problem.fixpenalties . 204problem.ftran . 205

Fair Isaac Corporation Confidential and Proprietary Information iv

Contents

problem.getAttrib . 206problem.getattribinfo . 207problem.getbasis . 208problem.getbasisval . 209problem.getccoef . 210problem.getcoef . 211problem.getcoefformula . 212problem.getcoefs . 213problem.getcolinfo . 214problem.getcols . 215problem.getcoltype . 216problem.getConstraint . 217problem.getControl . 218problem.getcontrolinfo . 219problem.getcpcutlist . 220problem.getcpcuts . 221problem.getcutlist . 222problem.getcutmap . 223problem.getcutslack . 224problem.getdirs . 225problem.getdf . 226problem.getDual . 227problem.getdualray . 228problem.getgencons . 229problem.getglobal . 230problem.getiisdata . 231problem.getIndex . 233problem.getIndexFromName . 234problem.getindicators . 235problem.getinfeas . 236problem.getlastbarsol . 237problem.getlasterror . 238problem.getlb . 239problem.getlpsol . 240problem.getlpsolval . 241problem.getmessagestatus . 242problem.getmipsol . 243problem.getmipsolval . 244problem.getmqobj . 245problem.getnamelist . 246problem.getobj . 247problem.getObjVal . 248problem.getpivotorder . 249problem.getpivots . 250problem.getpresolvebasis . 251problem.getpresolvemap . 252problem.getpresolvesol . 253problem.getprimalray . 254problem.getProbStatus . 255problem.getProbStatusString . 256problem.getpwlcons . 257problem.getqobj . 258problem.getqrowcoeff . 259problem.getqrowqmatrix . 260problem.getqrowqmatrixtriplets . 261

Fair Isaac Corporation Confidential and Proprietary Information v

Contents

problem.getqrows . 262problem.getRCost . 263problem.getrhs . 264problem.getrhsrange . 265problem.getrowinfo . 266problem.getrows . 267problem.getrowstatus . 268problem.getrowtype . 269problem.getrowwt . 270problem.getscaledinfeas . 271problem.getSlack . 272problem.getslpsol . 273problem.getSolution . 274problem.getSOS . 276problem.gettolset . 277problem.getub . 278problem.getunbvec . 279problem.getvar . 280problem.getVariable . 282problem.globalsol . 283problem.hasdualray . 284problem.hasprimalray . 285problem.iisall . 286problem.iisclear . 287problem.iisfirst . 288problem.iisisolations . 289problem.iisnext . 290problem.iisstatus . 291problem.iiswrite . 292problem.interrupt . 293problem.loadbasis . 294problem.loadbranchdirs . 295problem.loadcoefs . 296problem.loadcuts . 298problem.loaddelayedrows . 299problem.loaddfs . 300problem.loaddirs . 301problem.loadlpsol . 302problem.loadmipsol . 303problem.loadmodelcuts . 304problem.loadpresolvebasis . 305problem.loadpresolvedirs . 306problem.loadproblem . 307problem.loadsecurevecs . 309problem.loadtolsets . 310problem.loadvars . 311problem.lpoptimize . 313problem.mipoptimize . 314problem.msaddcustompreset . 315problem.msaddjob . 316problem.msaddpreset . 317problem.msclear . 318problem.name . 319problem.nlpoptimize . 320problem.objsa . 321

Fair Isaac Corporation Confidential and Proprietary Information vi

Contents

problem.postsolve . 322problem.presolve . 323problem.presolverow . 324problem.printmemory . 325problem.printevalinfo . 326problem.read . 327problem.readbasis . 328problem.readbinsol . 329problem.readdirs . 330problem.readslxsol . 331problem.refinemipsol . 332problem.reinitialize . 333problem.removecbbariteration . 334problem.removecbbarlog . 335problem.removecbchecktime . 336problem.removecbchgbranchobject . 337problem.removecbcutlog . 338problem.removecbdestroymt . 339problem.removecbgapnotify . 340problem.removecbgloballog . 341problem.removecbinfnode . 342problem.removecbintsol . 343problem.removecblplog . 344problem.removecbmessage . 345problem.removecbmipthread . 346problem.removecbnewnode . 347problem.removecbnodecutoff . 348problem.removecboptnode . 349problem.removecbpreintsol . 350problem.removecbprenode . 351problem.removecbusersolnotify . 352problem.repairinfeas . 353problem.repairweightedinfeas . 355problem.repairweightedinfeasbounds . 357problem.reset . 359problem.restore . 360problem.rhssa . 361problem.save . 362problem.scale . 363problem.scaling . 364problem.setbranchbounds . 365problem.setbranchcuts . 366problem.setcbcascadeend . 367problem.setcbcascadestart . 368problem.setcbcascadevar . 369problem.setcbcascadevarfail . 370problem.setcbcoefevalerror . 371problem.setcbconstruct . 372problem.setcbdestroy . 374problem.setcbdrcol . 375problem.setcbintsol . 376problem.setcbiterend . 377problem.setcbiterstart . 378problem.setcbitervar . 379problem.setcbmessage . 380

Fair Isaac Corporation Confidential and Proprietary Information vii

Contents

problem.setcbmsjobend . 381problem.setcbmsjobstart . 382problem.setcbmswinner . 383problem.setcboptnode . 384problem.setcbprenode . 385problem.setcbslpend . 386problem.setcbslpnode . 387problem.setcbslpstart . 388problem.setControl . 389problem.setcurrentiv . 390problem.setdefaultcontrol . 391problem.setdefaults . 392problem.setindicators . 393problem.setlogfile . 394problem.setmessagestatus . 395problem.setObjective . 396problem.setprobname . 397problem.solve . 398problem.storebounds . 399problem.storecuts . 400problem.strongbranch . 401problem.strongbranchcb . 402problem.tune . 403problem.tunerreadmethod . 404problem.tunerwritemethod . 405problem.unconstruct . 406problem.updatelinearization . 407problem.validate . 408problem.validatekkt . 409problem.validaterow . 410problem.validatevector . 411problem.write . 412problem.writebasis . 413problem.writebinsol . 414problem.writedirs . 415problem.writeprtsol . 416problem.writeslxsol . 417problem.writesol . 418branchobj.addbounds . 419branchobj.addbranches . 420branchobj.addcuts . 421branchobj.addrows . 422branchobj.getbounds . 423branchobj.getbranches . 424branchobj.getid . 425branchobj.getlasterror . 426branchobj.getrows . 427branchobj.setpreferredbranch . 428branchobj.setpriority . 429branchobj.store . 430branchobj.validate . 431

Fair Isaac Corporation Confidential and Proprietary Information viii

Contents

Appendix 432

A Contacting FICO 432Product support . 432Product education . 432Product documentation . 432Sales and maintenance . 433Related services . 433FICO Community . 433About FICO . 433

Index 434

Fair Isaac Corporation Confidential and Proprietary Information ix

CHAPTER 1

Introduction

The Xpress Python interface allows for creating and solving optimization problems using the Pythonprogramming language and the FICO Xpress Optimizer library. This manual describes how to use theXpress Python interface.

1.1 Outline

The following chapters cover:
� Creating, handling, solving, and querying optimization problems (Chapter 2);
� Using Python numerical libraries such as NumPy to create optimization problems (Chapter 3);
� Setting and getting the value of parameters (controls and attributes) of a problem (Chapter 4);
� Using Python functions as callbacks for the Xpress Optimizer and the Xpress Nonlinear solver(Chapter 5);
� Several examples of usage of the Xpress Python interface (Chapter 6);
� A reference with all functions and parameters in the Python interface (Chapter 7).

It is assumed here that the reader has basic understanding of the Python programming language.Ample documentation on Python is available at http://docs.python.org, including a tutorial and areference manual. Unless specified otherwise, Python 3 is used in all of the examples and codesamples throughout this manual. The current version of the Xpress Python interface works on Python3.5-3.8 and on Python 2.7.
Other components of the FICO-Xpress Optimization suite can interface with Python, albeit not the samePython versions. The Mosel module python3, for example, works with Python 3.4.3 or later. See theMosel Language Reference Manual for specifics, and more in general the Xpress Insight InstallationGuide, Appendix A: Supported Platforms for information on Python support.

1.2 Installing the Python Xpress module

The Xpress Python module can be installed from the two main Python repositories: The PythonPackage Index (PyPI) and the Conda repository. Installing the Xpress Python interface does not requireone to install the whole Xpress suite, as all necessary libraries are provided.
The install comes with a copy of the community license, which allows for solving problems with up to5000 between variables and constraints. If you already have an Xpress license, please make sure to set

Fair Isaac Corporation Confidential and Proprietary Information 1

http://docs.python.org

Introduction

the XPRESS environment variable to the directory where the license file xpauth.xpr is located. Seealso Section 1.2.3 below.
The manual is located in the xpress/doc subdirectory of the Python installation folder, and itslocation can be identified by invoking the xpress.manual() function.

1.2.1 Installation from the Python Package Index (PyPI)

The Xpress Python interface is available on the PyPI server and can be installed with the followingcommand:
pip install xpress

Packages for Python 2.7 and 3.5-3.8 are available, for Windows, Linux, and MacOS. The packagecontains the Python interface module, its documentation in PDF format, the Xpress Optimizer’slibraries, various examples of use, and a copy of the community license (seehttp://subscribe.fico.com/xpress-optimization-community-license). Online documentation can beviewed at the FICO Xpress Optimization Help page.
1.2.2 Installation from Conda

A Conda package is available for download with the following command:
conda install -c fico-xpress xpress

The content of the Conda package is the same as that of the PyPI package. Similar to the PyPIpackage, Conda packages for Python 2.7 and 3.5-3.8 are available, for Windows, Linux, and MacOS.
1.2.3 Troubleshooting the installation

Whether the Xpress Python module is downloaded from PyPI or from the Conda server, there are a fewremarks that might help ensure that the installation works right away. The advice below is independentof the Python platform (PyCharm, Spyder, etc.) that may be in use.
The Xpress Python interface uses the Python package NumPy for some operation, hence NumPy mustbe installed. It is usually installed if a Conda installation is used, nevertheless ensure that arecent-enough version is installed.
After installation, a license is not strictly necessary as the embedded Community license is used. If youalready have a license (for example, a trial license, a full license, or one from the Academic PartnershipProgram), the XPRESS environment variable must be set, regardless of the platform, to the directorycontaining the license file. For example, if the license file is /home/brian/xpauth.xpr, then XPRESSmust be set to /home/brian in order for the module to pick the right license. A message is printedupon import if XPRESS is not detected, in order to ensure that the user is using the right license file.
If you installed the Xpress Optimization suite before downloading the Conda or PyPI package with thePython interface, then the XPRESS variable is already set and no action is necessary.

Fair Isaac Corporation Confidential and Proprietary Information 2

http://subscribe.fico.com/xpress-optimization-community-license
http://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/python/HTML/GUID-616C323F-05D8-3460-B0D7-80F77DA7D046.html

CHAPTER 2

Modeling an optimization problem

This chapter illustrates the modeling capabilities of the Xpress Python interface. It shows how tocreate variables, constraints of different types, add an objective function, and solving and retrieving aproblem’s solution. It also shows how to read or write a problem from/to a file.

2.1 Getting started

The Xpress Python module is imported as follows:
import xpress

A complete list of methods and constants available in the module is obtained by running the Pythoncommand dir(xpress). Because all types and methods must be called by prepending "xpress.", itis advisable to alias the module name upon import:
import xpress as xp

We assume that this is the way the module is imported from now on. It is also possible to import allmethods and types to avoid prepending the module name or its alias, but this practice is usuallyadvised against:
from xpress import ⁎

2.2 Creating a problem

Create an empty optimization problem myproblem as follows:
myproblem = xp.problem()

A name can be assigned to a problem upon creation:
myproblem = xp.problem(name="My first problem")

The problem has no variables or constraint at this point. The synopsis of the xpress.problemmethod is as follows:
xpress.problem(⁎args, name='noname', sense=xpress.minimize)

The only two named arguments are name and sense and they denote the problem name and theoptimization sense, respectively. The argument args is a list composed as follows:

Fair Isaac Corporation Confidential and Proprietary Information 3

Modeling an optimization problem

� zero or more variables declared with xpress.var or xpress.vars;
� zero or more constraints created from functions of the variables;
� at most one function in the variables;
� at most one string.

The variables and constraints will be added to the problem as if they were with the
problem.addVariable and problem.addConstraint functions, respectively, while the function istreated as the objective function and added to the problem as if with the problem.setObjectivefunction. If the sense parameter is also added, this becomes the optimization sense. Because thearguments are scanned in the order they are received, the user ought to ensure that a constraint or theobjective function are passed only after all of the variables containing them are passed.
Note that indicator constraints (see Section 2.8) cannot be added directly in the problem declarationbut need to be added using problem.addIndicator.
The following is an example of the compact declaration: variables x and y are declared first, then theproblem declaration is passed these variables and followed by two constraints and a function to beused as objective function. Note that because no optimization sense is given, minimization isassumed.

import xpress as xp
x = xp.var()
y = xp.var(lb=-1, ub=1)
prob = xp.problem(x, y, 2⁎x + y >= 1, x + 2⁎y >= 1, x + y, name='myproblem')

All operations for adding/deleting variables, constraint, SOS and others are allowed on problemsdeclared this way; note that setting a new objective function with problem.setObjective resets theoptimization sense, and sets it to xpress.minimize if none is given.

2.3 Variables

The Xpress type var allows for creating optimization variables. Note that variables are not tied to aproblem but may exist globally in a Python program. In order for them to be included into a problem,they have to be explicitly added to that problem. Below is the complete declaration with the list of allparameters (all of them are optional):
var (name, lb, ub, threshold, vartype)

The parameters are:
1. name is a Python UTF-8 string containing the name of the variable (its ASCII version will be savedif written onto a file); a default name is assigned if the user does not specify it;
2. lb is the lower bound (0 by default);
3. ub is the upper bound (+inf is the default);
4. threshold is the threshold for semi-continuous, semi-integer, and partially integer variables; itmust be between its lower and its upper bound; it has no default, so if a variable is defined aspartially integer the threshold must be specified;
5. vartype is the variable type, one of the six following types:

� xpress.continuous for continuous variables;

Fair Isaac Corporation Confidential and Proprietary Information 4

Modeling an optimization problem

� xpress.binary for binary variables (lower and upper bound are further restricted to 0 and1);
� xpress.integer for integer variables;
� xpress.semicontinuous for semi-continuous variables;
� xpress.semiinteger for semi-integer variables;
� xpress.partiallyinteger for partially integer variables.

The features of each variable are accessible as members of the associated object: after declaring avariable with x = xpress.var(), its name, lower and upper bound can be accessed via x.name,
x.lb, and x.ub. Note that, after a variable x has been added to one or more problems, a change in itsfeature will not be reflected in these problems, but only in the problems to which this variable is addedsubsequently.
One or more variables (or list of variables) can be added to a problem with the addVariablemethod:

v = xp.var(lb=-1, ub=2)

m.addVariable (v)

x = [xp.var(ub=10) for i in range(10)]
y = [xp.var(ub=10, vartype=xp.integer) for i in range(10)]

m.addVariable (x,y)

By default, variables added to an Xpress problems are constrained to be nonnegative. In order to add a
free variable, one must specify its lower bound to be –∞ as follows:

v = xp.var(lb=-xp.infinity)

Variable names and Python objects

Variables and, as described below, constraints and other objects of the Xpress Python interface canhave a name. Variable names and constraint names can be useful when saving a problem to a file andwhen querying the problem for the value of a variable in an optimal solution. If a variable is not given aname explicitly, it will be assigned a default name that is usually "C" followed by a sequence number.
Python also uses these names when printing expressions, because the variables’ __str__ function isredirected to their name. Therefore, when querying Python for a variable or for an expressioncontaining that variable, its name will be printed rather than the Python object used in the program, asin the following example:

>>> v = xp.var(lb=-1, ub=2)
>>> v
C1
>>> v.__str__()
'C1'
>>> x = xp.var(name='myvar')
>>> v + 2 ⁎ x
C1 + 2 myvar
>>>

This allows for querying a problem using both the variable object and its name, depending on what ismore convenient. The following example prints twice an optimal solution to a simple problem:
x = xp.var(name='var1')
y = xp.var(name='var2')
p = xp.problem(x, y, x + y >= 3, x + 2⁎y)
p.solve()

Fair Isaac Corporation Confidential and Proprietary Information 5

Modeling an optimization problem

print(p.getSolution([x, y]))
print(p.getSolution(['var1', 'var2']))

It can be therefore useful to create xpress.var objects with a meaningful argument, perhaps similarto the name they have in the Python program one is writing.

2.4 Constraints

Linear, quadratic, and nonlinear constraints can be specified as follows:
constraint (constraint, body, lb, ub, sense, rhs, name)

The parameters are:
1. constraint is the full-form constraint, such as x1 + 2 ⁎ x2 <= 4;
2. body is the body of the constraint, such as 3 ⁎ x1 + x2 (it may contain constants);
3. lb is the lower bound on the body of the constraint;
4. ub is the upper bound on the body of the constraint;
5. sense is the sense of the constraint, one among xpress.leq, xpress.geq, xpress.eq, and

xpress.range; in the first three cases, the parameter rhsmust be specified; only in the fourthcase must lb and ub be specified;
6. rhs is the right-hand side of the constraint;
7. name is the name of the constraint. Parameters lb, ub, and rhsmust be constant.

A much more natural way to formulate a constraint is possible though:
myconstr = x1 + x2 ⁎ (x2 + 1) <= 4
myconstr2 = xp.exp(xp.sin(x1)) + x2 ⁎ (x2⁎⁎5 + 1) <= 4

One or more constraints (or list of constraints) can be added to a problem via the addConstraintmethod:
m.addConstraint (myconstr)
m.addConstraint(v1 + xp.tan(v2) <= 3)
m.addConstraint(x[i] + y[i] <= 2 for i in range(10))
myconstr = x1 + x2 ⁎ (x2 + 1) <= 4
m.addConstraint(myconstr)

In order to help formulate compact problems, the Sum operator of the xpressmodule can be used toexpress sums of expressions. Its argument is a list of expressions:
m.addConstraint(xp.Sum([y[i] for i in range(10)]) <= 1)
m.addConstraint(xp.Sum([x[i]⁎⁎5 for i in range(9)]) <= x[9])

When handling variables or expressions, it is advised to use the Sum operator in the Xpress modulerather than the native Python operator, for reasons of efficiency.
As for variables, an object of type constraint allows for read/write access of its features via itsmembers name, body, lb, and ub. The same caveat for variables holds here: any change to an object’smembers will only have an effect in the problems to which a constraint is added after the change.

Fair Isaac Corporation Confidential and Proprietary Information 6

Modeling an optimization problem

A set of variables or constraint can also be created using Python’s fundamental data structure: listsand dictionaries, as well as NumPy’s arrays. As described in Section 2.16 below, one can for examplecreate a list of variables x[i], all with upper bound 10, indexed from 0 to k-1 as follows:
k=24
x = [xpress.var(ub=10) for _ in range(k)]

If a more elaborate indexing is required, dictionaries can be used. Suppose we want to create an integervariable x for each item in the list [’Seattle’,’Miami’,’Omaha’,’Charleston’]. Then
L = ['Seattle','Miami','Omaha','Charleston']
x = {i: xpress.var(vartype=xpress.integer) for i in L}

This allows one to refer to such variables using the names in L, for instance x[’Seattle’],
x[’Charleston’], etc.
Similarly, one can use lists and dictionaries to create constraints, like in the following example on lists:

L = range(20)
x = [xpress.var(ub=1) for i in L]
y = [xpress.var(vartype=xpress.binary) for i in L]
constr = [x[i] <= y[i] for in L]
p = xpress.problem()
p.addVariable(x,y)
p.addConstraint(constr)

Below is an example with dictionaries. Note that Python allows for conditional indexing on the twoparameters i and j, and each constraint can be referred to with pairs of names, e.g.
cliq[’Seattle’,’Miami’].

L = ['Seattle','Miami','Omaha','Charleston']
x = {i: xpress.var(vartype=xpress.binary) for i in L}
cliq = {(i,j): x[i] + x[j] <= 1 for i in L for j in L if i != j}
p = xpress.problem()
p.addVariable(x)
p.addConstraint(cliq)

There is yet another function for creating an indexed set of variables: the function xpress.vars. Ittakes one or more lists, sets, or ranges, and produces as many variables as can be indexed with allcombinations from the provided lists/sets. This allows for creating a set of variables with the samebounds and type and a similar name, in case the problem is written onto an MPS or LP file. Its syntax isas follows:
xpress.vars(⁎indices, name='x', lb=0, ub=xpress.infinity,

threshold = -xpress.infinity, vartype=xpress.continuous)

The parameter ⁎indices stands for one or more arguments, each a Python list, a Python set, or apositive integer. If ⁎indices consists of one list, then the result contains one element for eachelement of the list. In case of more lists, sets, or ranges in ⁎indices, the Cartesian product of theselists/sets provides the indexing space of the result. All other arguments are the same as for thedeclaration of a single variable. Here is an example of use:
myvar = xpress.vars(['a','b','c'], lb=-1, ub=+1)

The result is the three variables myvar[’a’], myvar[’b’], and myvar[’c’], all with -1 as lowerbound and +1 as upper bound. The following is an example of multi-indexed variables:
y = xpress.vars(['a','b','c','d'], [100, 120, 150], vartype=xpress.integer)

Fair Isaac Corporation Confidential and Proprietary Information 7

Modeling an optimization problem

The result is the 12 variables y[’a’,100], y[’a’,120], y[’a’,150], y[’b’,100],...,
y[’d’,150].
If argument name is not specified, a prefix "x" is used. The name of each variable resulting from a call to
xpress.vars is the given prefix and the comma-separated list of index values between brackets, forexample it will be "x(a,100)", "x(a,120)", "x(a,150)" for the example above. The call

x = xpress.vars(['a','b','c','d'], [100, 120, 150], name='var')

produces variables x[’a’,100] whose name is "var(a,120)", etc.
In the ⁎indices argument, in lieu of a list or a set one can also specify an integer positive number k,which is interpreted as the range of numbers 0,1,...,k-1. Thus the call x = xpress.vars(5, 7,
vartype = xpress.integer) creates 35 variables x[0,0], x[0,1], x[0,2],..., x[4,6].
The xpress.vars function, effectively, is a more readable way to create a Python dictionary ofvariables. The instruction

x = xpress.vars(['a','b','c','d'], [100, 120, 150], ub=20, name='newvar')

is equivalent to the following:
x = {(i,j): xpress.var(ub=20, name='newvar({0},{1})'.format(i,j))

for i in ['a','b','c','d']
for j in [100, 120, 150]}

2.5 Objective function

The objective function is any expression, so it can be constructed as for constraints. The method
problem.setObjective can be used to set (or replace if one has been specified before) theobjective function of a problem. The definition of setObjective is as follows:

setObjective(objective, sense=xpress.minimize)

where objective is the expression defining the new objective and sense is either
xpress.minimize or xpress.maximize. Examples follow; in the first, the objective function is to beminimized as per default, while the second example specifies the optimization sense as maximization.

m.setObjective(xp.Sum ([y[i]⁎⁎2 for i in range (10)]))
m.setObjective (v1 + 3 ⁎ v2, sense=xp.maximize)

Finally, a note on efficiency. For creating a large number of variables, one can obtain a Numpymultiarray of any dimension by just specifying numbers as the index arguments, as in the followingexample where a 4x7x5 multiarray of variables is created:
x = xp.vars(4,7,5)

For added efficiency, one can drop variable naming if standard names (such as "C1", "C2", "C3") areacceptable. This is done by specifying the argument name="" as in the example below.
x = xp.vars(4,7,5, name="")

2.6 Compact formulation

The interface allows for a more compact problem formulation where xpress.problem is passed all

Fair Isaac Corporation Confidential and Proprietary Information 8

Modeling an optimization problem

components of the problem: for instance, consider the code below:
import xpress as xp
x = xp.var(vartype=xp.integer, name='x1', lb=-10, ub=10)
y = xp.var(name='x2')
p = xp.problem(x, y, x⁎⁎2 + 2⁎y, x + 3⁎y <= 4, name='myexample', sense=xp.maximize)
p.solve()

The declaration of p is equivalent to the following:
import xpress as xp
x = xp.var(vartype=xp.integer, name='x1', lb=-10, ub=10)
y = xp.var(name='x2')
p = xp.problem(name='myexample')
p.addVariable(x, y)
p.setObjective(x⁎⁎2 + 2⁎y, sense=xp.maximize)
p.addConstraint(x + 3⁎y <= 4)
p.solve()

2.7 Special Ordered Sets (SOSs)

A Special Order Set (SOS) is a modeling tool for constraining a small number of consecutive variablesin a list to be nonzero. The Xpress Python interface allows for defining a SOS as follows:
sos (indices, weights, type, name)

The first argument, indices, is a list of variables, while weights is a list of floating point numbers.The type of SOS (either 1 or 2) is specified by type. While indices and weights are mandatoryparameters, type and name are not; type is set to a default of 1 when not specified. Examples follow:
set1 = xp.sos(x, [0.5 + i⁎0.1 for i in range(10)], type=2)
set2 = xp.sos([y[i] for i in range(5)], [i+1 for i in range(5)])
set3 = xp.sos([v1, v2], [2, 5], 2)

One or more SOS can be added to a problem via the problem.addSOSmethod:
set1 = xp.sos(x, [0.5 + i⁎0.1 for i in range(10)], type=2)
m.addSOS(set1)
n = 10
w = [xp.var() for i in range(n)]
m.addSOS([xp.sos([w[i],w[i+1]], [2,3], type=2) for i in range(n-1)])

The namemember of a SOS object can be read and written by the user.

2.8 Indicator constraints

Indicator constraints are defined by a binary variable, called the indicator, and a constraint. Dependingon the value of the indicator, the constraint is enforced or relaxed.
For instance, if the constraint x + y ≥ 3 should only be enforced if the binary variable u is equal to 1, then(u = 1→ x + y ≥ 3) is an indicator constraint.
An indicator constraint in Python can be added to a problem with the addIndicator as follows (notethe "==" as the symbol for equality):

m.addIndicator(vb == 1, v1 + v2 >= 4)

Fair Isaac Corporation Confidential and Proprietary Information 9

Modeling an optimization problem

2.9 Piecewise linear functions

Other types of constraints are available for modelling. Piecewise linear constraints allow to define avariable as a piecewise linear function of another. The function does not have to be continuous, butplease see the Optimizer’s manual for information on how discontinuities are dealt with.
The most efficient way to model piecewise linear functions is through the API function
problem.addpwlcons.

x = xp.var(lb=-xp.infinity)
y = xp.var()
z1 = xp.var(lb=-xp.infinity)
z2 = xp.var(lb=-xp.infinity)

p = xp.problem(x,y,z1,z2)

Define z1 and z2 as a piecewise linear functions of x. Two functions
are defined.
p.addpwlcons([x, x], # independent variable of each function

[z1, z2], # created variables
[0,4], # index of the first breakpoints for z1 and z2
[0,4, 4 7, -2,-1,1,2], # x values of the breakpoints
[4,12,11,20,-2,-2,2,2]) # y values

p.setObjective(z1 + 2⁎y)
p.addConstraint(z2 <= y)
p.solve()

The above example creates variables x, y, z1, and z2, then constrains z1 and z2 to be (piecewiselinear) functions of x, to be used with y in other constraints and in the objective function.
The Xpress Python interface provides another, more intuitive way of specifying such a function with themethod xpress.pwl, which is passed a dictionary associating intervals (defined as tuples of twoelements) with linear functions. The code below exemplifies the use of xpress.pwl to construct twofunctions. The first, which is included into the objective of the problem, is the piecewise linear function2x + 4 for x ∈ [0, 4] and 3x – 1 for x ∈ [4, 7]; the second function is constant at –2 for x ≤ –1, it is equal to2x for x ∈ [–1, 1], and is constant at 2 for x ≥ 2:

x = xp.var(lb=-xp.infinity)
y = xp.var()
p = xp.problem(x, y)

Create objective and constraint directly, without first creating
piecewise linear functions.

p.setObjective(xp.pwl({(0, 4): 2⁎x + 4, (4, 7): 3⁎x - 1}) + 2⁎y)
p.addConstraint(xp.pwl({(-xp.infinity, -1): -2,

(-1, 1): 2⁎x,
(1, xp.infinity): 2}) <= y)

p.solve()

Here the definition of auxiliary variables z1 and z2 becomes redundant as the calls to xpress.pwl donot need any extra variable. The dictionary that is used in xpress.pwl has tuples of two elementseach as keys and linear expressions (or constants) as values.
The tuples are treated as (pairwise disjoint) intervals, hence every tuple (a,b) in the set of keys mustbe such that a ≤ b and such that, for any two tuples (a,b) and (c,d) in the keys, either b ≤ c or
d ≤ a.
Piecewise linear functions should be defined over the whole domain of the independent variable (x inthe example above); with the syntax of xpress.pwl, it is possible to omit a portion of the domain ofthe independent variable; in that case the value of the function is taken to be zero.

Fair Isaac Corporation Confidential and Proprietary Information 10

Modeling an optimization problem

Piecewise linear functions can be used as operators when defining an optimization problem. Forinstance, one could write the constraint
y + 3⁎z⁎⁎2 <= 3⁎xp.pwl({(0, 1): x + 4, (1, 3): 1})

Note that regardless of how a piecewise linear constraint is formulated, there must always be only oneindependent variable, i.e., the piecewise linear function is always univariate. In addition, piecewise
constant functions need a further specification as a variable does not appear in the values: for thiscase, one can specify the key-value pair None: x as in the example below.

Set a piecewise CONSTANT objective
p.setObjective(xp.pwl({(0, 1): 4, (1, 2): 1, (2,3): 3, None: x})

2.10 General constraints

The Xpress Python interface allows the user to use the mathematical operators min, max, abs, and thelogical operators and, or without having to explicitly introduce extra variables. The Xpress Optimizerhandles such operators by automatically reformulating them as MIP constraints. These constraints arecalled general constraints by the Optimizer’s library.
The min (resp. max) general operators impose that a variable be the minimum (resp. maximum) of twoor more variables in a list of arguments. The abs constraints link a variable y to another variable x sothat y = |x|.
The And and Or operators express a logical link between two or more binary variables x1, x2, ..., xk. Theresult of this function is itself a binary expression that can take on value 0 (false) or 1 (true).
The most efficient way, in terms of modelling speed, to formulate a model using the aforementionedoperator is through the function problem.addgencons, which adds a general constraint. In thefollowing example, variables y1, y2, and y3 are constrained to be, respectively, the maximum amongthe set x[0], x[1], 46 the absolute value of x[3], and the logical and of x[4], x[5], and x[6].

x = [xp.var() for _ in range(7)]
y1 = xp.var()
y2 = xp.var()
y3 = xp.var()
type = [xpress.gencons_max, xpress.gencons_abs, xpress.gencons_and]
resultant = [y1, y2, y3]
colstart = [0, 2, 3]
col = [x[0], x[1], x[3], x[4], x[5], x[6]]
valstart = [0,1,1]
val = [46]
p = xp.problem(x, y1, y2, y3)
prob.addgencons(prob, type, resultant, colstart, col, valstart, val);
prob.solve()

A more intuitive way to create problems containing these operators is by using the methods max, min,
abs, And, and Or of the xpressmodule.

x = [xp.var() for _ in range(4)]
y1 = xp.var()
y2 = xp.var()
p = xp.problem(x,y1,y2)
p.addConstraint(y1 == xp.max(x[0], x[1], 46)) # max() accepts a tuple of arguments
p.addConstraint(y2 == xp.abs(x[3]))
p.addConstraint(y3 == xp.And(x[4], x[5], x[6]))
p.solve()

The methods And and Or can be replaced by the Python binary operators & and |, as in the following

Fair Isaac Corporation Confidential and Proprietary Information 11

Modeling an optimization problem

example
y = [xp.var(vartype=xp.binary) for _ in range(5)]
p = xp.problem(y)

p.addConstraint((y[0] & y[1]) + (y[2] | y[3]) + 2⁎y[4] >= 2)

Note that And and Or have a capital initial as the lower-case correspondents are reserved Pythonkeywords, and that the & and | operators have a lower precedence than arithmetic operators such as +and should hence be used with parentheses.
We also point out that because the & and | operator have lower operator precedence in Python thanother arithmetic operators (+, ∗, etc.) and even comparison operators (≤, etc.), all uses of & and | shouldbe enclosed in brackets. as shown in the examples above.

2.11 Using loadproblem for efficiency

The high-level functions problem.addConstraint and problem.addVariable allow for efficient,concise, and understandable modeling of any optimization problem. An even faster way to create aproblem is through the problem.loadproblem function, which uses a more direct interface to theOptimizer’s libraries and is hence preferable with very large problems and when efficiency in modelcreation is necessary.
The functon problem.loadproblem can be used to create problems with linear and/or quadraticconstraints, a linear and/or quadratic objective function, and with continuous and/or discrete variables.Its syntax with default parameter values allows for specifying only the components of interest. We referthe reader to its entry in Chapter 7, and present here a few examples of usages. More examples areshown in Chapter 6.
The first example uses loadproblem to create a problem similar to that created earlier in this chapter.We first write the problem using standard modeling functions:

import xpress as xp
x = xp.var(vartype=xp.integer, name='x1', lb=-10, ub=10)
y = xp.var(name='x2')
p = xp.problem(name='myexample')
p.addVariable(x, y)
p.setObjective(x⁎⁎2 + 2⁎y)
p.addConstraint(x + 3⁎y <= 4)
p.addConstraint(7⁎x + 4⁎y >= 8)

The following code creates a problem with the same features, including variable names and their types
import xpress as xp
p = xp.problem()
p.loadproblem(probname='myexample',

qrtypes=['L', 'G'], # constraint senses
rhs=[4, 8], # right-hand sides
range=None,
obj=[0, 2], # linear obj. coeff.
mstart=[0, 2, 4], # start pos. of all columns
mrwind=[0, 1, 0, 1], # row index in each column
dmatval=[1, 7, 3, 4], # coefficients
mnel=None,
dlb=[-10,0], # variable lower bounds
dub=[10,xp.infinity], # upper bounds
mqcol1=[0], # quadratic obj. terms, column 1
mqcol2=[0], # column 2
dqe=[2], # coeff
qgtype=['I'], # variable types
mgcols=[0],

Fair Isaac Corporation Confidential and Proprietary Information 12

Modeling an optimization problem

colnames=['x1', 'x2'])

Apart from the intuitive lists qrtypes (for constraint types: ’L’ for "lesser-than", ’G’ for"greater-than", ’E’ for "equal-to"), rhs (constraints’ right-hand sides), obj (objective linearcoefficients), dlb and dub (variables’ lower and upper bounds), a few paramters deserve someattention. The three lists mstart, mrwind, dmatval describe the coefficient matrix: mrwind and
dmatval contain, respectively, the row indices and the coefficients, while mstart is a list of n + 1integers (where n is the number of variables, i.e., the size of obj, dlb, and dub); mstart[i] indicatesthe position, within mrwind and dmatval, of the indices and coefficients of the i-th column. The lastelement mstart[n+1] indicates the number of nonzeros in the matrix.
The following shows two equivalent knapsack problems, again created first using the high-levelmodeling routines and then the lower-level API function.

import xpress as xp
N = 6
x = [xp.var(vartype=xp.binary) for _ in range(N)]
value = [1, 4, 6, 4, 7, 3]
weight = [1, 3, 5, 5, 8, 4]
p = xp.problem(name='knapsack')
p.addVariable(x)
p.setObjective(xp.Sum(value[i] ⁎ x[i] for i in range(N)), sense=xp.maximize)
p.addConstraint(xp.Sum(weight[i] ⁎ x[i] for i in range(N)) <= 12)

Note that problem.loadproblem assumes that the optimization sense is minimization and hence acall to problem.chgobjsense is necessary to set the sense to maximization.
import xpress as xp
p = xp.problem()
N = 6
value = [1, 4, 6, 4, 7, 3]
weight = [1, 3, 5, 5, 8, 4]
p.loadproblem(probname='knapsack',

qrtypes=['L'], # constraint senses
rhs=[12], # right-hand sides
range=None,
obj=value, # linear obj. coeff.
mstart=range(N+1), # start pos. of all columns
mrwind=[0] ⁎ N, # row index in each column (always 0)
dmatval=weight, # coefficients
mnel=None,
dlb=[0] ⁎ N, # variable lower bounds
dub=[1] ⁎ N, # upper bounds
qgtype=['B'] ⁎ N, # variable types
mgcols=range(N))

p.chgobjsense(xp.maximize)

2.12 Modeling and solving nonlinear problems

Version 8.3 of the Xpress Optimizer suite introduces nonlinear modeling in the Python interface. Itallows for creating and solving nonlinear, possibly nonconvex problems with similar functions as forlinear, quadratic, and conic problems and their mixed integer counterpart.
A nonlinear problem can be defined by creating one or more variables and then adding constraints andan objective function. This can be done using the same Python calls as one would do for otherproblems. The available operators are +, -, ⁎, /, ⁎⁎ (which is the Python equivalent for the poweroperator, "ˆ"). Univariate functions can also be used from the following list: sin, cos, tan, asin, acos,
atan, exp, log, log10, abs, sign, and sqrt. Multivariate functions are min and max, which canreceive an arbitrary number of arguments.
Examples of nonlinear constraints are as follows:

Fair Isaac Corporation Confidential and Proprietary Information 13

Modeling an optimization problem

import xpress as xp
import math

x = xp.var()
p = xp.problem()

p.addVariable(x)

polynomial constraint
p.addConstraint(x⁎⁎4 + 2 ⁎ x⁎⁎2 - 5 >= 0)

A terrible way to constrain x to be integer
p.addConstraint(xp.sin (math.pi ⁎ x) == 0)

p.addConstraint(x⁎⁎2 ⁎ xp.sign (x) <= 4)

Note that non-native mathematical functions such as log and sinmust be prefixed with xpress or itsalias, xp in this case. This can be avoided by importing all symbols from xpress using the import ⁎command as follows
from xpress import ⁎
x = var()
a = sin(x)

but this hides namespaces and is usually frowned upon.
User functions are also accepted in the Python interface, and must be specified with the keyword userand the function as the first argument. They are handled in the Nonlinear solver in a transparent way, soall is needed is to define a Python function to be run as the user function and specify it in the problemwith user, as in the following example:

import xpress as xp
import math

def mynorm(x1, x2):
return (math.sqrt(x1⁎⁎2 + x2⁎⁎2) 2⁎x1, 2⁎x2)

def myfun(v1, v2, v3):
return v1 / v2 + math.cos(v3)

x,y = xp.var(), xp.var()

p = xp.problem()

p.addVariable(x,y)

p.setObjective(xp.user (mynorm, x, y, derivatives=True))

p.addConstraint(x+y >= 2)
p.addConstraint(xp.user (myfun, x⁎⁎2, x⁎⁎3, 1/y) <= 3)

Note that user functions can be specified so that they can return derivatives. If we do not wish to returnderivatives, a Python function in k variables must return a single number. If we want to provide thesolver with derivatives, then the function must return a tuple of k+1 numbers.
When defining a user function that provides derivatives (see mynorm in the example), we must set the
derivative=True parameter in the xpress.user call. The derivative parameter is False bydefault. If a function returns a tuple of values but it is defined with derivatives=False or, viceversa,if it returns a single value but it is defined with derivatives=True, the behaviour is undefined.
As a final word of caution, solving nonlinear problem requires a preprocessing step that is transparentto the user except for two steps: first, if the objective function has a nonlinear component f(x) then anew constraint (called objective transfer row or objtransrow) and a new variable, the objective transfer
column or objtranscol) are called that are defined as follows:

Fair Isaac Corporation Confidential and Proprietary Information 14

Modeling an optimization problem

objtransrow : –objtranscol + f(x) = 0
The resulting problem is equivalent in that the set of optimal (resp. feasible) solutions of this problemwill be the same as those of the original problem. The user, however, will notice an increase by one ofboth the number of rows and of columns when a nonlinear objective function is set.
The second caveat is about yet another variable that may be added to the problem for reasons havingto do with one of the Xpress Nonlinear solvers. This variable is called equalscol and it is fixed to 1. Itsexistence and value are therefore of no interest to the user.
It should also be noted that the control xslp_postsolve is set to 1 by default when the solver usesthe SLP nonlinear solver. This is necessary to ensure that the solution retrieved after a solve() or
nlpoptimize() call refers to the original problem and not to a possible reformulation. The reader canfind more information on this in the Xpress Nonlinear reference manual.

2.13 Solving a problem

Simply call solve() to solve an optimization problem that was either built or read from a file. The typeof solver is determined based on the type of problem: if at least one integer variable was declared, thenthe problem will be solved as a mixed integer (linear, quadratically constrained, or nonlinear) problem,while if all variables are continuous the problem is solved as a continuous optimization problem. If theproblem is nonlinear in that it contains non-quadratic, non-conic nonlinear constraints, then theappropriate nonlinear solver of the Xpress Optimization suite will be called. Note that in case of anonconvex quadratic problem, the Xpress Nonlinear solver will be applied as the Xpress Optimizersolver cannot handle such problems.
m.solve ()

The status of a problem after solution can be inquired via the functions getProbStatus() and
getProbStatusString() as follows:

import xpress as xp

m = xp.problem()
m.read("example3.lp")
m.solve()

print("problem status: ", m.getProbStatus())
print("problem status, explained: ", m.getProbStatusString())

The meaning of the returned value is explained in the Optimizer’s reference manual. Note that the valueand string returned by the above functions reflect the type of problem as input by the user, not the waythe problem was last solved. If the user creates a MILP and then solves it as an LP with the flag "l",then both getProbStatus() and getProbStatusString() yield the status of the MILP rather thanthe LP relaxation. At all effects, the call p.getProbStatus() returns p.attributes.lpstatus if phas continuous variables and p.attributes.mipstatus if p has integer variables.
The output of the solver when reading and solving a problem is the same as with other interfaces of theXpress Optimizer. The verbosity level is determined by the control outputlog, which is 1 by default. Toturn off the solver’s output, it should be set to zero (see Chapter 4 for how to set a control).

2.14 Querying a problem

It is useful, after solving a problem, to obtain the value of an optimal solution. After solving a continuousor mixed integer problem, the two methods getSolution and getSlack return the list (of portions

Fair Isaac Corporation Confidential and Proprietary Information 15

Modeling an optimization problem

thereof) of an optimal solution or the slack of the constraints, respectively. If an optimal solution wasnot found but a feasible solution is available, these methods will return data based on this solution.
Both getSolution and getSlack can be used in multiple ways: if no argument is passed, the wholesolution or slack list is returned. If a range of indices is passed, a list of values is returnedcorresponding to the range specified. One can also pass a list of variables to obtain the value of thesevariables in the solution found.
For getSolution only, there are more possible ways to call it: indices, strings, expressions are thebasic types. An index ind will yield the value of the variable whose index in that problem (i.e. the orderin which it was added to the problem) is ind; if the index is out of range, an error will occur. A string
str will yield the value of the variable whose name is equal to str, if such variable exists, otherwise anerror will occur. Finally, an expression, which can be just a variable, will yield the value of the expressiongiven the current solution.
These basic types can be combined, even on multiple levels, with Python’s fundamental aggregatetypes: getSolution can be passed a list, a dictionary, a tuple, or any sequence, including NumPyarrays, of indices, strings, expressions, and other aggregate objects thereof. The result will have thesame structure as the argument passed (list, dictionary, etc.) containing the value corresponding to thepassed expressions, variable indices, or variable names.
The uses of getSolution are exemplified in the following code:

import xpress as xp
import numpy as np

v1 = xp.var(name='Var1')
x = [xp.var(lb=-1, ub=1, vartype=xp.integer) for i in range(10)]

m = xp.problem()

m.addVariable(v1, x)

[...] # add constraints and objective

m.solve()

print(m.getSolution ()) # Prints a list with an optimal solution
print("v1 is", m.getSolution(v1)) # Only prints the value of v1
a = m.getSolution(x) # Gets the values of all variables in the list x
b = m.getSolution(range(4)) # Gets the value of v1 and x[0], x[1], x[2], i.e.

the first four variables of the problem
c = m.getSolution('Var1') # Gets the value of v1 by its name
e = m.getSolution({1: x, 2: 0,

3: 'Var1'}) # Returns a dictionary containing the same keys as
in the arguments and the values of the
variables/expressions passed

d = m.getSolution(v1 + 3⁎x) # Gets the value of an expression under the
current solution

e = m.getSolution(np.array(x)) # Gets a NumPy array with the solution of x

Consider the last eight instructions. The first of them returns a Python list of ncol floating point scalars,where ncol is the number of variables of the problem (nrow is the number of constraints, the size of thelist returned by getSlack) containing the full solution. The second example retrieves the value of thesingle variable v1.
The third example returns an array of the same size as x with the value of all variables of the list x. Thefourth example shows that a range of indices can be specified in order to obtain a list of values withoutspecifying the corresponding variables. Recall that the column and row indices begin at 0. The fifth lineshows that a variable can be passed by name, while the sixth line shows that passing a dictionary withvariables, expression, indices, or variable names returns a dictionary with the same keys as thedictionary passed, but with its values set to the values of the corresponding variables/expressions.

Fair Isaac Corporation Confidential and Proprietary Information 16

Modeling an optimization problem

The seventh line shows how to request the value of an expression when evaluated with the currentsolution found for the problem, and the eight line is equivalent to m.getSolution(x) but the returnedobject is a NumPy array with the solution (this can be useful when using NumPy with large vectors bothfor defining a problem and handling solution vectors).
The method getSlack works only with indices, constraint names, constraint objects, and lists ofindices/names/constraints. The following examples illustrate a few possible uses.

import xpress as xp

N = 10

x = [xp.var(vartype=xp.binary) for i in range(N)]

m = xp.problem()

m.addVariable(x)

con1 = xp.Sum(x[i] ⁎ i for i in range(N)) <= N)
con2 = (x[i] >= x[i+1] for i in range(N-1))

m.addConstraint(con1, con2)
m.setObjective(xp.Sum(x[i] for i in range(N))
m.solve()

print(m.getSlack()) # prints a list of slacks for all N constraints
print("slack_1 is", m.getSlack(con1)) # only prints the slack of con1

a = m.getSlack(con2) # gets the slack of N-1 constraints con2 as a list of floats
b = m.getSlack(range(2)) # gets the slack of con1 and con2[0]

In addition, for problems with only continuous variables, the two methods getDual and getRCostreturn the list (or a portion thereof) of dual variables and reduced costs, respectively. Their usage issimilar to that for getSolution and getSlack.
Note that the inner workings of the Python interface obtain a copy of the whole solution, slack, dual, orreduced cost vectors, even if only one element is requested. It is therefore advisable that instead ofrepeated calls (for instance, in a loop) to getSolution, getSlack, etc. only one call is made and theresult is stored in a list to be consulted in the loop. Hence, in the following example:

import xpress as xp

n = 10000
N = range(n)

x = [xp.var() for i in N]

p = xp.problem()

p.addVariable(x)
m.addConstraint(xp.Sum(x[i] ⁎ i for i in N) <= n))
m.setObjective(xp.Sum(x[i] for i in N)
m.solve()

for i in N:
if m.getSolution(x[i]) > 1e-3:

print(i)

the last three lines should be substituted as follows, as this will prevent repeatedly copying a large(10,000) list:
sol = m.getSolution()

for i in N:

Fair Isaac Corporation Confidential and Proprietary Information 17

Modeling an optimization problem

if sol[i] > 1e-3:
print(i)

A very similar function of the class problem is evaluate, which allows for running all of the aboveevaluation functions while passing, rather than the solution currently available for the problem, any listor any dictionary assigning a float to the variables used in the expressions.

2.15 Reading and writing a problem

After creating an empty problem, one can read a problem from a file via the readmethod, which onlytakes the file name as its argument. An already-built problem can be written to a file with the writemethod. Its arguments are similar to those in the Xpress Optimizer API function XPRSwriteprob, towhich we refer.
import xpress as xp

m = xp.problem()
m.read("example2.lp")
m.solve()

print(m.getSolution())

m2 = xp.problem()
v1 = xp.var()
v2 = xp.var(vartype=xp.integer)

m2.addVariable(v1, v2)
m2.addConstraint(v1 + v2 <= 4)
m2.setObjective(v1⁎⁎2 + v2)

m2.write("twovarsproblem", "lp")

2.16 Hints for building models efficiently

The Xpress Python interface allows for creating optimization models using methods described in thisand other sections. As happens with other interpreted languages, using explicit loops may result in aslow Python script. When using the Xpress Python interface, this can be noticeable in largeoptimization models if multiple calls to addVariable, addConstraint, or addSOS are made. Forthis reason, the Xpress module allows for generators and list, dictionaries, and sequences asarguments to these methods, to ensure faster execution.
Let us consider an example:

import xpress as xp

N = 100000
S = range(N)

x = [xp.var() for i in S]
y = [xp.var(vartype=xp.binary) for i in S]

for i in S:
m.addVariable(x[i])
m.addVariable(y[i])

for i in S:
m.addConstraint(x[i] <= y[i])

m.solve()

Fair Isaac Corporation Confidential and Proprietary Information 18

Modeling an optimization problem

While the declaration of x and y is correct and efficient, the two subsequent loops are very inefficient:they imply 2N calls to addVariable and N calls to addConstraint. Both methods add someoverhead due to the conversion of Python object into data that can be read by the Optimizer, and thetotal overhead can be large.
Most methods of the Xpress Python interface allow for passing sequences (lists, dictionaries, NumPyarrays, etc.) as parameters, and are automatically recognized as such. Hence the first loop can bereplaced by two calls to addVariable:

m.addVariable(x)
m.addVariable(y)

or, more compact and slightly more efficient:
m.addVariable(x, y)

The largest gain in performance, though, comes from replacing the second loop with a single call to
addConstraint:

m.addConstraint(x[i] <= y[i] for i in S)

This line is equivalent to the second loop above, and it is much faster and more elegant.
When declaring x and y as NumPy vectors, an equally efficient and even more compact model can bewritten:

import xpress as xp
import numpy as np

N = 100000
S = range(N)

x = np.array([xp.var() for i in S], dtype=xp.npvar)
y = np.array([xp.var(vartype=xp.binary) for i in S], dtype=xp.npvar)

m.addVariable(x, y)
m.addConstraint(x <= y)

m.solve()

See Chapter 3 for more information on how to use NumPy arrays in the Xpress Python interface.

2.17 Exceptions

The Xpress Python interface raises its own exceptions in the event of a modeling, interface, or solverissue. There are three types of exceptions:
� xpress.ModelError: it is raised in case of an issue in modelling a problem, for instance if anincorrect constraint sign is given or if a problem is amended an object that is neither a variable, aconstraint, or a SOS;
� xpress.InterfaceError: raised when the issue can be ascribed to the API and the way it isused, for instance when not passing mandatory arguments or specifying incorrect ones in an APIfunction;
� xpress.SolverError: raised when the Xpress Optimizer or Xpress-SLP returns an error that isgiven by the solver even though the model was specified correctly and the interface functionswere used correctly.

Fair Isaac Corporation Confidential and Proprietary Information 19

Modeling an optimization problem

As always with Python, one can use the try/except construct in order to analyze the raised exceptionas in the following example
import xpress as xp
p = xp.problem()
x = getVariable() # assume getVariable is defined elsewhere
try:
p.addVariable(x)

except xp.ModelError as e:
print ("Modeling error:", repr(e))

Fair Isaac Corporation Confidential and Proprietary Information 20

CHAPTER 3

Using Python numerical libraries

The NumPy library allows for creating and using arrays of any order and size for efficiency andcompactness purposes. This chapter shows how to take advantage of the features of NumPy in thecreation of optimization problems. The Xpress Python interface works with NumPy versions 1.8 andabove.

3.1 Using NumPy in the Xpress Python interface

NumPy arrays can be used as usual when creating variables, functions (linear and quadratic) ofvariables, and constraints. All functions described in this manual that take lists or tuples as argumentscan take array’s, i.e., NumPy array objects, as well, as in the following example:
import numpy as np
import xpress as xp
N = 20
S = range(N)
x = np.array([xp.var() for i in S], dtype=xp.npvar)
y = np.array([xp.var(vartype=xp.binary) for i in S], dtype=xp.npvar)
constr1 = x <= y
p = xp.problem()
p.addVariable(x, y)
p.addConstraint(constr1)

The above script imports both NumPy and the Xpress Python interface, then declares two arrays ofvariables and creates the set of constraints xi ≤ yi for all i in the set S.
The NumPy arrays must have the attribute dtype equal to xpress.npvar (abbreviated to xp.npvarhere) in order to use the matricial/vectorial form of the comparison (<=, =, >=), arithmetic (+, -, ⁎, /,
⁎⁎), and logic (&, |) operators.
NumPy allows for multiarrays with one or more 0-based indices. Given that declaring a NumPymultiarray of variables can result in a long line of code, the xpress.vars function in its simplestusage returns a NumPy array of variables with one or more indices. Consider the following three arraydeclarations:

import numpy as np
import xpress as xp
x = np.array([xp.var(name='v({0})'.format(i)) for i in range(20)], dtype=xp.npvar).reshape(5,4)
y = np.array([xp.var(vartype=xp.binary) for i in range(27)], dtype=xp.npvar).reshape(3,3,3)
z = np.array([xp.var(lb=-1, ub=1) for i in range(1000)], dtype=xp.npvar)

These can be written equivalently in the compact form as
import numpy as np
import xpress as xp

Fair Isaac Corporation Confidential and Proprietary Information 21

Using Python numerical libraries

x = xp.vars(5, 4, name='v')
y = xp.vars(3, 3, 3, vartype=xp.binary)
z = xp.vars(1000, lb=-1, ub=1)

The only side effect is that the assigned names change. In order to preserve the naming convention ofthe Xpress library, one can specify the parameter setting name=’’ in the call to xp.vars. This alsomakes the creation of large arrays of variables much faster. We use this shorter notation in theremainder of this chapter.
The main advantage of using NumPy operations is the ability to replicate them on each element of anarray, taking into account all broadcasting features. For example, the following script “broadcasts” theright-hand side 1 to all elements of the array, thus creating the set of constraints xi + yi ≤ 1 for all i in theset S.

constr2 = x + y <= 1

All these operations can be carried out on arrays of any number of dimensions, and can be aggregatedat any level. The following example shows two three-dimensional array of variables involved in twosystems of constraints: the first has two variables per each of the 200 constraints, while the secondhas 10 constraints and 20 variables in each constraint.
z = xp.vars(4, 5, 10)
t = xp.vars(4, 5, 10, vartype=xp.binary)
p.addVariable(z,t)
p.addConstraint(z⁎⁎2 <= 1 + t)
p.addConstraint(xp.Sum(z[i, j, k] for i in range(4) for j in range(5)) <= 4

for k in range(10))

Finally, a note on sums of multi-dimensional NumPy arrays: in keeping with the way NumPy arrays arehandled, the sum of a bi-dimensional array results in a one-dimensional array with the xpress.Sumoperator. The result of such a sum is exemplified by the following code:
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> sum(a)
array([5, 7, 9])

For the casual NumPy user, suffice it to say that the sum is done on the first dimension. Similarly, whencreating a NumPy array of dimensions k of expressions, xpress.Sum returns a (k – 1)-array resultingfrom the sum across the first dimension.
It is important to note the following: NumPy does not use the __iadd__ operator when computingthese sums, but rather the __add__ operator. For reasons discussed above and in the entry regardingthe xpress.Sum operator, this can have a huge impact on performance. Consider the followingexample:

m,n = 1000,10
a = np.random.random((m,n))
x = xp.vars(m, n)
sum_0d = xp.Sum(xp.Sum(a⁎x))
sum_1d = xp.Sum(a⁎x)

The above example has a poor performance, and it is advised to avoid using xpress.Sum as such on amulti-dimensional array. If a scalar sum of all elements of the array is sought, such as sum(sum(a))for the numerical array above, we strongly advise to flatten the array first, and run instead
xpress.Sum(b.flatten()) if b is a multiarray of expressions. The multiarray has dtype equal to
xpress.npexpr in order to be used for array operations. If only one pass is required, then it is betterto explicitly create a vector whose elements are defined with a call to xpress.Sum:

Fair Isaac Corporation Confidential and Proprietary Information 22

Using Python numerical libraries

prod = a⁎x
sum_0d = xp.Sum(prod.flatten())
sum_1d = np.array([xp.Sum(prod[i,j] for i in range(m)) for i in range(n)], dtype=xp.npexpr)

3.2 Products of NumPy arrays

The dot product is a useful operator for carrying out aggregate operations on vectors, matrices, andtensors. The dot operator in NumPy allows for reducing, along one axis of a multi-dimensional arrays,data such as floating points or integer values.
The application of the dot product of NumPy of two multi-dimensional arrays of dimensions (i1, i2, ..., ik′)and (j1, j2, ..., jk′′), respectively, requires that ik′ = jk′′–1, i.e., the size of the last dimension of the first arraymust match the size of the penultimate dimension of the second vector. For instance, the following dotproduct is valid:

import numpy as np
a = np.random.random((4,6))
b = np.random.random((6,2))
c = np.dot(a,b)

and the result is a 4x2 matrix. The Xpress Python interface has its own dot product operator, which canbe used for all similar operations on variables and expression. The rules for applying the Xpress dotoperator are the same as for the native Python dot product, with one extra feature: there is no limit onthe number of arguments, hence the following example is correct as per the restrictions on thedimensions, albeit it yields a nonconvex constraint.
coeff_pre = np.random.random((6,3,7))
x = xp.vars(4, 7, 5)
y = xp.vars(2, 5, 8)
coeff_post = np.random.random((6, 8, 7))
p.addConstraint(xp.Dot(coeff_pre, x, y, coeff_post) >= 0)

Similar to the NumPy dot product, the Xpress dot product has an out parameter for defining the outputin which to store the product.
The following script defines two constraints: the first restricts the squared norm ||z|| = z · z of the vector
z of variables to be at most one. It does so by applying the dot operator on the vector itself. The secondconstraint (t – z)′Q(t – z) ≤ 1 restricts the quadratic form on the left-hand side to be at most 1.

p.addConstraint(xp.Dot(z, z) <= 1) # restrict norm of z to 1

Q = np.random.random(N, N) # create a random 20x20 matrix
p.addConstraint(xp.Dot((t-z), Q, (t-z)) <= 1)

As for the Sum operator, when handling variables or expressions, it is advised to use the Dot operator inthe Xpress module rather than the native Python operator, for reasons of efficiency.

Fair Isaac Corporation Confidential and Proprietary Information 23

CHAPTER 4

Controls and Attributes

A control is a parameter that can influence the performance and behavior of the Xpress Optimizer. Forexample, the MIP gap, the feasibility tolerance, or the type of root LP algorithms are controls that canbe set. Controls can both be read from and written to an optimization problem.
An attribute is a feature of an optimization problem, such as the number of rows and columns or thenumber of quadratic elements of the objective function. They are read-only parameters in that they canonly be modified, for example, by functions for adding constraints or variables, or functions for settingand modifying the objective function.
Both controls and attributes are of three types: integer, floating point, or string. The Xpress Pythoninterface allows for setting and retrieving the value of all controls of an optimization problem, as well asgetting the value of all of a problem’s attributes.
This reference manual does not describe the meaning of controls and attributes in the XpressOptimizer; for a detailed description of each, please refer to the Optimizer’s reference manual.
Following Python’s philosophy, one can set and obtain multiple controls/attributes with one functioncall. In other words, one can set either (i) a single control and its value; or (ii) a Python dictionarycoupling a list of control names and their respective value. Similarly, with one function call one canobtain (i) the value of a single attribute or control by specifying it as a parameter; or (ii) a dictionaryassociating names to values for each of a list of controls or attributes given as an argument. See theexamples below for more information.

4.1 Controls

Use problem.setControl to set the value of one or more controls. Its synopsis is as follows:
setControl(ctrl, value)
setControl({ctrl1: value1, ctrl2: value2, ..., ctrlk: valuek})

The first form is for setting the value of the control ctrl to value. The second form is for setting
ctrl1 to value1, ctrl2 to value2, ..., and ctrlk to valuek.
A list of all controls can be found on the Xpress Optimizer’s reference manual. The control parametersto be passed in setControl are lower-case strings:

p.setControl('miprelstop', 1e-9)
p.setControl({'miprelstop': 1e-3, 'feastol': 1e-6})

Use the method getControl to retrieve the value of one or more controls. Its synopsis is one of thefollowing:
getControl(ctrl)

Fair Isaac Corporation Confidential and Proprietary Information 24

Controls and Attributes

getControl([ctrl1, ctrl2, ..., ctrlk])
getControl(ctrl1, ctrl2, ..., ctrlk)
getControl()

The first form is for obtaining the value of the control ctrl. The output will be the value of the control.The second and third forms are for retrieving ctrl1 , ctrl2 , ..., and ctrlk. Whether the controls aredeclared in a list or a tuple does not matter. The result will be a dictionary coupling each control with itsvalue. The last form is to obtain all controls; the result is a dictionary coupling all controls with theirrespective value.
The control parameters to be passed in getControl are lower-case strings. For a problem p the callwill be as follows:

mrs = p.getControl('miprelstop')
someattr = p.getControl('miprelstop', 'feastol')

4.2 Examples

import xpress as xp

p = xp.problem()

p.setControl({'miprelstop': 1e-5, 'feastol': 1e-4})
p.setControl('miprelstop', 1e-5)

print(p.getControl('miprelstop')) # print the current value of miprelstop
print(p.getControl('maxtime', 'feastol')) # print a dictionary with the current

value of miprelstop and feastol
print(p.getControl(['presolve', 'miplog'])) # Same output
print(p.getControl()) # print a dictionary with ALL control

Initialize a dictionary with two controls and their value. Then
change their value conditionally and set their new (possibly
changed) value.

myctrl = p.getControl(['miprelstop', 'feastol'])

if (myctrl['miprelstop'] <= 1e-4):
myctrl['miprelstop'] = 1e-3
myctrl['feastol'] = 1e-3

else:
myctrl['feastol'] = 1e-4

p.setControl(myctrl)

4.3 Attributes

Use the method getAttrib to retrieve the value of one or more controls. Its synopsis is one of thefollowing:
getAttrib(attr)
getAttrib([attr1, attr2, ..., attrk])
getAttrib(attr1, attr2, ..., attrk)
getAttrib()

The first form is for obtaining the value of the attribute attr. The output will be the value of theattribute. The second and third forms are for retrieving attr1 , attr2 , ..., and attrk. Whether theattributes are declared in a list or a tuple does not matter. The result will be a dictionary coupling eachattribute with its value. The last form is to obtain all attributes; the result is a dictionary coupling allattributes with their respective value.

Fair Isaac Corporation Confidential and Proprietary Information 25

Controls and Attributes

A list of all attributes can be found on the Xpress Optimizer’s reference manual. As for controls, theattribute parameters to be passed in getAttrib are lower-case strings. For a problem p the call willbe as follows:
nrows = p.getAttrib('rows')
problemsize = p.getAttrib('rows', 'cols')

4.4 Examples

import xpress as xp

p = xp.problem()

p.read("example.lp")

print("The problem has",
p.getAttrib('rows'), "rows and",
p.getAttrib('cols'), "columns")

Obtain dictionary with two entries: the number of rows and
columns of the problem read

print(p.getAttrib(['rows', 'cols']))

produce a Python dictionary with all attributes of problem m, and
hence of LP file example.lp

attributes = p.getAttrib()

4.5 Accessing controls and attributes as object members

An alternative, more "prompt-friendly" way to get controls and attributes is through their direct accessin a problem or, in the case of controls, the Xpress module itself.
The Xpress module has an object, called controls, containing all controls of the Optimizer. Uponimporting the Xpress module, these controls are initialized at their default value. The user can obtaintheir value at any point and can also set their value; this new value will be inherited by all problemscreated after the modification. They can be read and written as follows:

xpress.controls.<controlname>
xpress.controls.<controlname> = <new value>

For example, the object xpress.controls.miprelstop contains the value of the control
miprelstop. Controls can be read (and, for example, printed) and set as follows:

import xpress as xp
print(xp.controls.heurstrategy)
xp.controls.feastol = 1e-4 # Set new default to 1e-4

These "global" controls are maintained throughout while the Xpress module is loaded. Note that the
controls object of the Xpress module does not refer to any specific problem. All controls havedefault values that are determined by the Optimizer’s library, except for the control xslp_postsolvethat is set to 1, as opposed to its default value of 0 in the Xpress Optimizer’s library.
In addition, every problem has a controls object that stores the controls related to the problem itself.This is the object the functions getControl and setControl refer to. Similar to the Xpress module’s
controls object, all members of a problem’s object can be read and written. For a problem p, thefollowing shows how to read and write a problem’s control:

Fair Isaac Corporation Confidential and Proprietary Information 26

Controls and Attributes

p.controls.<controlname>
p.controls.<controlname> = <new value>

A problem’s controls are independent of the global controls object of the Xpress module. However,when a new problem is created its controls are copied from the current values in the global object. Notethat after creating a new problem, changing the members in xpress.controls does not affect theproblem’s controls. The following examples should clarify this:
import xpress as xp

create a new problem whose MIPRELSTOP is ten times smaller
than the default value

p1 = xp.problem("problem1")
p1.controls.miprelstop = 0.1 ⁎ xp.controls.miprelstop
p1.controls.feastol = 1e-5
p1.read("example1.lp")

xp.controls.miprelstop = 1e-8 # Set new default

The new problem will have a MIPRELSTOP of 1e-8

p2 = xp.problem("problem2")
p2.read("example2.lp")

The next problem has a less restrictive feasibility tolerance
(i.e. 1e-6) than problem 2

p2v = xp.problem("problem2 variant")
p2v.read("example2.lp")
p2v.controls.feastol = 100 ⁎ p2.controls.feastol

p1.solve()
p2.solve()

solve "example2.lp" with a less restrictive
feasibility tolerance
p2v.solve()

Attributes can be handled similar as above through a member of the class problem, called
attributes, with two exceptions: first, there is no "global" attribute object, as a set of attributes onlymakes sense when associated with a problem; second, an attribute cannot be set.
Once a problem p has been created (or read from a file), its attributes are available as
p.attribute.attribute_name. The example in the previous section can be modified as follows:

import xpress as xp
p = xp.problem()
p.read("example.lp")
print("The problem has",

p.attributes.rows, "rows and",
p.attributes.cols, "columns")

When using the Python prompt in creating problems with the Xpress module, the name of controls andattributes can be auto-completed by pressing TAB (note: this only works in Python 3.4 and subsequentversions). For instance,
>>> import xpress
>>> p = xp.problem()
>>> p.read("example.lp")
>>> p.attributes.n<TAB>
p.attributes.namelength p.attributes.nodedepth p.attributes.nodes p.attributes.numiis
>>> p.attributes.nodedepth
0

Fair Isaac Corporation Confidential and Proprietary Information 27

Controls and Attributes

>>> p.attributes.ma<TAB>
p.attributes.matrixname p.attributes.maxabsdualinfeas
p.attributes.maxabsprimalinfeas p.attributes.maxprobnamelength
p.attributes.maxreldualinfeas p.attributes.maxrelprimalinfeas
>>> p.attributes.matrixname
'noname'
>>> xp.controls.o<TAB>
xp.controls.oldnames xp.controls.omniformat
xp.controls.optimalitytol xp.controls.optimalitytoltarget
xp.controls.outputlog xp.controls.outputmask
xp.controls.outputtol
>>> xp.controls.omniformat
0

Fair Isaac Corporation Confidential and Proprietary Information 28

CHAPTER 5

Using Callbacks

This chapter shows how to define and use callback functions from the Xpress Python interface. Thedesign of this part of the interface reflects as closely as possible the design of the callback functionsdefined in the C API of the Xpress Optimizer.

5.1 Introduction

Callback functions are a useful tool for adapting the Xpress Optimizer to the solution of various classesof problems, in particular Mixed Integer Programming (MIP) problems, with linear or nonlinearconstraints. Their main purpose is to provide the user with a point of entry into the branch-and-bound,which is the workhorse algorithm for MIPs.
Using callback functions is simple: the user first defines a function (say myfunction) that is to be runevery time the branch-and-bound reaches a well-specified point; second, the user calls a function (suchas addcbpreintsol) with myfunction as its argument. Finally, the user runs the solve commandthat launches the branch-and-bound, the simplex solver, or the barrier solver; it is while these are runthat myfunction is called.
A callback function, hence, is passed once as an argument and used possibly many times. It is calledwhile a solver is running, and it is passed the following:

� a problem object, of the same class as an object declared with p = xpress.problem();
� a data object.

The data object is user-defined and is given to the problem when adding the callback function. It can beused to store information that the user can read and/or modify within the callback. For instance, thefollowing code shows how to add a callback function, preintsolcb, that is called every time a newinteger solution is found.
import xpress as xp

class foo:
"Simple class"
bar = 0
def __init__(self):

self.bar = 1
def update(self):

self.bar += 1

def preintsolcb(prob, data, isheuristic, cutoff):
"""
Callback to be used when an integer solution is found. The
"data" parameter is of class foo
"""

Fair Isaac Corporation Confidential and Proprietary Information 29

Using Callbacks

p = xp.problem()
p.read('myprob.lp') # reads in a problem, let's say a MIP

baz = foo()

p.addcbpreintsol(preintsolcb, baz, 3)
p.solve()

While the function argument is necessary for all addcb⁎ functions, the data object can be specified as
None. In that case, the callback will be run with None as its data argument. The call also specifies apriority with which the callback should be called: the larger the (positive) priority, the more urgently it iscalled.
Any call to an addcb⁎ function, as the names imply, only adds a function to a list of callback functionsfor that specific point of the BB algorithm. For instance, two calls to addcbpreintsol with twofunctions preint1 and preint2, respectively with priority 3 and 5, puts the two functions in a list. Thetwo functions will be called (preint2 first) whenever the BB algorithm finds an integer solution.
In order to remove a callback function that was added with addcb⁎, a corresponding removecb⁎function is provided, for instance removecbpreintsol. This function takes two arguments, i.e., thecallback function and the data object, and deletes all elements of the list of callbacks that were addedwith the corresponding addcb function that match the function and the data.
The None keyword acts as a wildcard that matches any function/data object: if removecb⁎ is calledwith None as the function, then all callbacks matching the data will be deleted. If the data is also None,all callback functions of that type are deleted; this can be obtained by passing no argument to
removecb⁎.
The arguments and return value of the callback functions reflect those in the C API, and this holds forparameter names as well. As for the other API functions of the Python interface, there are a fewexceptions:

� If a function in the C API requires a parameter n to indicate the size of an array argument to follow,
n is not required in the corresponding Python function;

� If a function in the C API uses passing by reference as a means to allow for modifying a value andreturning it as an output, the Python counterpart will have this as the return value of the function.Where multiple output values are comprised in the list of parameters, the return value is a tuplecomposed of the returned values. Elements of this tuple can be None if no change was made tothat output value.
Most callback functions refer to a problem, therefore the addcb⁎method is called from a problemobject. The only exception is the function xpress.addcbmsghandler(), which is called on theXpress module itself and allows for providing a function that is called every time any output isproduced within the Optimizer.
We refer to the Reference chapter of this manual for all information regarding callback functions andhow to add/remove them from a problem.

Fair Isaac Corporation Confidential and Proprietary Information 30

CHAPTER 6

Examples of use

This chapter discusses some example Python scripts that are part of the Xpress Optimizer’s Pythoninterface. Most of them are well commented so the user can refer directly to the source for guidance.
Most of these scripts have an initial part in common, which we reproduce here but omit in allexplanations below for compactness. These initial lines import the Xpress module itself and theNumPy module, which is used in some of the examples. The first line is to make the print statements,which are in Python 3 style here, work in Python 2.7 as well.

from __future__ import print_function
import xpress as xp
import numpy as np

6.1 Creating simple problems

Below are a few examples on how to create simple LP, MIP, MIQP, and similar problems. Note that theymake use of API functions that resemble the C API functions for creating problems, and are usedsimilarly here.
6.1.1 Generating a small Linear Programming problem

In this example, we create a problem and load a matrix of coefficients, a rhs, and an objectivecoefficient list with the loadproblem function. We also assign names to both rows and columns (bothare optional). These data correspond to the following problem with three variables and four constraints:
minimize: 3 x1 + 4 x2 + 5 x3subject to: x1 + x3 ≥ -2.4

2x1 + 3x3 ≥ -3
2x2 + 3x3 = 4

x2 + x3 ≤ 5
-1 ≤ x1 ≤ 3
-1 ≤ x1 ≤ 5
-1 ≤ x1 ≤ 8

p = xp.problem()

p.loadproblem("", # probname
['G','G','E', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj

Fair Isaac Corporation Confidential and Proprietary Information 31

Examples of use

[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,2,2,1,1,3,3,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
colnames = ['X1','X2','X3'], # column names
rownames = ['row1','row2','row3','constr_04']) # row names

p.write("loadlp", "lp")
p.solve()

We then create another variable and add it to the problem, then modify the objective function. Note thatthe objective function is replaced by, not amended with, the new expression. After solving the problem,it saves it into a file called update.lp.
x = xp.var()
p.addVariable(x)
p.setObjective(x⁎⁎2 + 2⁎x + 444)
p.solve()
p.write("updated", "lp")

6.1.2 A Mixed Integer Linear Programming problem

This example uses loadproblem to create a Mixed Integer Quadratically Constrained QuadraticProgramming problem with two Special Ordered Sets. Note that data that is not needed is simply set as
None.
The Examples directory provides similar examples for different types of problems.

p = xp.problem()

p.loadproblem("", # probname
['G','G','L', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,1,1,1,1,1,1,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
[0,0,0,1,1,2], # mqobj1
[0,1,2,1,2,2], # mqobj1
[2,1,1,2,1,2], # dqe
[2,3], # qcrows
[2,3], # qcnquads
[1,2,0,0,2], # qcmqcol1
[1,2,0,2,2], # qcmqcol2
[3,4,1,1,1], # qcdqval
['I','S'], # qgtype
[0,1], # mgcols
[0,2], # dlim
['1','1'], # qstype
[0,2,4], # msstart
[0,1,0,2], # mscols
[1.1,1.2,1.3,1.4]) # dref

p.solve()

Fair Isaac Corporation Confidential and Proprietary Information 32

Examples of use

6.2 Modeling examples

6.2.1 A simple model

This example demonstrates how variables and constraints, or lists/arrays thereof, can be added into aproblem. The script then prints the solution and all attributes/controls of the problem.
N = 4
S = range(N)
v = [xp.var(name="y{0}".format(i)) for i in S] # set name of a variable as

m = xp.problem()

v1 = xp.var(name="v1", lb=0, ub=10, threshold=5, vartype=xp.continuous)
v2 = xp.var(name="v2", lb=1, ub=7, threshold=3, vartype=xp.continuous)
vb = xp.var(name="vb", vartype=xp.binary)

Create a variable with name yi, where i is an index in S
v = [xp.var(name="y{0}".format(i), lb=0, ub=2⁎N) for i in S]

The call below adds both v, a vector (list) of variables, and v1 and v2, two scalar variables.
m.addVariable(vb, v, v1, v2)

c1 = v1 + v2 >= 5

m.addConstraint(c1, # Adds a list of constraints: three single constraints...
2⁎v1 + 3⁎v2 >= 5,
v[0] + v[2] >= 1,
... and a set of constraints indexed by all {i in
S: i<N-1}(recall that ranges in Python are from 0
to n-1)
(v[i+1] >= v[i] + 1 for i in S if i < N-1))

objective overwritten at each setObjective()
m.setObjective(xp.Sum([i⁎v[i] for i in S]), sense=xp.minimize)

m.solve()

print("status: ", m.getProbStatus())
print("string: ", m.getProbStatusString())

print("solution:", m.getSolution())

6.2.2 Using IIS to investigate an infeasible problem

The problem modeled below is infeasible,
import xpress as xp

x0 = xp.var()
x1 = xp.var()
x2 = xp.var(vartype=xp.binary)

c1 = x0 + 2 ⁎ x1 >= 1
c2 = 2 ⁎ x0 + x1 >= 1
c3 = x0 + x1 <= .5

c4 = 2 ⁎ x0 + 3 ⁎ x1 >= 0.1

The three constraints c1, c2, and c3 above are incompatible as can be easily verified. Adding all ofthem to a problem will make it infeasible. We use the functions to retrieve the Irreducible InfeasibleSubsystems (IIS).

Fair Isaac Corporation Confidential and Proprietary Information 33

Examples of use

minf = xp.problem("ex-infeas")

minf.addVariable(x0,x1,x2)
minf.addConstraint(c1,c2,c3,c4)

minf.solve()
minf.iisall()
print("there are ", minf.attributes.numiis, " iis's")

miisrow = []
miiscol = []
constrainttype = []
colbndtype = []
duals = []
rdcs = []
isolationrows = []
isolationcols = []

get data for the first IIS

minf.getiisdata(1, miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

print("iis data:", miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

Another way to check IIS isolations
print("iis isolations:", minf.iisisolations(1))

rowsizes = []
colsizes = []
suminfeas = []
numinfeas = []

print("iisstatus:", minf.iisstatus(rowsizes, colsizes, suminfeas, numinfeas))
print("vectors:", rowsizes, colsizes, suminfeas, numinfeas)

6.2.3 Modeling a problem using Python lists and vectors

We create a convex QCQP problem. We use a list of N=5 variables and sets constraints and objective.We define all constraints and the objective function using a Python aggregate type.
import xpress as xp

N = 5
S = range(N)

v = [xp.var(name="y{0}".format(i)) for i in S]

m = xp.problem("problem 1")

print("variable:", v)

m.addVariable(v)

m.addConstraint(v[i] + v[j] >= 1 for i in range(N-4) for j in range(i,i+4))
m.addConstraint(xp.Sum([v[i]⁎⁎2 for i in range(N-1)]) <= N⁎⁎2 ⁎ v[N-1]⁎⁎2)
m.setObjective(xp.Sum([i⁎v[i] for i in S]) ⁎ (xp.Sum([i⁎v[i] for i in S])))

m.solve()

print("solution: ", m.getSolution())

6.2.4 A knapsack problem

Here follows an example of a knapsack problem formulated using lists of numbers. All data in the

Fair Isaac Corporation Confidential and Proprietary Information 34

Examples of use

problem are lists, and so are the variables.
import xpress as xp

S = range(5) # that's the set {0,1,2,3,4}
value = [102, 512, 218, 332, 41] # or just read them from file
weight = [21, 98, 44, 59, 9]

x = [xp.var(vartype=xp.binary) for i in S]
profit = xp.Sum(value[i] ⁎ x[i] for i in S)

p = xp.problem("knapsack")
p.addVariable(x)
p.addConstraint(xp.Sum(weight[i] ⁎ x[i] for i in S) <= 130)
p.setObjective(profit, sense=xp.maximize)
p.solve()

Note that the same result could have been achieved using NumPy arrays and the Xpress module’s dotproduct as follows:
value = np.array([102, 512, 218, 332, 41])
weight = np.array([21, 98, 44, 59, 9])

x = np.array([xp.var(vartype=xp.binary) for i in S], dtype=xp.npvar)
profit = xp.Dot(value, x)

p = xp.problem("knapsack")
p.addVariable(x)
p.addConstraint(xp.Dot(weight, x) <= 130)
p.setObjective(profit, sense=xp.maximize)
p.solve()

6.2.5 A Min-cost-flow problem using NumPy

This example solves a min-cost-flow problem using NumPy and the incidence matrix of the graph. Ituses the networkx package, which might have to be installed using, for example, pip.
import networkx as netx
import xpress as xp

digraph definition

V = [1,2,3,4,5] # vertices
E = [[1,2], [1,4], [2,3], [3,4], [4,5], [5,1]] # arcs

n = len(V) # number of nodes
m = len(E) # number of arcs

G = netx.DiGraph(E)

Get NumPy representation
A = (netx.incidence_matrix(G, oriented=True).toarray())

We use NumPy vectors and the Xpress interface’s dot product, the xpress.Dot operator. Note thatalthough NumPy has a dot operator, especially for large models it is strongly advised to use the Xpressinterface’s Dot function for reasons of efficiency.
demand = np.array([3, -5, 7, -2, -3])

cost = np.array([23, 62, 90, 5, 6, 8])

flow = np.array([xp.var() for i in E], dtype=xp.npvar) # flow variables declared on arcs

p = xp.problem('network flow')

Fair Isaac Corporation Confidential and Proprietary Information 35

Examples of use

p.addVariable(flow)
p.addConstraint(xp.Dot(A, flow) == - demand)
p.setObjective(xp.Dot(cost, flow))

p.solve()

for i in range(m):
print('flow on', E[i], ':', p.getSolution(flow[i]))

6.2.6 A nonlinear model

Let’s solve a classical nonlinear problem: finding the minimum of the Rosenbrock function. Forparameters a and b, minimize (a – x)2 + b(y – x2)2.
import xpress as xp

a,b = 1,100

x = xp.var(lb=-xp.infinity)
y = xp.var(lb=-xp.infinity)

p = xp.problem()

p.addVariable(x,y)

p.setObjective((a-x)⁎⁎2 + b⁎(y-x⁎⁎2)⁎⁎2)

p.controls.xslp_solver = 0 # solve it with SLP, not Knitro

p.solve()

print("status: ", p.getProbStatus())
print("string: ", p.getProbStatusString())

print("solution:", p.getSolution())

6.2.7 Finding the maximum-area n-gon

The problem asks, given n, to find the n-sided polygon of largest area inscribed in the unit circle.
While it is natural to prove that all vertices of a global optimum reside on the unit circle, the problem isformulated so that every vertex i is at distance rhoi from the center, and at angle thetai. We wouldexpect that the local optimum found has all rho’s are equal to 1. The example file contains instructionsfor drawing the resulting polygon using matplotlib.
The objective function is the total area of the polygon. Considering the segment S[i] joining the centerto the i-th vertex and A(i,j) the area of the triangle defined by the two segments S[i] and S[j], theobjective function is A(0,1) + A(1,2) + ... + A(N–1,0), where A(i,j) = 1/2 ∗ rhoi ∗ rhoj ∗ sin(thetai – thetaj). Wefirst define the set Vertices as the set of integers from 0 to n – 1.

rho = [xp.var(lb=1e-5, ub=1.0) for i in Vertices]
theta = [xp.var(lb=-math.pi, ub=math.pi) for i in Vertices]

p = xp.problem()

p.addVariable(rho, theta)

p.setObjective(
0.5⁎(xp.Sum(rho[i]⁎rho[i-1]⁎xp.sin(theta[i]-theta[i-1]) for i in Vertices if i != 0)

+ rho[0]⁎rho[N-1]⁎xp.sin(theta[0]-theta[N-1])), sense=xp.maximize)

We establish that the angles must be increasing in order to obtain a sensible solution:

Fair Isaac Corporation Confidential and Proprietary Information 36

Examples of use

p.addConstraint(theta[i] >= theta[i-1] + 1e-4 for i in Vertices if i != 0)

Note also that we enforce that the angles be different as otherwise they might form a local optimumwhere all of them are equal.
6.2.8 Solving the n-queens problem

In chess, the queen can move in all directions (even diagonally) and travel any distance. The problem ofthe n queens consists in placing n queens on an n × n chessboard so that none of them can be eaten inone move.
We first create a dictionary of variables, mapping each cell of the chessboard to one variable so that wecan refer to it later. All variables are clearly binary as they indicate whether a given cell has a queen ornot.

n = 10 # the size of the chessboard
N = range(n)

x = {(i,j): xp.var(vartype=xp.binary, name='q{0}_{1}'.format(i,j))
for i in N for j in N}

vertical = [xp.Sum(x[i,j] for i in N) <= 1 for j in N]
horizontal = [xp.Sum(x[i,j] for j in N) <= 1 for i in N]

diagonal1 = [xp.Sum(x[k-j,j] for j in range(max(0,k-n+1), min(k+1,n))) <= 1
for k in range(1,2⁎n-2)]

diagonal2 = [xp.Sum(x[k+j,j] for j in range(max(0,-k), min(n-k,n))) <= 1
for k in range(2-n,n-1)]

p = xp.problem()

p.addVariable(x)
p.addConstraint(vertical, horizontal, diagonal1, diagonal2)

Objective, to be maximized: number of queens on the chessboard
p.setObjective(xp.Sum(x), sense=xp.maximize)

p.solve()

As a rudimentary form of visualization, we print the solution on the chessboard with different symbolsfor variables at one or zero.
for i in N:

for j in N:
if p.getSolution(x[i,j]) == 1:

print('@', sep='', end='')
else:

print('.', sep='', end='')
print('')

6.2.9 Solving Sudoku problems

The well-known Sudoku puzzles ask one to place numbers from 1 to 9 into a 9 × 9 grid such that nonumber repeats in any row, in any column, and in any 3x3 sub-grid. For a more general version of thegame, replace 3 with q and 9 with q2.
We model this problem as an assignment problem where certain conditions must be met for allnumbers in the columns, rows, and sub-grids.
These subgrids are lists of tuples with the coordinates of each subgrid. In a 9 × 9 sudoku, for instance,subgrids[0,1] has the 9 elements in the middle top square.

Fair Isaac Corporation Confidential and Proprietary Information 37

Examples of use

The input is a starting grid where the unknown numbers are replaced by zero. The example file containsa relatively hard 9 × 9 sudoku, which we show below, and also a 16 × 16 variant of the same game.
q = 3

starting_grid = \
[[8,0,0,0,0,0,0,0,0],
[0,0,3,6,0,0,0,0,0],
[0,7,0,0,9,0,2,0,0],
[0,5,0,0,0,7,0,0,0],
[0,0,0,0,4,5,7,0,0],
[0,0,0,1,0,0,0,3,0],
[0,0,1,0,0,0,0,6,8],
[0,0,8,5,0,0,0,1,0],
[0,9,0,0,0,0,4,0,0]]

n = q⁎⁎2 # the size must be the square of the size of the subgrids
N = range(n)

x = {(i,j,k): xp.var(vartype=xp.binary, name='x{0}_{1}_{2}'.format(i,j,k))
for i in N for j in N for k in N}

define all q^2 subgrids
subgrids = {(h,l): [(i,j) for i in range(q⁎h, q⁎h + q)

for j in range(q⁎l, q⁎l + q)]
for h in range(q) for l in range(q)}

vertical = [xp.Sum(x[i,j,k] for i in N) == 1 for j in N for k in N]
horizontal = [xp.Sum(x[i,j,k] for j in N) == 1 for i in N for k in N]
subgrid = [xp.Sum(x[i,j,k] for (i,j) in subgrids[h,l]) == 1

for (h,l) in subgrids.keys() for k in N]

Assign exactly one number to each cell

assign = [xp.Sum(x[i,j,k] for k in N) == 1 for i in N for j in N]

Then we fix those variables that are non-zero in the input grid. We don’t need an objective function asthis is a feasibility problem. After computing the solution, we print it to the screen.
init = [x[i,j,k] == 1 for k in N for i in N for j in N

if starting_grid[i][j] == k+1]

p = xp.problem()

p.addVariable(x)
p.addConstraint(vertical, horizontal, subgrid, assign, init)

p.solve()

print('Solution:')

for i in N:
for j in N:

l = [k for k in N if p.getSolution(x[i,j,k]) >= 0.5]
assert(len(l) == 1)
print('{0:2d}'.format(1 + l[0]), end='', sep='')

print('')

6.3 Examples using NumPy

6.3.1 Using NumPy multidimensional arrays to create variables

Use NumPy arrays for creating a 3-dimensional array of variables, then use it to create a mode.

Fair Isaac Corporation Confidential and Proprietary Information 38

Examples of use

S1 = range(2)
S2 = range(3)
S3 = range(4)

m = xp.problem()

h = np.array([[[xp.var(vartype=xp.binary)
for i in S1]
for j in S2]
for k in S3], dtype=xp.npvar)

m.addVariable(h)

m.setObjective (h[0][0][0] ⁎ h[0][0][0] +
h[1][0][0] ⁎ h[0][0][0] +
h[1][0][0] ⁎ h[1][0][0] +
xp.Sum(h[i][j][k] for i in S3 for j in S2 for k in S1))

cons00 = - h[0][0][0] ⁎⁎ 2 +
xp.Sum(i ⁎ j ⁎ k ⁎ h[i][j][k]for i in S3 for j in S2 for k in S1) >= 11

m.addConstraint(cons00)

m.solve()

The final part of the code retrieves the matrix representation of the quadratic part of the onlyconstraint.
mstart1=[]
mclind1=[]
dqe1=[]
m.getqrowqmatrix(cons00, mstart1, mclind1, dqe1, 29, h[0][0][0], h[3][2][1])
print("row 0:", mstart1, mclind1, dqe1)

6.3.2 Using the dot product to create arrays of expressions

Here we use NumPy arrays to print the product of a matrix by a random vector, and the xpress.Dotfunction on a matrix and a vector. Note that the NumPy dot operator works perfectly fine here, butshould be avoided for reasons of performance, especially when handling large arrays where at leastone contains optimization variables or expressions.
x = np.array([xp.var() for i in range(5)], dtype=xp.npvar)

p = xp.problem()
p.addVariable(x)
p.addConstraint(xp.Sum(x) >= 2)

p.setObjective(xp.Sum(x[i]⁎⁎2 for i in range(5)))
p.solve()

A = np.array(range(30)).reshape(6,5) # A is a 6x5 matrix
sol = np.array(p.getSolution()) # a vector of size 5
columns = A⁎sol # not a matrix-vector product!
v = np.dot(A,sol) # an array: matrix-vector product A⁎sol
w = xp.Dot(A,x) # an array of expressions

print(v,w)

6.3.3 Using the Dot product to create constraints and quadratic functions

This is an example of a problem formulation that uses the xpress.Dot operator to formulateconstraints in a concise fashion. Note that the NumPy dot operator is not suitable here as the result isan expression in the Xpress variables.

Fair Isaac Corporation Confidential and Proprietary Information 39

Examples of use

A = np.random.random(30).reshape(6,5) # A is a 6x5 matrix
Q = np.random.random(25).reshape(5,5) # Q is a 5x5 matrix
x = np.array([xp.var() for i in range(5)], dtype=xp.npvar) # vector of variables
x0 = np.random.random(5) # random vector

Q += 4 ⁎ np.eye(5) # add 5 ⁎ the identity matrix

Lin_sys = xp.Dot(A,x) <= np.array([3,4,1,4,8,7]) # 6 constraints (rows of A)
Conv_c = xp.Dot(x,Q,x) <= 1 # one quadratic constraint

p = xp.problem()

p.addVariable(x)
p.addConstraint(Lin_sys, Conv_c)
p.setObjective(xp.Dot(x-x0, x-x0)) # minimize distance from x0

p.solve()

6.3.4 Using NumPy to create quadratic optimization problems

This example creates and solves a simple quadratic optimization problem. Given an n × n matrix Q anda point x0, minimize the quadratic function xT(Q + n3I)x subject to the linear system (x – x0)TQ + e = 0,where e is the vector of all ones, the inequalities Qx ≥ 0, and nonnegativity on all variables. Reportsolution if available.
n = 10

Q = np.arange(1, n⁎⁎2 + 1).reshape(n, n)
x = np.array([xp.var() for i in range(n)], dtype=xp.npvar)
x0 = np.random.random(n)

p = xp.problem()

p.addVariable(x)

c1 = xp.Dot((x - x0), Q) + 1 == 0
c2 = xp.Dot(Q, x) >= 0

p.addConstraint(c1,c2)
p.setObjective(xp.Dot(x, Q + N⁎⁎3 ⁎ np.eye(N), x))

p.solve('')

print("nrows, ncols:", p.attributes.rows, p.attributes.cols)
print("solution:", p.getSolution())

p.write("test5-qp", "lp")

6.4 Advanced examples: callbacks and problem querying, modifying, and
analysis

6.4.1 Visualize the branch-and-bound tree of a problem

This example shows how to visualize the BB tree of a problem after (partially) solving it. It is assumedhere that all branches are binary.
We first define a message callback for running code whenever the Optimizer wants to print a message.The callback receives four arguments: the problem and callback data and, most importantly, themessage to be printed and an information number. The callback prints the output message prefixed bya time stamp related to the creation of the problem. As the message could be on multiple lines, it issplit into multiple substrings, one per line.

Fair Isaac Corporation Confidential and Proprietary Information 40

Examples of use

import networkx as nx
import time
from matplotlib import pyplot as plt

def message_addtime (prob, data, msg, info):
"""Message callback example: print a timestamp before the message from the optimizer"""
if msg:

for submsg in msg.split('\n'):
print("{0:6.3f}: [{2:+4d}] {1}".format(time.time() - start_time, submsg, info))

We then define a recursive function that computes the cardinality of a subtree rooted at a node i. This isnecessary as the visualization of the BB tree is more balanced when the subtree size is taken intoaccount. The card_subtree array, which is filled here, is used then for computing the width of eachvisualized subtree.
def postorder_count(node):

"""
Recursively count nodes to compute the cardinality of a subtree for
each node
"""

card = 0

if node in left.keys(): # see if node has a left key
postorder_count(left[node])
card += card_subtree[left[node]]

if node in right.keys():
postorder_count(right[node])
card += card_subtree[right[node]]

card_subtree[node] = 1 + card

We also define a function that determines the position of each node depending on the cardinality of thesubtree rooted at the node.
def setpos(T, node, curpos, st_width, depth):

"""
Set position depending on cardinality of each subtree
"""

Special condition: we are at the root
if node == 1:

T.add_node(node, pos=(0.5, 1))

alpha = .1 # use a convex combination of subtree comparison and
depth to assign a width to each subtree

if node in left.keys():

X position in the graph should not just depend on depth,
otherwise we'd see a long and thin subtree and it would just
look like a path

leftwidth = st_width ⁎ (alpha ⁎ .5 + (1 - alpha) ⁎ card_subtree[left[node]]
/ card_subtree[node])

leftpos = curpos - (st_width - leftwidth) / 2

T.add_node(left[node], pos=(leftpos, - depth))
T.add_edge(node, left[node])
setpos(T, left[node], leftpos, leftwidth, depth + 1)

if node in right.keys():

rightwidth = st_width ⁎ (alpha ⁎ .5 + (1 - alpha) ⁎ card_subtree[right[node]]

Fair Isaac Corporation Confidential and Proprietary Information 41

Examples of use

/ card_subtree[node])
rightpos = curpos + (st_width - rightwidth) / 2

T.add_node(right[node], pos=(rightpos, - depth))
T.add_edge(node, right[node])
setpos(T, right[node], rightpos, rightwidth, depth + 1)

This is the only operation we need to be carried out at every node: given a node number, newnode, andits parent, parent, we store the information in the left and right arrays so that at the end of the BBwe have an explicit BB tree stored in these arrays.
def storeBBnode(prob, Tree, parent, newnode, branch):

Tree is the callback data, and it's equal to T

if branch == 0:
left[parent] = newnode

else:
right[parent] = newnode

We now set up the BB tree data and create a problem. We read it from a local file, but any user problemcan be read and analyzed. We set the node callback with addcbnewnode so that we can collectinformation at each new node. We also save the initial time for use by message_addtime, the functionthat is called every time the problem prints out a message.
T = nx.Graph()

left = {}
right = {}
card_subtree = {}
pos = {}

start_time = time.time()

p = xp.problem()
p.addcbmessage(message_addtime)

p.read('sampleprob.mps.gz')
p.addcbnewnode(storeBBnode, T, 100)
p.controls.maxnode=40000 # Limit the number of nodes inserted in the graph
p.solve()

postorder_count(1) # assign card_subtree to each node
setpos(T, 1, 0.5, 1, 0) # determine the position of each node

depending on subtree cardinalities

pos = nx.get_node_attributes(T, 'pos')

nx.draw(T, pos) # create BB tree representation
plt.show() # display it; you can zoom indefinitely and see all subtrees

6.4.2 Query and modify a simple problem

This example shows how to change an optimization problem using the Xpress Python interface.
x = xp.var()
y = xp.var()

cons1 = x + y >= 2
upperlim = 2⁎x + y <= 3

p = xp.problem()

p.addVariable(x,y)
p.setObjective((x-4)⁎⁎2 + (y-1)⁎⁎2)

Fair Isaac Corporation Confidential and Proprietary Information 42

Examples of use

p.addConstraint(cons1, upperlim)

p.write('original', 'lp')

After saving the problem to a file, we change two of its coefficients. Note that the same operations canbe carried out with a single call to p.chgmcoef([cons1,1],[x,0],[3,4]).
p.chgcoef(cons1, x, 3) # coefficient of x in cons1 becomes 3
p.chgcoef(1, 0, 4) # coefficient of y in upperlim becomes 4

p.write('changed', 'lp')

6.4.3 Change a problem after solution

Construct a problem using addVariable and addConstraint, then use the Xpress API routines to amendthe problem with rows and quadratic terms.
import xpress as xp

p = xp.problem()
N = 5
S = range(N)

x = [xp.var(vartype=xp.binary) for i in S]

p.addVariable(x)

Vectors of variables can be used whole or addressed with an index or
index range

c0 = xp.Sum(x) <= 10
cc = [x[i]/1.1 <= x[i+1]⁎2 for i in range(N-1)]

p.addConstraint(c0, cc)

p.setObjective(3 - x[0])

mysol = [0, 0, 1, 1, 1, 1.4]

add a variable with its coefficients

p.addcols([4], [0,3], [c0,4,2], [-3, 2.4, 1.4], [0], [2], ['Y'], ['B'])
p.write("problem1", "lp")

load a MIP solution
p.loadmipsol([0,0,1,1,1,1.4])

We now add a quadratic term x20 – 2x0x3 + x31 to the second constraint. Note that the -2 coefficient foran off-diagonal element must be passed divided by two.
p.addqmatrix(cc[0], [x[0],x[3],x[3]], [x[0],x[0],x[3]], [1,-1,1])

As constraint list cc was added after c0, it is the latter which has index 0 in the problem, while cc[0]has index 1.
We then add the seventh and eighth constraints:
subject to: x0 + 2 x1 + 3x2 ≥ 4

4x0 + 5x1 + 6x2 + 7 x3 + 8 x4 -3 y ≤ 4.4
Note the new column named ’Y’ is added with its index 5 (variables’ indices begin at 0). The samewould happen if 5 were substituted by Y.

Fair Isaac Corporation Confidential and Proprietary Information 43

Examples of use

p.addqmatrix(1, [x[0],x[3],x[3]], [x[0],x[0],x[3]], [1,-1,1])

p.addrows(qrtype=['G', 'L'],
rhs=[4, 4.4],
mstart=[0, 3, 9],
mclind=[x[0],x[1],x[2], x[0],x[1],x[2],x[3],x[4], 5],
dmatval=[1,2,3,4,5,6,7,8,-3],
names=['newcon1', 'newcon2'])

p.solve()
p.write("amended", "lp")

slacks = []

p.calcslacks(solution=mysol, calculatedslacks=slacks)

print("slacks:", slacks)

The code below first adds five columns, then solves the problem and prints the solution, if one has beenfound.
p.addcols([4], [0,3], [c0,4,2], [-3, -2, 1], [0], [2], ['p1'], ['I'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2.4, 1.4], [0], [10], ['p2'], ['C'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2, 1], [0], [1], ['p3'], ['S'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2.4, 4], [0], [2], ['p4'], ['P'])
p.addcols([4], [0,3], [c0,4,2], [-3, 2, 1], [0], [2], ['p5'], ['R'])

p.solve()

try:
print("new solution:", p.getSolution())

except:
print("could not get solution, perhaps problem is infeasible")

Note that the single command below has the same effect as the four addcols calls above, and is to bepreferred when adding a large number of columns for reasons of efficiency.
p.addcols([4,4,4,4,4],

[0,3,6,9,12,15],
[c0,4,2,c0,4,2,c0,4,2,c0,4,2,c0,4,2],
[3, -2, 1, -3, 2.4, 1.4, 3, 2, 1, -3, 2.4, 4, 3, 2, 1],
[0,0,0,0,0],
[2,10,1,2,2],
['p1','p2','p3','p4','p5'],
['I','C','S','P','R'])

6.4.4 Comparing the coefficients of two equally sized problems

Given two problems with the same number of variables, we read their coefficient matrices into Scipy soas to compare each row for discrepancies in the coefficients. We begin by creating two Xpressproblems and reading them from two files, prob1.lp and prob2.lp, though p1 and p2might havebeen created with the module’s modeling features.
import xpress as xp
import scipy.sparse

p1 = xp.problem()
p2 = xp.problem()

p1.read('prob1.lp')
p2.read('prob2.lp')

Next we obtain the matrix representation of the coefficient matrix for both problems. Let us supposethat, for memory reasons, we can only retrieve one million coefficients.

Fair Isaac Corporation Confidential and Proprietary Information 44

Examples of use

coef1, ind1, beg1 = [], [], []
coef2, ind2, beg2 = [], [], []

p1.getrows(beg1, ind1, coef1, 1000000, 0, p1.attributes.rows - 1)
p2.getrows(beg2, ind2, coef2, 1000000, 0, p2.attributes.rows - 1)

The function problem.getrows provides a richer output by filling up ind1 and ind2 with the Pythonobjects (i.e. Xpress variables) corresponding to the variable indices rather than the numerical indices.We need to convert them to numerical indices using the problem.getIndex function.
ind1n = [p1.getIndex(v) for v in ind1]
ind2n = [p2.getIndex(v) for v in ind2]

The next step is to create a Compressed Sparse Row (CSR) format matrix, defined in the
scipy.sparsemodule, using the data from problem.getrows plus the numerical indices.
Then we convert the CSR matrix to a NumPy array of arrays, so that each row is a (non-compressed)array to be compared in the loop below.

A1 = scipy.sparse.csr_matrix((coef1, ind1n, beg1))
A2 = scipy.sparse.csr_matrix((coef2, ind2n, beg2))

M1 = A1.toarray()
M2 = A2.toarray()

for i in range(min(p1.attributes.rows, p2.attributes.rows)):
print(M1[i] != M2[i])

The result is a few vectors of size COLS with an element-wise comparison of the coefficient vector ofeach row, with True indicating discrepancies. A more meaningful representation can be given usingother functions in NumPy.
[False False True False False]
[False False False False False]
[False False False False True]
[True True False False False]
[False False False False False]

6.4.5 Combining modeling and API functions

This is an example where a problem is loaded from a file, solved, then modified by adding a GlobalUpper Bound (GUB) constraint. Note that we do not know the structure of the problem when reading it,yet we can simply extract the list of variables and use them to add a constraint.
import xpress
p = xpress.problem()

p.read("example.lp")
p.solve()
print("solution of the original problem: ", p.getVariable(), "==>", p.getSolution())

After solving the problem, we obtain its variables through getVariable and add a constraints so thattheir sum cannot be more than 1.1.
x = p.getVariable()
p.addConstraint(xpress.Sum(x) <= 1.1)
p.solve()
print("New solution: ", p.getSolution())

Fair Isaac Corporation Confidential and Proprietary Information 45

Examples of use

6.4.6 A simple Traveling Salesman Problem (TSP) solver

A classical example of use of callbacks is the development of a simple solver for the well-known TSPproblem. The aim here is not to create an efficient solver (there are far better implementations), butrather a simple solver where the user only needs to specify two callbacks: one for checking whether agiven solution forms a Hamiltonian tour and one for separating a subtour elimination constraint fromthe current node solution.
After a successful solve (or an interrupted one with a feasible solution), the best Hamiltonian tour isdisplayed. Note that this section omits unnecessary details (checks of return values, exceptions, etc.)of the actual code, which can be found in the Examples/ directory.

import networkx as nx
import xpress as xp
import re, math, sys

from matplotlib import pyplot as plt

import urllib.request as ul

filename = 'dj38.tsp'

ul.urlretrieve('http://www.math.uwaterloo.ca/tsp/world/' + filename, filename)

instance = open(filename, 'r')
coord_section = False
points = {}

G = nx.Graph()

We have downloaded an instance of the TSP and now it must be read and interpreted as it does nothave a format that we know. We save in cx and cy the coordinates of all nodes in the graph, which isassumed to be complete, i.e., all nodes are connected to one another.
for line in instance.readlines():

if re.match('NODE_COORD_SECTION.⁎', line):
coord_section = True
continue

elif re.match('EOF.⁎', line):
break

if coord_section:
coord = line.split(' ')
index = int(coord[0])
cx = float(coord[1])
cy = float(coord[2])
points[index] = (cx, cy)
G.add_node(index, pos=(cx, cy))

The next step is to define a callback function for checking if the solution forms a Hamiltonian tour, i.e.,if it connects all nodes of the graph. The callback will be passed with the method addcbpreintsol,therefore it needs to return a tuple of two values: the first value is True if the solution should berejected, and the second is the new cutoff in case it has to be changed. This is not the case here, so
None can be safely returned.
After obtaining the integer solution to be checked, the function scans the graph from node 1 to see ifthe solutions at one form a tour.

def check_tour(prob, G, isheuristic, cutoff):

s = []

Fair Isaac Corporation Confidential and Proprietary Information 46

Examples of use

prob.getlpsol(s, None, None, None)

orignode = 1
nextnode = 1
card = 0

while nextnode != orignode or card == 0:

FS = [j for j in V if j != nextnode
and s[prob.getIndex(x[nextnode,j])] == 1] # forward star

card += 1

if len(FS) < 1:
return (True, None) # reject solution if we can't close the loop

nextnode = FS[0]

If there are n arcs in the loop, the solution is feasible

return (card < n, None) # accept the cutoff: return second element as None

The second callback to be defined is a separator for subtour elimination constraints. It must return anonzero value if the node is deemed infeasible by the function, zero otherwise. The function addcutsis used to insert a subtour elimination constraint.
The function works as follows: Starting from node 1, gather all connected nodes of a loop in connset.If this set contains all nodes, then the solution is valid if integer, otherwise the function adds a subtourelimination constraint in the form of a clique constraint with all arcs (i, j) for all i, j in connset.

def eliminate_subtour(prob, G):

s = [] # initialize s as an empty list to provide it as an output parameter

prob.getlpsol(s, None, None, None)

orignode = 1
nextnode = 1

connset = []

while nextnode != orignode or len(connset) == 0:

connset.append(nextnode)

FS = [j for j in V if j != nextnode
and s[prob.getIndex(x[nextnode, j])] == 1] # forward star

if len(FS) < 1:
return 0

nextnode = FS[0]

if len(connset) < n:

Add a subtour elimination using the nodes in connset (or, if
card(connset) > n/2, its complement)

if len(connset) <= n/2:
columns = [x[i,j] for i in connset for j in connset

if i != j]
nArcs = len(connset)

else:
columns = [x[i,j] for i in V for j in V

if not i in connset and not j in connset and i != j]
nArcs = n - len(connset)

nTerms = len(columns)

Fair Isaac Corporation Confidential and Proprietary Information 47

Examples of use

prob.addcuts([1], ['L'], [nArcs - 1], [0, nTerms], columns, [1] ⁎ nTerms)

return 0

We now formulate the problem with the degree constraints on each node and the objective function(the cost of each arc (i, j) is assumed to be the Euclidean distance between i and j).
n = len(points) # number of nodes
V = range(1, n+1) # set of nodes
A = [(i,j) for i in V for j in V if i != j] # set of arcs (i.e. all pairs)

x = {(i,j): xp.var(name='x_{0}_{1}'.format(i,j), vartype=xp.binary) for (i,j) in A}

conservation_in = [xp.Sum(x[i,j] for j in V if j != i) == 1 for i in V]
conservation_out = [xp.Sum(x[j,i] for j in V if j != i) == 1 for i in V]

p = xp.problem()

p.addVariable(x)
p.addConstraint(conservation_in, conservation_out)

xind = {(i,j): p.getIndex(x[i,j]) for (i,j) in x.keys()}

Objective function: total distance travelled
p.setObjective(xp.Sum(math.sqrt((points[i][0] - points[j][0])⁎⁎2 +

(points[i][1] - points[j][1])⁎⁎2) ⁎
x[i,j]

for (i,j) in A))

p.controls.maxtime = -2000 # negative for "stop even if no solution is found"

p.addcboptnode(eliminate_subtour, G, 1)
p.addcbpreintsol(check_tour, G, 1)

We now solve the problem, and if a solution is found it is displayed using the Python library
matplotlib.

p.solve()

sol = p.getSolution()

Read solution and store it in the graph

for (i,j) in A:
if sol[p.getIndex(x[i,j])] > 0.5:

G.add_edge(i,j)

Display best tour found

pos = nx.get_node_attributes(G, 'pos')

nx.draw(G, points) # create a graph with the tour
plt.show() # display it interactively

Another solver for TSP problems is available in example_tsp_numpy.py. The two main differencesconsist in the problem generation, which is now random, and in the fact that most data structures areNumPy vectors and matrices: the optimization variables, the LP solution obtained from theBranch-and-Bound, and the data used to check feasibility of the solutions.
6.4.7 Solving a nonconvex MIQCQP

In this example we turn the Xpress Optimizer into a solver for nonconvex MIQCQPs, i.e. problems withnonconvex quadratic objective and/or nonconvex quadratic constraints.

Fair Isaac Corporation Confidential and Proprietary Information 48

Examples of use

In order to handle nonconvex quadratic constraints, we have to reformulate the problem to a MILP sothat the simplest nonlinear terms, i.e. the products of variables, are transformed into new, so-called
auxiliary variables.
Product xixj is assigned to a new variable wij so that every occurrence of that product in the problem isreplaced by wij. Assuming li and ui are the lower and upper bound on xi, respectively, we add the linear
McCormick inequalities:

� wij ≥ lj xi + li xj - lj li
� wij ≥ uj xi + ui xj - uj ui
� wij ≤ lj xi + ui xj - lj ui
� wij ≤ uj xi + li xj - uj li

The bounds on the new auxiliary variable wij are a function of the bounds on xi and xj.
Below is the code that takes care of reformulating the problem. We first have to identify all terms xixjand create a dictionary linking each pair (i,j) to an auxiliary variable wij. The dictionary aux is usedthroughout the solver and contains this information. The function create_prob checks all bilinearterms and creates aux and the McCormick inequalities.

def create_prob(filename):

[...]

x = p.getVariable()

aux = {} # Dictionary containing the map (x_i,x_j) --> y_ij

[...]

p.addConstraint(
[aux[i, j] >= lb[j]⁎x[i] + lb[i]⁎x[j] - lb[i] ⁎ lb[j]
for (i, j) in aux.keys() if max(-lb[i], -lb[j]) < xp.infinity],
[aux[i, j] >= ub[j]⁎x[i] + ub[i]⁎x[j] - ub[i] ⁎ ub[j]
for (i, j) in aux.keys() if max(ub[i], ub[j]) < xp.infinity],
[aux[i, j] <= ub[j]⁎x[i] + lb[i]⁎x[j] - lb[i] ⁎ ub[j]
for (i, j) in aux.keys() if max(-lb[i], ub[j]) < xp.infinity],
[aux[i, j] <= lb[j]⁎x[i] + ub[i]⁎x[j] - ub[i] ⁎ lb[j]
for (i, j) in aux.keys() if max(ub[i], -lb[j]) < xp.infinity])

We also needs to tell the Optimizer that the newly created auxiliary variables and the variables thatused to appear in bilinear terms should be protected against deletion by the presolver.
securecols = list(aux.values())
secureorig = set()

for i, j in aux.keys():
secureorig.add(i)
secureorig.add(j)

securecols += list(secureorig)

p.loadsecurevecs(mrow=None, mcol=securecols)

The creation of a single auxiliary variable is done in addaux, where its bounds are created and,depending on whether it is the product of two variables or the square of one, it receives a differenttreatment.
def addaux(aux, p, i, j, lb, ub, vtype):

Fair Isaac Corporation Confidential and Proprietary Information 49

Examples of use

Find bounds of auxiliary first
if i != j:

bilinear term
l, u = bdprod(lb[i], ub[i], lb[j], ub[j])

elif lb[i] >= 0:
l, u = lb[i]⁎⁎2, ub[i]⁎⁎2

elif ub[i] <= 0:
l, u = ub[i]⁎⁎2, lb[i]⁎⁎2

else:
l, u = 0, max([lb[i]⁎⁎2, ub[i]⁎⁎2])

After setting the bounds on wij, we determine its type and create the corresponing xp.var object.
if vtype[i] == 'B' and vtype[j] == 'B':

t = xp.binary
elif (vtype[i] == 'B' or vtype[i] == 'I') and \

(vtype[j] == 'B' or vtype[j] == 'I'):
t = xp.integer

else:
t = xp.continuous

Add auxiliaries
aux[i, j] = xp.var(lb=l, ub=u, vartype=t,

name='aux_{0}_{1}'.format(
p.getVariable(i).name,
p.getVariable(j).name))

return aux[i, j]

Quadratic constraints and the quadratic objective (if any) are converted in convQaux, where they arereplaced by a linear expression containing auxiliary variables.
def convQaux(p, aux, mstart, ind, coef, row, lb, ub, vtype):

rcols = []
rrows = []
rcoef = []

for i,__ms in enumerate(mstart[:-1]):
for j in range(mstart[i], mstart[i+1]):

J = p.getIndex(ind[j])

if (i, J) not in aux.keys():
y = addaux(aux, p, i, J, lb, ub, vtype)
p.addVariable(y)

else:
y = aux[i, J]

if row < 0: # objective
mult = .5

else:
mult = 1

if i != J:
coe = 2 ⁎ mult ⁎ coef[j]

else:
coe = mult ⁎ coef[j]

if row < 0:
p.chgobj([y], [coe])

else:
rcols.append(y)
rrows.append(row)
rcoef.append(coe)

if row >= 0:

Fair Isaac Corporation Confidential and Proprietary Information 50

Examples of use

This is a quadratic constraint, not the objective function
Add linear coefficients for newly introduced variables
p.chgmcoef(rrows, rcols, rcoef)
Remove quadratic matrix
p.delqmatrix(row)

else:

Objective: Remove quadratic part
indI = []
for i in range(len(mstart) - 1):

indI.extend([i] ⁎ (mstart[i+1] - mstart[i]))
Set all quadratic elements to zero
p.chgmqobj(indI, ind, [0] ⁎ mstart[-1])

The new problem, called a reformulation, is then solved as a MILP with a few callbacks. Given that theproblem is nonconvex, we need to branch on continuous variables, those that appear in bilinear terms,and we also need to keep adding McCormick inequalities when the bounds change. This is because inbranch-and-bound algorithms for nonconvex problems the linear relaxation should be exact at theextremes of the variable bound ranges.
Another callback is to decide whether to accept or not a solution that was found by thebranch-and-bound: because the constraints linking w to x are missing, we must make sure that they aresatisfied by a solution, and must refuse a solution that does not satisfy wij = xixj.

def solveprob(p, aux):

p.addcbpreintsol(cbchecksol, aux, 1)
p.addcboptnode(cbaddcuts, aux, 3)
p.addcbchgbranchobject(cbbranch, aux, 1)

p.mipoptimize()

The callback functions are fundamental. The branch callback checks whether the auxiliary variables wijare satisfied, and if not it creates a branching object on either xi or xj. Due to the presolved nature of theproblem at this point in the branch-and-bound, care must be applied in handling the variable indices, asthey might have changed by the presolver to allow for a smaller problem.
def cbbranch(prob, aux, branch):

lb, ub = getCBbounds(prob, len(sol))

x = prob.getVariable() # presolved variables

rowmap = []
colmap = []

prob.getpresolvemap(rowmap, colmap)

invcolmap = [-1 for _ in lb]

for i, m in enumerate(colmap):
invcolmap[m] = i

Check if all auxiliaries are equal to their respective bilinear
term. If so, we have a feasible solution

sol = np.array(sol)

discr = sol[Aux_ind] - sol[Aux_i] ⁎ sol[Aux_j]
discr[Aux_i == Aux_j] = np.maximum(0, discr[Aux_i == Aux_j])
maxdiscind = np.argmax(np.abs(discr))

if abs(discr[maxdiscind]) < eps:
return branch

Fair Isaac Corporation Confidential and Proprietary Information 51

Examples of use

i,j = Aux_i[maxdiscind], Aux_j[maxdiscind]

yind = prob.getIndex(aux[i, j])

For terms of the form wii = xi2, branching might still be necessary as the curve defining it is anonconvex set.
if i == j:

Test of violation is done on the original
space. However, the problem variables are scrambled with invcolmap

if sol[i] > lb[i] + eps and \
sol[i] < ub[i] - eps and \
sol[yind] > sol[i]⁎⁎2 + eps and \
sol[yind] - lb[i]⁎⁎2 <= (ub[i] + lb[i]) ⁎ (sol[i] - lb[i]) - eps:

Can't separate, must branch. Otherwise OA or secant
cut separated above should be enough

brvarind = invcolmap[i]
brpoint = sol[i]
brvar = x[brvarind]
brleft = brpoint
brright = brpoint

assert(brvarind >= 0)

if brvar.vartype in [xp.integer, xp.binary]:
brleft = math.floor(brpoint + 1e-5)
brright = math.ceil(brpoint - 1e-5)

b = xp.branchobj(prob, isoriginal=False)

b.addbranches(2)

addrowzip(prob, b, 0, 'L', brleft, [i], [1])
addrowzip(prob, b, 1, 'G', brright, [i], [1])

New variable bounds are not enough, add new McCormick
inequalities for y = x⁎⁎2: suppose x0,y0 are the current
solution values for x,y, yp = x0⁎⁎2 and xu,yu = xu⁎⁎2 are their
upper bound, and similar for lower bound. Then these two
rows must be added, one for each branch:
#
y - yp <= (yl-yp)/(xl-x0) ⁎ (x - x0) <===>
(yl-yp)/(xl-x0) ⁎ x - y >= (yl-yp)/(xl-x0) ⁎ x0 - yp
#
y - yp <= (yu-yp)/(xu-x0) ⁎ (x - x0) <===>
(yu-yp)/(xu-x0) ⁎ x - y >= (yu-yp)/(xu-x0) ⁎ x0 - yp
#
Obviously do this only for finite bounds

ypl = brleft⁎⁎2
ypr = brright⁎⁎2

if lb[i] > -1e7 and sol[i] > lb[i] + eps:

yl = lb[i]⁎⁎2
coeff = (yl - ypl) / (lb[i] - sol[i])

if coeff != 0:
addrowzip(prob, b, 0, 'G', coeff⁎sol[i] - ypl,

[i, yind], [coeff, -1])

if ub[i] < 1e7 and sol[i] < ub[i] - eps:

yu = ub[i]⁎⁎2

Fair Isaac Corporation Confidential and Proprietary Information 52

Examples of use

coeff = (yu - ypr) / (ub[i] - sol[i])

if coeff != 0:
addrowzip(prob, b, 1, 'G', coeff⁎sol[i] - ypr,

[i, yind], [coeff, -1])

return b

Similarly for bilinear terms, we must choose where to branch and on which variable.
else:

lbi0, ubi0 = lb[i], ub[i]
lbi1, ubi1 = lb[i], ub[i]

lbj0, ubj0 = lb[j], ub[j]
lbj1, ubj1 = lb[j], ub[j]

No cut violated, must branch
if min(sol[i] - lb[i], ub[i] - sol[i]) / (1 + ub[i] - lb[i]) > \

min(sol[j] - lb[j], ub[j] - sol[j]) / (1 + ub[j] - lb[j]):
lbi1 = sol[i]
ubi0 = sol[i]
brvar = i

else:
lbj1 = sol[j]
ubj0 = sol[j]
brvar = j

alpha = 0.2

brvarind = invcolmap[brvar]
brpoint = sol[brvar]
brleft = brpoint
brright = brpoint

if x[brvarind].vartype in [xp.integer, xp.binary]:
brleft = math.floor(brpoint + 1e-5)
brright = math.ceil(brpoint - 1e-5)

b = xp.branchobj(prob, isoriginal=False)

b.addbranches(2)

addrowzip(prob, b, 0, 'L', brleft, [brvar], [1])
addrowzip(prob, b, 1, 'G', brright, [brvar], [1])

As for the i==j case, the variable branch is
insufficient, so add updated McCormick inequalities.
There are two McCormick inequalities per changed bound:
#
y >= lb[j] ⁎ x[i] + lb[i] ⁎ x[j] - lb[j] ⁎ lb[i] ---> add to branch 1
y >= ub[j] ⁎ x[i] + ub[i] ⁎ x[j] - ub[j] ⁎ ub[i] ---> add to branch 0
y <= lb[j] ⁎ x[i] + ub[i] ⁎ x[j] - lb[j] ⁎ ub[i] ---> add to branch 1 if x[brvarind] == j, 0 if x[brvarind] == i
y <= ub[j] ⁎ x[i] + lb[i] ⁎ x[j] - ub[j] ⁎ lb[i] ---> add to branch 1 if x[brvarind] == i, 0 if x[brvarind] == j

addrowzip(prob, b, 0, 'G', - ubi0 ⁎ ubj0, [yind, i, j], [1, -ubj0, -ubi0])
addrowzip(prob, b, 1, 'G', - lbi1 ⁎ lbj1, [yind, i, j], [1, -lbj1, -lbi1])

if brvarind == i:
addrowzip(prob, b, 0, 'L', - lbj0 ⁎ ubi0, [yind, i, j], [1, -lbj0, -ubi0])
addrowzip(prob, b, 1, 'L', - ubj1 ⁎ lbi1, [yind, i, j], [1, -ubj1, -lbi1])

else:
addrowzip(prob, b, 0, 'L', - ubj0 ⁎ lbi0, [yind, i, j], [1, -ubj0, -lbi0])
addrowzip(prob, b, 1, 'L', - lbj1 ⁎ ubi1, [yind, i, j], [1, -lbj1, -ubi1])

return b

If no branching rule was found, return none

Fair Isaac Corporation Confidential and Proprietary Information 53

Examples of use

return branch

The callback for checking a solution is straightforward: for all pairs ij, check if the correspondingidentity wij = xi xj is satisfied, and if not, simply reject the solution.
def cbchecksol(prob, aux, soltype, cutoff):

global Aux_i, Aux_j, Aux_ind

if (prob.attributes.presolvestate & 128) == 0:
return (1, cutoff)

sol = []

Retrieve node solution
try:

prob.getlpsol(x=sol)
except:

return (1, cutoff)

sol = np.array(sol)

Check if all auxiliaries are equal to their respective bilinear
term. If so, we have a feasible solution

refuse = 1 if np.max(np.abs(sol[Aux_i] ⁎ sol[Aux_j] - sol[Aux_ind])) > eps else 0

Return with refuse != 0 if solution is rejected, 0 otherwise;
and same cutoff
return (refuse, cutoff)

An important part of this nonconvex solver is a function that computes a new feasible solution. Theone we attempt here is rather trivial and probably not able to find good solutions, but one could addother algorithms, which for example might just use an alternative solver, and find a feasible solution,regardless of how good.
def cbfindsol(prob, aux):

sol = []

try:
prob.getlpsol(x=sol)

except:
return 0

xnew = sol[:]

Round solution to nearest integer
for i,t in enumerate(var_type):

if t == 'I' or t == 'B' and \
xnew[i] > math.floor(xnew[i] + prob.controls.miptol) + prob.controls.miptol:
xnew[i] = math.floor(xnew[i] + .5)

for i, j in aux.keys():
yind = prob.getIndex(aux[i, j])
xnew[yind] = xnew[i] ⁎ xnew[j]

prob.addmipsol(xnew)

return 0

The function for adding McCormick inequalities is perhaps the most important as it allows for thelower bound in the branch-and-bound to get tighter at every node. All violated inequalities are added forall pairs ij.

Fair Isaac Corporation Confidential and Proprietary Information 54

Examples of use

def cbaddmccormickcuts(prob, aux, sol):
lb, ub = getCBbounds(prob, len(sol))

cuts = []

Check if all auxiliaries are equal to their respective bilinear
term. If so, we have a feasible solution
for i, j in aux.keys():

yind = prob.getIndex(aux[i, j])

if i == j:

Separate quadratic term

if sol[yind] < sol[i]⁎⁎2 - eps and \
abs(sol[i]) < xp.infinity / 2:

xk = sol[i]

ox = xk
oy = ox ⁎⁎ 2

Add Outer Approximation cut y >= xs^2 + 2xs⁎(x-xs)
<===> y - 2xs⁎x >= -xs^2
cuts.append((TYPE_OA, 'G', - ox⁎⁎2, [yind, i],

[1, -2⁎ox]))

Otherwise, check if secant can be of help: y0 - xl⁎⁎2 >
(xu⁎⁎2 - xl⁎⁎2) / (xu - xl) ⁎ (x0 - xl)
elif sol[yind] > sol[i]⁎⁎2 + eps and \

sol[yind] - lb[i]⁎⁎2 > (ub[i] + lb[i]) ⁎ (sol[i] - lb[i]) \
+ eps and abs(lb[i] + ub[i]) < xp.infinity / 2:
cuts.append((TYPE_SECANT, 'L',

lb[i]⁎⁎2 - (ub[i] + lb[i]) ⁎ lb[i],
[yind, i], [1, - (lb[i] + ub[i])]))

elif abs(sol[yind] - sol[i]⁎sol[j]) > eps:

Separate bilinear term, where i != j. There might be at
least one cut violated

if sol[yind] < lb[j]⁎sol[i] + lb[i]⁎sol[j] - lb[i]⁎lb[j] - eps:
if lb[i] > -xp.infinity / 2 and lb[j] > -xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'G', - lb[i] ⁎ lb[j],
[yind, i, j], [1, -lb[j], -lb[i]]))

elif sol[yind] < ub[j]⁎sol[i] + ub[i]⁎sol[j] - ub[i]⁎ub[j] - eps:
if ub[i] < xp.infinity / 2 and ub[j] < xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'G', - ub[i] ⁎ ub[j],
[yind, i, j], [1, -ub[j], -ub[i]]))

elif sol[yind] > lb[j]⁎sol[i] + ub[i]⁎sol[j] - ub[i]⁎lb[j] + eps:
if ub[i] < xp.infinity / 2 and lb[j] > -xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'L', - ub[i] ⁎ lb[j],
[yind, i, j], [1, -lb[j], -ub[i]]))

elif sol[yind] > ub[j]⁎sol[i] + lb[i]⁎sol[j] - lb[i]⁎ub[j] + eps:
if lb[i] > -xp.infinity / 2 and ub[j] < xp.infinity / 2:

cuts.append((TYPE_MCCORMICK, 'L', - lb[i] ⁎ ub[j],
[yind, i, j], [1, -ub[j], -lb[i]]))

Done creating cuts. Add them to the problem

for (t, s, r, I, C) in cuts: # cuts might be the empty list
mcolsp, dvalp = [], []
drhsp, status = prob.presolverow(s, I, C, r, prob.attributes.cols,

mcolsp, dvalp)
if status >= 0:

prob.addcuts([t], [s], [drhsp], [0, len(mcolsp)], mcolsp, dvalp)

return 0

Fair Isaac Corporation Confidential and Proprietary Information 55

Examples of use

Another useful component of any nonconvex solver is a procedure to tighten the variable bounds basedon information that is known on other variables. For example, if new bounds are inferred on wij,possible tighter lower or upper bounds can be deduced on xi and/or xj.
def cbboundreduce(prob, aux, sol):

cuts = []

lb, ub = getCBbounds(prob, len(sol))

Check if bounds on original variables can be reduced based on
bounds on auxiliary ones. The other direction is already taken
care of by McCormick and tangent/secant cuts.

feastol = prob.controls.feastol

for (i,j),a in aux.items():

auxind = prob.getIndex(a)

lbi = lb[i]
ubi = ub[i]
lba = lb[auxind]
uba = ub[auxind]

if i == j: # check if upper bound is tight w.r.t. bounds on
x[i]

Forward propagation: from new independent variable
bounds, infer new bound for dependent variable.

if uba > max(lbi⁎⁎2, ubi⁎⁎2) + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', max(lbi⁎⁎2, ubi⁎⁎2), [auxind], [1]))

if lbi > 0 and lba < lbi⁎⁎2 - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', lbi⁎⁎2, [auxind], [1]))

elif ubi < 0 and lba < ubi⁎⁎2 - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', ubi⁎⁎2, [auxind], [1]))

if uba < -feastol:
return 1 # infeasible node

else:
if uba < lbi⁎⁎2 - feastol:

if lbi > 0:
return 1 # infeasible node

else:
cuts.append((TYPE_BOUNDREDUCE, 'G', -math.sqrt(uba), [i], [1]))

if uba < ubi⁎⁎2 - feastol:
if ubi < - feastol:

return 1
else:

cuts.append((TYPE_BOUNDREDUCE, 'L', math.sqrt(uba), [i], [1]))

if lba > prob.controls.feastol and lbi > 0 and lbi⁎⁎2 < lba - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', math.sqrt(lba), [i], [1]))

else:

tlb, tub = bdprod(lb[i], ub[i], lb[j], ub[j])

if lba < tlb - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', tlb, [auxind], [1]))

if uba > tub + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', tub, [auxind], [1]))

For simplicity let's just assume lower bounds are nonnegative

lbj = lb[j]

Fair Isaac Corporation Confidential and Proprietary Information 56

Examples of use

ubj = ub[j]

if lbj >= 0 and lbi >= 0:

if lbi⁎ubj < lba - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', lba / ubj, [i], [1]))

if lbj⁎ubi < lba - feastol:
cuts.append((TYPE_BOUNDREDUCE, 'G', lba / ubi, [j], [1]))

if lbi⁎ubj > uba + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', uba / lbi, [j], [1]))

if lbj⁎ubi > uba + feastol:
cuts.append((TYPE_BOUNDREDUCE, 'L', uba / lbj, [i], [1]))

Done creating cuts. Add them to the problem

for (t, s, r, I, C) in cuts: # cuts might be the empty list

mcolsp, dvalp = [], []
drhsp, status = prob.presolverow(s, I, C, r, prob.attributes.cols,

mcolsp, dvalp)
if status >= 0:

if len(mcolsp) == 0:
continue

elif len(mcolsp) == 1:
if s == 'G':

btype = 'L'
elif s == 'L':

btype = 'U'
else: # don't want to add an equality bound reduction

continue

assert(dvalp[0] > 0)

prob.chgbounds(mcolsp,[btype],[drhsp/dvalp[0]])
else:

prob.addcuts([t], [s], [drhsp], [0, len(mcolsp)], mcolsp, dvalp)

return 0

There are a few other functions not shown here that are used in the example. These are functions forretrieving bounds withing a callback and other service functions. The example file provides commentedcode that can be used to improve the solver.

6.5 Translated Mosel examples

The subdirectory mosel_examples of the Python examples directory contains a few examples fromthe Mosel distribution that were adapted to the Xpress Python interface:
� blend.py, blend2.py: variants of an oil blending optimization model;
� burglari.py, burglar.py, burglarl.py, burglar_rec.py: several variants of theknapsack problem
� catenary.py: optimization model for finding the position of all elements of a hanging chain
� chess.py, chess2.py: two variants on the simple problem of production management;
� coco.py: Multiperiod production planning problem;
� complex_test.py: an example of complex numbers (a native type in Python
� fstns.py: the problem of firestation siting;

Fair Isaac Corporation Confidential and Proprietary Information 57

Examples of use

� date_test.py: an example of dates using the datatimemodule;
� pplan.py: a production planning example;
� trans.py: a transportation problem.

Fair Isaac Corporation Confidential and Proprietary Information 58

CHAPTER 7

Reference Manual

7.1 Using this chapter

This chapter provides a list of functions available through the Xpress Python interface. For eachfunction, the synopsis and an example are given.
In keeping with the Xpress Optimizer’s C API, the name and order of the parameters used in thesefunctions has been retained. However, in order to make optimal use of the greater flexibility provided byPython, the argument lists and the return value of some functions has been modified so as to obtain amore compact notation.
For example, for functions with a list as an argument, the number of elements of the list is not part ofthe arguments. Compare the call to the C function XPRSaddrows, where the parameters newrow and
newnzmust be passed, to its Python counterpart:

(C) result = XPRSaddrows (prob, n, nnz, type,
rhs, NULL, mstart, indices, values);

(Python) p.addrows (type, rhs, None, mstart, indices, values)

In the Python version, the prob pointer is not provided as obviously addrows is a method of the
problem class. The C variables n and nnz, which are assigned to arguments newrow and newnz,respectively, of the call to XPRSaddrows, are not necessary in the Python call as the length of rhs,
mstart, etc. is inferred from the passed lists. If the lengths of all lists passed as arguments are notconsistent with one another, an error will be returned.
Because lists (or tuples, generators, iterators, sequences) can be used as parameters of all functions inthis manual, their size does not need to be passed explicitly as it is detected from the parameter itself.The interface will check the consistency and the content if the vector is referred to the variables orconstraints, and will return an error in case of a mismatch.
When passing (lists, arrays, dictionaries of) variables, constraints, or SOSs, there are three ways ofreferring to these entities: by numerical index, by Python object, and by name. For instance, considerthe problem.getSolutionmethod, which admits both an empty argument and one or a list ofvariables. If we define a variable with a name as follows

x = xpress.var(name='myvar')
p = xpress.problem()
p.addVariable (x)

then we can refer to its index (which will be 0 here as it is the first variable added to the problem), by itsobject name, i.e., x, and by its given name "myvar", in the three following (equivalent) ways:
print('x is ', p.getSolution(x))

Fair Isaac Corporation Confidential and Proprietary Information 59

Reference Manual

print('x is ', p.getSolution(0))
print('x is ', p.getSolution('myvar'))

Another difference between the Python methods and their C API counterpart is that some outputarguments are no longer passed (by reference) as arguments to the Python functions but rather are(part of) the value returned by the function. Where multiple scalar output parameters are returned bythe C API function, some Python functions return a tuple containing all such output values.
The non-scalar parameters can instead be specified as lists, NumPy arrays, sequences, or generatorswhen applicable. The output non-scalar parameters are stored as lists.
Optional parameters can be specified as None or skipped, provided the subsequent arguments areexplicitly declared with their parameter name as Python allows:

p.addrows(qrtype=type, rhs=rhs, mstart=mstart,
mclind=indices, dmatval=values)

Because the Python interface relies on the Xpress Optimizer C Application Program Interface, it isadvisable to complement the knowledge in this reference manual with that of the Xpress Optimizerreference manual.
Format of the reference

The descriptions in the following pages report, for each function:
� Name;
� A short description of its purpose;
� Its synopsis, i.e., how it must be called. If it returns a value, then it will be presented as anassignment Python command, otherwise it will be just shown as a call without a returned value;also, if it is a module function rather than a problem-specific function, it will be prefixed by
xpress;

� A description of its arguments and whether each argument is optional;
� Error values;
� Associated controls;
� A sample usage of the function;
� Further useful information about the function;
� Related functions, parameters.

Note that all arguments defined in the following as "array" can be many other Python non-scalarobjects: lists, generators, and NumPy arrays are admissible as parameters, except when specified (e.g.
getControl). However, for simplicity we refer to non-scalar arguments as array.
Finally, some attributes and controls are referred to as uppercase words for clarity. For example, ROWSindicates the attribute "rows" of a problem, hence it is equivalent to problem.attributes.rows.

7.2 Global methods of the Xpress module

Below is a list of functions that are invoked from the Xpress module, i.e., they are not methods of the
problem or the branchobj class and can be invoked after the import command. The invocation istherefore as in the example that follows:

Fair Isaac Corporation Confidential and Proprietary Information 60

Reference Manual

import xpress as xp
print(xp.getlasterror())

xpress.init xpress.free xpress.addcbmsghandler
xpress.getbanner xpress.getcheckedmode xpress.getdaysleft
xpress.getlasterror xpress.getlicerrmsg xpress.getversion
xpress.Sum xpress.Dot xpress.setcheckedmode
xpress.And xpress.Or xpress.pwl
xpress.setdefaultcontrol xpress.setdefaults xpress.featurequery
xpress.removecbmsghandler xpress.setarchconsistency xpress.manual
xpress.examples

7.3 Methods of the class problem

The tables below show all methods of the class problem of the Xpress Python interface, with theexception of callbacks, which are listed separately. Their invocation is therefore to be preceded by aproblem object (the class prefix problem. is omitted in the table for compactness), as follows:
import xpress as xp
x = xp.var()
p = xp.problem()
p.setObjective(x + 3 ⁎ x⁎⁎2 + 2)

addcols addConstraint addgencons addIndicator
addmipsol addpwlcons addqmatrix addrows
addsetnames addSOS addVariable basisstability
btran calcobjective calcreducedcosts calcslacks
calcsolinfo chgbounds chgcoef chgcoltype
chgglblimit chgmcoef chgmqobj chgobj
chgobjsense chgqobj chgqrowcoeff chgrhs
chgrhsrange chgrowtype copy copycontrols
crossoverlpsol delConstraint delgencons delpwlcons
delqmatrix delSOS delVariable dumpcontrols
estimaterowdualranges fixglobals ftran

Fair Isaac Corporation Confidential and Proprietary Information 61

Reference Manual

getAttrib getbasis getbasisval getcoef
getcols getcoltype getConstraint getControl
getdirs getDual getdualray getgencons
getglobal getiisdata getIndex getIndexFromName
getindicators getinfeas getlastbarsol getlasterror
getlb getlpsol getlpsolval getmessagestatus
getmipsol getmipsolval getmqobj getnamelist
getobj getObjVal getpivotorder getpivots
getpresolvebasis getpresolvemap getpresolvesol getprimalray
getProbStatus getProbStatusString getpwlcons getqobj
getqrowcoeff getqrowqmatrix getqrowqmatrixtriplets getqrows
getRCost getrhs getrhsrange getrows
getrowtype getscaledinfeas getSlack getSolution
getSOS getub getunbvec getVariable
hasdualray hasprimalray

iisall iisclear iisfirst
iisisolations iisnext iisstatus
iiswrite loadbasis loadbranchdirs
loaddelayedrows loaddirs loadlpsol
loadmipsol loadmodelcuts loadpresolvebasis
loadpresolvedirs loadproblem loadsecurevecs
lpoptimize mipoptimize name
objsa postsolve presolverow
read readbasis readbinsol
readdirs readslxsol refinemipsol
repairinfeas repairweightedinfeas repairweightedinfeasbounds
restore reset rhssa
save scale setControl
setdefaults setindicators setlogfile
setmessagestatus setObjective setprobname
solve strongbranch write
writebasis writebinsol writedirs
writeprtsol writeslxsol writesol

The following table contains the problem functions to be called for nonlinear problems.

Fair Isaac Corporation Confidential and Proprietary Information 62

Reference Manual

addcoefs adddfs addtolsets
addvars cascade cascadeorder
chgcascadenlimit chgccoef chgnlcoef
chgdeltatype chgdf chgrowstatus
chgrowwt chgtolset chgvar
construct delcoefs deltolsets
delvars evaluatecoef evaluateformula
fixpenalties getccoef getcoefformula
getcoefs getcolinfo getdf
getrowinfo getrowstatus getrowwt
getslpsol gettolset getvar
globalsol loadcoefs loaddfs
loadtolsets loadvars msaddcustompreset
msaddjob msaddpreset msclear
presolve printmemory printevalinfo
reinitialize scaling setcurrentiv
unconstruct updatelinearization validate
validatekkt validaterow validatevector

7.4 Methods for branching objects

The following pages present the methods of the branchobj class, i.e., the methods used whencreating and manipulating branching objects. Their invocation can be as follows:
import xpress as xp
b = xp.branchobj()
b.addbranches(3)

branchobj.addbounds branchobj.addbranches branchobj.addcuts
branchobj.addrows branchobj.getbounds branchobj.getbranches
branchobj.getid branchobj.getlasterror branchobj.getrows
branchobj.setpreferredbranch branchobj.setpriority branchobj.store
branchobj.validate

7.5 Methods for adding/removing callbacks of a problem object

The following pages present methods that can be called from a problem before optimization hasstarted, to add or remove callbacks. All these methods are part of the problem class and have to beinstantiated from a problem object.

Fair Isaac Corporation Confidential and Proprietary Information 63

Reference Manual

addcbbariteration removecbbariteration
addcbbarlog removecbbarlog
addcbchgbranchobject removecbchgbranchobject
addcbchecktime removecbchecktime
addcbcutlog removecbcutlog
addcbdestroymt removecbdestroymt
addcbgapnotify removecbgapnotify
addcbgloballog removecbgloballog
addcbinfnode removecbinfnode
addcbintsol removecbintsol
addcblplog removecblplog
addcbmessage removecbmessage
addcbmipthread removecbmipthread
addcbnewnode removecbnewnode
addcbnodecutoff removecbnodecutoff
addcboptnode removecboptnode
addcbpreintsol removecbpreintsol
addcbprenode removecbprenode
addcbusersolnotify removecbusersolnotify

7.6 Methods to be used within a callback of a problem object

The following methods can be called from within a callback function that has been passed in one of the
problem.addcb⁎methods. Calling these functions outside of a callback may result in an error andtrigger termination of the optimization process. We provide two tables: one is for the Optimizer andanother for the nonlinear solvers.
copycallbacks delcpcuts delcuts
getcpcutlist getcpcuts getcutlist
getcutmap getcutslack interrupt
loadcuts setbranchbounds setbranchcuts
storebounds storecuts strongbranchcb
addcuts

setcbcascadeend setcbcascadestart setcbcascadevar
setcbcascadevarfail setcbcoefevalerror setcbconstruct
setcbdestroy setcbdrcol setcbintsol
setcbiterend setcbiterstart setcbitervar
setcbmessage setcbmsjobend setcbmsjobstart
setcbmswinner setcboptnode setcbprenode
setcbslpend setcbslpnode
setcbslpstart

Fair Isaac Corporation Confidential and Proprietary Information 64

Reference Manual

object.extractLinear

Purpose Returns the variables and coefficients of the linear part of any expression.
Synopsis

vars, coef = a.extractLinear()

Arguments
a An expression or variable.
vars A list containing the variable objects composing the linear expression in a.
coef A list containing the corresponding coefficients in the linear expression.

Example The following code snippets show what is the expected result of applying extractLinear:
import xpress as xp

x = xp.var()
y = xp.var(name='myvar')

a = x + 2⁎y
b = 3⁎x
c = y⁎⁎2 + x⁎⁎2 - 6⁎x
d = x⁎⁎5 - 7⁎x # nonlinear expression

print (a.extractLinear()) # will print "([C1, myvar], [1, 2])"
assert (a.extractLinear() == ([x, y], [1, 2]))

print (b.extractLinear()) # will print "([C1], [3])"
print (c.extractLinear()) # will print "([C1], [-6])"
print (d.extractLinear()) # will print "([C1], [-7])"

Further information
1. Note that this operator returns variable objects, not indices, in the vars portion of the output tuple. Toobtain indices, use the problem.getIndex function. Printing these lists will show the name of theassociated variables, as determined by the user when creating the variable with the name argument or,if name was not provided, it will show the name as determined by the Optimizer’s library (defaultvariable names are "C"+index). See also the Modelling chapter.
2. This operator is most useful only for linear expressions with more than one element. For nonlinearexpressions, the function attempts to extract as much linear information it can, but will not be able toinfer linearity apart from the most obvious cases. For example, for the expression x⁎⁎4 +

xp.log(xp.exp(y)), which contains the linear term y, the function will return ([],[]).

Fair Isaac Corporation Confidential and Proprietary Information 65

Reference Manual

object.extractQuadratic

Purpose Returns the variables and coefficients of the quadratic part of any expression.
Synopsis

vars1, vars2, coef = a.extractQuadratic()

Arguments
a An expression or variable.
vars1 A list containing the first variables of each bilinear term composing the quadratic expressionin a.
vars2 A list containing the second variables of each bilinear term of the quadratic expression in a.
coef A list containing the corresponding coefficients in the quadratic expression.

Example The following code snippets show what is the expected result of applying extractQuadratic:
import xpress as xp

x = xp.var()
y = xp.var()
z = xp.var()

a = x + 2⁎y + x⁎y + 8 ⁎ x⁎⁎2
b = 3⁎x⁎⁎2 + z + 4
c = y⁎⁎2 + x⁎⁎2 - 6⁎x⁎y
d = x⁎⁎5 - 7⁎x⁎y - 4⁎x⁎y⁎z # nonlinear expression
e = x⁎y + y⁎x # note: same bilinear term added twice. This is compressed to 2⁎x⁎y

print (a.extractQuadratic()) # will print "([C1, C1], [C2,C1], [1,8])"
assert (a.extractQuadratic() == ([x,x], [y,x], [1,8]))

print (b.extractQuadratic()) # will print "([C1], [C1], [3])"
print (c.extractQuadratic()) # will print "([C2, C1], [C2, C1], [1, 1])"
print (d.extractQuadratic()) # will print "([C1], [C2], [-7])"
print (e.extractQuadratic()) # will print "([C1], [C2], [2])"

Further information
1. Similar to object.extractLinear, this operator returns variable objects, not indices, in the varsportion of the output tuple. To obtain indices, use the problem.getIndex function. Printing theselists will show the name of the associated variables, as determined by the user when creating thevariable with the name argument or, if name is not provided, it will show the name as determined by theOptimizer’s library (default variable names are "C"+index). See also the Modelling chapter.
2. This operator is most useful only for quadratic expressions with more than one element. For nonlinear,non-quadratic expressions, the function attempts to extract as much quadratic information it can, butwill not be able to detect quadratic/bilinear expressions apart from the most obvious cases. Forexample, for the expression x⁎⁎4 + xp.sqrt(y⁎⁎4), which contains the quadratic term y⁎⁎2, thefunction will return ([],[]).

Fair Isaac Corporation Confidential and Proprietary Information 66

Reference Manual

xpress.abs

Purpose Returns the absolute value of a given expression
Synopsis

a = xpress.abs(t)

Argument
t Argument of the abs() function.

Further informationPython’s native abs operator is equivalent to xpress.abs for arguments that are functions ofvariables.

Fair Isaac Corporation Confidential and Proprietary Information 67

Reference Manual

xpress.acos

Purpose Returns the arccosine of a given expression.
Synopsis

a = xpress.acos(t)

Argument
t Argument of the arccosine function.

Further informationUsing Python’s math library operator math.acos is only advisable when the argument is not anexpression that depends on variables.
Related topics

xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 68

Reference Manual

xpress.addcbmsghandler

Purpose Declares an output callback function in the global environment, called every time a line of message textis output by any object in the library. This callback function will be called in addition to any outputcallbacks already added by xpress.addcbmsghandler.
Synopsis

xpress.addcbmsghandler(msghandler, data, priority)
ret = f_msghandler(vObject, vUserContext, vSystemThreadId, sMsg, iMsgType,

iMsgNumber)

Arguments
msghandler The callback function which takes six arguments, vObject, vUserContext,

vSystemThreadId, sMsg, iMsgType and iMsgNumber. Use None to cancel acallback function.
vObject The object sending the message.
vUserContext The user-defined object passed to the callback function.
vSystemThreadId The system id of the thread sending the message cast to a void ⁎.
sMsg A string containing the message, which may simply be a new line. When the callback iscalled for the first time sMsg will be empty.
iMsgType Indicates the type of output message:

1 information messages;
2 (not used);
3 warning messages;
4 error messages.When the callback is called for the first time iMsgType will be a negative value.

iMsgNumber The number associated with the message. If the message is an error or a warning thenyou can look up the number in the section Optimizer Error and Warning Messages foradvice on what it means and how to resolve the associated issue.
data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple message handler callbacks willbe invoked. The callback added with a higher priority will be called before a callbackwith a lower priority. Set to 0 if not required.

Further informationTo send all messages to a log file the built in message handler logfilehandler can be used. Thiscan be done with:
xpress.addcbmsghandler(logfilehandler, 'log.txt', 0)

Related topics
xpress.removecbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 69

Reference Manual

xpress.And

Purpose Returns a logical AND of two or more binary variables or expressions.
Synopsis

xpress.And(variables)

Argument
variables A list/array of binary variables or binary expressions

Example The following example shows how to use and to model various logical constraints:
N = 10

x = xp.vars(N, vartype=xp.binary) # Creates N binary variables

c = [1, 4, 7, 3, 5, 7, 8, 4, 4, 9]

p = xp.problem(x) # Creates a problem with x, y

Sets a linear objective
p.setObjective (xp.Sum(c[i] ⁎ x[i] for i in range(N))

Linear constraint
p.addConstraint (xp.Sum(x) <= 6)

Constrains the first x variable to be the conjunction of all other x's
p.addConstraint (x[0] == xp.And(x[1:]))

Forces the logical AND between some logical expressions to
be zero, i.e., at least one of them must be zero

p.addConstraint (xp.And([x[1] | x[4], x[2] | x[1], x[3] | x[6]]) == 0)

Further information
1. For AND functions, all variables and expressions must be binary; an error will be generated otherwise.
2. A function call xpress.And(x1,x2,...,xk) is equivalent to x1 and (x2 and (x3 and ...

xk))...).
3. Note that since x1, x2, ..., xk, are binary variables, xpress.And(x1,x2,...,xk) is equivalent to

xpress.min(x1,x2,...,xk).

Related topics
problem.addgencons, problem.delgencons, problem.getgencons, xpress.Or.

Fair Isaac Corporation Confidential and Proprietary Information 70

Reference Manual

xpress.asin

Purpose Returns the arcsine of a given expression.
Synopsis

a = xpress.asin(t)

Argument
t Argument of the arcsine function.

Further informationUsing Python’s math library operator math.asin is only advisable when the argument is not anexpression that depends on variables.
Related topics

xpress.sin, xpress.cos, xpress.tan, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 71

Reference Manual

xpress.atan

Purpose Returns the arctangent of a given expression.
Synopsis

a = xpress.atan(t)

Argument
t Argument of the arctangent function.

Further informationUsing Python’s math library operator math.atan is only advisable when the argument is not anexpression that depends on variables.
Related topics

xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.acos.

Fair Isaac Corporation Confidential and Proprietary Information 72

Reference Manual

xpress.cos

Purpose Returns the cosine of a given expression.
Synopsis

a = xpress.cos(t)

Argument
t Argument of the cosine function.

Further informationUsing Python’s math library operator math.cos is only advisable when the argument is not anexpression that depends on variables.
Related topics

xpress.sin, xpress.tan, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 73

Reference Manual

xpress.Dot

Purpose Alternative dot-product operator for an arbitrary number of NumPy single- or multi-dimensional arrays.Following the convention for dot-product, the result of Dot for a list of k objects T1,T2, ...,Tk of
d1, d2, ..., dk dimensions is an object of d1 + d2 + ... + dk – 2(k – 1) dimensions. For each i-th factor in[1,2,...,k – 1], the arity of the last dimension of Ti must match the arity of the penultimate dimension of
Ti+1 (or its arity if Ti+1 is single-dimensional, i.e., a vector).

Synopsis
a = xpress.Dot(t1, t2, ..., out)

Argument
out (optional) NumPy array of the correct dimension and arity where the result is stored. If notprovided, the dot product is returned.

Example The following code shows some possible uses of the Dot operator:
import numpy as np
import xpress as xp

N = 10
M = 20
S = range(N)

x = np.array([xp.var() for i in S], dtype=xp.npvar)
x0 = np.random.random(N) # creates an N-vector of random numbers

p = xp.problem()

objective function is the squared Euclidean distance of the
variable vector x from a fixed point x0
p.setObjective(xp.Dot((x-x0),(x-x0)))

A = np.random.random((M,N))
b = np.random.random(M)

constraint Ax = b, random MxN matrix A and M-vector b
p.addConstraint(xp.Dot(A, x) == b)

Create a single quadratic constraint with
a positive semidefinite matrix Q + N^3 ⁎ I

Q = np.random.random((N,N))
p.addConstraint(xp.Dot(x, Q + N⁎⁎3 ⁎ np.eye(N), x) <= 1)

Create four quadratic constraints using an order-three
tensor, i.e., a three-dimensional array.

k = 4

T = np.random.random((k,N,N))
q = np.random.random(k)
p.addConstraint(xp.Dot(x, T, x) <= q)

Fair Isaac Corporation Confidential and Proprietary Information 74

Reference Manual

Further informationFrom an operational standpoint, the dot product of k multi-dimensional arrays is the result of k – 1 dotproducts of two factors each, and proceeds as in the following Python code:
result = T[0]
for i in range(1,k):

result = xpress.Dot(result, T[i])

The dot product of two multi-dimensional array T′ and T′′ of dimensions d′ and d′′ and of arities(n1, n2, ..., nd′) and (m1,m2, ...,md′′), respectively, is a multi-dimensional array of dimension d′ + d′′ – 2,whose arity vector is (n1, n2, ..., nd′–1,m1,m2, ...,md′′–2,md′′) and whose generic element is
vi1 ,i2 ,...,id′–1 ,j1 ,j2 ,...,jd′′–2 ,jd′′ = ∑1≤h≤nd′

t′i1 ,i2 ,...,id′–1 ,h · t′′j1 ,j2 ,...,jd′′–2 ,h,jd′′ .It is assumed here that nd′ = md′′–1. Two simple cases may help understand the behavior of theoperator: for two single-dimensional arrays v′ and v′′ of size n, the result is the inner product∑1≤h≤n v′h · v
′′
h .For two matrices A and B of sizes m× n and n× p respectively, the result is the m× p matrix C whosegeneric element is

Cij = ∑1≤h≤n Aih · Bhj.The Dot operator is functionally equivalent to Python’s dot operator from the NumPy package.However, the Xpress Dot operator is the only one that can work on variables and expressionscontaining variables.

Fair Isaac Corporation Confidential and Proprietary Information 75

Reference Manual

xpress.erf

Purpose Returns the error function with an expression as its argument.
Synopsis

a = xpress.erf(t)

Argument
t Argument of the function.

Further informationFor reasons related to compilers and math libraries, on Windows machines this function can only beused with Python 3.
Related topics

xpress.erfc.

Fair Isaac Corporation Confidential and Proprietary Information 76

Reference Manual

xpress.erfc

Purpose Returns the complementary error function with an expression as its argument.
Synopsis

a = xpress.erfc(t)

Argument
t Argument of the function.

Further informationFor reasons related to compilers and math libraries, on Windows machines this function can only beused with Python 3.
Related topics

xpress.erf.

Fair Isaac Corporation Confidential and Proprietary Information 77

Reference Manual

xpress.evaluate

Purpose Returns the evaluation of one or more expressions for a given assignment of values to optimizationvariables.
Synopsis

v = xpress.evaluate(⁎args, problem=None, solution=None)

Arguments
args One or more objects to be evaluated. These can be variables, linear or nonlinear expressions;they can also be tuples, lists, dictionaries, or NumPy arrays of variables and expressions.
problem The xpress.problem object this function is referring to. If problem is not None, then

solution is either None (in which case the current solution is used) or it is to be intendedreferred to the indices of variables in problem. If problem is None, solutionmust providethis information directly, i.e. it must be a dictionary mapping variable objects to their value
solution Either a list or NumPy array of values (in which case problemmust not be None) or adictionary mapping variable objects to their value. As mentioned above, if it is None then

problemmust be passed and the assignment for the function is assumed to be the solutionas retrieved via problem.getSolution
Further information

1. Variables assignment do not have to correspond to a feasible solution.
2. At least one of the arguments problem and solutionmust be specified, because the objects in

⁎args contain variables, and all variables could be used in zero or more problems. Only the followingcases are allowed:
3. problem=None and solution is a dictionary mapping variables to values; the dictionary must have akey for each variable appearing in ⁎args;
4. problem is not None but solution=None; then solution is taken as the result of

problem.getSolution; this call is equivalent to p.getSolution(⁎args);
5. problem is not None and solution is either a list or a NumPy array; then the size of solutionmustmatch the number of variables of problem and the order of values in the list/array is the same order inwhich the variables were added to problem.

Example The following examples are valid uses of xpress.evaluate:
import xpress as xp

x = xp.var()
y = xp.var(vartype=xp.binary)

Uses evaluate without a problem but by assigning the variables
explicitly. Note that the dictionary is necessary as no problem is
defined. The result should be [5.4, 124.71633781453677].

v1 = xp.evaluate([x + y, x⁎⁎3 - xp.cos(x)], solution={x:5, y:0.4})

p = xp.problem(x, y) # Create a problem and add variables x and y

Similar to the computation of v1 but with a vector of numbers; the
order in which the variables were added to p means that this x=2,
y=3 here. The result should be {'exp1':11, 'exp2':6, 'exp3':9}.

Fair Isaac Corporation Confidential and Proprietary Information 78

Reference Manual

v2 = xp.evaluate({'exp1':x + 3⁎y, 'exp2':x⁎y, 'exp3':y⁎⁎2},
problem=p, solution=[2,3])

p.addConstraint(x + y >= 3)
p.setObjective(x + 2⁎y)

p.solve()

l = np.array([x⁎⁎2 ⁎ y, x ⁎ y⁎⁎2, x⁎⁎3], dtype=xp.npexpr)

No solution is passed, so the solution of p as computed with solve()
above is used. It is easy to show that the solution is x=3, y=0, so
the result is np.array([0, 0, 27]).

v3 = xp.evaluate(l, problem=p)

Related topics
problem.getSolution.

Fair Isaac Corporation Confidential and Proprietary Information 79

Reference Manual

xpress.examples

Purpose Returns the full path to the directory of examples of the Xpress Python interface module.
Synopsis

xpress.examples()

Further informationThe mosel_examples/ subdirectory contains some of the Mosel examples translated into theirPython counterpart.

Fair Isaac Corporation Confidential and Proprietary Information 80

Reference Manual

xpress.exp

Purpose Returns the exponential of a given expression.
Synopsis

a = xpress.exp(t)

Argument
t Exponent.

Further informationUsing Python’s math library operator math.exp is only advisable when the argument is not anexpression that depends on variables.

Fair Isaac Corporation Confidential and Proprietary Information 81

Reference Manual

xpress.featurequery

Purpose Returns True if the provided feature is available in the current license used by the optimizer, Falseotherwise.
Synopsis

xpress.featurequery(feature)

Argument
feature The feature string to be checked in the license.

Fair Isaac Corporation Confidential and Proprietary Information 82

Reference Manual

xpress.free

Purpose Releases the Xpress environment, thus freeing up one license. The subsequent creation of a problemautomatically triggers a call to xpress.init.Note that it is unnecessary to call this function upon exiting a block that uses the Xpress module, orwhen the optimizer is no longer used, as Python will release the Xpress environment when freeing theXpress module. This function might be useful when a license is needed by another user or program,and one wishes to release the license.
Synopsis

xpress.free ()

Example The following example shows how to call xpress.free and a possible use:
x = xp.var()
y = xp.var()
p = xp.problem() # This would imply a call to xp.init()
p.addVariable(x, y)
p.addConstraint(x+y <= 1)
p.setObjective(x+2⁎y, sense=xp.maximize)
p.solve()
xp.free() # from this point on, the license

can be claimed by other users

Note that xpress.init is only useful when the user wants to claim a license that might be used byanother program or user.
Further informationSimilar to a call to XPRSfree() of the C API, calling xpress.free cleans the Xpress environment.Any problem created prior to a call to xpress.free is no longer available, and referring to it may leadto errors. For instance, the following code results in an aborted run:

import xpress
p = xpress.problem()
xpress.free()
xpress.init()
p.solve()

Related topics
xpress.init

Fair Isaac Corporation Confidential and Proprietary Information 83

Reference Manual

xpress.getbanner

Purpose Returns the banner and copyright message.
Synopsis

i = xpress.getbanner()

Example

print(xpress.getbanner())

Fair Isaac Corporation Confidential and Proprietary Information 84

Reference Manual

xpress.getcheckedmode

Purpose Returns whether checking & validation of all Optimizer function calls is enabled for the current process.Checking & validation is enabled by default but can be disabled by xpress.setcheckedmode.
Synopsis

i = xpress.getcheckedmode()

Related topics
xpress.setcheckedmode.

Fair Isaac Corporation Confidential and Proprietary Information 85

Reference Manual

xpress.getdaysleft

Purpose Returns the number of days left until an evaluation license expires.
Synopsis

d = xpress.getdaysleft()

Example The following calls getdaysleft to print information about the license:
try:

ndays = xpress.getdaysleft()
except RuntimeError:

print("Not an evaluation license")
else

print("Evaluation license expires in {0} days".format(ndays))

Further informationThis function can only be used with evaluation licenses, and, if called when a normal license is in use, itreturns an error. The expiry information for evaluation licenses is also included in the Optimizer bannermessage.

Fair Isaac Corporation Confidential and Proprietary Information 86

Reference Manual

xpress.getlasterror

Purpose Returns the last error encountered during a call to the Xpress global environment.
Synopsis

(i,s) = xpress.getlasterror()

Arguments
i Error code
s Error message relating to the global environment will be returned.

Example

import xpress as xp
last error referring to the global environment
print(xp.getlasterror())

Fair Isaac Corporation Confidential and Proprietary Information 87

Reference Manual

xpress.getlicerrmsg

Purpose Returns the error message string describing the last licensing error, if any occurred.
Synopsis

m = xpress.getlicerrmsg()

Example The following calls getlicerrmsg to find out why the import of the Xpress Python module failed:
try:

import xpress
except RuntimeError:

print(xpress.getlicerrmsg())
else:

print("all good")

Fair Isaac Corporation Confidential and Proprietary Information 88

Reference Manual

xpress.getversion

Purpose Returns the full Optimizer version number as a string of the form 15.10.03, where 15 is the majorrelease, 10 is the minor release, and 03 is the build number.
Synopsis

v = xpress.getversion()

Example

print("Using Xpress Optimizer version", xpress.getversion())

Fair Isaac Corporation Confidential and Proprietary Information 89

Reference Manual

xpress.init

Purpose Initializes the Xpress environment prior to creating or reading a problem.Note that it is not necessary to call this function after importing the Xpress module and before creatingor solving a problem, as Python will claim a license automatically. This function might be useful whenthe user wants to reserve a license and prevent that it is claimed by another user or program.
Synopsis

xpress.init()

Example The following example shows how to call xpress.init and why it could be useful:
xp.init() # reserves the license before creating variables
x = xp.var()
y = xp.var()
p = xp.problem() # This would imply a call to xp.init()
p.addVariable(x, y)
p.addConstraint(x+y <= 1)
p.setObjective(x+2⁎y, sense=xp.maximize)
p.solve()

Note that the call to xpress.init is not necessary and should only be made when the user wants toclaim a license that might be used by another program or user before the call to xpress.problem.
Related topics

xpress.free

Fair Isaac Corporation Confidential and Proprietary Information 90

Reference Manual

xpress.log

Purpose Returns the natural logarithm of a given expression.
Synopsis

a = xpress.log(t)

Argument
t Argument of the log function.

Further informationUsing Python’s math library operator math.log is only advisable when the argument is not anexpression that depends on variables.

Fair Isaac Corporation Confidential and Proprietary Information 91

Reference Manual

xpress.log10

Purpose Returns the base-10 logarithm of a given expression.
Synopsis

a = xpress.log10(t1)

Argument
t Argument.

Further informationUsing Python’s math library operator math.log10 is only advisable when the argument is not anexpression that depends on variables.
Related topics

xpress.log.

Fair Isaac Corporation Confidential and Proprietary Information 92

Reference Manual

xpress.manual

Purpose Returns the full path to the PDF reference manual of the Python interface.
Synopsis

xpress.manual()

Further informationNote that only the manual of the Python interface (in PDF format) is included in the PyPI and condapackage downloaded from these repositories; the PDF version of all other Xpress-relateddocumentation is contained in the Xpress distribution, and the on-line, HTML format documentation isavailable on the FICO web pages.

Fair Isaac Corporation Confidential and Proprietary Information 93

Reference Manual

xpress.max

Purpose Returns the maximum of one or more expressions.
Synopsis

a = xpress.max(t1, t2, ..., tn)

Argument
t1, t2... Arguments.

Further informationUsing Python’s operator max is only advisable when the argument is not an expression that depends onvariables.
Related topics

xpress.min.

Fair Isaac Corporation Confidential and Proprietary Information 94

Reference Manual

xpress.min

Purpose Returns the minimum of one or more expressions.
Synopsis

a = xpress.min(t1, t2, ..., tn)

Argument
t1, t2... Arguments.

Further informationUsing Python’s operator min is only advisable when the argument is not an expression that depends onvariables.
Related topics

xpress.max.

Fair Isaac Corporation Confidential and Proprietary Information 95

Reference Manual

xpress.Or

Purpose Returns a logical OR of two or more binary variables or expressions.
Synopsis

xpress.Or(variables)

Argument
variables A list/array of binary variables or binary expressions

Example The following example shows how to use or to model various logical constraints:
N = 10

x = xp.vars(N, vartype=xp.binary) # Creates N binary variables

c = [1, 4, 7, 3, 5, 7, 8, 4, 4, 9]

p = xp.problem(x) # Creates a problem with x, y

Sets a linear objective
p.setObjective (xp.Sum(c[i] ⁎ x[i] for i in range(N))

Linear constraint
p.addConstraint (xp.Sum(x) <= 6)

Constrains the first x variable to be the conjunction of all other x's
p.addConstraint (x[0] == xp.Or(x[1:]))

Forces the logical OR between some logical expressions to
be one, i.e., at least one of them must be one

p.addConstraint (xp.Or([x[1] & x[4], x[2] & x[1], x[3] & x[6]]) == 1)

Further information
1. For OR functions, all variables and expressions must be binary; an error will be generated otherwise.
2. A function call xpress.Or(x1,x2,...,xk) is equivalent to x1 or (x2 or (x3 or ...

xk))...).
3. Note that since x1, x2, ..., xk, are binary variables, xpress.Or(x1,x2,...,xk) is equivalent to

xpress.max(x1,x2,...,xk).

Related topics
problem.addgencons, problem.delgencons, problem.getgencons, xpress.And.

Fair Isaac Corporation Confidential and Proprietary Information 96

Reference Manual

xpress.pwl

Purpose Returns a piecewise linear function over a variable.
Synopsis

xpress.pwl(dict)

Argument
dict Python dictionary containing, as keys, two-elements tuples, and, as values, linearexpressions in a variable. If the piecewise linear function has only constantvalues (i.e. it is a piecewise constant function), the independent variable can bespecified with the key-value pair None: x.

Example The following example shows various usages of xpress.pwl to model nonlinear functions aspiecewise-linear functions :
x = xp.var() # Nonnegative variable
y = xp.var(lb=-xp.infinity) # dependent variable, unrestricted
t = xp.var()
w = xp.var()

p = xp.problem(x, y)

Sets a piecewise linear objective: a ramp function
p.setObjective (xp.pwl({(-xp.infinity, -1): -2,

(-1, 1): 2⁎x,
(1, xp.infinity)]: 2}))

p.addConstraint (t == xp.pwl({(1,2): 4⁎x, (2,4): 2, (4,5): -1}))

Piecewise CONSTANT function: add a key-value pair None: x to specify
independent variable
p.addConstraint (t == xp.pwl({(1,2): 4, (2,4): 2, (4,5): -1, None: x}))

p.addConstraint (xp.pwl({(-1,0): x, (0,1): 2⁎x, (1,10): 2}) <=
xp.pwl({(0,10): 2⁎z, (10,20): z+2, (20,xp.infinity): 4}))

Further information
1. A piecewise linear function must use only one variable in all of the dictionary’s values;
2. All values in the dictionary must be either constants or linear functions;
3. The intervals, specified as two-element tuples in the dictionary’s keys, must be pairwise disjoint, i.e.,they must not overlap.
4. Discontinuities in the function are allowed, i.e., one can declare a function as follows: xp.pwl((1,

2): 2⁎x + 4, (2,3): x - 1), which is obviously discontinuous at 2. The value of the function ifthe optimal solution has x=2 will be then either 8 or 1.
Related topics

problem.addpwlcons, problem.delpwlcons, problem.getpwlcons.

Fair Isaac Corporation Confidential and Proprietary Information 97

Reference Manual

xpress.Prod

Purpose Returns the product of a sequence of one or more expressions.
Synopsis

a = xpress.Prod(t1, t2, ...)

Example The following are allowed uses of the Prod operator:
n = 10
x = [xp.var() for i in range(n)]
prod = xp.Prod(x)
polynomial = xp.Sum(i ⁎ xp.Prod(x[i:i+4]) for i in range(n-4))

Further informationWhile n-ary product operators may exist in Python and/or NumPy, it is advisable to use xpress.Prodwhen creating products of many expressions as it is the most efficient alternative.

Fair Isaac Corporation Confidential and Proprietary Information 98

Reference Manual

xpress.removecbmsghandler

Purpose Removes a message callback function previously added by xpress.addcbmsghandler. Thespecified callback function will no longer be called after it has been removed.
Synopsis

xpress.removecbmsghandler(msghandler, data)

Arguments
msghandler The callback function to remove. If None then all message callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all message callbacks with the function msghandler will be removed.

Related topics
xpress.addcbmsghandler.

Fair Isaac Corporation Confidential and Proprietary Information 99

Reference Manual

xpress.setarchconsistency

Purpose Sets whether to force the same execution path on various CPU architecture extensions, in particular(pre-)AVX and AVX2.
Synopsis

xpress.setarchconsistency(ifArchConsistent=False)

Argument
ifArchConsistent Whether to force the same execution path:

False Do not force the same execution path (default behavior);
True Force the same execution path.

Further informationNote that using this general environment API function is different from setting the
xpress.controls.cpuplatform control. Setting this control selects a vectorization instruction setfor the barrier method.

Fair Isaac Corporation Confidential and Proprietary Information 100

Reference Manual

xpress.setcheckedmode

Purpose Disable/enable some of the checking & validation of function calls & function call parameters for callsto the Xpress Optimizer API. This checking is relatively lightweight but disabling it can improveperformance in cases where non-intensive Xpress Optimizer functions are called repeatedly in a shortspace of time.
Please note: after disabling checking and validation for function calls, invalid usage of XpressOptimizer functions may not be detected and may cause the Xpress Optimizer process to behaveunexpectedly or crash. It is not recommended to disable function call checking & validation duringapplication development.

Synopsis
xpress.setcheckedmode(checked_mode)

Argument
checked_mode Pass as False or 0 to disable much of the validation for all Xpress function callsfrom the current process. Pass True or 1 to re-enable validation. By default,validation is enabled.

Related topics
xpress.getcheckedmode.

Fair Isaac Corporation Confidential and Proprietary Information 101

Reference Manual

xpress.setdefaults

Purpose Sets the module’s controls to their default values. This affects all problems created after calling
setdefaults, not before.

Synopsis
xpress.setdefaults()

Example The following creates two problems, one before and one after calling setdefaults():
xpress.controls.presolve = 0
p1 = xpress.problem()
xpress.setdefaults()
p2 = xpress.problem()
print('Check p1.controls.presolve is 0: ', p1.controls.presolve)
print('Check p2.controls.presolve is its default:', p2.controls.presolve)

Related topics
xpress.setdefaultcontrol, problem.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 102

Reference Manual

xpress.setdefaultcontrol

Purpose Sets one of the module’s controls to its default values. This affects all problems created after calling
setdefaults, not before.

Synopsis
xpress.setdefaultcontrol(control)

Argument
control Name of the control to be set to default.

Example The following creates two problems, one before and one after calling
setdefaultcontrol(xpress.presolve):

xpress.controls.presolve = 0
p1 = xpress.problem()
xpress.setdefaultcontrol('presolve')
p2 = xpress.problem()
print('I bet p1.controls.presolve is 0: ', p1.controls.presolve)
print('I bet p2.controls.presolve is its default:', p2.controls.presolve)

Related topics
xpress.setdefaults, problem.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 103

Reference Manual

xpress.sign

Purpose Returns the sign of an expression: 1 if positive, -1 if negative, 0 if zero.
Synopsis

a = xpress.sign(t)

Argument
t Argument of the sign function.

Fair Isaac Corporation Confidential and Proprietary Information 104

Reference Manual

xpress.sin

Purpose Returns the sine of a given expression.
Synopsis

a = xpress.sin(t)

Argument
t Argument of the sine function.

Further informationUsing Python’s math library operator math.sin is only advisable when the argument is not anexpression that depends on variables.
Related topics

xpress.cos, xpress.tan, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 105

Reference Manual

xpress.sqrt

Purpose Returns the square root of an expression.
Synopsis

a = xpress.sqrt(t)

Argument
t Radicand of the function.

Further informationUsing Python’s math library operator math.sqrt is only advisable when the argument is not anexpression that depends on variables.

Fair Isaac Corporation Confidential and Proprietary Information 106

Reference Manual

xpress.Sum

Purpose Alternative sum operator for an arbitrary number of objects created by a list, tuple, generator, NumPyarray, dictionary, etc.
Synopsis

a = xpress.Sum(t1, t2, ...)

Example The following are allowed uses of the Sum operator:
import math
N = 20
S = range(S)
x = [xpress.var() for i in S]
y = [xpress.var(vartype=xpress.binary) for i in S]
p = xpress.problem()
p.addVariable(x, y)
p.setObjective(x[0] + xpress.Sum(x[i]⁎⁎2 for i in S))
p.addConstraint(xpress.Sum(x,y) <= 100)
p.addConstraint(xpress.Sum(x[:i]) + xpress.Sum(y[:i])

<= math.log(10 + i) for i in S)

Further informationThe Sum operator is functionally equivalent to Python’s native sum operator. However, it is stronglyadvised to use the Xpress’ Sum operator when constructing large expressions involving variables, asdoing otherwise might slow down the execution significantly.

Fair Isaac Corporation Confidential and Proprietary Information 107

Reference Manual

xpress.tan

Purpose Returns the tangent of a given expression.
Synopsis

a = xpress.tan(t)

Argument
t Argument of the tangent function.

Further informationUsing Python’s math library operator math.tan is only advisable when the argument is not anexpression that depends on variables.
Related topics

xpress.sin, xpress.cos, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Confidential and Proprietary Information 108

Reference Manual

xpress.user

Purpose Creates an expression that is computed by means of a user-specified function. The user function canbe defined to either provide or not provide the value of all derivatives w.r.t. the variables.
Synopsis

def f(a1, a2, ..., an):
[...]
a = xpress.user(f, t1, t2, ..., tn, derivatives=False)

Arguments
f User function; must be a Python function with as many (possibly optional)arguments as specified in the declaration.
t1,...,tn Arguments of the user function.
derivatives True if f returns the derivatives w.r.t. all variables, False otherwise.

Example The following code shows how to define user functions and use them in an optimization problem:
import math
def mynorm(v):

return math.sqrt(sum(v[i] for i in range(len(v)))

def weighted_sum(t1, t2, t3=0):
return (2⁎t1 + 3⁎t2 + 4⁎t1⁎t3,
2 + 4⁎t3, 3, 4⁎t1)

x = [xp.var() for i in range(20)]

f1 = xp.user(mynorm, x)
f2 = xp.user(weighted_sum, x[0], x[1], x[2], derivative=True)

Doesn't use optional arg
f3 = xp.user(weighted_sum, x[0], x[1], derivative=True)

p = xp.problem()

p.addVariable(x)
p.addConstraint(f3 <= 4)
p.setVariable(f1)
p.solve()

Further informationUser functions must return a Float, as the behaviour is otherwise undefined. If the derivativesparameter (which is False by default) is set to True, then the function must return a tuple consistingof the objective function value and the derivatives of the function w.r.t. all variables in the list ofarguments. If derivatives=False, then the function must return a single float, i.e. the functionvalue.

Fair Isaac Corporation Confidential and Proprietary Information 109

Reference Manual

xpress.vars

Purpose Creates an indexed set or map of variables. Similar to the creation of a single variable with
xpress.var, vars allows for using one or more index sets, specified as sets, lists, range objects, orany iterable object. Specifying a number k as an argument is equivalent to range(k) but can be usedto create NumPy multiarrays of variables, and allows for more efficient creation. The result is otherwisea Python dictionary of variables, whose keys are tuple of indices. A collection of variables x that iscreated with vars can be indexed, for instance, as x[i,j] where i and j are indices in the listsprovided.

Synopsis
x = xpress.vars(⁎indices, name="x", lb=0, ub=xpress.infinity, threshold=0,

vartype=xpress.continuous)

Arguments
indices One or more lists, sets, ranges, or iterable objects to be combined; in alternative, onecan specify one or more numbers k to signify the range 0..k-1. Using only numbers asargument will yield a NumPy multiarray with the dimensions as specified by thearguments themselves.
name Prefix name for each variable, to be amended with the tuple of indices.
lb Lower bound for all variables in the map.
ub Upper bound for all variables in the map.
threshold Threshold for all variables in the map; only used if the variables are partially integer.
vartype Type of all variables in the map, similar to the definition of single variables.

Example The following creates a variable map with 6 variables whose indices vary in the set
(0,’a’),(0,’b’),(0,’c’),(1,’a’),(1,’b’),(1,’c’):

x = xpress.vars([0,1],['a','b','c'])

The following creates a variable map with 6 variables whose indices vary in the set
(0,0),(0,1),(0,2),(1,0),(1,1),(1,2):

x = xpress.vars(2,3)

The code below creates a variable map with 5 integer variables with names ’y(a)’, ’y(b)’,
’y(c)’, ’y(d)’, ’y(e)’ and creates a constraint to bound their sum:

x = xpress.vars(['a','b','c','d','e'],
name='y', vartype=xpress.integer)
con1 = xpress.Sum(x) <= 4

The code below creates a variable map using the range operator in Python:
x = xpress.vars(range(5),
name='y', vartype=xpress.integer)
con1 = xpress.Sum(x) <= 4

The following example creates a Numpy multiarray of dimensions 3,7,4 with default (i.e.,interface-provided) names:
x = xpress.vars(3,7,4, name="", lb=-1, ub=1)

Note that specifying anything other than a number yields a dictionary rather than a Numpy multiarray.The above mode can be used when creating large arrays of variables because specifying name=""allows for more efficient creation. Finally, the following creates a variable indexed by the set definedright before:

Fair Isaac Corporation Confidential and Proprietary Information 110

Reference Manual

S = set()
S.add('john')
S.add('cleese')
x = xpress.vars(S, name='y', vartype=xpress.integer)

Further informationAll lists must contain non-repeated elements to avoid having variables with equal names. If a list in theargument is, for instance, [’a’,’b’,’a’], an error is returned.
Related topics

xpress.var

Fair Isaac Corporation Confidential and Proprietary Information 111

Reference Manual

problem.addcbbariteration

Purpose Declares a barrier iteration callback function, called after each iteration during the interior pointalgorithm, with the ability to access the current barrier solution/slack/duals or reduced cost values, andto ask barrier to stop. This callback function will be called in addition to any callbacks already added byaddcbbariteration.
Synopsis

problem.addcbbariteration(callback, data, priority)
barrier_action = callback(my_prob, my_object)

Arguments
callback The callback function itself. This takes two arguments, my_prob and my_object, andreturns an integer return value. This function is called at every barrier iteration.
my_prob The problem passed to the callback function, fubi.
my_object The user-defined object passed as object when setting up the callback with

addcbbariteration.
barrier_action Defines a return value controlling barrier:

<0 continue with the next iteration;
=0 let barrier decide (use default stopping criteria)
1 barrier stops with status not defined;
2 barrier stops with optimal status;
3 barrier stops with dual infeasible status;
4 barrier stops wih primal infeasible status;

data A user-defined object to be passed to the callback function, f_bariteration.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Example This simple example demonstrates how the solution might be retrieved for each barrier iteration.
Barrier iteration callback
def BarrierIterCallback(my_prob, my_object):

current_iteration = my_prob.attributes.bariter

PrimalObj = my_prob.attributes.barprimalobj
DualObj = my_prob.attributes.bardualobj

Gap = DualObj - PrimalObj

PrimalInf = my_prob.attributes.barprimalinf
DualInf = my_prob.attributes.bardualinf
ComplementaryGap = my_prob.attributes.barcgap

decide if stop or continue
barrier_action = 0
if(current_iteration >= 50 or

Gap <= 0.1 ⁎ max(abs(PrimalObj), abs(DualObj))):
barrier_action = 2

return barrier_action

Fair Isaac Corporation Confidential and Proprietary Information 112

Reference Manual

To set callback:
prob.addcbbariteration(BarrierIterCallback, myobj, 0)

Further information
1. Only the following functions are expected to be called from the callback: problem.getlpsol and theattribute/control value retrieving and setting routines.
2. Please note that these values refer to the scaled and presolved problem used by barrier, and may differfrom the ones calculated from the postsolved solution returned by problem.getlpsol.

Related topics
problem.removecbbariteration.

Fair Isaac Corporation Confidential and Proprietary Information 113

Reference Manual

problem.addcbbarlog

Purpose Declares a barrier log callback function, called at each iteration during the interior point algorithm. Thiscallback function will be called in addition to any barrier log callbacks already added by addcbbarlog.
Synopsis

problem.addcbbarlog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function itself. This takes two arguments, my_prob and my_object, andhas an integer return value. If the value returned by callback is nonzero, the solutionprocess will be interrupted. This function is called at every barrier iteration.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbbarlog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple barrier log callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example This simple example prints a line to the screen for each iteration of the algorithm.
prob.addcbbarlog(barLog, None, 0)
prob.lpoptimize('b')

The callback function might resemble:
def barLog(prob, object):

print('Next barrier iteration')

Further informationIf the callback function returns a nonzero value, the Optimizer run will be interrupted.
Related topics

problem.removecbbarlog, problem.addcbgloballog, problem.addcblplog,
problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 114

Reference Manual

problem.addcbchecktime

Purpose Declares a callback function which is called every time the Optimizer checks if the time limit has beenreached. This callback function will be called in addition to any callbacks already added by
addcbchecktime.

Synopsis
problem.addcbchecktime(callback, data, priority) ret = callback(prob, data)

Arguments
prob The current problem.
callback The callback function which takes two arguments, prob and data, and has an integerreturn value. This function is called every time the Optimizer checks against the timelimit.
prob The problem passed to the callback function, callback.
data The user-defined object passed as data when setting up the callback with

addcbchecktime.
priority An integer that determines the order in which multiple checktime callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Further informationIf the callback function returns a nonzero value the solution process will be interrupted.
Related topics

problem.removecbchecktime.

Fair Isaac Corporation Confidential and Proprietary Information 115

Reference Manual

problem.addcbchgbranchobject

Purpose Declares a callback function that will be called every time the Optimizer has selected a global entity forbranching. Allows the user to inspect and override the Optimizer’s branching choice. This callbackfunction will be called in addition to any callbacks already added by
problem.addcbchgbranchobject.

Synopsis
problem.addcbchgbranchobject(callback, data, priority)
newobject = callback(my_prob, my_object, obranch)

Arguments
callback The callback function, which takes three arguments: my_prob, my_object, and

obranch. This function is called every time the Optimizer has selected a candidateentity for branching.
my_prob The problem passed to the callback function, callback.
my_object The user defined object passed as object when setting up the callback with

addcbchgbranchobject.
obranch The candidate branching object selected by the Optimizer.
newobject New branching object to replace the Optimizer’s selection. Can be None.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple callbacks of this type will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Further information
1. The branching object given by the Optimizer provides a linear description of how the Optimizer intendsto branch on the selected candidate. This will often be one of standard global entities of the currentproblem, but can also be e.g. a split disjunction or a structural branch, if those features are turned on.
2. The functions branchobj.getbranches, branchobj.getbounds and branchobj.getrows canbe used to inspect the given branching object.
3. Refer to the branchobj class to learn how to create a new branching object to replace the Optimizer’sselection. Note that the new branching object should be created with a priority value no higher than thecurrent object to guarantee it will be used for branching.

Related topics
problem.removecbchgbranchobject.

Fair Isaac Corporation Confidential and Proprietary Information 116

Reference Manual

problem.addcbcutlog

Purpose Declares a cut log callback function, called each time the cut log is printed. This callback function willbe called in addition to any callbacks already added by problem.addcbcutlog.
Synopsis

problem.addcbcutlog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and hasan integer return value.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbcutlog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple cut log callbacks will be invoked.The callback added with a higher priority will be called before a callback with a lowerpriority. Set to 0 if not required.

Further informationThe callback callback should return a non-zero value to stop cutting on the current node.
Related topics

problem.removecbcutlog.

Fair Isaac Corporation Confidential and Proprietary Information 117

Reference Manual

problem.addcbdestroymt

Purpose Declares a callback function that is called every time a MIP thread is destroyed by the parallel MIP code.This callback function will be called in addition to any callbacks already added by addcbdestroymt.
Synopsis

problem.addcbdestroymt(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and hasno return value.
my_prob The thread problem passed to the callback function.
my_object The user-defined object passed as object when setting up the callback with

addcbdestroymt.
data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Further informationThis callback is useful for freeing up any user data created in the MIP thread callback.
Related topics

problem.removecbdestroymt, problem.addcbmipthread.

Fair Isaac Corporation Confidential and Proprietary Information 118

Reference Manual

problem.addcbgapnotify

Purpose Declares a gap notification callback, to be called when a MIP solve reaches a predefined target, setusing the miprelgapnotify, mipabsgapnotify, mipabsgapnotifyobj, and/or
mipabsgapnotifybound controls.

Synopsis
problem.addcbgapnotify(callback, data, priority)
(RelGapNotify, AbsGapNotify, AbsGapNotifyObj, AbsGapNotifyBound) =

callback(my_prob, my_object)

Arguments
callback The callback function.
object A user-defined object that wil be passed into the callback callback.
priority An integer that determines the order in which multiple gap notification callbacks will beinvoked. The callback added with the higher priority will be called before a callback witha lower priority. Set to 0 if not required.
my_prob The current problem.
my_object The user-defined object passed as object when setting up the callback with

addcbgapnotify.
RelGapNotify The value the miprelgapnotify control will be set to after this callback. May bemodified within the callback in order to set a new notification target.
AbsGapNotify The value the mipabsgapnotify control will be set to after this callback. May bemodified within the callback in order to set a new notification target.
AbsGapNotifyObj The value the mipabsgapnotifyobj control will be set to after this callback.May be modified within the callback in order to set a new notification target.
AbsGapNotifyBound The value the mipabsgapnotifybound control will be set to after thiscallback. May be modified within the callback in order to set a new notification target.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple estimate callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example prints a message when the gap reaches 10% and 1%
def gapnotify(prob, object):

obj = prob.attributes.mipobjval
bound = prob.attributes.bestbound
relgap = abs((obj - bound) / obj)

newRelGapNotifyTarget = -1

if relgap <= 0.1:
print('Gap reached 10%')
newRelGapNotifyTarget = 0.1

if relgap <= 0.01:
print('Gap reached 1%')
newRelGapNotifyTarget = -1 # Don't call gapnotify again

Fair Isaac Corporation Confidential and Proprietary Information 119

Reference Manual

return a quadruple with new values, or
None for those that should not be set
return (newRelGapNotifyTarget, None, None, None)

prob.controls.miprelgapnotify = 0.1
prob.addcbgapnotify(gapnotify, None, 0)
prob.mipoptimize('')

Further informationThe target values that caused the callback to be triggered will automatically be reset to prevent thesame callback from being fired again.
Related topics

MIPRELGAPNOTIFY, MIPABSGAPNOTIFY, MIPABSGAPNOTIFYOBJ, MIPABSGAPNOTIFYBOUND,
problem.removecbgapnotify.

Fair Isaac Corporation Confidential and Proprietary Information 120

Reference Manual

problem.addcbgloballog

Purpose Declares a global log callback function, called each time the global log is printed. This callback functionwill be called in addition to any callbacks already added by addcbgloballog.
Synopsis

problem.addcbgloballog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and hasan integer return value. This function is called whenever the global log is printed asdetermined by the MIPLOG control.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbgloballog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple global log callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example prints at each node of the global search the node number and its depth:
prob.controls.miplog = 3
prob.addcbgloballog(globalLog, None, 0)
prob.mipoptimize('')

The callback function may resemble:
def globalLog(prob, object):

nodedepth = prob.attributes.nodedepth
node = prob.attributes.currentnode

print('Node {0} with depth {1} has been processed'.format
(node, nodedepth))

return 0

Further informationIf the callback function returns a nonzero value, the global search will be interrupted.
Related topics

problem.removecbgloballog, problem.addcbbarlog, problem.addcblplog,
problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 121

Reference Manual

problem.addcbinfnode

Purpose Declares a user infeasible node callback function, called after the current node has been found to beinfeasible during the Branch and Bound search. This callback function will be called in addition to anycallbacks already added by addcbinfnode.
Synopsis

problem.addcbinfnode(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and hasno return value. This function is called after the current node has been found to beinfeasible.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbinfnode.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple user infeasible node callbackswill be invoked. The callback added with a higher priority will be called before a callbackwith a lower priority. Set to 0 if not required.

Example The following notifies the user whenever an infeasible node is found during the global search:
prob.addcbinfnode(nodeInfeasible, None, 0)
prob.mipoptimize("")

The callback function may resemble:
def nodeInfeasible(prob, object):

node = prob.attributes.currentnode
print("Node {0} infeasible".format(node))

Related topics
problem.removecbinfnode, problem.addcboptnode, problem.addcbintsol,
problem.addcbnodecutoff.

Fair Isaac Corporation Confidential and Proprietary Information 122

Reference Manual

problem.addcbintsol

Purpose Declares a user integer solution callback function, called every time an integer solution is found byheuristics or during the Branch and Bound search. This callback function will be called in addition toany callbacks already added by addcbintsol.
Synopsis

problem.addcbintsol(callback, data, priority)
callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and hasno return value. This function is called if the current node is found to have an integerfeasible solution, i.e. every time an integer feasible solution is found.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbintsol.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple integer solution callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example prints integer solutions as they are discovered in the global search:
prob.addcbintsol(printsol, None, 0)
prob.mipoptimize("")

The callback function might resemble:
def printsol(my_prob, object):

cols = my_prob.attributes.originalcols
objval = my_prob.attributes.lpobjval

x = []
my_prob.getlpsol(x, None, None, None)

print("Integer solution found:", objval, "; values:")
print(x)

Further information
1. This callback is useful if the user wants to retrieve the integer solution when it is found.
2. To retrieve the integer solution, use either problem.getlpsol or problem.getpresolvesol.

problem.getmipsol always returns the last integer solution found and, if called from the intsolcallback, it will not necessarily return the solution that caused the invocation of the callback (forexample, it is possible that when solving with multiple MP threads, another thread finds a new integersolution before the user calls problem.getmipsol).
3. This callback is called after a new integer solution was found by the Optimizer. Use a callback set by

problem.addcbpreintsol in order to be notified before a new integer solution is accepted by theOptimizer, which allows for the new solution to be rejected.
Related topics

problem.removecbintsol, problem.addcbpreintsol.

Fair Isaac Corporation Confidential and Proprietary Information 123

Reference Manual

problem.addcblplog

Purpose Declares a simplex log callback function which is called after every LPLOG iterations of the simplexalgorithm. This callback function will be called in addition to any callbacks already added byaddcblplog.
Synopsis

problem.addcblplog(callback, data, priority)
ret = callback(my_prob, my_object)

Arguments
callback The callback function which takes two arguments, my_prob and my_object, and hasan integer return value. This function is called every LPLOG simplex iterations includingiteration 0 and the final iteration.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcblplog.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple lplog callbacks will be invoked.The callback added with a higher priority will be called before a callback with a lowerpriority. Set to 0 if not required.

Example The following code sets a callback function, lpLog, to be called every 10 iterations of the optimization:
prob.controls.lplog = 10
prob.addcblplog(lpLog, None, 0)
prob.read("problem", "")
prob.mipoptimize("")

The callback function may resemble:
def lpLog(my_prob, object):

iter = my_prob.attributes.simplexiter
obj = my_prob.attributes.lpobjval

print("At iteration {0} objval is {1}".format(iter, obj))
return 0

Further informationIf the callback function returns a nonzero value, the solution process will be interrupted.
Related topics

problem.removecblplog, problem.addcbbarlog, problem.addcbgloballog,
problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 124

Reference Manual

problem.addcbmessage

Purpose Declares an output callback function, called every time a text line relating to the given prob is output bythe Optimizer. This callback function will be called in addition to any callbacks already added byaddcbmessage.
Synopsis

problem.addcbmessage(callback, data, priority)
callback(my_prob, my_object, msg, msgtype)

Arguments
callback The callback function which takes five arguments, my_prob, my_object, msg, len and

msgtype, and has no return value. Use a None value to cancel a callback function.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object when setting up the callback with

addcbmessage.
msg A null terminated character array (string) containing the message, which may simply bea new line.
msgtype Indicates the type of output message:

1 information messages;
2 (not used)
3 warning messages;
4 error messages.A negative value indicates that the Optimizer is about to finish and the buffers should beflushed at this time if the output is being redirected to a file.

data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Example The following example simply sends all output to the screen (stdout):
prob.addcbmessage(Message, None, 0)

The callback function might resemble:
def Message(my_prob, object, msg, msgtype):

print('{0}: {1}'.format(msgtype, msg))

Further information
1. Screen output is automatically created by the Optimizer Console only. To produce output when usingthe Optimizer library, it is necessary to define this callback function and use it to print the messages tothe screen (stdout).
2. This function offers one method of handling the messages which describe any warnings and errorsthat may occur during execution. Other methods are to check the return values of functions and thenget the error code using the errorcode attribute, obtain the last error message directly using

problem.getlasterror, or send messages direct to a log file using problem.setlogfile.
Related topics

problem.removecbmessage, problem.addcbbarlog, problem.addcbgloballog,
problem.addcblplog, problem.setlogfile.

Fair Isaac Corporation Confidential and Proprietary Information 125

Reference Manual

problem.addcbmipthread

Purpose Declares a MIP thread callback function, called every time a MIP worker problem is created by theparallel MIP code. This callback function will be called in addition to any callbacks already added byaddcbmipthread.
Synopsis

problem.addcbmipthread(callback, data, priority)
callback(my_prob, my_object, thread_prob)

Arguments
callback The callback function which takes three arguments, my_prob, my_object and

thread_prob, and has no return value.
my_prob The problem passed to the callback function.
my_object The user-defined object passed to the callback function.
thread_prob The problem for the MIP thread
data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which multiple callbacks of this type will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example clears the message callback for each of the MIP threads:
prob.addcbmipthread(mipthread, None, 0)

def mipthread(my_prob, my_object, mipthread):
my_prob.removecbmessage(mipthread, None)

Further informationThis function will be called when a new MIP worker problem is created. Each worker problem receives aunique identifier that can be obtained through the MIPTHREADID attribute. Worker problems can bematched with different system threads at different points of a solve, so the system thread that isresponsible for executing the callback is not necessarily the same thread used for all subsequentcallbacks for the same worker problem. On the other hand, worker problems are always assigned to asingle thread at a time and the same nodes are always solved on the same worker problem in repeatedruns of a deterministic MIP solve. A worker problem therefore acts as a virtual thread through the nodesolves.
Related topics

problem.removecbmipthread, problem.addcbdestroymt.

Fair Isaac Corporation Confidential and Proprietary Information 126

Reference Manual

problem.addcbnewnode

Purpose Declares a callback function that will be called every time a new node is created during the branch andbound search. This callback function will be called in addition to any callbacks already added byaddcbnewnode.
Synopsis

problem.addcbnewnode(callback, data, priority)
callback(my_prob, my_object, parentnode, newnode, branch)

Arguments
callback The callback function, which takes five arguments: myprob, my_object, parentnode,

newnode and branch. This function is called every time a new node is created throughbranching.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbnewnode.
parentnode Unique identifier for the parent of the new node.
newnode Unique identifier assigned to the new node.
branch The sequence number of the new node amongst the child nodes of parentnode. Forregular branches on a global entity this will be either 0 or 1.
data A user-defined object to be passed to the callback function.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Further information
1. For regular branches on a global entity, branch will be either zero or one, depending on whether thenew node corresponds to branching the global entity up or down.
2. When branching on a branchobject, branch refers to the given branch index of the object.

Related topics
problem.removecbnewnode.

Fair Isaac Corporation Confidential and Proprietary Information 127

Reference Manual

problem.addcbnodecutoff

Purpose Declares a user node cutoff callback function, called every time a node is cut off as a result of animproved integer solution being found during the branch and bound search. This callback function willbe called in addition to any callbacks already added by addcbnodecutoff.
Synopsis

problem.addcbnodecutoff(callback, data, priority)
callback(my_prob, my_object, node)

Arguments
callback The callback function, which takes three arguments, my_prob, my_object and node,and has no return value. This function is called every time a node is cut off as the resultof an improved integer solution being found.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbnodecutoff.
node The number of the node that is cut off.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple node-optimal callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following notifies the user whenever a node is cutoff during the global search:
prob.addcbnodecutoff(Cutoff, None, 0)
mipoptimize(prob, "")

The callback function might resemble:
def Cutoff(prob, object, node):

print("Node {0} cutoff".format(node))

Further informationThis function allows the user to keep track of the eligible nodes. Note that the LP solution will not beavailable from this callback.
Related topics

problem.removecbnodecutoff, problem.addcboptnode, problem.addcbinfnode,
problem.addcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 128

Reference Manual

problem.addcboptnode

Purpose Declares an optimal node callback function, called during the branch and bound search, after the LPrelaxation has been solved for the current node, and after any internal cuts and heuristics have beenapplied, but before the Optimizer checks if the current node should be branched. This callback functionwill be called in addition to any callbacks already added by addcboptnode.
Synopsis

problem.addcboptnode(callback, data, priority)
feas = callback(my_prob, my_object)

Arguments
callback The callback function which takes three arguments, my_prob, my_object and feas,and has no return value.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcboptnode.
feas The feasibility status. If set to a nonzero value by the user, the current node will bedeclared infeasible.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple node-optimal callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following prints the optimal objective value of the node LP relaxations:
prob.addcboptnode(nodeOptimal, None, 0)
prob.mipoptimize("")

The callback function might resemble:
def nodeOptimal(prob, object):

node = prob.attributes.currentnode
print("NodeOptimal: node number", node)
objval = prob.attributes.lpobjval
print("Objective function value =", objval)
return 0

Related topics
problem.removecboptnode, problem.addcbinfnode, problem.addcbintsol,
problem.addcbnodecutoff, CALLBACKCOUNT_OPTNODE.

Fair Isaac Corporation Confidential and Proprietary Information 129

Reference Manual

problem.addcbpreintsol

Purpose Declares a user integer solution callback function, called when an integer solution is found by heuristicsor during the branch and bound search, but before it is accepted by the Optimizer. This callbackfunction will be called in addition to any integer solution callbacks already added by addcbpreintsol.
Synopsis

problem.addcbpreintsol(callback, data, priority)
(ifreject, newcutoff) = callback(my_prob, my_object, soltype, cutoff)

Arguments
callback The callback function which takes five arguments, my_prob, my_object,

isheuristic, ifreject and cutoff, and has no return value. This function is calledwhen an integer solution is found, but before the solution is accepted by the Optimizer,allowing the user to reject the solution.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbpreintsol.
soltype The type of MIP solution that has been found: Set to 1 if the solution was found using aheuristic. Otherwise, it will be the global feasible solution to the current node of theglobal search.

0 The continuous relaxation solution to the current node of the global search,which has been found to be global feasible.
1 A MIP solution found by a heuristic.
2 A MIP solution provided by the user.
3 A solution resulting from refinement of primal or dual violations of a previousMIP solution.

ifreject Set this to 1 if the solution should be rejected.
cutoff The current cutoff value.
newcutoff The new cutoff value, to be used by the Optimizer if the solution is accepted. Thereturned newcutoff value will not be updated if the solution is rejected.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which callbacks of this type will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Further information
1. If a solution is rejected, the Optimizer will drop the found solution without updating any attributes,including the cutoff value. To change the cutoff value when rejecting a solution, the control
MIPABSCUTOFF should be set instead.

2. When a node solution is rejected (isheuristic = 0), the node itself will be dropped without furtherbranching.
3. To retrieve the integer solution, use either problem.getlpsol or problem.getpresolvesol.

problem.getmipsol will not return the newly found solution because it has not been saved at thispoint.
Related topics

problem.removecbpreintsol, problem.addcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 130

Reference Manual

problem.addcbprenode

Purpose Declares a preprocess node callback function, called before the LP relaxation of a node has beenoptimized, so the solution at the node will not be available. This callback function will be called inaddition to any callbacks already added by addcbprenode.
Synopsis

problem.addcbprenode(callback, data, priority)
nodinfeas = callback(my_prob, my_object)

Arguments
callback The callback function, which takes three arguments, my_prob, my_object and

nodinfeas, and has no return value. This function is called before a node isreoptimized and the node may be made infeasible by setting ⁎nodinfeas to 1.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbprenode.
nodinfeas The feasibility status. If set to a nonzero value by the user, the current node will bedeclared infeasible by the Optimizer.
data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple preprocess node callbacks will beinvoked. The callback added with a higher priority will be called before a callback with alower priority. Set to 0 if not required.

Example The following example notifies the user before each node is processed:
prob.addcbprenode(preNode, None, 0)
prob.mipoptimize("")

The callback function might resemble:
def preNode(prob, object):

return 0 # set to 1 if node is infeasible

Related topics
problem.removecbprenode, problem.addcbinfnode, problem.addcbintsol,
problem.addcbnodecutoff, problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 131

Reference Manual

problem.addcbusersolnotify

Purpose Declares a callback function to be called each time a solution added by problem.addmipsol hasbeen processed. This callback function will be called in addition to any callbacks already added by
addcbusersolnotify.

Synopsis
problem.addcbusersolnotify(callback, data, priority)
callback(my_prob, my_object, solname, status)

Arguments
callback The callback function which takes four arguments, my_prob, my_object, id and

status and has no return value.
my_prob The problem passed to the callback function, callback.
my_object The user-defined object passed as object when setting up the callback with

addcbusersolnotify.
solname The string name assigned to the solution when it was loaded into the Optimizer using

problem.addmipsol.
status One of the following status values:

0 An error occured while processing the solution.
1 Solution is feasible.
2 Solution is feasible after reoptimizing with fixed globals.
3 A local search heuristic was applied and a feasible solution discovered.
4 A local search heuristic was applied but a feasible solution was not found.
5 Solution is infeasible and a local search could not be applied.
6 Solution is partial and a local search could not be applied.
7 Failed to reoptimize the problem with globals fixed to the provided solution.Likely because a time or iteration limit was reached.
8 Solution is dropped. This can happen if the MIP problem is changed or solvedto completion before the solution could be processed.

data A user-defined object to be passed to the callback function, callback.
priority An integer that determines the order in which multiple callbacks will be invoked. Thecallback added with a higher priority will be called before a callback with a lower priority.Set to 0 if not required.

Further informationIf presolve is turned on, any solution added with problem.addmipsol will first be presolved before itcan be checked. The value returned in status refers to the presolved solution, which might have hadvalues adjusted due to bound changes, fixing of variables, etc.
Related topics

problem.removecbusersolnotify, problem.addmipsol.

Fair Isaac Corporation Confidential and Proprietary Information 132

Reference Manual

problem.addcoefs

Purpose Add non-linear coefficients to the SLP problem
Synopsis

problem.addcoefs(rowindex, colindex, factor, fstart, parsed, type, value)

Arguments
rowindex Array holding the rows (or their indices or names) for the coefficient.
colindex Array holding the columns (or their indices or names) for the coefficient.
factor Array holding factor by which formula is scaled. If None, a value of 1.0 will be used.
FormulaStart Integer array holding the start position in the arrays Type and Value of the formulafor the coefficients. FormulaStart should have an extra entry containing the nextposition after the end of the last formula.
parsed Integer indicating whether the token arrays are formatted as internal unparsed (parsed

= False) or internal parsed reverse Polish (parsed = True).
type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in Type.

Example Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ..., respectively. Thefollowing example adds coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

rowindex = [Row1,Row1,Row3]
colindex = [Col2,Col6,Col2]

formulastart = []

n = 0
ncoef = 0

formulastart[ncoef], ncoef = n, ncoef + 1
Type[n], Value[n], n = xslp_op_col, 3, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_op, xslp_MULTIPLY, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef] = n

p.addcoefs(rowindex, colindex, None, formulastart, 1, Type, Value)

Fair Isaac Corporation Confidential and Proprietary Information 133

Reference Manual

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (Parsed=1), so the formula is written as
Col2 Col2 ⁎rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further informationThe jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,which can be provided in the Factor array. If Xpress Nonlinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at formulastart[j]. The tokensfollow the rules for parsed or unparsed formulae as indicated by the setting of Parsed. The formulamust be terminated with an xslp_op_eof token. If several coefficients share the same formula, theycan have the same value in FormulaStart. For possible token types and values see the chapter on"Formula Parsing".
The addcoef function loads additional items into the SLP problem. The corresponding loadcoefsfunction deletes any existing items first.
The behaviour for existing coefficients is additive: the formula defined in the parameters are added toany existing formula coefficients. However, due to performance considerations, such duplicationsshould be avoided when possible.

Related topics
problem.chgnlcoef, problem.chgccoef, problem.delcoefs, problem.getcoefformula,
problem.getccoef, problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 134

Reference Manual

problem.addcols

Purpose Add columns to the problem after passing it to the Optimizer using the input routines.
Synopsis

problem.addcols(objx, mstart, mrwind, dmatval, bdl, bdu, names, types)

Arguments
objx Array containing the objective function coefficients of the new columns.
mstart Array containing the offsets in the mrwind and dmatval arrays of the start of theelements for each column.
mrwind Array containing the rows (i.e. xpress.constraint objects, indices, or names) for theelements in each column.
dmatval Array containing the element values.
bdl Array containing the lower bounds on the added columns.
bdu Array containing the upper bounds on the added columns.
names (optional) Array containing the names of the columns added.
types (optional) Array of characters containing the types of the newly added columns:

C indicates a continuous variable (default);
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

Example In this example, we consider the two problems:
(a) maximize: 2x + y (b) maximize: 2x + y + 3z

subject to: x + 4y ≤ 24 subject to: x + 4y + 2z ≤ 24
y ≤ 5 y + z ≤ 5

3x + y ≤ 20 3x + y ≤ 20
x + y ≤ 9 x + y + 3z ≤ 9

z ≤ 12
Using addcols, the following transforms (a) into (b):

p = xpress.problem()

p.read("example.lp")

assume this problem has at least four constraints
p.addcols(obj=[3], mstart=[0,3], mrwind=[0, 1, 3],

matval=[2,1,3], bdl=[-xpress.infinity], bdu=[12],
names=['john_cleese'], types=['C'])

Further information
1. The constant xpress.infinity can be used to represent infinite bounds.
2. If the columns are added to a MIP problem, then they will be continuous variables unless types isspecified. Use problem.chgcoltype to impose integrality conditions on such new columns.

Fair Isaac Corporation Confidential and Proprietary Information 135

Reference Manual

Related topics
problem.addrows, problem.chgcoltype.

Fair Isaac Corporation Confidential and Proprietary Information 136

Reference Manual

problem.addConstraint

Purpose Adds one or more constraints to the problem.
Synopsis

problem.addConstraint(c1, c2, ...)

Argument
c1,c2... Constraints or list/tuples/array of constraints created with the

xpress.constraint() call.
Example

N = 20
x = [xpress.var() for i in range(N)]
c = [x[i] <= x[i+1] for i in range(N-1)]
c2 = x[0] >= x[19]
p = xpress.problem()
p.addVariable(x)
p.addConstraint(x[2] == x[4])
p.addConstraint(c, c2)

Further informationAll arguments can be single constraints or lists, tuples, or NumPy arrays of constraints created as
xpress.constraint objects. Arguments do not need to be declared prior to the call.

Fair Isaac Corporation Confidential and Proprietary Information 137

Reference Manual

problem.addcuts

Purpose Adds cuts directly to the matrix at the current node. Any cuts added to the matrix at the current nodeand not deleted at the current node will be automatically added to the cut pool. The cuts added to thecut pool will be automatically restored at descendant nodes.
Synopsis

problem.addcuts(mtype, rtype, rhs, mstart, mcols, dmatval)

Arguments
mtype Array containing the user assigned cut types. The cut types can be any integer chosenby the user, and are used to identify the cuts in other cut manager routines using usersupplied parameters. The cut type can be interpreted as an integer or a bitmap - see

problem.delcuts.
rtype Character array containing the row types:

L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.

rhs Array containing the right hand side elements for the cuts.
mstart Array containing offset into the mcols and dmatval arrays indicating the start of eachcut. This array is of length ncuts+1 with the last element, mstart[ncuts], beingwhere cut ncuts+1 would start.
mcols Array containing the columns (i.e. xpress.var objects, indices, or names) in the cuts.
dmatval Array containing the matrix values for the cuts.

Further information
1. The columns and elements of the cuts must be stored contiguously in the mcols and dmatval arrayspassed to addcuts. The starting point of each cut must be stored in the mstart array. To determinethe length of the final cut, the mstart array must be of length ncuts+1 with the last element of thisarray containing the position in mcols and dmatval where the cut ncuts+1 would start.
mstart[ncuts] denotes the number of nonzeros in the added cuts.

2. The cuts added to the matrix are always added at the end of the matrix and the number of rows isalways set to the original number of cuts added. If ncuts have been added, then the rows
0,...,ROWS-ncuts-1 are the original rows, whilst the rows ROWS-ncuts,...,ROWS-1 are the added cuts.The number of cuts can be found by consulting the CUTS problem attribute.

Related topics
problem.addrows, problem.delcpcuts, problem.delcuts, problem.getcpcutlist,
problem.getcutlist, problem.loadcuts, problem.storecuts, Section "Working with the cutmanager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 138

Reference Manual

problem.adddfs

Purpose Add a set of distribution factors
Synopsis

problem.adddfs(colindex, rowindex, value)

Arguments
colindex Array of columns (i.e. xpress.var objects, indices, or names) whose distributionfactor is to be changed.
rowindex Array of rows (i.e. xpress.constraint objects, indices, or names) where eachdistribution factor applies.
value Array holding the new values of the distribution factors.

Example The following example adds distribution factors as follows:column 282 in row 134 = 0.1column 282 in row 136 = 0.15column 285 in row 133 = 1.0.
colindex = [282, 282, 285]
rowindex = [134, 136, 133]
value = [0.1, 0.15, 1]
p.adddfs(colindex,rowindex,value)

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress SLP can accept distribution factors instead of initial values, provided thatthe values of the variables involved can all be calculated after optimization using determining rows, orby a callback.
The problem.adddfs functions load additional items into the SLP problem. The corresponding
problem.loaddfs functions delete any existing items first.

Related topics
problem.chgdf, problem.getdf, problem.loaddfs

Fair Isaac Corporation Confidential and Proprietary Information 139

Reference Manual

problem.addgencons

Purpose Adds one or more general constraints to the problem. Each general constraint y = f(x1, ..., xn,
c1, ..., cn) consists of one or more (input) columns xi, zero or more constant values ci and aresultant (output column) y. General constraints can be defined using operators such as maximum and
minimum (at least one input column of any type and arbitrary number of input values), and and or (atleast one binary input column, no constant values, binary resultant) and absolute value (exactlyone input column of arbitrary type, no constant values).

Synopsis
problem.addgencons (type, resultant, colstart, col, valstart, val)

Arguments
type list or array containing the types of the general constraints:

xpress.gencons_max (0) indicates a maximum constraint;
xpress.gencons_min (1) indicates a minimum constraint;
xpress.gencons_and (2) indicates an and constraint;
xpress.gencons_or (3) indicates an or constraint;
xpress.gencons_abs (4) indicates an absolute value constraint.

resultant Array/list containing the output variables (or indices thereof) of the generalconstraints.
colstart Array/list containing the start index of each general constraint in the col array.
col Array/list containing the input variables in all general constraints.
valstart Array/list containing the start index of each general constraint in the val array(may be None).
val Array/list containing the constant values in all general constraints (may be None).

Example This adds two new general constraints x2 = max(x0, x1, 5) and x3 = |x1|:
type = [xpress.gencons_max, xpress.gencons_abs]
resultant = [2, 3]
colstart = [0, 2]
col = [0, 1, 1]
valstart = [0, 1]
val = [5.0]

prob.addgencons(type, resultant, colstart, col, valstart, val);
prob.solve()

Further informationGeneral constraints must be set up before solving the problem. They are converted to additional binaryvariables, indicator and linear constraints with the exact formulation and number of added entitiesdepending on the performed presolving.
Note that using non-binary variables in and/or constraints or adding constant values to them or
absolute value constraints will give an error at solve time.

Related topics
problem.getgencons, problem.delgencons, xpress.And, xpress.Or, xpress.max,
xpress.min, xpress.abs.

Fair Isaac Corporation Confidential and Proprietary Information 140

Reference Manual

problem.addIndicator

Purpose Adds one or more indicator constraints to the problem.
Synopsis

problem.addIndicator(c1, c2, ...)

Argument
c1,c2... Tuples containing an indicator constraints, or list/tuples/array of tuples containing abinary condition and a constraint.

Example

x = xpress.var(vartype=xpress.binary)
y = xpress.var(lb=10, ub=20)
z = xpress.var()
ind1 = (x==1, y+z <= 40)
p = xpress.problem()
p.addVariable(x,y,z)
p.addIndicator(ind1)

Further informationAll arguments can be single indicator constraints or lists, tuples, or NumPy arrays created as indicatorconstraints. An indicator constraint is a tuple of two elements, the first being a condition (i.e. a binaryvariable being 0 or 1) and the second being the constraint.

Fair Isaac Corporation Confidential and Proprietary Information 141

Reference Manual

problem.addmipsol

Purpose Adds a new feasible, infeasible or partial MIP solution for the problem to the Optimizer.
Synopsis

problem.addmipsol(mipsolval, mipsolcol, solname)

Arguments
mipsolval Array containing solution values.
mipsolcol Optional integer array containing the columns (i.e. xpress.var objects, indices, ornames) for the solution values provided in mipsolval. It is optional when the length ofmipsolval is equal to COLS, in which case it is assumed that mipsolval provides acomplete solution vector.
solname An optional name to associate with the solution.

Further information
1. The function returns immediately after passing the solution to the Optimizer. The solution is placed in apool until the Optimizer is able to analyze the solution during a MIP solve.
2. If the provided solution is found to be infeasible, a limited local search heuristic will be run in anattempt to find a close feasible integer solution.
3. If a partial solution is provided, global columns will be fixed to any provided values and a limited localsearch will be run in an attempt to find integer feasible values for the remaining unspecified columns.Values provided for continuous column in partial solutions are currently ignored.
4. The problem.addcbusersolnotify callback function can be used to discover the outcome of aloaded solution. The optional name provided as solname will be returned in the callback function.
5. If one or more solutions are loaded during the problem.addcboptnode callback, the Optimizer willprocess all loaded solutions and fire the callback again. This will be repeated as long as new solutionsare loaded during the callback.

Related topics
problem.addcbusersolnotify, problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 142

Reference Manual

problem.addpwlcons

Purpose Adds one or more piecewise linear constraints to the problem. Each piecewise linear constraint y =
f(x) consists of an (input) column x, a resultant (output column) y and a piecewise linear function f.The piecewise linear function f is described by a number of breakpoints, which are given ascombinations of x- and y-values. Discontinuous piecewise linear functions are supported, in this caseboth the left and right limit at a given point need to be entered as breakpoints. To differentiate betweenleft and right limit, the breakpoints need to be given as a list with non-decreasing x-values.

Synopsis
problem.addpwlcons(col, resultant, start, xval, yval)

Arguments
col Integer array (or list) containing the input variables x of the piecewise linear functions.
resultant Integer array containing the output variables y of the piecewise linear functions.
start Integer array containing the start index of each piecewise linear constraint in the xvaland yval arrays.
xval Array containing the x-values of the breakpoints.
yval Array containing the y-values of the breakpoints.

Example This adds a new piecewise linear constraint y = f(x), where
f(x) = -x if x < 0
f(x) = 1 if 0 <= x <= 2
f(x) = 2x-3 if x > 2

col = [x]
resultant = [y]
start = [0]
xval = [-1, 0, 0, 2, 3]
yval = [1, 0.5, 1, 1, 3]

prob.addpwlcons(col, resultant, start, xval, yval)
prob.setObjective(y) # the piecewise linear function is to be minimized
prob.mipoptimize()

Further informationPiecewise linear constraints must be set up before solving the problem. They are converted toadditional linear constraints, continuous variables and SOS2 constraints, with the exact formulationand number of added entities depending on the convexity of the piecewise linear function and somepresolving steps that are applied.
Related topics

problem.getpwlcons, problem.delpwlcons, xpress.pwl.

Fair Isaac Corporation Confidential and Proprietary Information 143

Reference Manual

problem.addqmatrix

Purpose Adds a new quadratic matrix into a row defined by triplets.
Synopsis

problem.addqmatrix(irow, mqc1, mqc2, dqe)

Arguments
irow Row (i.e. xpress.constraint object, index, or name) where the quadratic matrix is tobe added.
mqc1 Array with first variables (i.e. xpress.varobjects, indices, or names) in the triplets.
mqc2 Array with second variables (i.e. xpress.varobjects, indices, or names) index in thetriplets.
dqe Array of coefficients in the triplets.

Further information
1. The triplets should define the upper triangular part of the quadratic expression. This means that to add

x2 + 4xy the dqe array shall contain the coefficients 1 and 2.
2. The matrix defined by mqc1, mqc2 and dqe should be positive semi-definite for ≤ and negativesemi-definite for ≥ rows.
3. The row must not be an equality or a ranged row.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.chgqrowcoeff,
problem.getqrowqmatrix, problem.getqrowqmatrixtriplets, problem.getqrows,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 144

Reference Manual

problem.addrows

Purpose Adds rows and their coefficient to the problem.
Synopsis

problem.addrows(qrtype, rhs, mstart, mclind, dmatval, range=None,
names=None)

Arguments
qrtype Character array containing the row types:

L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Array containing the right hand side elements.
mstart Array containing the offsets in the mclind and dmatval arrays of the start of theelements for each row.
mclind Array containing the (contiguous) columns (i.e. xpress.varobjects, indices, or names)for the elements in each row.
dmatval Array containing the (contiguous) element coefficients.
range (optional) Array containing the row range elements. The values in the range array willonly be read for ’R’ type rows. The entries for other type rows will be ignored.
names (optional) Array of names to be assigned to each new row.

Example Suppose the current problem is:
maximize: 2x + y + 3z
subject to: x + 4y + 2z ≤ 24

y + z ≤ 5
3x + y ≤ 20

x + y + 3z ≤ 9
Then the following adds the row 8x + 9y + 10z ≤ 25 to the problem and names it NewRow:

p = xpress.problem()
p.addrows(['L'], [25], [0,3], [0,1,2],

dmatval=[8, 9, 10], range=None, names=['NewRow'])

Further informationRange rows are automatically converted to type L, with an upper bound in the slack. This must be takeninto consideration, when retrieving row type, right–hand side values or range information for rows.
Related topics

problem.addcols, problem.addcuts.

Fair Isaac Corporation Confidential and Proprietary Information 145

Reference Manual

problem.addsetnames

Purpose When a model with global entities is loaded, any special ordered sets may not have names associatedwith them. If you wish names to appear in the ASCII solutions files, the names for a range of sets canbe added with this function.
Synopsis

problem.addsetnames(names, first=0, last=problem.attributes.sets - 1);

Arguments
names A list of strings contatining all names to be assigned.
first (Optional) start of the set range.
last (Optional) end of the set range.

Example Add set names (set1 and set2) to a problem:
snames = ["set1", "set2"]
...
p.addsetnames(snames, 0, 1);

Further informationIf start is not provided, it is considered equal to 0; if end is omitted, a value of
problem.attributes.sets - 1 is used.

Related topics
problem.loadproblem,

Fair Isaac Corporation Confidential and Proprietary Information 146

Reference Manual

problem.addSOS

Purpose Adds one or more Special Ordered Set (SOS) to the problem.
Synopsis

problem.addSOS(s1, s2, ...)

Argument
s1,s2... Special Ordered Sets defined prior to the call or (see example below) defined directly inthe call.

Example

N = 20
x = [xpress.var() for i in range(N)]
p = xpress.problem()
p.addVariable(x)
s = xpress.sos([x], [i+2 for i in range(N)])
p.addSOS(s)
p.addSOS([x[0], x[2]], [4,6])

Further informationAll arguments can be single SOSs or lists, tuples, or NumPy arrays of SOSs created as xpress.sosobjects. As for constraints, a SOS does not need to be declared prior to being added as an argument.

Fair Isaac Corporation Confidential and Proprietary Information 147

Reference Manual

problem.addtolsets

Purpose Add sets of standard tolerance values to an SLP problem
Synopsis

problem.addtolsets(tol)

Argument
slptol Array of 9h elements containing the 9 tolerance values for each set in order.

Example The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; thesecond has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolutetolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).
tol = 9⁎[0.005]+[0]+[0.01,0.001]⁎4
p.addtolsets(tol)

Further informationA tolerance set is an array of 9 values containing the following tolerances:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable. Once created, a tolerance set can be used to set the tolerances for any SLP variable. If atolerance value is zero, then the default tolerance will be used instead. To force the use of a tolerance,use the problem.chgtolset function and set the Status variable appropriately. See the section"Convergence criteria" of the SLP Reference Manual for a fuller description of tolerances and their uses.The problem.addtolsets functions load additional items into the SLP problem. The corresponding
problem.loadtolsets functions delete any existing items first.

Related topics
problem.chgtolset, problem.deltolsets, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 148

Reference Manual

problem.addVariable

Purpose Adds one or more variables to the problem.
Synopsis

problem.addVariable(v1, v2, ...)

Argument
v1,v2... Variables or list/tuples/array of variables created with the xpress.var() call.

Example

x = xpress.var(vartype=xpress.binary)
Y = [xpress.var() for i in range(20)]
p = xpress.problem()
p.addVariable(x, Y)

Further informationAll arguments can be single variables or lists, tuples, or NumPy arrays of variables created as
xpress.var objects.

Fair Isaac Corporation Confidential and Proprietary Information 149

Reference Manual

problem.addvars

Purpose Add SLP variables defined as matrix columns to an SLP problem
Synopsis

problem.addvars(colindex, vartype, detrow, seqnum, tolindex, initvalue,
stepbound)

Arguments
colindex Integer array holding the index of the matrix column corresponding to each SLP variable.
vartype Bitmap giving information about the SLP variable as follows:

Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;May be None if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a negativevalue means there is no determining row)May be None if not required.
seqnum Integer array holding the index sequence number for cascading for each SLP variable (azero value means there is no pre-defined order for this variable)May be None if not required.
tolindex Integer array holding the index of the tolerance set for each SLP variable (a zero valuemeans the default tolerances are used)May be None if not required.
initvalue Double array holding the initial value for each SLP variable (use the VarType bit map toindicate if a value is being provided)May be None if not required.
stepbound Double array holding the initial step bound size for each SLP variable (a zero valuemeans that no initial step bound size has been specified). If a value of

xpress.infinity is used for a value in stepbound, the delta will never have stepbounds applied, and will almost always be regarded as converged.May be None if not required.
Example The following example loads two SLP variables into the problem. They correspond to columns 23 and25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specificinitial value

colindex = [23,25]
vartype = [0,2]
initvalue = [0,1.42]

p.addvars(colindex, vartype, None, None, None, initvalue, None)

initvalue is not set for the first variable, because it is not used (vartype = 0). Bit 1 of vartype isset for the second variable to indicate that the initial value has been set. The arrays for determiningrows, sequence numbers, tolerance sets and step bounds are not used at all, and so have been passedto the function as None.
Further informationThe addvars functions load additional items into the SLP problem. The corresponding loadvarsfunctions delete any existing items first.
Related topics

problem.chgvar, problem.delvars, problem.getvar, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 150

Reference Manual

problem.basisstability

Purpose Returns various measures for the stability of the current basis, including the basis condition number.
Synopsis

x = problem.basisstability(type, norm, ifscaled)

Arguments
type 0 Condition number of the basis.

1 Stability measure for the solution relative to the current basis.
2 Stability measure for the duals relative to the current basis.
3 Stability measure for the right hand side relative to the current basis.
4 Stability measure for the basic part of the objective relative to the current basis.

norm 0 Use the infinity norm.
1 Use the 1 norm.
2 Use the Euclidian norm for vectors and the Frobenius norm for matrices.

ifscaled If the stability values are to be calculated in the scaled or the unscaled matrix.
Further information

1. The condition number (type = 0) of an invertible matrix is the norm of the matrix multiplied with thenorm of its inverse. This number is an indication of how accurate the solution can be calculated andhow sensitive it is to small changes in the data. The larger the condition number is, the less accuratethe solution is likely to become.
2. The stability measures (type = 1...4) are using the original matrix and the basis to recalculate thevarious vectors related to the solution and the duals. The returned stability measure is the norm of thedifference of the recalculated vector to the original one.

Fair Isaac Corporation Confidential and Proprietary Information 151

Reference Manual

problem.btran

Purpose Post-multiplies a (row) vector provided by the user by the inverse of the current basis.
Synopsis

problem.btran(vec)

Argument
vec Array of length problem.attributes.rows containing the values by which the basisinverse is to be multiplied. The transformed values will also be returned in this array.

Example Get the (unscaled) tableau row z of constraint number irow, assuming that all arrays have beendimensioned.
y = [0,1,0,0]
p.btran(y)
print("btran result:", y)

Further informationIf the problem is in a presolved state, btran works with the basis for the presolved problem.
Related topics

problem.ftran.

Fair Isaac Corporation Confidential and Proprietary Information 152

Reference Manual

problem.calcobjective

Purpose Returns the objective value of a given solution.
Synopsis

objval = problem.calcobjective(solution)

Argument
solution Array of length problem.attributes.cols that holds the solution.

Further informationThe calculations are always carried out in the original problem, even if the problem is currentlypresolved.
Related topics

problem.calcslacks, problem.calcreducedcosts.

Fair Isaac Corporation Confidential and Proprietary Information 153

Reference Manual

problem.calcreducedcosts

Purpose Returns the reduced cost values for a given (row) dual solution.
Synopsis

problem.calcreducedcosts(duals, solution, calculateddjs)

Arguments
duals Array of length problem.attributes.rows that holds the dual solution to calculatethe reduced costs for.
solution Optional array of length problem.attributes.cols that holds the primal solution.This is necessary for quadratic problems.
calculateddjs Array of length problem.attributes.cols in which the calculated reducedcosts are returned.

Example

p = xpress.problem()
p.read("silly_walks.lp") # assume problem has 4 constraints
dj = []
p.calcreducedcosts([0,1,1,1], None, dj)
print("red. cost:", dj)

Further information
1. The calculations are always carried out in the original problem, even if the problem is currentlypresolved.
2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS toretrieve the non-presolved dimensions of the problem.

Related topics
problem.calcslacks, problem.calcobjective.

Fair Isaac Corporation Confidential and Proprietary Information 154

Reference Manual

problem.calcslacks

Purpose Calculates the row slack values for a given solution.
Synopsis

problem.calcslacks(solution, calculatedslacks)

Arguments
solution Array of length problem.attributes.cols that holds the solution to calculate theslacks for.
calculatedslacks Array of length problem.attributes.rows in which the calculated rowslacks are returned.

Further information
1. The calculations are always carried out in the original problem, even if the problem is currentlypresolved.
2. If using the function during a solve (e.g. from a callback), use ORIGINALCOLS and ORIGINALROWS toretrieve the non-presolved dimensions of the problem.

Related topics
problem.calcreducedcosts, problem.calcobjective.

Fair Isaac Corporation Confidential and Proprietary Information 155

Reference Manual

problem.calcsolinfo

Purpose Returns the required property of a solution, like maximum infeasibility of a given primal and dualsolution.
Synopsis

val = problem.calcsolinfo(solution, dual, property)

Arguments
solution Array of length problem.attributes.cols that holds the solution.
dual Array of length problem.attributes.rows that holds the dual solution.
property xpress.solinfo_absprimalinfeas absolute primal infeasibility.

xpress.solinfo_relprimalinfeas relative primal infeasibility.
xpress.solinfo_absdualinfeas absolute dual infeasibility.
xpress.solinfo_reldualinfeas relative dual infeasibility.
xpress.solinfo_maxmipfractional absolute MIP infeasibility (fractionality).

Further informationThe calculations are always carried out in the original problem, even if the problem is currentlypresolved.
Related topics

problem.calcslacks, problem.calcobjective, problem.calcreducedcosts.

Fair Isaac Corporation Confidential and Proprietary Information 156

Reference Manual

problem.cascade

Purpose Re-calculate consistent values for SLP variables. based on the current values of the remaining variables
Synopsis

problem.cascade()

Example The following example changes the solution value for column 91, and then re-calculates the values ofthose dependent on it.
colnum = 91
(a,b,c,d,e,f,value,h,i,j,k,l,m,n,o) = p.getvar(colnum)

value += 1.42

p.chgvar(colnum, None, None, None, None,
None, None, value, None, None, None,
None)

p.cascade()

problem.getvar and problem.chgvar are being used to get and change the current value of asingle variable. Provided no other values have been changed since the last execution of cascade,values will be changed only for variables which depend on column 91.
Further informationSee the section on cascading for an extended discussion of the types of cascading which can beperformed.

cascade is called automatically during the SLP iteration process and so it is not normally necessary toperform an explicit cascade calculation.
The variables are re-calculated in accordance with the order generated by problem.cascadeorder.

Related topics
problem.cascadeorder

Fair Isaac Corporation Confidential and Proprietary Information 157

Reference Manual

problem.cascadeorder

Purpose Establish a re-calculation sequence for SLP variables with determining rows.
Synopsis

problem.cascadeorder()

Example Assuming that all variables are SLP variables, the following example sets default values for thevariables, creates the re-calculation order and then calls problem.cascade to calculate consistentvalues for the dependent variables.
for colnum in range(1, nCol):

p.chgvar(colnum, None, None, None, None,
None, None, [DefaultValue [ColNum]], None, None, None,
None)

p.cascadeorder()
p.cascade()

Further information
cascadeorder is called automatically at the start of the SLP iteration process and so it is notnormally necessary to perform an explicit cascade ordering.

Related topics
problem.cascade

Fair Isaac Corporation Confidential and Proprietary Information 158

Reference Manual

problem.chgbounds

Purpose Changes the bounds on columns in the problem.
Synopsis

problem.chgbounds(mindex, qbtype, bnd)

Arguments
mindex Array containing the columns (i.e. xpress.var objects, indices, or names) on whichthe bounds will change.
qbtype Character array indicating the type of bound to change:

U indicates a change in the upper bound;
L indicates a change in the lower bound;
B indicates a change in both bounds, i.e. the column is fixed.

bnd Array giving the new bound values.
Example The following changes the lower bound of variable v1 to 2, upper bound of variable v2 to 5, and fixesvariable v3 to 3:

p.chgbounds([v1,v2,v3],['L','U','B'],[2,5,3])

Further information
1. A column may appear twice in the mindex array so it is possible to change both the upper and lowerbounds on a variable in one go.
2. chgboundsmay be applied to the problem in a presolved state, in which case it expects references tothe presolved problem.
3. The double constant xpress.infinity can be used to represent plus and minus infinity in the bound(bnd) array.
4. If the upper bound on a binary variable is changed to be greater than 1 or the lower bound is changed tobe less than 0 then the variable will become an integer variable.

Related topics
problem.getlb, problem.getub.

Fair Isaac Corporation Confidential and Proprietary Information 159

Reference Manual

problem.chgcoef

Purpose Changes a single coefficient in the problem. If the coefficient does not already exist, a new coefficientwill be added to the problem. If many coefficients are being added to a row of the problem, it may bemore efficient to delete the old row and add a new row.
Synopsis

problem.chgcoef(irow, icol, dval)

Arguments
irow Row (i.e. xpress.constraint object, index, or name) for the coefficient.
icol Column (i.e. xpress.var object, index, or name) for the coefficient.
dval New value for the coefficient. If dval is zero, any existing coefficient will be deleted.

Example In the following, the constraint is introduced in the problem and then its linear coefficient for x ischanged to 3:
p = xpress.problem()
x = xpress.var()
c = x + x⁎⁎2 <= 3
p.addVariable(x)
p.addConstraint(c)
p.chgcoef(c,x,3)

Further information
problem.chgmcoef is more efficient than multiple calls to chgcoef and should be used in its placein such circumstances.

Related topics
problem.addcols, problem.addrows, problem.chgmcoef, problem.chgmqobj,
problem.chgobj, problem.chgqobj, problem.chgrhs, problem.getcols,
problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 160

Reference Manual

problem.chgcoltype

Purpose Changes the type of a column in the problem.
Synopsis

problem.chgcoltype(mindex, qctype)

Arguments
mindex Array containing the columns (i.e. xpress.var objects, indices, or names) whose typeis to be changed.
qctype Character array giving the new column types:

C indicates a continuous column;
B indicates a binary column;
I indicates an integer column.
S indicates a semi–continuous column. The semi–continuous lower bound willbe set to 1.0.
R indicates a semi–integer column. The semi–integer lower bound will be set to

1.0.
P indicates a partial integer column. The partial integer bound will be set to 1.0.

Example The following changes the type of variable x from binary to integer:
p = xpress.problem()
x = xpress.var(vartype=xp.binary)
p.addVariable(x)
p.chgcoltype([x],['I'])

Further information
1. The column types can only be changed before the global search is started.
2. Calling chgcoltype to change any variable into a binary variable causes the bounds previouslydefined for the variable to be deleted and replaced by bounds of 0 and 1.
3. Calling chgcoltype to change a continuous variable into an integer variable cause its lower bound tobe rounded up to the nearest integer value and its upper bound to be rounded down to the nearestinteger value.

Related topics
problem.addcols, problem.chgrowtype, problem.getcoltype.

Fair Isaac Corporation Confidential and Proprietary Information 161

Reference Manual

problem.chgcascadenlimit

Purpose Set a variable specific cascade iteration limit
Synopsis

problem.chgcascadenlimit(icol, cascadenlimit)

Arguments
icol The column corresponding to the SLP variable for which the cascading limit is to beimposed.
cascadenlimit The new cascading iteration limit.

Further informationA value set by this function will overwrite the value of the control xslp_cascadenlimit for thisvariable. To remove any previous value set by this function, use an iteration limit of 0.
Related topics

problem.cascadeorder

Fair Isaac Corporation Confidential and Proprietary Information 162

Reference Manual

problem.chgccoef

Purpose Add or change a single matrix coefficient using a character string for the formula
Synopsis

problem.chgccoef(rowindex, colindex, factor, formula)

Arguments
rowindex The row (i.e. xpress.constraint object, index, or name) for the coefficient.
colindex The column (i.e. xpress.var object, index, or name) for the coefficient.
factor Constant multiplier for the formula. If factor is None, a value of 1.0 will be used.
Formula Character string holding the formula, with the tokens separated by spaces.

Example Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts theformula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.
Formula = "sin (Col1)"
Factor = 2.5
p.chgccoef(1, 3, Factor, Formula)

Note that all the tokens in the formula (including mathematical operators and separators) areseparated by one or more spaces.
Further informationIf the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If itdoes not exist, it will be added to the problem.

A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier whichcan be provided in the Factor variable. If Xpress Nonlinear can identify a constant factor in theFormula, then it will use that as well, to minimize the size of the formula which has to be calculated.
This function can only be used if all the operands in the formula can be correctly identified asconstants, existing columns, character variables or functions. Therefore, if a formula refers to a newcolumn, that new item must be added to the Xpress Nonlinear problem first.

Related topics
problem.addcoefs, problem.delcoefs, problem.chgnlcoef, problem.getcoefformula,
problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 163

Reference Manual

problem.chgdeltatype

Purpose Changes the type of the delta assigned to a nonlinear variable
Synopsis

problem.chgdeltatype(vars, deltatypes, values)

Arguments
Vars Indices of the variables to change the deltas for.
DeltaTypes Type if the delta variable:

0 Differentiable variable, default.
1 Variable defined over the grid size given in values.
2 Variable where a minimum perturbation size given in valuesmay berequired before a significant change in the problem is achieved.
3 Variable where a meaningful step size should automatically be detected,with an upper limit given in values.

Values Grid or minimum step sizes for the variables.
Further informationChanging the delta type of a variables makes the variable nonlinear.
Related topics

Fair Isaac Corporation Confidential and Proprietary Information 164

Reference Manual

problem.chgdf

Purpose Set or change a distribution factor
Synopsis

problem.chgdf(colindex, rowindex, value)

Arguments
colindex The column (i.e. xpress.var object, index, or name) whose distribution factor is to beset or changed.
rowindex The row (i.e. xpress.constraint object, index, or name) where the distributionapplies.
value Address of a double precision variable holding the new value of the distribution factor.May be None if not required.

Example The following example retrieves the value of the distribution factor for column 282 in row 134 andchanges it to be twice as large.
value = p.getdf(282,134)
value ⁎= 2
p.chgdf(282,134,value)

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress Nonlinear can accept distribution factors instead of initial values,provided that the values of the variables involved can all be calculated after optimization usingdetermining rows, or by a callback.
Related topics

problem.adddfs, problem.getdf, problem.loaddfs

Fair Isaac Corporation Confidential and Proprietary Information 165

Reference Manual

problem.chgglblimit

Purpose Changes semi-continuous or semi-integer lower bounds, or upper limits on partial integers.
Synopsis

problem.chgglblimit(mindex, dlimit)

Arguments
mindex Array containing the indices of the semi-continuous, semi-integer or partial integercolumns that should have their limits changed.
dlimit Array giving the new limit values.

Further information
1. The new limits are not allowed to be negative.
2. Partial integer limits can be at most 228.

Related topics
problem.chgcoltype, problem.getglobal.

Fair Isaac Corporation Confidential and Proprietary Information 166

Reference Manual

problem.chgmcoef

Purpose Change multiple coefficients in the problem. The coefficients that do not exist yet will be added to theproblem. If many coefficients are being added to a row of the matrix, it may be more efficient to deletethe old row of the matrix and add a new one.
Synopsis

problem.chgmcoef(mrow, mcol, dval)

Arguments
mrow Array containing the rows (i.e. xpress.constraint objects, indices, or names) of thecoefficients to be changed.
mcol Array containing the columns (i.e. xpress.var objects, indices, or names) of thecoefficients to be changed.
dval Array containing the new coefficient values. If an element of dval is zero, thecoefficient will be deleted.

Example

con1 = x + y + z <= 2
con2 = x + y >= 1
con3 = x + 3⁎y == 1
p.addVariable(x,y,z)
p.addConstraint(con1, con2, con3)
p.chgmcoef([con1,con1,con1,con2,con3], [x,y,z,x,x], [-2, -3, -3.2, 1, 3])

This changes five coefficients, three of which in the first constraint and one in each of the second andthird constraints.
Further information

chgmcoef is more efficient than repeated calls to problem.chgcoef and should be used in its placeif many coefficients are to be changed.
Related topics

problem.chgcoef, problem.chgmqobj, problem.chgobj, problem.chgqobj,
problem.chgrhs, problem.getcols, problem.getrhs.

Fair Isaac Corporation Confidential and Proprietary Information 167

Reference Manual

problem.chgmqobj

Purpose Change multiple quadratic coefficients in the objective function. If any of the coefficients does not existalready, new coefficients will be added to the objective function.
Synopsis

problem.chgmqobj(mqcol1, mqcol2, dval)

Arguments
mqcol1 Array containing the column index of the first variable in each quadratic term.
mqcol2 Array containing the column index of the second variable in each quadratic term.
dval New values for the coefficients. If an entry in dval is 0, the corresponding entry will bedeleted. These are the coefficients of the lower triangular part of the Hessian of theobjective function.

Example The following code results in an objective function with terms: [4x21 + 6x1x2
p.chgmqobj([x1,x1], [x1,x2], [4,3])

Further information
1. The columns in the arrays mqcol1 and mqcol2must already exist in the matrix. If the columns do notexist, they must be added.
2. chgmqobj is more efficient than repeated calls to problem.chgqobj and should be used in its placewhen several coefficients are to be changed.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgobj, problem.chgqobj,
problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 168

Reference Manual

problem.chgnlcoef

Purpose Add or change a single matrix coefficient using a parsed or unparsed formula
Synopsis

problem.chgnlcoef(rowindex, colindex, factor, parsed, type, value)

Arguments
rowindex The index of the matrix row for the coefficient.
colindex The index of the matrix column for the coefficient.
factor Address of a double precision variable holding the constant multiplier for the formula. If

Factor is None, a value of 1.0 will be used.
parsed Integer indicating the whether the token arrays are formatted as internal unparsed(parsed=False) or internal parsed reverse Polish (parsed=True).
type Array of token types providing the description and formula for each item.
value Array of values corresponding to the types in type.

Example Assuming that the columns of the matrix are named Col1, Col2, etc, the following example puts theformula 2.5⁎sin(Col1) into the coefficient in row 1, column 3.
type = [xp.xslp_op_ifun, xp.xslp_op_var, xp.xslp_op_rb, xp.xslp_op_eof]
value = [xp.xslp_ifun_sin, 1, 0, 0]

Factor = 2.5
p.chgnlcoef(1, 3, Factor, 0, type, value)

problem.getIndex is used to retrieve the index for the internal function sin. The "nocase" versionmatches the function name regardless of the (upper or lower) case of the name. Tokens of type
xpress.xslp_op_var always count from 1, so Col1 is 1. The formula is written in unparsed form(parsed = 0) and so it is provided as tokens in the same order as they would appear if the formulawere written in character form.

Further informationIf the coefficient already exists as a constant or formula, it will be changed into the new coefficient. If itdoes not exist, it will be added to the problem.
A coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier whichcan be provided in the factor variable. If Xpress Nonlinear can identify a constant factor in theFormula, then it will use that as well, to minimize the size of the formula which has to be calculated.

Related topics
problem.addcoefs, problem.chgccoef, problem.delcoefs, problem.getcoefformula,
problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 169

Reference Manual

problem.chgobj

Purpose Change the objective function coefficients.
Synopsis

problem.chgobj(mindex, obj)

Arguments
mindex Array containing the columns (i.e. xpress.var objects, indices, or names) on whichthe range elements will change. An index of -1 indicates that the fixed part of theobjective function on the right hand side should change.
obj Array giving the new objective function coefficient.

Example Changing three coefficients of the objective function with chgobj:
p.chgobj([x1,x2,x3,-1], [3.5, -2, 0, 224])

Further informationThe value of the fixed part of the objective function can be obtained using the OBJRHS problemattribute.
Related topics

problem.chgcoef, problem.chgmcoef, problem.chgmqobj, problem.chgqobj,
problem.getobj.

Fair Isaac Corporation Confidential and Proprietary Information 170

Reference Manual

problem.chgobjsense

Purpose Changes the problem’s objective function sense to minimize or maximize.
Synopsis

problem.chgobjsense(sense)

Argument
objsense xpress.minimize or xpress.maximize to change into a minimization ormaximization problem, respectively.

Example Changing three coefficients of the objective function with chgobj:
p.chgobjsense(xpress.maximize) # optimize in this general direction

Related topics
problem.lpoptimize, problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 171

Reference Manual

problem.chgqobj

Purpose Change a single quadratic coefficient in the objective function corresponding to the variable pair
(icol,jcol) of the Hessian matrix.

Synopsis
problem.chgqobj(icol, jcol, dval)

Arguments
icol Column index for the first variable in the quadratic term.
jcol Column index for the second variable in the quadratic term.
dval New value for the coefficient in the quadratic Hessian matrix. If an entry in dval is 0,the corresponding entry will be deleted.

Example The following code adds the terms [6x21 + 3x1x2 + 3x2x1]/2 to the objective function:
p.chgqobj(x1, x1, 6)
p.chgqobj(x1, x2, 3)

Further information
1. The columns icol and jcolmust already exist in the matrix..
2. If icol is not equal to jcol, then both the matrix elements (icol, jcol) and (jcol, icol) arechanged to leave the Hessian symmetric.

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgmqobj, problem.chgobj,
problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 172

Reference Manual

problem.chgqrowcoeff

Purpose Changes a single quadratic coefficient in a row.
Synopsis

problem.chgqrowcoeff(irow, icol, jcol, dval)

Arguments
irow Row (i.e. xpress.constraint object, index, or name) where the quadratic matrix is tobe changed.
icol First index of the coefficient to be changed.
jcol Second index of the coefficient to be changed.
dval The new coefficient.

Further information
1. This function may be used to add new nonzero coefficients, or even to define the whole quadraticexpression with it. Doing that, however, is significantly less efficient than adding the whole expressionwith problem.addqmatrix.
2. The row must not be an equality or a ranged row.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrix, problem.getqrowqmatrixtriplets,
problem.getqrows, problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 173

Reference Manual

problem.chgrhs

Purpose Changes right–hand side values of the problem.
Synopsis

problem.chgrhs(mindex, rhs)

Arguments
mindex Array containing the rows (i.e. xpress.constraint objects, indices, or names) whoseright hand side will change.
rhs Array containing the right hand side values.

Example Here we change the three right hand sides in rows 2, 6, and 8 to new values:
p.chgrhs([2,8,6], [5, 3.8, 5.7])

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgrhsrange, problem.getrhs,
problem.getrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 174

Reference Manual

problem.chgrhsrange

Purpose Change the range for one or more rows of the problem.
Synopsis

problem.chgrhsrange(mindex, rng)

Arguments
mindex Array containing the rows (i.e. xpress.constraint objects, indices, or names) onwhich the range elements will change.
rng Array containing the range values.

Example Here, the constraint cons1 x + y ≤ 10 is changed to 8 ≤ x + y ≤ 10:
p.chgrhsrange([cons1], [2])

Further informationIf the range specified on the row is r, what happens depends on the row type and value of r. It ispossible to convert non-range rows using this routine.
Value of r Row type Effect
r ≥ 0 = b, ≤ b b – r ≤

∑
ajxj ≤ b

r ≥ 0 ≥ b b ≤
∑

ajxj ≤ b + r
r < 0 = b, ≤ b b ≤

∑
ajxj ≤ b – r

r < 0 ≥ b b + r ≤
∑

ajxj ≤ b

Related topics
problem.chgcoef, problem.chgmcoef, problem.chgrhs, problem.getrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 175

Reference Manual

problem.chgrowstatus

Purpose Change the status setting of a constraint
Synopsis

problem.chgrowstatus(rowindex, status)

Arguments
rowindex The index of the matrix row to be changed.
status The bitmap with the new status settings. If the status is to be changed, always get thecurrent status first (use problem.getrowstatus) and then change settings asrequired. The only settings likely to be changed are:

Bit 11 Set if row must not have a penalty error vector. This is the equivalent of anenforced constraint (SLPDATA type EC).
Example The following example changes the status of row 9 to be an enforced constraint.

status = p.getrowstatus(9)
status = status | (1<<11)
p.chgrowstatus(9, status)

Further informationIf status is None the current status will remain unchanged.
Related topics

problem.getrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 176

Reference Manual

problem.chgrowtype

Purpose Changes the type of a row in the problem.
Synopsis

problem.chgrowtype(mindex, qrtype)

Arguments
mindex Array containing the rows (i.e. xpress.constraint objects, indices, or names).
qrtype Character array giving the new row types:

L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row;
R indicates a range row;
N indicates a free row.

Example Here two rows are changed to an equality and a free row, respectively:
p.chgrowtype([con1, con2], ['E', 'N'])

Further informationA row can be changed to a range type row by first changing the row to an R or L type row and thenchanging the range on the row using problem.chgrhsrange.
Related topics

problem.addrows, problem.chgcoltype, problem.chgrhs, problem.chgrhsrange,
problem.getrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 177

Reference Manual

problem.chgrowwt

Purpose Set or change the initial penalty error weight for a row
Synopsis

problem.chgrowwt(rowindex, value)

Arguments
RowIndex The row (i.e. xpress.constraint object, index, or name) whose weight is to be set orchanged.
Value The new value of the weight. May be None if not required.

Example The following example sets the initial weight of row number 2 to a fixed value of 3.6 and the initialweight of row 4 to a value twice the calculated default value.
p.chgrowwt(2, -3.6)
p.chgrowwt(4,2)

Further informationA positive value is interpreted as a multiplier of the default row weight calculated by Xpress SLP.
A negative value is interpreted as a fixed value: the absolute value is used directly as the row weight.
The initial row weight is used only when the augmented structure is created. After that, the currentweighting can be accessed and changed using problem.getrowinfo.

Related topics
problem.getrowwt, problem.getrowinfo

Fair Isaac Corporation Confidential and Proprietary Information 178

Reference Manual

problem.chgtolset

Purpose Add or change a set of convergence tolerances used for SLP variables
Synopsis

problem.chgtolset(ntol, status, tols)

Arguments
ntol Tolerance set for which values are to be changed. A zero value for nSLPTol will createa new set.
status Address of an integer holding a bitmap describing which tolerances are active in thisset. See below for the settings.
tols Array of 9 double precision values holding the values for the corresponding tolerances.

Example The following example creates a new tolerance set with the default values for all tolerances except therelative delta tolerance, which is set to 0.005. It then changes the value of the absolute delta andabsolute impact tolerances in tolerance set 6 to 0.015
Tols = 9⁎[0]
Tols[2] = 0.005
Status = 1<<2

p.chgtolset(0, 1<<2, Tols)
Tols[1] = 0.015
Tols[5] = 0.015
Status = 1<<1 | 1<<5
p.chgtolset(6, Status, Tols)

Further informationThe bits in status are set to indicate that the corresponding tolerance is to be changed in thetolerance set. The meaning of the bits is as follows:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable. The members of the Tols array corresponding to nonzero bit settings in Status will beused to change the tolerance set. So, for example, if bit 3 is set in Status, then Tols[3] will replacethe current value of the absolute coefficient tolerance. If a bit is not set in Status, the value of thecorresponding element of Tols is unimportant.
Related topics

problem.addtolsets, problem.deltolsets, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 179

Reference Manual

problem.chgvar

Purpose Define a column as an SLP variable or change the characteristics and values of an existing SLP variable
Synopsis

problem.chgvar(colindex, detrow, initstepbound, stepbound, penalty, damp,
initvalue, value, tolset, history, converged, vartype)

Arguments
colindex The index of the matrix column.
detrow Address of an integer holding the index of the determining row. Use -1 if there is nodetermining row. May be None if not required.
initstepbound Address of a double precision variable holding the initial step bound size. May be

None if not required.
stepbound Address of a double precision variable holding the current step bound size. Use zero todisable the step bounds. May be None if not required.
penalty Address of a double precision variable holding the weighting of the penalty cost forexceeding the step bounds. May be None if not required.
damp Address of a double precision variable holding the damping factor for the variable. Maybe None if not required.
initvalue Address of a double precision variable holding the initial value for the variable. May be

None if not required.
value Address of a double precision variable holding the current value for the variable. May be

None if not required.
tolset Address of an integer holding the index of the tolerance set for this variable. Use zero ifthere is no specific tolerance set. May be None if not required.
history Address of an integer holding the history value for this variable. May be None if notrequired.
converged Address of an integer holding the convergence status for this variable. May be None ifnot required.
vartype Address of an integer holding a bitmap defining the existence of certain properties forthis variable:

Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" columnMay be None if not required.

Example The following example sets an initial value of 1.42 and tolerance set 2 for column 25 in the matrix.
p.chgvar(25, None, None, None, None,

None, 1.42, None, 2,
None, None, 1<<1 | 1<<2)

Note that bits 1 and 2 of vartype are set, indicating that the variable has a delta vector and an initialvalue. For columns already defined as SLP variables, use problem.getvar to obtain the current valueof vartype because other bits may already have been set by the system.
Further informationIf any of the arguments is None then the corresponding information for the variable will be leftunaltered. If the information is new (i.e. the column was not previously defined as an SLP variable) thenthe default values will be used.

Changing Value, History or Converged is only effective during SLP iterations.

Fair Isaac Corporation Confidential and Proprietary Information 180

Reference Manual

Changing initvalue and initstepbound is only effective before problem.construct. If a valueof xpress.infinity is used in the value for stepbound or initstepbound, the delta will neverhave step bounds applied, and will almost always be regarded as converged.
Related topics

problem.addvars, problem.delvars, problem.getvar, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 181

Reference Manual

problem.construct

Purpose Create the full augmented SLP matrix and data structures, ready for optimization
Synopsis

problem.construct()

Example The following example constructs the augmented matrix and then outputs the result in MPS format toa file called augment.mat
creation and/or loading of data
precedes this segment of code
p.construct()
p.write("augment","l")

The "l" flag causes output of the current linear problem (which is now the augmented structure and thecurrent linearization) rather than the original nonlinear problem.
Further information

construct adds new rows and columns to the SLP matrix and calculates initial values for thenon-linear coefficients. Which rows and columns are added will depend on the setting of
xslp_augmentation. Names for the new rows and columns are generated automatically, based onthe existing names and the string control variables xslp_xxxformat.
Once construct has been called, no new rows, columns or non-linear coefficients can be added to theproblem. Any rows or columns which will be required must be added first. Non-linear coefficients mustnot be changed; constant matrix elements can generally be changed after construct, but not after
problem.presolve if used.
construct is called automatically by the SLP optimization procedure, and so only needs to be calledexplicitly if changes need to be made between the augmentation and the optimization.

Related topics
problem.presolve

Fair Isaac Corporation Confidential and Proprietary Information 182

Reference Manual

problem.copy

Purpose Obtains a copy of a problem.
Synopsis

p = problem.copy()

Example

p = xpress.problem()
x = [xpress.var() for _ in range(10)]
p.addVariable(x)
p.addConstraint(xpress.Sum(x) <= 10)
p2 = p.copy() # add a constraint that won't be in p
p2.addConstraint(xpress.Sum(x) >= 6) # x[0] is deleted from p2
p2.delVariable(x[0])

Further informationThe objects of the copied problem (variables, constraints, SOSs) are the same as the source problem,i.e., the one of which a copy was created. Therefore, any object that existed in the source problem canbe addressed and used in the copy problem.
Related topics

problem.copycallbacks.

Fair Isaac Corporation Confidential and Proprietary Information 183

Reference Manual

problem.copycallbacks

Purpose Copies callback functions defined for one problem to another.
Synopsis

problem.copycallbacks(src)

Argument
src The problem from which the callbacks are copied.

Example The following sets up a message callback function callback for problem prob1 and then copies thisto the problem prob2.
prob1 = xp.problem()
prob1.addcbmessage(callback, None, 0)
prob2 = xp.problem()
prob2.copycallbacks(prob1)

Related topics
problem.copycontrols, problem.copy.

Fair Isaac Corporation Confidential and Proprietary Information 184

Reference Manual

problem.copycontrols

Purpose Copies controls defined for one problem to another.
Synopsis

problem.copycontrols(src)

Argument
src The problem from which the controls are copied.

Example The following turns off presolve for problem prob1 and then copies this and other control values to theproblem prob2:
prob1 = xpress.problem()
prob2 = xpress.problem()
prob1.controls.presolve = 0
prob2.copycontrols(prob1)

Related topics
problem.copycallbacks.

Fair Isaac Corporation Confidential and Proprietary Information 185

Reference Manual

problem.crossoverlpsol

Purpose Provides a basic optimal solution for a given solution of an LP problem. This function behaves like thecrossover after the barrier algorithm.
Synopsis

status = problem.crossoverlpsol()

Argument
status One of:

0 The crossover was successful.
1 The crossover was not performed because the problem has no solution.

Example This example loads a problem, loads a solution for the problem and then uses crossoverlpsol tofind a basic optimal solution.
p = xp.problem()
p.read('problem.mps')
status = p.loadlpsol(x, None, dual, None)
status = p.crossoverlpsol()

A solution can also be loaded from an ASCII solution file using problem.readslxsol.
Further information

1. The crossover performs two phases: a crossover phase for finding a basic solution and a clean-upphase for finding a basic optimal solution. Setting algaftercrossover to 0 will allow the crossoverto skip the clean-up phase.
2. The given solution is expected to be feasible or nearly feasible, otherwise the crossover may take along time to find a basic feasible solution. More importantly, the given solution is expected to have asmall duality gap. A small duality gap indicates that the given solution is close to the optimal solution.If the given solution is far away from the optimal solution, the clean-up phase may need many simplexiterations to move to a basic optimal solution.

Related topics
problem.loadlpsol, problem.readslxsol

Fair Isaac Corporation Confidential and Proprietary Information 186

Reference Manual

problem.delcoefs

Purpose Delete coefficients from the current problem
Synopsis

problem.delcoefs(rowindex, colindex)

Arguments
rowindex rows (i.e. xpress.constraint objects, indices, or names) of the SLP coefficients todelete.
colindex columns (i.e. xpress.var objects, indices, or names) of the SLP coefficients to delete.

Related topics
problem.addcoefs, problem.chgnlcoef, problem.chgccoef, problem.getcoefformula,
problem.getccoef, problem.loadcoefs

Fair Isaac Corporation Confidential and Proprietary Information 187

Reference Manual

problem.delConstraint

Purpose Delete one or more constraints from the problem.
Synopsis

problem.delConstraint(c1, c2, ...)

Example

N = 20
x = [xpress.var() for i in range(N)]
p = xpress.problem()
p.addVariable(x)
p.addConstraint(x[i] >= x[i+1] for i in range(N-1))
p.delConstraint(2) # deletes x[2] >= x[3]

Further information
1. All arguments can be single constraints or lists, tuples, or NumPy arrays of variables. They can also beconstraint indices (from 0 to ROWS-1). The index of variables, constraints, and SOSs can be obtainedwith problem.getIndex.
2. Indicator constraints are indexed as constraints, hence they can also be deleted with this function.

Fair Isaac Corporation Confidential and Proprietary Information 188

Reference Manual

problem.delcpcuts

Purpose During the branch and bound search, cuts are stored in the cut pool to be applied at descendant nodes.These cuts may be removed from a given node using problem.delcuts, but if this is to be applied ina large number of cases, it may be preferable to remove the cut completely from the cut pool. This isachieved using delcpcuts.
Synopsis

problem.delcpcuts(itype, interp, cutind)

Arguments
itype User defined cut type to match against.
interp Way in which the cut itype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

cutind Array containing the cuts which are to be deleted.
Related topics

problem.addcuts, problem.delcuts, problem.loadcuts, Section "Working with the cutmanager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 189

Reference Manual

problem.delcuts

Purpose Deletes cuts from the matrix at the current node. Cuts from the parent node which have beenautomatically restored may be deleted as well as cuts added to the current node using
problem.addcuts or problem.loadcuts. The cuts to be deleted can be specified in a number ofways. If a cut is ruled out by any one of the criteria it will not be deleted.

Synopsis
problem.delcuts(ibasis, itype, interp, delta, cutind)

Arguments
ibasis Ensures the basis will be valid if set to 1. If set to 0, cuts with non-basic slacks may bedeleted.
itype User defined type of the cut to be deleted.
interp Way in which the cut itype is interpreted:

-1 match all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

delta Only delete cuts with an absolute slack value greater than delta. To delete all the cuts,this argument should be set to -xpress.infinity.
cutind Array containing the cuts which are to be deleted.

Further information
1. It is usually best to drop only those cuts with basic slacks, otherwise the basis will no longer be validand it may take many iterations to recover an optimal basis. If the ibasis parameter is set to 1, thiswill ensure that cuts with non-basic slacks will not be deleted even if the other parameters specify thatthese cuts should be deleted. It is highly recommended that the ibasis parameter is always set to 1.
2. The cuts to be deleted can also be specified by the size of the slack variable for the cut. Only those cutswith a slack value greater than the delta parameter will be deleted.
3. A list of indices of the cuts to be deleted can also be provided. The list of active cuts at a node can beobtained with the problem.getcutlist command.

Related topics
problem.addcuts, problem.delcpcuts, problem.getcutlist, problem.loadcuts, Section"Working with the cut manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 190

Reference Manual

problem.delgencons

Purpose Delete general constraints from a problem.
Synopsis

problem.delgencons(mindex)

Argument
mindex An integer array containing the general constraints to delete.

Example In this example, general constraints 0 and 2 are deleted from the problem:
mindex = [0, 2]
prob.delgencons(mindex)

Further informationAfter general constraints have been deleted from a problem, the indices of the remaining constraintsare reduced down so that the general constraints are always numbered from 0 to
prob.attributes.gencons - 1 where prob.attributes.gencons contains the number ofnon-deleted general constraints in the problem.

Related topics
problem.addgencons, problem.getgencons, xpress.And, xpress.Or, xpress.max,
xpress.min, xpress.abs.

Fair Isaac Corporation Confidential and Proprietary Information 191

Reference Manual

problem.delindicators

Purpose Delete indicator constraints. This turns the specified rows into normal rows (not controlled by indicatorvariables).
Synopsis

problem.delindicators(first=None, last=None);

Arguments
first First row in the range.
last Last row in the range (inclusive).

Example In this example, if any of the first two rows of the matrix is an indicator constraint, they are turned intonormal rows:
prob.delindicators(0,1)

Further informationThis function has no effect on rows that are not indicator constraints.
Related topics

problem.getindicators, problem.setindicators.

Fair Isaac Corporation Confidential and Proprietary Information 192

Reference Manual

problem.delpwlcons

Purpose Delete piecewise linear constraints from a problem.
Synopsis

problem.delpwlcons(mindex)

Argument
mindex An integer array containing the piecewise linear constraints to delete.

Example In this example, piecewise linear constraints 0 and 2 are deleted from the problem:
mindex = [0,2]
prob.delpwlcons(mindex)

Further informationAfter piecewise linear constraints have been deleted from a problem, the indices of the remainingconstraints are reduced so that the piecewise linear constraints are always numbered from 0 to
problem.attributes.pwlcons - 1 where problem.attributes.pwlcons is the problemattribute containing the number of non-deleted piecewise linear constraints in the problem.

Related topics
problem.addpwlcons, problem.getpwlcons, xpress.pwl.

Fair Isaac Corporation Confidential and Proprietary Information 193

Reference Manual

problem.delqmatrix

Purpose Deletes the quadratic part of a row or of the objective function.
Synopsis

problem.delqmatrix(row)

Argument
row Index of row from which the quadratic part is to be deleted.

Further informationIf a row index of -1 is used, the function deletes the quadratic coefficients from the objective function.
Related topics

problem.addrows.

Fair Isaac Corporation Confidential and Proprietary Information 194

Reference Manual

problem.delSOS

Purpose Delete one or more SOSs from the problem.
Synopsis

problem.delSOS(s1, s2, ...)

Example

N = 20
x = [xpress.var() for i in range(N)]
p = xpress.problem()
p.addVariable(x)
s = xpress.sos(x, i+1 for i in range(N))
p.addSOS(s)
p.delSOS(s)

Further informationAll arguments can be single SOSs or lists, tuples, or NumPy arrays of SOSs. They can also be constraintindices (from 0 to ROWS-1). The index of variables, constraints, and SOSs can be obtained with
problem.getIndex.

Fair Isaac Corporation Confidential and Proprietary Information 195

Reference Manual

problem.deltolsets

Purpose Delete tolerance sets from the current problem
Synopsis

problem.deltolsets(index)

Argument
tolsetindex Indices of tolerance sets to delete.

Related topics
problem.addtolsets, problem.chgtolset, problem.gettolset, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 196

Reference Manual

problem.delVariable

Purpose Delete one or more variables from the problem.
Synopsis

problem.delVariable(x1, x2, ...)

Example

N = 20

x = [xpress.var() for i in range(N)]
p = xpress.problem()
p.addVariable(x)
p.addConstraint(x[i] >= x[i+1] for i in range(N-1))

deletes x[2], x[3], i.e., third and fourth variable
p.delVariable(x[2:4])

Further informationAll arguments can be single variables or lists, tuples, or NumPy arrays of variables. They can also bevariable indices (from 0 to COLS-1). The index of variables, constraints, and SOSs can be obtained with
problem.getIndex.

Fair Isaac Corporation Confidential and Proprietary Information 197

Reference Manual

problem.delvars

Purpose Convert SLP variables to normal columns. Variables must not appear in SLP structures
Synopsis

problem.delvars(index)

Argument
colindex Columns to be converted to linear ones.

Further informationThe SLP variables to be converted to linear, non SLP columns must not be in use by any other SLPstructure (coefficients, initial value formulae, delayed columns). Use the appropriate deletion or changefunctions to remove them first.
Related topics

problem.addvars, problem.chgvar, problem.getvar, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 198

Reference Manual

problem.dumpcontrols

Purpose Displays the list of controls and their current value for those controls that have been set to a nondefault value.
Synopsis

problem.dumpcontrols()

Related topics
problem.setdefaults

Fair Isaac Corporation Confidential and Proprietary Information 199

Reference Manual

problem.estimaterowdualranges

Purpose Performs a dual side range sensitivity analysis, i.e. calculates estimates for the possible ranges fordual values.
Synopsis

problem.estimaterowdualranges(rowIndices, iterationLimit, minDualActivity,
maxDualActivity)

Arguments
rowIndices rows (i.e. xpress.constraint objects, indices, or names) to analyze.
iterationLimit Effort limit expressed as simplex iterations per row.
minDualActivity Estimated lower bounds on the possible dual ranges.
maxDualActivity Estimated upper bounds on the possible dual ranges.

Further informationThis function may provide better results for individual row dual ranges when called for a larger numberof rows.
Related topics

problem.lpoptimize, problem.strongbranch

Fair Isaac Corporation Confidential and Proprietary Information 200

Reference Manual

problem.evaluatecoef

Purpose Evaluate a coefficient using the current values of the variables
Synopsis

value = problem.evaluatecoef(rowindex, colindex)

Arguments
rowindex Row (i.e. xpress.constraint object, index, or name).
colindex Column (i.e. xpress.var object, index, or name).
value The result of the calculation.

Example The following example sets the value of column 5 to 1.42 and then calculates the coefficient in row 2,column 3. If the coefficient depends on column 5, then a value of 1.42 will be used in the calculation.
p.chgvar(5, None, None, None, None,

None, None, 1.42, None, None, None,
None)

value = p.evaluatecoef(2, 3)

Further informationThe values of the variables are obtained from the solution, or from the Value setting of an SLP variable(see problem.chgvar and problem.getvar).
Related topics

problem.chgvar, problem.evaluateformula, problem.getvar

Fair Isaac Corporation Confidential and Proprietary Information 201

Reference Manual

problem.evaluateformula

Purpose Evaluate a formula using the current values of the variables
Synopsis

result = problem.evaluateformula(parsed, type, value)

Arguments
parsed integer indicating whether the formula of the item is in internal unparsed format(Parsed=0) or parsed (reverse Polish) format (Parsed=1).
type Integer array of token types for the formula.
value Double array of values corresponding to Type.
result The result of the calculation.

Example The following example calculates the value of column 3 divided by column 6.
type = [xp.xslp_op_var, xp.xslp_op_var, xp.xslp_op_op, xp.xslp_op_eof]
value = [3, 6, xp.xslp_ifun_divide, 0]

value = p.evaluateformula(1, type, value)

Further informationThe formula in Type and Valuemust be terminated by an xslp_op_eof token.
The formula cannot include "complicated" functions, such as user functions which return more thanone value.

Related topics
problem.evaluatecoef

Fair Isaac Corporation Confidential and Proprietary Information 202

Reference Manual

problem.fixglobals

Purpose Fixes all the global entities to the values of the last found MIP solution. This is useful for finding thereduced costs for the continuous variables after the global variables have been fixed to their optimalvalues.
Synopsis

problem.fixglobals(ifround)

Argument
ifround If all global entities should be rounded to the nearest discrete value in the solutionbefore being fixed.

Example This example performs a global search on problem myprob and then uses fixglobals before solvingthe remaining linear problem:
p.read("myprob", "")
p.mipoptimize()
p.fixglobals(1)
p.lpoptimize()
p.writeprtsol()

Further information
1. Because of tolerances, it is possible for e.g. a binary variable to be slightly fractional in the MIPsolution, where it might have the value 0.999999 instead of being at exactly 1.0. With ifround = 0,such a binary will be fixed at 0.999999, but with ifround = 1, it will be fixed at 1.0.
2. This command is useful for inspecting the reduced costs of the continuous variables in a problem afterthe global entities have been fixed. Sensitivity analysis can also be performed on the continuousvariables in a MIP problem using problem.rhssa or problem.objsa after calling fixglobals.

Related topics
problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 203

Reference Manual

problem.fixpenalties

Purpose Fixe the values of the error vectors
Synopsis

status = problem.fixpenalties()

Argument
status Return status after fixing the penalty variables: 0 is successful, nonzero otherwise.

Further informationThe function fixes the values of all error vectors on their current values. It also removes their objectivecost contribution.
The function is intended to support post optimization analysis, by removing any possible direct effectof the error vectors from the dual and reduced cost values.
The fixpenalties function will automatically reoptimize the linearization. However, as the XSLPconvergence and infeasibility checks (regarding the original non-linear problem) will not be carried out,this function will not update the SLP solution itself. The updated values will be accessible using
getlpsolution instead.

Fair Isaac Corporation Confidential and Proprietary Information 204

Reference Manual

problem.ftran

Purpose Pre-multiplies a (column) vector provided by the user by the inverse of the current matrix.
Synopsis

problem.ftran(vec)

Argument
vec Array of length problem.attributes.rows containing the values which are to bemultiplied by the basis inverse. The transformed values appear in the array.

Example To get the (unscaled) tableau column of structural variable number jcol, assuming that all arrays havebeen dimensioned, do the following:
y = [0,1,0,0]
p.ftran(y)
print("ftran result:", y)

Further informationIf the problem is in a presolved state, the function will work with the basis for the presolved problem.
Related topics

problem.btran.

Fair Isaac Corporation Confidential and Proprietary Information 205

Reference Manual

problem.getAttrib

Purpose Retrieves one or more attributes of a problem.
Synopsis

a = problem.getAttrib(attr1, attr2, ...)

Example

p = xpress.problem()
p.read("example.lp")
print(p.getAttrib('cols'), "columns and ",

p.getAttrib('rows'), "rows")
prob_attrib = p.getAttrib()
attr_subset = p.getAttrib(['cols', 'rows'])

Further informationThis function can be passed either a single attribute name, whose value will be returned, or a list ofattribute names, in which case the return value is a dictionary associating each key in the list with itsvalue. If no argument is provided, a dictionary containing all attributes of the problem will be returned.

Fair Isaac Corporation Confidential and Proprietary Information 206

Reference Manual

problem.getattribinfo

Purpose Accesses the id number and the type information of an attribute given its name. An attribute name maybe for example ’rows’. The function will return an id number of 0 and a type value of notdefined ifthe name is not recognized as an attribute name. Note that this will occur if the name is a control nameand not an attribute name.
Synopsis

(id,type) = problem.getattribinfo(name)

Argument
name The name of the attribute to be queried. Names are case-insensitive. A full list of allattributes may be found in the Xpress Optimizer reference manual.

Related topics
problem.getcontrolinfo.

Fair Isaac Corporation Confidential and Proprietary Information 207

Reference Manual

problem.getbasis

Purpose Returns the current basis into the user’s data arrays.
Synopsis

problem.getbasis(rstatus, cstatus)

Arguments
rstatus Array of length problem.attributes.rows to the basis status of the slack, surplusor artificial variable associated with each row. The status will be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.May be None if not required.

cstatus Array of length problem.attributes.cols to hold the basis status of the columnsin the constraint matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable hasno lower bound;
1 variable is basic;
2 variable is non-basic at upper bound;
3 variable is super-basic.May be None if not required.

Example The following example minimizes a problem before saving the basis for later:
rstatus = []
cstatus = []
p.lpoptimize()
p.getbasis(rstatus, cstatus)

Related topics
problem.getpresolvebasis, problem.loadbasis, problem.loadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 208

Reference Manual

problem.getbasisval

Purpose Returns the current basis status for a specific column or row.
Synopsis

rstatus, cstatus = problem.getbasisval(row=None, column=None)

Arguments
row Row index to get the row basis status for.
column Column index to get the column basis status for.
rstatus The row basis status will be returned, or 0 if row was passed as None.
cstatus The value of the column basis status, or 0 if column==None.

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadbasis,
problem.loadpresolvebasis

Fair Isaac Corporation Confidential and Proprietary Information 209

Reference Manual

problem.getccoef

Purpose Retrieve a single matrix coefficient as a formula in a character string
Synopsis

(factor, formula) = problem.getccoef(rowindex, colindex, flen)

Arguments
RowIndex Integer holding the row index for the coefficient.
ColIndex Integer holding the column index for the coefficient.
Factor Address of a double precision variable to receive the value of the constant factormultiplying the formula in the coefficient.
Formula Character buffer in which the formula will be placed in the same format as used forinput from a file. The formula will be null terminated.
fLen Maximum length of returned formula.

Return value
0 Normal return.
1 Formula is too long for the buffer and has been truncated.
other Error.

Example The following example displays the formula for the coefficient in row 2, column 3:
(factor, formula) = p.getccoef(2, 3, 60)

Further informationIf the requested coefficient is constant, then factor will be set to 1.0 and the value will be formatted in
formula.
If the length of the formula would exceed flen - 1, the formula is truncated to the last token that willfit, and the (partial) formula is terminated with a null character.

Related topics
problem.chgccoef, problem.chgnlcoef, problem.getcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 210

Reference Manual

problem.getcoef

Purpose Returns a single coefficient in the constraint matrix.
Synopsis

coef = problem.getcoef(irow, icol)

Arguments
irow Row of the constraint matrix.
icol Column of the constraint matrix.

Further informationIt is quite inefficient to get several coefficients with the getcoef function. It is better to use getcolsor getrows.
Related topics

problem.getcols, problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 211

Reference Manual

problem.getcoefformula

Purpose Retrieve a single matrix coefficient as a formula split into tokens
Synopsis

(factor, tokencount, type, value) = problem.getcoefformula(rowindex,
colindex, parsed, bufsize)

Arguments
rowindex The row index for the coefficient.
colindex The column index for the coefficient.
factor The value of the constant factor multiplying the formula in the coefficient.
parsed Integer indicating whether the formula of the item is to be returned in internal unparsedformat (Parsed=0) or parsed (reverse Polish) format (Parsed=1).
bufsize Maximum number of tokens to return, i.e. length of the Type and Value arrays.
tokencount Number of tokens returned in Type and Value.
type Array to hold the token types for the formula.
value Array of values corresponding to Type.

Example The following example displays the formula for the coefficient in row 2, column 3 in unparsed form:
(fac, tc, type, value) = p.getcoefformula(2, 3, 0, 10)

Further informationThe type and value arrays are terminated by an xslp_op_eof token.
If the requested coefficient is constant, then factor will be set to 1.0 and the value will be returnedwith token type xslp_op_con.

Related topics
problem.chgccoef, problem.chgnlcoef, problem.getccoef

Fair Isaac Corporation Confidential and Proprietary Information 212

Reference Manual

problem.getcoefs

Purpose Retrieve the list of positions of the nonlinear coefficients in the problem
Synopsis

problem.getcoefs(rowindex, colindex)

Arguments
rowindices Row positions of the coefficients. May be None if not required.
colindices Column positions of the coefficients. May be None if not required.

Related topics
problem.getccoef, problem.getcoefformula

Fair Isaac Corporation Confidential and Proprietary Information 213

Reference Manual

problem.getcolinfo

Purpose Get current column information.
Synopsis

problem.getcolinfo(infotype, colindex)

Arguments
InfoType Type of information (see below)
ColIndex Column (i.e. xpress.var object, index, or name) whose information is to be handled
Info Address of information to be set or retrieved

Further informationIf the data is not available, the type of the returned Info is set to None.
The following constants are provided for column information handling:
xpress.colinfo_value Get the current value of the column
xpress.colinfo_rdj Get the current reduced cost of the column
xpress.colinfo_deltaindex Get the delta variable index associated to the column
xpress.colinfo_delta Get the delta value (change since previous value) of the column
xpress.colinfo_deltadj Get the delta variables reduced cost
xpress.colinfo_updaterow Get the index of the update (or step bound) row associated to thecolumn
xpress.colinfo_sb Get the step bound on the variable
xpress.colinfo_sbdual Get the dual multiplier of the step bound row for the variable

Fair Isaac Corporation Confidential and Proprietary Information 214

Reference Manual

problem.getcols

Purpose Returns the nonzeros in the constraint matrix for the columns in a given range.
Synopsis

problem.getcols (mstart, mrwind, dmatval, size, first, last)

Arguments
mstart Array which will be filled with the indices indicating the starting offsets in the mrwindand dmatval arrays for each requested column. It must be of length at least

last-first+2. Column i starts at position mstart[i] in the mrwind and dmatvalarrays, and has mstart[i+1]-mstart[i] elements in it. May be None if not required,but must be specified.
mrwind Array of length size which will be filled with the rows of the nonzero coefficents foreach column. May be None if not required, but must be specified.
dmatval Array of length size which will be filled with the nonzero coefficient values. May be

None if not required, but must be specified.
size The size of the mrwind and dmatval arrays. This is the maximum number of nonzerocoefficients that the Optimizer is allowed to return.
first First column in the range.
last Last column in the range.

Example The following examples retrieves the mstart vector of the problem:
p = xpress.problem()
p.read("example", "l")
mstart = []
p.getcols(mstart, mrwind=None, dmatval=None, size=100, first=0, last=p.attributes.cols - 1)

Further informationIt is possible to obtain just the number of elements in the range of columns by replacing mstart,
mrwind and dmatval by None, as in the example. In this case, sizemust be set to 0 to indicate thatthe length of arrays passed is zero. This is demonstrated in the example above.

Related topics
problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 215

Reference Manual

problem.getcoltype

Purpose Returns the column types for the columns in a given range.
Synopsis

problem.getcoltype(coltype, first, last)

Arguments
coltype Character array of length last-first+1 where the column types will be returned:

C indicates a continuous variable;
I indicates an integer variable;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

first First column in the range.
last Last column in the range.

Example This example finds the types for all columns in the matrix and prints them:
coltype = []
p.getcoltype(coltype, 0, p.attributes.cols - 1)
print("coltypes:", coltype)

Related topics
problem.chgcoltype, problem.getrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 216

Reference Manual

problem.getConstraint

Purpose Returns one or more constraint of a problem corresponding to one or more indices passed asarguments. These constraints are returned as Python objects and can be used to access andmanipulate the problem.
Synopsis

r = problem.getConstraint(index, first, last)

Arguments
first (optional) The first index of the constraints to be returned. It must be between 0 and

ROWS - 1.
last (optional) The last index of the constraints to be returned. It must be between 0 and

ROWS - 1.
index (optional) Either an integer or a list of integers (not necessarily sorted) with theindex/indices of all constraints to be returned, all between 0 and ROWS - 1

Further informationAll arguments are optional. If neither of them is provided, the return value is a list with all constraints ofthe problem. Otherwise, either first and last or just index can be passed.
Related topics

problem.getVariable, problem.getSOS.

Fair Isaac Corporation Confidential and Proprietary Information 217

Reference Manual

problem.getControl

Purpose Retrieves one or more controls of a problem.
Synopsis

c = problem.getControl(ctrl1, ctrl2, ...)

Example

p = xpress.problem()
[...]
print("tolerance for feasibility and optimality: ",

p.getControl('feastol'), p.getControl('miprelstop'))
all_ctrls = p.getControl()
ctrl_subset = p.getControl(['presolve', 'miprelstop', 'feastol'])

Further informationThis function can be passed either a single control name, whose value will be returned, or a list ofcontrol names, in which case the return value is a dictionary associating each key in the list with itsvalue. If no argument is provided, a dictionary containing all controls of the problem will be returned.
Related topics

problem.setControl.

Fair Isaac Corporation Confidential and Proprietary Information 218

Reference Manual

problem.getcontrolinfo

Purpose Accesses the id number and the type information of a control given its name. A control name may befor example ’presolve’. The function will return an id number of 0 and a type value of notdefinedif the name is not recognized as a control name. Note that this will occur if the name is an attributename rather than a control name.
Synopsis

(id,type) = problem.getcontrolinfo(name)

Argument
name The name of the control to be queried. Names are case-insensitive. A full list of allcontrol may be found in the Xpress Optimizer reference manual.

Related topics
problem.getattribinfo.

Fair Isaac Corporation Confidential and Proprietary Information 219

Reference Manual

problem.getcpcutlist

Purpose Returns a list of cut indices from the cut pool.
Synopsis

ncuts = problem.getcpcutlist(itype, interp, delta, size, cutind, viol)

Arguments
itype The user defined type of the cuts to be returned.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

delta Only those cuts with a signed violation greater than delta will be returned.
size Maximum number of cuts to be returned.
mcutind Array of length size where the cuts will be returned.
dviol Array of length size where the values of the signed violations of the cuts will bereturned.

Further information

1. The violated cuts can be obtained by setting the delta parameter to the size of the (signed) violationrequired. If unviolated cuts are required as well, deltamay be set to _MINUSINFINITY which isdefined in the library header file.
2. If the number of active cuts is greater than size, only size cuts will be returned. Otherwise only theexisting cuts will be used to fill in the positions of mcutind.
3. In case of a cut of type ’L’, the violation equals the negative of the slack associated with the row of thecut. In case of a cut of type ’G’, the violation equals the slack associated with the row of the cut. Forcuts of type ’E’, the violation equals the absolute value of the slack.
4. Please note that the violations returned are absolute violations, while feasibility is checked by theOptimizer in the scaled problem.

Related topics
problem.delcpcuts, problem.getcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutmap, problem.getcutslack, Section "Working with the cut manager" of theXpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 220

Reference Manual

problem.getcpcuts

Purpose Returns cuts from the cut pool. A list of cuts in the array mindexmust be passed to the routine. Thecolumns and elements of the cut will be returned in the regions pointed to by the mcols and dmatvalparameters. The columns and elements will be stored contiguously and the starting point of each cutwill be returned in the region pointed to by the mstart parameter.
Synopsis

problem.getcpcuts(mindex, size, type, rtype, mstart, mcols, dmatval, drhs)

Arguments
mindex List containing the cuts.
size Maximum number of columns of the cuts to be returned.
type List where the cut types will be returned.
rtype Character list where the sense of the cuts (L, G, or E) will be returned.
mstart Array containing the offsets into the mcols and dmatval arrays. The last elementindicates the total number of elements.
cols Array where the columns of the cuts will be returned.
matval Array where the coefficients will be returned.
rhs Array where the right hand side elements for the cuts will be returned.

Related topics
problem.getcpcutlist, problem.getcutlist, Section "Working with the cut manager" of theXpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 221

Reference Manual

problem.getcutlist

Purpose Retrieves a list of cuts for the cuts active at the current node.
Synopsis

problem.getcutlist(itype, interp, size, cutind)

Arguments
itype User defined type of the cuts to be returned. A value of -1 indicates return all active cuts.
interp Way in which the cut type is interpreted:

-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

size Maximum number of cuts to be retrieved.
cutind Array of length size where the cuts will be returned.

Further informationIf the number of active cuts is greater than size, then size cuts will be returned. Otherwise only thepositions corresponding to the number of active cuts will be filled in cutind.
Related topics

problem.getcpcutlist, problem.getcpcuts, Section "Working with the cut manager" of theXpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 222

Reference Manual

problem.getcutmap

Purpose Returns in which rows a list of cuts are currently loaded into the Optimizer. This is useful for example toretrieve the duals associated with active cuts.
Synopsis

problem.getcutmap(cuts, cutmap)

Arguments
cuts Array with the cuts for which the row index is requested.
cutmap Array where the rows are returned.

Further informationFor cuts currently not loaded into the problem, a row index of -1 is returned.
Related topics

problem.getcpcutlist, problem.delcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutslack, problem.getcpcuts, Section "Working with the cut manager" of theXpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 223

Reference Manual

problem.getcutslack

Purpose Used to calculate the slack value of a cut with respect to the current LP relaxation solution. The slack iscalculated from the cut itself, and might be requested for any cut (even if it is not currently loaded intothe problem).
Synopsis

slack = problem.getcutslack(cut)

Arguments
cuts Cut object for which the slack is to be calculated.
slack Value of the slack.

Related topics
problem.getcpcutlist, problem.delcpcuts, problem.getcutlist, problem.loadcuts,
problem.getcutmap, problem.getcpcuts, Section "Working with the cut manager" of the XpressOptimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 224

Reference Manual

problem.getdirs

Purpose Returns the directives that have been loaded into a problem. Priorities, forced branching directions andpseudo costs can be returned. If called after presolve, getdirs will get the directives for the presolvedproblem.
Synopsis

problem.getdirs(mcols, mpri, qbr, dupc, ddpc)

Arguments
mcols Array containing the column numbers (0, 1, 2,...) or negative values corresponding tospecial ordered sets (the first set numbered -1, the second numbered -2,...). May be

None if not required.
mpri Array containing the priorities for the columns and sets. May be None if not required.
qbr Character array with the branching direction for each column or set:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.

dupc Array containing the up pseudo costs for the columns and sets. May be None if notrequired.
ddpc Array containing the down pseudo costs for the columns and sets. May be None if notrequired.

Further informationThe size of all lists is at most MIPENTS, obtainable from problem.attributes.mipents.
Related topics

problem.loaddirs, problem.loadpresolvedirs.

Fair Isaac Corporation Confidential and Proprietary Information 225

Reference Manual

problem.getdf

Purpose Get a distribution factor
Synopsis

value = problem.getdf(colindex, rowindex)

Arguments
colindex The column (i.e. xpress.var object, index, or name) whose distribution factor is to beretrieved.
rowindex The row (i.e. xpress.constraint object, index, or name) from which the distributionfactor is to be taken.
value The value of the distribution factor.

Example The following example retrieves the value of the distribution factor for column 282 in row 134 andchanges it to be twice as large.
value = p.getdf(282,134)
value ⁎= 2
p.chgdf(282,134,calue)

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress SLP can accept distribution factors instead of initial values, provided thatthe values of the variables involved can all be calculated after optimization using determining rows, orby a callback.
Related topics

problem.adddfs, problem.chgdf, problem.loaddfs

Fair Isaac Corporation Confidential and Proprietary Information 226

Reference Manual

problem.getDual

Purpose Return the dual for all constraints of the problem w.r.t. the solution found by solve(); this only workson continuous optimization problems.
Synopsis

d = problem.getDual()

Example

p.solve()
print("duals:", p.getDual())

Related topics
problem.getlpsol, problem.getSlack, problem.getRCost, problem.getProbStatus,
problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 227

Reference Manual

problem.getdualray

Purpose Retrieves a dual ray (dual unbounded direction) for the current problem, if the problem is found to beinfeasible.
Synopsis

problem.getdualray(dray)

Argument
dray Array of length problem.attributes.rows to hold the ray. May be None if notrequired.

Example The following code tries to retrieve a dual ray:
if not p.hasdualray():

print("Could not retrieve a dual ray")
else:

dray = []
p.getdualray(dray)
print("dual ray:", dray)

Further information
1. It is possible to retrieve a dual ray only when, after solving an LP problem, the final status is
xpress.lp_infeas.

2. Dual rays are not post-solved. If the problem is in a presolved state, the dual ray that is returned will befor the presolved problem. If the problem was solved with presolve on and has been restored to theoriginal state (the default behavior), this function will not be able to return a ray. To ensure that a dualray can be obtained, it is recommended to solve a problem with presolve turned off (presolve = 0).
Related topics

problem.getprimalray.

Fair Isaac Corporation Confidential and Proprietary Information 228

Reference Manual

problem.getgencons

Purpose Returns the general constraints y = f(x1, ..., xn, c1, ..., cm) in a given range.
Synopsis

(ncol, nval) = problem.getgencons(type, resultant, colstart, col, colsize,
valstart, val, valsize, first, last);

Arguments
prob The current problem.
type None if not required, otherwise a list which will be filled with the types of thegeneral constraints:

xpress.gencons_max (0) indicates a maximum constraint;
xpress.gencons_min (1) indicates a minimum constraint;
xpress.gencons_and (2) indicates an and constraint.
xpress.gencons_or (3) indicates an or constraint;
xpress.gencons_abs (4) indicates an absolute value constraint.

resultant List/array which will be filled with the output variables y. May be None if notrequired.
colstart List/array which will be filled with the start index of each general constraint in the

col array. May be None if not required.
col Integer array which will be filled with the indices of the input variables xi. May be

None if not required.
colsize Maximum number of input columns to be retrieved.
valstart Integer array of length at least last-first+1 which will be filled with the startindex of each general constraint in the val array. May be None if not required.
val Integer array which will be filled with the constant values ci. May be None if notrequired.
valsize Maximum number of constant values to be retrieved.
first First general constraint in the range.
last Last general constraint in the range.
ncol Number of values in the col list if not None.
nval Number of values in the val list if not None.

Example The following example retrieves all general constraints:
type, resultant, colstart, col, valstart, val = [], [], [], [], [], []
prob.getgencons(type, resultant, colstart, col, 1e9, valstart, val, 1e9, 0, prob.attributes.gencons - 1)

Further informationIt is possible to obtain just the number of input columns and/or constant values in the range of generalconstraints by calling this function with colsize and valsize set to 0, in which case the requiredsize for the arrays will be returned as a tuple with ncol and nval.
Related topics

problem.addgencons, problem.delgencons, xpress.And, xpress.Or, xpress.max,
xpress.min, xpress.abs.

Fair Isaac Corporation Confidential and Proprietary Information 229

Reference Manual

problem.getglobal

Purpose Retrieves global information about a problem. It must be called before problem.mipoptimize if thepresolve option is used.
Synopsis

problem.getglobal(qgtype, mgcols, dlim, qstype, msstart, mscols, dref)

Arguments
qgtype Character array where the entity types will be returned. The types will be one of:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols Array where the columns of the global entities will be returned.
dlim Array where the limits for the partial integer variables and lower bounds for thesemi-continuous and semi-continuous integer variables will be returned (any entries inthe positions corresponding to binary and integer variables will be meaningless).
qstype Character array where the set types will be returned. The set types will be one of:

1 SOS1 type sets;
2 SOS2 type sets.

msstart Array where the offsets into the mscols and dref arrays indicating the start of the setswill be returned. This array must be of length SETMEMBERS+1: the final elementcontains the length of the mscols and dref arrays.
mscols Array of length problem.attributes.setmembers where the columns in each setwill be returned.
dref Array of length problem.attributes.setmembers where the reference row entriesfor each member of the sets will be returned.

Example The following obtains the SOS information:
qstype = []
mstart = []
mscols = []
dref = []
p.getglobal(None, None, None, qstype, mstart, mscols, dref)

Further informationAll arguments may be None if not required.
Related topics

problem.loadproblem.

Fair Isaac Corporation Confidential and Proprietary Information 230

Reference Manual

problem.getiisdata

Purpose Returns information for an Irreducible Infeasible Set: size, variables (row and column vectors) andconflicting sides of the variables, duals and reduced costs.
Synopsis

problem.getiisdata(num, miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

Arguments
num The ordinal number of the IIS to get data for.
miisrow Indices of rows in the IIS. Can be None if not required.
miiscol Indices of bounds (columns) in the IIS. Can be None if not required.
constrainttype Sense of rows in the IIS:

L for less or equal row;
G for greater or equal row.
E for an equality row (for a non LP IIS);
1 for a SOS1 row;
2 for a SOS2 row;
I for an indicator row.Can be None if not required.

colbndtype Sense of bound in the IIS:
U for upper bound;
L for lower bound.
F for fixed columns (for a non LP IIS);
B for a binary column;
I for an integer column;
P for a partial integer columns;
S for a semi-continuous column;
R for a semi-continuous integer column.Can be None if not required.

duals The >dual multipliers associated with the rows. Can be None if not required.
rdcs The dual multipliers (reduced costs) associated with the bounds. Can be None if notrequired.
isolationrows The isolation status of the rows:

-1 if isolation information is not available for row (run iis isolations);
0 if row is not in isolation;
1 if row is in isolation.Can be None if not required.

isolationcols The isolation status of the bounds:
-1 if isolation information is not available for column (run iisisolations);
0 if column is not in isolation;
1 if column is in isolation. Can be None if not required.

Example This example first retrieves the size of IIS 1, then gets the detailed information for the IIS.
miisrow = []
miiscol = []
constrainttype = []
colbndtype = []
duals = []
rdcs = []

Fair Isaac Corporation Confidential and Proprietary Information 231

Reference Manual

isolationrows = []
isolationcols = []
p.getiisdata(1, miisrow, miiscol, constrainttype, colbndtype,

duals, rdcs, isolationrows, isolationcols)

Further information
1. IISs are numbered from 1 to NUMIIS. Index number 0 refers to the IIS approximation.
2. If miisrow and miiscol both are None, only the rownumber and colnumber are returned.
3. The arrays may be None if not required. However, arrays constrainttype, duals and

isolationrows are only returned if miisrow is not None. Similarly, arrays colbndtype, rdcs and
isolationcols are only returned if miiscol is not None.

4. For the initial IIS approximation (num = 0) the number of rows and columns with a nonzero Lagrangemultiplier (dual/reduced cost respectively) are returned. Please note that in such cases, it might benecessary to call problem.iisstatus to retrieve the necessary size of the return arrays.
5. If there are Special Ordered Sets in the IIS, their number is included in the miisrow array.
6. For non-LP IISs, some column indices may appear more than once in the miiscol array, for examplean integrality and a bound restriction for the same column.
7. Duals, reduced cost and isolation information is not available for nonlinear IIS problems, and for thosethe arrays are filled with zero values in case they are provided.

Related topics
problem.iisall, problem.iisclear, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 232

Reference Manual

problem.getIndex

Purpose Returns the numerical index for a specified row, column, or set of the optimizer.
Synopsis

ind = problem.getIndex(obj)

Argument
obj Python object with the column, row, or SOS

Example The following example adds a constraint to a problem and then retrieves its index:
x = xpress.var()
c = x⁎⁎2 + 2⁎x >= 5
p.addVariable(x)
p.addConstraint(c)
print("c has index", p.getIndex(c))

Related topics
problem.getIndexFromName, problem.getVariable, problem.getConstraint.

Fair Isaac Corporation Confidential and Proprietary Information 233

Reference Manual

problem.getIndexFromName

Purpose Returns the index for a specified row or column name.
Synopsis

ind = problem.getIndexFromName(type, name)

Arguments
type 1 if a row index is required;

2 if a column index is required.
name String containing name of the item sought.

Example The following example retrieves the index of column "xnew":
x = xpress.var(name='xnew')
[...]
print("variable's index: ", p.getIndexFromName('xnew'))

Related topics
problem.getIndexFromName, problem.getVariable, problem.getConstraint.

Fair Isaac Corporation Confidential and Proprietary Information 234

Reference Manual

problem.getindicators

Purpose Returns the indicator constraint condition (indicator variable and complement flag) associated to therows in a given range.
Synopsis

problem.getindicators(inds, comps, first, last)

Arguments
inds Array of length last-first+1 where the indicator variables are to be placed.
comps Array of length last-first+1 where the indicator complement flags will be returned:

0 not an indicator constraint (in this case the corresponding entry in the indsarray is ignored);
1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

first First row in the range.
last Last row in the range (inclusive).

Example The following example retrieves information about three indicator constraints in the problem and printsa list of their indices.
inds = []
comps = []
p.getindicators(inds, comps, 2, 4)
print("indices:", inds)
print("complement flags:", comps)

Related topics
problem.setindicators.

Fair Isaac Corporation Confidential and Proprietary Information 235

Reference Manual

problem.getinfeas

Purpose Returns a list of infeasible primal and dual variables.
Synopsis

problem.getinfeas(mx, mslack, mdual, mdj)

Arguments
mx Array to store the primal infeasible variables. May be None if not required.
mslack Array to store the primal infeasible rows. May be None if not required.
mdual Array to store the dual infeasible rows. May be None if not required.
mdj Array to store the dual infeasible variables. May be None if not required.

Example

mx = []
mslack = []
p.getinfeas(mx, mslack, None, None)
print("getinfeas --> mx and mslack:", mx, mslack)

Further informationTo find the infeasibilities in a previously saved solution, the solution must first be loaded into memorywith the problem.readbinsol function.
Related topics

problem.getscaledinfeas, problem.getiisdata, problem.iisall, problem.iisclear,
problem.iisfirst, problem.iisisolations, problem.iisnext, problem.iisstatus,
problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 236

Reference Manual

problem.getlastbarsol

Purpose Obtains the last barrier solution values following optimization that used the barrier solver.
Synopsis

barsolstatus = problem.getastbarsol(x=None, slack=None, dual=None,
dj=None);

Arguments
x Double array of length problem.attributes.cols where the values of the primalvariables will be returned. May be None if not required.
slack Double array of length problem.attributes.rows where the values of the slackvariables will be returned. May be None if not required.
dual Double array of length problem.attributes.rows where the values of the dualvariables (cTBB–1) will be returned. May be None if not required.
dj Double array of length problem.attributes.cols where the reduced cost for eachvariable (cT – cTBB

–1A) will be returned. May be None if not required.
barsolstatus Status of the last barrier solve. Value matches that of the lpstatus attribute if thesolve stopped immediately after the barrier.

Further information
1. If the barrier solver has not been used, barsolstatus will return xpress.lp_unsolved.
2. The barrier solution or the solution candidate is always available if the status is not

xpress.lp_unsolved.
3. The last barrier solution is available until the next solve, and is not invalidated by otherwise workingwith the problem.

Related topics
problem.getlpsol

Fair Isaac Corporation Confidential and Proprietary Information 237

Reference Manual

problem.getlasterror

Purpose Returns the error message corresponding to the last error triggered by a library function.
Synopsis

s = problem.getlasterror()

Example 1The following shows how this function might be used in error-checking:
p.solve()
print("Current error status:", p.getlasterror())

Further informationThe problem.getlasterror() function is an API wrapper for the XPRSgetlasterror() function in theXpress C API. For this reason, errors that occur within the Xpress API are reported by getlasterror().Errors that occur at the level of the Python interface are not reported by getlasterror. Both classesof errors can be handled with a try/except construct. In the two examples below, the first is an errorthat is detected by the Xpress API and propagated to a Python error, while the second is an incorrectstatement for the Python module. They both trigger a RuntimeError exception.
Example 2

x = xpress.var()
try:

p.addVariable(x)
p.addVariable(x)

except RuntimeError as e:
print(e)

Example 3

try:
p.addVariable('John Cleese')

except RuntimeError as e:
print(e)

Related topics
problem.addcbmessage, problem.setlogfile.

Fair Isaac Corporation Confidential and Proprietary Information 238

Reference Manual

problem.getlb

Purpose Returns the lower bounds on the columns in a given range.
Synopsis

problem.getlb(lb, first, last)

Arguments
lb Array where the lower bounds are to be placed.
first (optional, default 0) First column in the range.
last (optional, default COLS - 1) Last column in the range.

Example The following example retrieves the lower bounds for the columns of the current problem:
newlb = []
p.getlb(newlb, 0, 4)
print("lb: ", newlb)

Further informationValues greater than or equal to xpress.infinity should be interpreted as infinite; values less thanor equal to - xpress.infinity should be interpreted as negative infinite.
Related topics

problem.chgbounds, problem.getub.

Fair Isaac Corporation Confidential and Proprietary Information 239

Reference Manual

problem.getlpsol

Purpose Used to obtain the LP solution values following optimization.
Synopsis

problem.getlpsol(x, slack, dual, dj)

Arguments
x Array to store the values of the primal variables. May be None if not required.
slack Array to store the values of the slack variables. May be None if not required.
dual Array to store the values of the dual variables (cTBB–1). May be None if not required.
dj Array to store the reduced cost for each variable (cT – cTBB

–1A). May be None if notrequired.
Example The following sequence of commands will get the LP solution (x) at the top node of a MIP and theoptimal MIP solution (y):

p.mipoptimize("l") # only solve the LP relaxation
x = []
p.getlpsol(x)
print("root LP solution:", x)
p.mipoptimize() # solve the MIP problem
p.getmipsol(x)
print("final MIP solution", x)

Further information
1. If called during a global callback the solution of the current node will be returned.
2. When an integer solution is found during a global search, it is always set up as a solution to the currentnode; therefore the integer solution is available as the current node solution and can be retrieved with

getlpsol and problem.getpresolvesol.
3. If the problem is modified after calling lpoptimize, then the solution will no longer be available.
4. If the problem has been presolved, then getlpsol returns the solution to the original problem. Theonly way to obtain the presolved solution is to call the related function, problem.getpresolvesol.

Related topics
problem.getpresolvesol, problem.getmipsol, problem.writeprtsol,
problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 240

Reference Manual

problem.getlpsolval

Purpose Used to obtain a single LP solution value following optimization.
Synopsis

x, slack, dual, dj = problem.getlpsolval(column=None, row=None)

Arguments
column Column of the variable for which to return the solution value.
row Row of the constraint for which to return the solution value.
x The returned value of the primal variable.
slack The returned value of the slack variable.
dual The returned value of the dual variable (cTBB–1).
dj The returned reduced cost for the variable (cT – cTBB

–1A).
Further information

1. This function is currently not supported if the problem is in a presolved state.
2. If column or row are None, the corresponding output is set to -xpress.infinity.

Related topics
problem.getlpsol, problem.getpresolvesol, problem.getmipsol,
problem.writeprtsol, problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 241

Reference Manual

problem.getmessagestatus

Purpose Returns the current suppression status of a message: non-zero if the message is not suppressed; 0otherwise.
Synopsis

status = problem.getmessagestatus(errcode)

Argument
errcode The id number of the message. Refer to the Xpress Optimizer reference manual for a listof possible message numbers.

Further informationIf a message is suppressed globally then the message will always have status return zero from
getmessagestatus.

Related topics
problem.setmessagestatus.

Fair Isaac Corporation Confidential and Proprietary Information 242

Reference Manual

problem.getmipsol

Purpose Used to obtain the solution values of the last MIP solution that was found.
Synopsis

problem.getmipsol(x, slack)

Arguments
x Array to store the values of the primal variables. May be None if not required.
slack Array to store the values of the slack variables. May be None if not required.

Example The following sequence of commands will get the solution (x) of the last MIP solution for a problem:
x = []
p.mipoptimize()
p.getmipsol(x)
print("solution:", x)

Related topics
problem.getpresolvesol, problem.writeprtsol, problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 243

Reference Manual

problem.getmipsolval

Purpose Used to obtain a single solution value of the last MIP solution that was found.
Synopsis

x, slack = problem.getmipsolval(column=None, row=None)

Arguments
prob The current problem.
col Column index of the variable for which to return the solution value. May be None.
row Row index of the constraint for which to return the solution value. May be None.
x The returned value of the primal variable, or -xpress.infinity if column is None.
slack The returned value of the slack variable, or -xpress.infinity if row is None.

Related topics
problem.getmipsol, problem.getpresolvesol, problem.writeprtsol,
problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 244

Reference Manual

problem.getmqobj

Purpose Returns the nonzeros in the quadratic objective coefficients’ matrix for the columns in a given range. Toachieve maximum efficiency, getmqobj returns the lower triangular part of this matrix only.
Synopsis

problem.getmqobj(mstart, mclind, dobjval, size, first, last)

Arguments
mstart Array which will be filled with indices indicating the starting offsets in the mclind and

dobjval arrays for each requested column. It must be length of at least
last-first+2. Column i starts at position mstart[i] in the mrwind and dmatvalarrays, and has mstart[i+1]-mstart[i] elements in it. May be None if size is 0.

mclind Array which will be filled with at most size columns of the nonzero elements in thelower triangular part of Q. May be None if size is 0.
dobjval Array which will be filled with at most size nonzero element values. May be None if

size is 0.
size The maximum number of elements to be returned (size of the arrays).
first First column in the range.
last Last column in the range.

Further informationThe objective function is of the form cTx+0.5xTQx where Q is positive semi-definite for minimizationproblems and negative semi-definite for maximization problems. If this is not the case the optimizationalgorithms may converge to a local optimum or may not converge at all. Note that only the upper orlower triangular part of the Qmatrix is returned.
Related topics

problem.chgmqobj, problem.chgqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 245

Reference Manual

problem.getnamelist

Purpose Returns the names for the rows, columns or sets in a given range. The names will be returned in a list ofPython strings.
Synopsis

names = problem.getnamelist(type, first, last);

Arguments
type 1 if row names are required;

2 if column names are required.
3 if set names are required.

names A list containing all returned names.
first First row, column or set in the range. If None, it is taken as zero.
last Last row, column or set in the range. If None, it is taken as the penultimate element inthe list defined by type.

Example The following example retrieves and outputs the row and column names for the current problem.
cols = prob.attributes.cols
rows = prob.attributes.rows

rnames = prob.getnamelist(1, 0, rows - 1)
cnames = prob.getnamelist(2, 0, rows - 1)

for k,v in enumerate(rnames):
print("Row {0:4d}: {1}", k, v)

for k,v in enumerate(cnames):
print("Column {0:4d}: {1}", k, v)

Fair Isaac Corporation Confidential and Proprietary Information 246

Reference Manual

problem.getobj

Purpose Returns the objective function coefficients for the columns in a given range.
Synopsis

problem.getobj(obj, first, last)

Arguments
obj Array of length last-first+1 where the objective function coefficients are to beplaced.
first First column in the range.
last Last column in the range.

Example The following example retrieves the objective function coefficients of the first five variables of thecurrent problem:
obj = []
p.getobj(obj, 0, 4)

Related topics
problem.chgobj.

Fair Isaac Corporation Confidential and Proprietary Information 247

Reference Manual

problem.getObjVal

Purpose Returns the objective value of the solution found by the Optimizer.
Synopsis

o = problem.getObjVal()

Example The following prints the objective value of an optimal solution after the solve() command is run:
p.solve()
print("optimal solution:", p.getObjVal())

Related topics
problem.solve.

Fair Isaac Corporation Confidential and Proprietary Information 248

Reference Manual

problem.getpivotorder

Purpose Returns the pivot order of the basic variables.
Synopsis

problem.getpivotorder(mpiv)

Argument
mpiv Array where the pivot order will be returned.

Example The following returns the pivot order of the variables into an array pPivot :
mpiv = []
p.getpivotorder(mpiv)

Further informationRow indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to
ROWS+SPAREROWS+COLS-1.

Related topics
problem.getpivots.

Fair Isaac Corporation Confidential and Proprietary Information 249

Reference Manual

problem.getpivots

Purpose Returns a list of potential leaving variables if a specified variable enters the basis. The return value is atuple containing the objective function value that would result if in entered the basis; and an integerwhere the actual number of potential leaving variables will be returned.
Synopsis

dobj, npiv = problem.getpivots(in, outlist, x, maxpiv)

Arguments
in Index of the specified row or column to enter basis.
outlist Array of length at least maxpiv to hold list of potential leaving variables. May be None ifnot required.
x Array of length problem.attributes.rows +

problem.attributes.sparerows + problem.attributes.cols to hold thevalues of all the variables that would result if in entered the basis. May be None if notrequired.
maxpiv Maximum number of potential leaving variables to return.

Example The following retrieves a list of up to 5 potential leaving variables if variable 6 enters the basis:
outlist = []
x = []
obj, npiv = p.getpivots(2, outlist, x, 10)

Further information
1. If the variable in enters the basis and the problem is degenerate then several basic variables arecandidates for leaving the basis, and the number of potential candidates is returned in npiv. A list of atmost maxpiv of these candidates is returned in outlist which must be at least maxpiv long. Ifvariable in were to be pivoted in, then because the problem is degenerate, the resulting values of theobjective function and all the variables do not depend on which of the candidates from outlist ischosen to leave the basis. The value of the objective is returned in dobj and the values of the variablesinto x.
2. Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS to

ROWS+SPAREROWS+COLS-1.
Related topics

problem.getpivotorder.

Fair Isaac Corporation Confidential and Proprietary Information 250

Reference Manual

problem.getpresolvebasis

Purpose Returns the current basis from memory into the user’s data areas. If the problem is presolved, thepresolved basis will be returned. Otherwise the original basis will be returned.
Synopsis

problem.getpresolvebasis(rstatus, cstatus)

Arguments
rstatus Array of length problem.attributes.rows to the basis status of the stack, surplusor artificial variable associated with each row. The status will be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.May be None if not required.

cstatus Array of length problem.attributes.cols to hold the basis status of the columnsin the constraint matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable hasno lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.May be None if not required.

Example The following obtains and outputs basis information on a presolved problem prior to the global search:
cs = []
p = xpress.problem()
p.read("global1", "")
p.mipoptimize()
p.getpresolvebasis(cstatus=cs)

Related topics
problem.getbasis, problem.loadbasis, problem.loadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 251

Reference Manual

problem.getpresolvemap

Purpose Returns the mapping of the row and column numbers from the presolve problem back to the originalproblem.
Synopsis

problem.getpresolvemap(rowmap, colmap)

Arguments
rowmap Array to store the row maps.
colmap Array to store the column maps.

Example The following reads in a (Mixed) Integer Programming problem and gets the mapping for the rows andcolumns back to the original problem following optimization of the linear relaxation. The eliminationoperations of the presolve are turned off so that a one-to-one mapping between the presolve problemand the original problem.
p.read("MyProb", "")
p.controls.presolveops = 255
p.mipoptimize("l")
rowmap = []
colmap = []
p.getpresolvemap(rowmap, colmap)

Further informationThe presolved problem can contain rows or columns that do not map to anything in the originalproblem. An example of this are cuts created during the MIP solve and temporarily added to thepresolved problem. It is also possible that the presolver will introduce new rows or columns. For anyrow or column that does not have a mapping to a row or column in the original problem, thecorresponding entry in the returned rowmap and colmap arrays will be -1.

Fair Isaac Corporation Confidential and Proprietary Information 252

Reference Manual

problem.getpresolvesol

Purpose Returns the solution for the presolved problem from memory.
Synopsis

problem.getpresolvesol(x, slack, dual, dj)

Arguments
x Array to store the values of the primal variables. May be None if not required.
slack Array to store the values of the slack variables. May be None if not required.
dual Array to store the values of the dual variables. May be None if not required.
dj Array to store the reduced cost for each variable. May be None if not required.

Example The following reads in a (Mixed) Integer Programming problem and displays the solution to thepresolved problem following optimization of the linear relaxation:
p.read("MyProb", "")
p.mipoptimize("l")
sol = []
p.getpresolvesol(x=sol)
print("presolved sol", sol)

Further information
1. If the problem has not been presolved, the solution in memory will be returned.
2. The solution to the original problem should be returned using the related function

problem.getlpsol.
3. If called during a global callback the solution of the current node will be returned.
4. When an integer solution is found during a global search, it is always set up as a solution to the currentnode; therefore the integer solution is available as the current node solution and can be retrieved with

getlpsol and problem.getpresolvesol.

Fair Isaac Corporation Confidential and Proprietary Information 253

Reference Manual

problem.getprimalray

Purpose Retrieves a primal ray (primal unbounded direction) for the current problem, if the problem is found tobe unbounded.
Synopsis

problem.getprimalray(ray)

Argument
ray Array of length problem.attributes.cols to hold the ray. May be None if notrequired.

Example The following code tries to retrieve a primal ray:
if not p.hasprimalray():

print("Could not retrieve a primal ray")
else:

ray = []
p.getprimalray(ray)
print("primal ray:", ray)

Further information
1. It is possible to retrieve a primal ray only when, after solving an LP problem, the final status(LPSTATUS) is xpress.lp_unbounded.
2. Primal rays are not post-solved. If the problem is in a presolved state, the primal ray that is returned willbe for the presolved problem. If the problem was solved with presolve on and has been restored to theoriginal state (the default behavior), this function will not be able to return a ray. To ensure that a primalray can be obtained, it is recommended to solve a problem with presolve turned off (PRESOLVE = 0).

Related topics
problem.getdualray.

Fair Isaac Corporation Confidential and Proprietary Information 254

Reference Manual

problem.getProbStatus

Purpose Returns the problem status before or after a solve () command. The returned number correspondsto the problem status described in the Xpress Optimizer reference manual. If the problem is an LP, thereturned value is equal to p.attributes.lpstatus if the problem is an LP, and to
p.attributes.mipstatus if the problem is a MIP.

Synopsis
s = problem.getProbStatus()

Example

p = xpress.problem()
p.read("example2", "")
p.solve()
print("solution status code: ", p.getProbStatus(), " -->",

p.getProbStatusString())

Related topics
problem.solve, problem.getSolution, problem.getDual, problem.getSlack,
problem.getRCost, problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 255

Reference Manual

problem.getProbStatusString

Purpose Returns the string corresponding to the the problem status before or after a solve () command.
Synopsis

s = problem.getProbStatusString()

Example

p = xpress.problem()
p.read("example2", "")
p.solve()
print("solution status code: ", p.getProbStatus(), " -->",

p.getProbStatusString())

Related topics
problem.solve, problem.getSolution, problem.getDual, problem.getSlack,
problem.getRCost, problem.getProbStatus.

Fair Isaac Corporation Confidential and Proprietary Information 256

Reference Manual

problem.getpwlcons

Purpose Returns the piecewise linear constraints y = f(x) in a given range.
Synopsis

npoints = problem.getpwlcons(col, resultant, start, xval, yval, size,
first, last);

Arguments
col Integer array which will be filled with the indices of the input variables x. It must be oflength at least last-first+1. May be None if not required.
resultant Integer array which will be filled with the indices of the output variables y. It must be oflength at least last-first+1. May be None if not required.
start Integer array which will be filled with the start indices of the different constraints in thebreakpoint arrays. It must be of length at least last-first+1. The x-values of thebreakpoints of piecewise linear constraint i < last will be given in xval[start[i]]to xval[start[i+1]]. May be None if not required.
xval Double array of length sizewhich will be filled with the x-values of the breakpoints. Maybe None if not required.
yval Double array of length sizewhich will be filled with the y-values of the breakpoints. Maybe None if not required.
size Maximum number of breakpoints to be retrieved.
first First piecewise linear constraint in the range.
last Last piecewise linear constraint in the range.
npoints The returned number of breakpoints in the xval and yval arrays. If the number ofbreakpoints is greater than size, then only size elements will be returned.

Example The following example retrieves all variables and breakpoints in the first two piecewise linearconstraints:
col, resultant, start, xval, yval = [], [], [], [], []
npoints = prob.getpwlcons(prob, col, resultant, start, xval, yval, 1e9, 0, 1)

Further informationIt is possible to obtain just the number of breakpoints in the range of piecewise linear constraints bycalling this function with size set to 0, in which case the required size for the breakpoint arrays will bereturned in npoints.
Related topics

problem.addpwlcons, problem.delpwlcons, xpress.pwl.

Fair Isaac Corporation Confidential and Proprietary Information 257

Reference Manual

problem.getqobj

Purpose Returns a single quadratic objective function coefficient corresponding to the variable pair (icol,
jcol) of the Hessian matrix.

Synopsis
objqcoef = problem.getqobj(icol, jcol)

Arguments
icol Column index for the first variable in the quadratic term.
jcol Column index for the second variable in the quadratic term.

Example The following returns the coefficient of the x02 term in the objective function, placing it in the variable
value :

print("diagonal coeff of the Hessian:",
[p.getqobj(i,i) for i in range(p.attributes.cols)])

Further informationFor example, if the objective function has the term [3x1x2 + 3x2x1]/2 the value retrieved by getqobj is
3.0 and if the objective function has the term [6x12]/2 the value retrieved by getqobj is 6.0.

Related topics
problem.getmqobj, problem.chgqobj, problem.chgmqobj.

Fair Isaac Corporation Confidential and Proprietary Information 258

Reference Manual

problem.getqrowcoeff

Purpose Returns a single quadratic constraint coefficient corresponding to the variable pair (icol, jcol) of theHessian of a given constraint.
Synopsis

coeff = problem.getqrowcoeff (irow, icol, jcol)

Arguments
row The quadratic row where the coefficient is to be looked up.
icol Column index for the first variable in the quadratic term.
jcol Column index for the second variable in the quadratic term.

Example The following returns the coefficient of the dist2 term in the constraint cons1:
print("diagonal coeff of dist:", p.getqrowcoeff(cons1, dist, dist)

Further informationThe coefficient returned corresponds to the Hessian of the constraint. That means the for constraint x
+ [x2 + 6 xy] <= 10 getqrowcoeff would return 1 as the coefficient of x2 and 3 as thecoefficient of xy.

Related topics
problem.loadproblem, problem.addqmatrix, problem.chgqrowcoeff,
problem.getqrowqmatrix, problem.getqrowqmatrixtriplets, problem.getqrows,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 259

Reference Manual

problem.getqrowqmatrix

Purpose Returns the nonzeros in a quadratic constraint coefficients matrix for the columns in a given range. Toachieve maximum efficiency, getqrowqmatrix returns the lower triangular part of this matrix only.
Synopsis

problem.getqrowqmatrix(irow, mstart, mclind, dqe, size, first, last)

Arguments
irow Row (i.e. xpress.constraint object, index, or name) for which the quadraticcoefficients are to be returned.
mstart List to be filled with indices indicating the starting offsets in the mclind and dobjvallists for each requested column. It must be length of at least last-first+2. Column istarts at position mstart[i] in the mrwind and dmatval arrays, and has

mstart[i+1]-mstart[i] elements in it. May be None if size is 0.
mclind Array of length size which will be filled with the columns of the nonzero elements in thelower triangular part of Q. May be None if size is 0.
dqe Array of length size which will be filled with the nonzero element values. May be Noneif size is 0.
size Maximum number of elements to be returned in mclind and dqe.
first First column in the range.
last Last column in the range.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrixtriplets, problem.getqrows,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 260

Reference Manual

problem.getqrowqmatrixtriplets

Purpose Returns the nonzeros in a quadratic constraint coefficients matrix as triplets (index pairs withcoefficients). To achieve maximum efficiency, getqrowqmatrixtriplets returns the lowertriangular part of this matrix only.
Synopsis

problem.getqrowqmatrixtriplets(irow, mqcol1, mqcol2, dqe)

Arguments
irow Row (i.e. xpress.constraint object, index, or name) for which the quadraticcoefficients are to be returned.
nqelem Argument used to return the number of quadratic coefficients in the row.
mqcol1 First index in the triplets. May be None if not required.
mqcol2 Second index in the triplets. May be None if not required.
dqe Coefficients in the triplets. May be None if not required.

Further informationIf a row index of -1 is used, the function returns the quadratic coefficients for the objective function.
Related topics

problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrix, problem.getqrows, problem.chgqobj,
problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 261

Reference Manual

problem.getqrows

Purpose Returns a list of row objects that have quadratic coefficients.
Synopsis

problem.getqrows(qcrows)

Argument
qcrows Array to contain the indices of rows with quadratic coefficients in them. May be None ifnot required.

Related topics
problem.loadproblem, problem.getqrowcoeff, problem.addqmatrix,
problem.chgqrowcoeff, problem.getqrowqmatrix, problem.getqrowqmatrixtriplets,
problem.chgqobj, problem.chgmqobj, problem.getqobj.

Fair Isaac Corporation Confidential and Proprietary Information 262

Reference Manual

problem.getRCost

Purpose Return the reduced cost of all variables of the problem w.r.t. the solution found by solve(). Thisfunction only works on continuous optimization problems.
Synopsis

r = problem.getRCost()

Example

p.solve()
print("reduced costs:", p.getRCost())

Related topics
problem.solve, problem.getlpsol, problem.getSolution, problem.getDual,
problem.getSlack, problem.getProbStatus, problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 263

Reference Manual

problem.getrhs

Purpose Returns the right hand side elements for the rows in a given range.
Synopsis

problem.getrhs(rhs, first, last)

Arguments
rhs Array where the (last - first + 1) right hand side elements are to be placed.
first First row in the range.
last Last row in the range.

Example The following example retrieves the right hand side values of the problem:
b = []
p.getrhs(b, 0, p.attributes.rows - 1)

Related topics
problem.chgrhs, problem.chgrhsrange, problem.getrhsrange.

Fair Isaac Corporation Confidential and Proprietary Information 264

Reference Manual

problem.getrhsrange

Purpose Returns the right hand side range values for the rows in a given range.
Synopsis

problem.getrhsrange(range, first, last)

Arguments
range Array of length last-first+1 where the right hand side range values are to be placed.
first First row in the range.
last Last row in the range.

Related topics
problem.chgrhs, problem.chgrhsrange, problem.getrhs.

Fair Isaac Corporation Confidential and Proprietary Information 265

Reference Manual

problem.getrowinfo

Purpose Get current row information.
Synopsis

info = problem.getrowinfo(infotype, rowindex)

Arguments
infotype Type of information (see below)
rowindex Row (i.e. xpress.constraint object, index, or name) whose information is to behandled
info Information to be retrieved

Further informationIf the data is not available, the type of the returned info is set to xpress.undefined.
The following constants are provided for row information handling:
rowinfo_slack Get the current slack value of the row
rowinfo_dual Get the current dual multiplier of the row
rowinfo_numpenaltyerrors Get the number of times the penalty error vector has been active forthe row
rowinfo_maxpenaltyerror Get the maximum size of the penalty error vector activity for the row
rowinfo_totalpenaltyerror Get the total size of the penalty error vector activity for the row
rowinfo_currentpenaltyerror Get the size of the penalty error vector activity in the currentiteration for the row
rowinfo_currentpenaltyfactor Set the size of the penalty error factor for the current iterationfor the row
rowinfo_penaltycolumnplus Get the index of the positive penalty column for the row (+)
rowinfo_penaltycolumnplusvalue Get the value of the positive penalty column for the row (+)
rowinfo_penaltycolumnplusdj Get the reduced cost of the positive penalty column for the row(+)
rowinfo_penaltycolumnminus Get the index of the negative penalty column for the row (-)
rowinfo_penaltycolumnminusvalue Get the value of the negative penalty column for the row (-)
rowinfo_penaltycolumnminusdj Get the reduced cost of the negative penalty column for therow (-)

Fair Isaac Corporation Confidential and Proprietary Information 266

Reference Manual

problem.getrows

Purpose Returns the nonzeros in the constraint matrix for the rows in a given range.
Synopsis

problem.getrows(mstart, mclind, dmatval, size, first, last)

Arguments
mstart Array which will be filled with the indices indicating the starting offsets in the mclindand dmatval arrays for each requested row. It must be of length at least

last-first+2. Column i starts at position mstart[i] in the mrwind and dmatvalarrays, and has mstart[i+1]-mstart[i] elements in it. May be None if not required.
mclind Arrays which will be filled with at most size column of the nonzero elements for eachrow. May be None if not required.
dmatval Array which will be filled with at most size nonzero element values. May be None if notrequired.
size Maximum number of elements to be retrieved.
first First row in the range.
last Last row in the range.

Related topics
problem.getcols, problem.getrowtype.

Fair Isaac Corporation Confidential and Proprietary Information 267

Reference Manual

problem.getrowstatus

Purpose Retrieve the status setting of a constraint
Synopsis

status = problem.getrowstatus(rowIndex)

Arguments
rowindex The index of the matrix row whose data is to be obtained.
status The status settings.

Example This recovers the status of the rows of the matrix of the current problem and reports those which areflagged as enforced constraints.
m = p.getintattrib('rows')
for i in range(m):

status = p.getrowstatus(i)
if(Status & 0x800) print("Row {0} is enforced".format(i))

Further informationSee the section on bitmap settings of the XSLP reference manual for details on the possibleinformation in Status.
Related topics

problem.chgrowstatus

Fair Isaac Corporation Confidential and Proprietary Information 268

Reference Manual

problem.getrowtype

Purpose Returns the row types for the rows in a given range.
Synopsis

problem.getrowtype(qrtype, first, last)

Arguments
qrtype Character array of length last-first+1 characters where the row types will bereturned:

N indicates a free constraint;
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint.

first First row in the range.
last Last row in the range.

Example The following example retrieves the type of the first four rows of the problem into an array qrt:
qrt = []
p.getrowtype(qrt, 0, 3)

Related topics
problem.chgrowtype, problem.getrows.

Fair Isaac Corporation Confidential and Proprietary Information 269

Reference Manual

problem.getrowwt

Purpose Get the initial penalty error weight for a row
Synopsis

value = problem.getrowwt(rowindex)

Arguments
rowindex The row (i.e. xpress.constraint object, index, or name) whose weight is to beretrieved.
value The value of the weight.

Example The following example gets the initial weight of row number 2.
value = p.getrowwt(2)

Further informationThe initial row weight is used only when the augmented structure is created. After that, the currentweighting can be accessed using problem.getrowinfo.
Related topics

problem.chgrowwt, problem.getrowinfo

Fair Isaac Corporation Confidential and Proprietary Information 270

Reference Manual

problem.getscaledinfeas

Purpose Returns a list of scaled infeasible primal and dual variables for the original problem. If the problem iscurrently presolved, it is postsolved before the function returns.
Synopsis

problem.getscaledinfeas(mx, mslack, mdual, mdj)

Arguments
mx Array to store the primal infeasible variables. May be None if not required.
mslack Array to store the primal infeasible rows. May be None if not required.
mdual Array to store the dual infeasible rows. May be None if not required.
mdj Array to store the dual infeasible variables. May be None if not required.

Example

mx = []
mslack = []
mdual = []
mdj = []
p.getscaledinfeas(mx, mslack, mdual, mdj)

Related topics
problem.getinfeas, problem.getiisdata, problem.iisall, problem.iisclear,
problem.iisfirst, problem.iisisolations, problem.iisnext, problem.iisstatus,
problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 271

Reference Manual

problem.getSlack

Purpose Return the slack for all constraints of the problem w.r.t. the solution found by solve(). This functionworks both with continuous and mixed-integer optimization problems.
Synopsis

s = problem.getSlack()

Example

p.solve()
print("slack:", p.getSlack())

Related topics
problem.solve, problem.getlpsol, problem.getmipsol, problem.getSolution,
problem.getDual, problem.getRCost, problem.getProbStatus,
problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 272

Reference Manual

problem.getslpsol

Purpose Obtain the solution values for the most recent SLP iteration
Synopsis

problem.getslpsol(x, slack, dual, dj)

Arguments
x Array of length problem.attributes.xslp_originalcols to hold the values ofthe primal variables. May be None if not required.
slack Array of length problem.attributes.xslp_originalrows to hold the values ofthe slack variables. May be None if not required.
dual Array of length problem.attributes.xslp_originalrows to hold the values ofthe dual variables. May be None if not required.
dj Array of length problem.attributes.xslp_originalcols to hold the recudedcosts of the primal variables. May be None if not required.

Example The following code fragment recovers the values and reduced costs of the primal variables from themost recent SLP iteration:
ncol = p.getintattrib(prob,xpress.xslp_originalcols)
val = []
dj = []
p.getslpsol(val,None,None,dj)

Further information
getslpsol can be called at any time after an SLP iteration has completed, and will return the samevalues even if the problem is subsequently changed. getslpsol returns values for the columns androws originally in the problem and not for any augmentation rows or columns. To access the values ofany augmentation columns or rows, use getlpsol; accessing the augmented solution is onlyrecommended if xslp_presolvelevel indicates that the problem dimensions should not bechanged in presolve.

Fair Isaac Corporation Confidential and Proprietary Information 273

Reference Manual

problem.getSolution

Purpose Returns the solution to an optimization problem if called after the solve() function has terminated.This function works with both continuous and mixed-integer optimization problems.
Synopsis

x = problem.getSolution(args=None, flatten=False)

Arguments
args (optional) specify indices, names, or objects whose solution value is requested. If None,it is assumed that all indices of the problem’s variables are requested. Starting withversion 8.8, args can contain expressions, both linear and nonlinear, and dictionariesthereof, in order to allow for more flexible evaluation of functions of the problem solution
flatten (optional) allows for backward compatibility with previous versions of the XpressPython interface. Regardless of whether the passed object is a (nested) list, tuples, thereturned value is a flattened list containing all requested values.

Example 1Below are a few possible uses of the function. Note that one can specify variable names, variableindices, or variable objects, and embed them in lists, dictionaries, NumPy arrays, and tuples.
print(m.getSolution ()) # Prints a list with an optimal solution
print("v1 is", m.getSolution(v1)) # Only prints the value of v1
a = m.getSolution(x) # Gets the values of all variables in the vector x
b = m.getSolution(range(4)) # Gets the value of v1 and x[0], x[1], x[2], i.e.

the first four variables of the problem
c = m.getSolution('Var1') # Gets the value of v1 by its name
e = m.getSolution({1: x, 2: 0,

3: 'Var1'}) # Returns a dictionary containing the same keys as
in the arguments and the values of the
variables/expressions passed

d = m.getSolution(v1 + 3⁎x) # Gets the value of an expression under the
current solution

e = m.getSolution(np.array(x)) # Gets a NumPy array with the solution of x

y=xpress.var(name='var1')
x=xpress.var(name='var2')
[...]
p.solve()
print("solution:", p.getSolution())
print("x is", p.getSolution(x))
print("first two var:", p.getSolution([0,1]))
print("x and y are", p.getSolution(['var1', 'var2']))

Example 2The next examples show how to use the flatten argument, which ensures that the returned value is aflattened list.
y=xpress.var(name='var1')
x=xpress.var(name='var2')
[...]
p.solve()
print("x is", p.getSolution([[x,y],[x,y]], flatten=True)) # will return [0,1,0,1]
print("first two var:", p.getSolution(0,1, flatten=True)) # will return the list [0,1]

Fair Isaac Corporation Confidential and Proprietary Information 274

Reference Manual

Further informationFor efficiency reasons it is preferable that one call to getSolution is made, as the whole vector isobtained at each call and only the desired portion is returned.
The function xpress.evaluate is more flexible in that it allows more argument types. Apart from thecase where the args argument contains indices and names of the variables, this function is equivalentto a call to xpress.evaluate.

Related topics
xpress.evaluate, problem.getlpsol, problem.getmipsol, problem.getDual,
problem.getSlack, problem.getRCost, problem.getProbStatus,
problem.getProbStatusString.

Fair Isaac Corporation Confidential and Proprietary Information 275

Reference Manual

problem.getSOS

Purpose Returns one or more SOSs of a problem corresponding to one or more indices passed as arguments.These SOSs are returned as Python objects and can be used to access and manipulate the problem.
Synopsis

x = problem.getSOS(index, first, last)

Arguments
first (optional) The first index of the SOSs to be returned.
last (optional) The last index of the SOSs to be returned.
index (optional) Either an integer or a list of integers (not necessarily sorted) with theindex/indices of all SOSs to be returned.

Further informationAll arguments are optional. If neither of them is provided, the return value is a list with all SOSs of theproblem. Otherwise, either first and last or just index can be passed.
Related topics

problem.getVariable, problem.getConstraint,

Fair Isaac Corporation Confidential and Proprietary Information 276

Reference Manual

problem.gettolset

Purpose Retrieve the values of a set of convergence tolerances for an SLP problem
Synopsis

status = problem.gettolset(nslptol, tols)

Arguments
nslptol The index of the tolerance set.
status The bit-map of status settings.
Tols Array of 9 double-precision values to hold the tolerances. May be None if not required.

Example The following example retrieves the values for tolerance set 3 and prints those which are set:
tols = []
status = p.gettolset(3, Tols)
for i in range(9):

if status &(1<<i):
print("Tolerance {0} = {1}".format(i,Tols[i]))

Further informationIf Tols is None, then the corresponding information will not be returned.
If Tols is not None, then a set of 9 values will always be returned. Status indicates which of thesevalues is active as follows. Bit n of Status is set if Tols[n] is active, where n is:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable.
Related topics

Related topics
problem.addtolsets, problem.chgtolset, problem.deltolsets, problem.loadtolsets

Fair Isaac Corporation Confidential and Proprietary Information 277

Reference Manual

problem.getub

Purpose Returns the upper bounds on the columns in a given range.
Synopsis

problem.getub(ub, first, last)

Arguments
ub Array where the last - first + 1 upper bounds are to be placed.
first First column in the range.
last Last column in the range.

Related topics
problem.chgbounds, problem.getlb.

Fair Isaac Corporation Confidential and Proprietary Information 278

Reference Manual

problem.getunbvec

Purpose Returns the index vector which causes the primal simplex or dual simplex algorithm to determine that aproblem is primal or dual unbounded respectively.
Synopsis

junb = problem.getunbvec()

Further informationWhen solving using the dual simplex method, if the problem is primal infeasible then
getunbvec returns the pivot row where dual unboundedness was detected. Also note that whensolving using the dual simplex method, if the problem is primal unbounded then getunbvec returns -1since the problem is dual infeasible and not dual unbounded.

Related topics
problem.getinfeas, problem.lpoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 279

Reference Manual

problem.getvar

Purpose Retrieve information about an SLP variable
Synopsis

(detrow, initstepbound, stepbound, penalty, damp, initvalue, value, tolset,
history, converged, vartype, delta, penaltydelta, updaterow,
oldvalue) = problem.getvar(colindex)

Arguments
colindex The column (i.e. xpress.var object, index, or name).
detrow Address of an integer to receive the index of the determining row. May be None if notrequired.
initstepbound Address of a double precision variable to receive the value of the initial step boundof the variable. May be None if not required.
stepbound Address of a double precision variable to receive the value of the current step bound ofthe variable. May be None if not required.
penalty Address of a double precision variable to receive the value of the penalty deltaweighting of the variable. May be None if not required.
damp Address of a double precision variable to receive the value of the current damping factorof the variable. May be None if not required.
initvalue Address of a double precision variable to receive the value of the initial value of thevariable. May be None if not required.
value Address of a double precision variable to receive the current activity of the variable. Maybe None if not required.
tolset Address of an integer to receive the index of the tolerance set of the variable. May be

None if not required.
history Address of an integer to receive the SLP history of the variable. May be None if notrequired.
converged Address of an integer to receive the convergence status of the variable as defined in the"Convergence Criteria" section (The returned value will match the numbering of thetolerances). May be None if not required.
vartype Address of an integer to receive the status settings (a bitmap defining the existence ofcertain properties for this variable). The following bits are defined:

Bit 1: Variable has a delta vector
Bit 2: Variable has an initial value
Bit 14: Variable is the reserved "=" columnOther bits are reserved for internal use. May be None if not required.

delta Address of an integer to receive the index of the delta vector for the variable. May be
None if not required.

penaltydelta Address of an integer to receive the index of the first penalty delta vector for thevariable. The second penalty delta immediately follows the first. May be None if notrequired.
updaterow Address of an integer to receive the index of the update row for the variable. May be

None if not required.
oldvalue Address of a double precision variable to receive the value of the variable at theprevious SLP iteration. May be None if not required.

Example The following example retrieves the current value, convergence history and status for column 3.
(a,b,c,d,e,value,g,history,converged,j,k,i,h,k,l) = p.getvar(3)

Fair Isaac Corporation Confidential and Proprietary Information 280

Reference Manual

Further informationIf colindex refers to a column which is not an SLP variable, then all the return values will indicate thatthere is no corresponding data.
detrow will be set to -1 if there is no determining row.
delta, penaltydelta and updaterow will be set to -1 if there is no corresponding item.

Related topics
problem.addvars, problem.chgvar, problem.delvars, problem.loadvars

Fair Isaac Corporation Confidential and Proprietary Information 281

Reference Manual

problem.getVariable

Purpose Returns one or more variables of a problem corresponding to one or more indices passed asarguments. These variables are returned as Python objects and can be used to access and manipulatethe problem.
Synopsis

x = problem.getVariable(index, first, last)

Arguments
first (optional) The first index of the variables to be returned. It must be between 0 and COLS

- 1.
last (optional) The last index of the variables to be returned. It must be between 0 and COLS

- 1.
index (optional) Either an integer or a list of integers (not necessarily sorted) with theindex/indices of all variables to be returned, all between 0 and COLS - 1

Further informationAll arguments are optional. If neither of them is provided, the return value is a list with all variables ofthe problem. Otherwise, either first and last or just index can be passed.
Related topics

problem.getConstraint, problem.getSOS.

Fair Isaac Corporation Confidential and Proprietary Information 282

Reference Manual

problem.globalsol

Purpose Initiate the Xpress Nonlinear mixed integer SLP (MISLP) algorithm
Synopsis

problem.globalsol()

Example The following example solves the continuous relaxation of the problem and then finds the integersolution.
p.nlpoptimize()
p.globalsol()

Further informationThe current Xpress Nonlinear mixed integer problem will be maximized or minimized using thealgorithm defined by the control variable xslp_mipalgorithm.
It is recommended that problem.nlpoptimize be used first to obtain a converged solution to therelaxed problem. If this is not done, ensure that xslp_ojsense is set appropriately.
See the chapter on Mixed Integer Non-Linear Programming in the SLP Reference Manual for moreinformation about the Xpress Nonlinear MISLP algorithms.

Related topics
xslp_MIPALGORITHM, xslp_OBJSENSE

Fair Isaac Corporation Confidential and Proprietary Information 283

Reference Manual

problem.hasdualray

Purpose Returns true if a dual ray (dual unbounded direction) exists for the current problem, if the problem isfound to be infeasible.
Synopsis

v = problem.hasdualray()

Related topics
problem.getdualray.

Fair Isaac Corporation Confidential and Proprietary Information 284

Reference Manual

problem.hasprimalray

Purpose Returns true if a primal ray (primal unbounded direction) exists for the current problem, if the problem isfound to be unbounded.
Synopsis

v = problem.hasprimalray()

Related topics
problem.getprimalray.

Fair Isaac Corporation Confidential and Proprietary Information 285

Reference Manual

problem.iisall

Purpose Performs an automated search for independent Irreducible Infeasible Sets (IIS) in an infeasibleproblem.
Synopsis

problem.iisall()

Example This example searches for IISs and then questions the problem attribute NUMIIS to determine howmany were found:
p.iisall()
print("The problem has {0} IISs".format(p.attributes.numiis))

Further information
1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. Forthis reason the Optimizer can find an IIS for each of the infeasibilities in a model. If the control MAXIISis set to a positive integer value then the problem.iisall command will stop if MAXIIS IISs havebeen found. By default the control MAXIIS is set to -1, in which case an IIS is found for each of theinfeasibilities in the model.
2. The problem attribute NUMIIS allows the user to recover the number of IISs found in a particularsearch. Alternatively, the problem.iisstatus function may be used to retrieve the number of IISsfound by the problem.iisfirst, problem.iisnext, or problem.iisall functions.

Related topics
problem.getiisdata, problem.iisclear, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 286

Reference Manual

problem.iisclear

Purpose Resets the search for Irreducible Infeasible Sets (IIS).
Synopsis

problem.iisclear()

Further information
1. The information stored internally about the IISs identified by problem.iisfirst,
problem.iisnext or problem.iisall are cleared. Functions problem.getiisdata,
problem.iisstatus, problem.iiswrite and problem.iisisolations cannot be called untilthe IIS identification procedure is started again.

2. This function is automatically called by problem.iisfirst and problem.iisall.
Related topics

problem.getiisdata, problem.iisall, problem.iisfirst, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 287

Reference Manual

problem.iisfirst

Purpose Initiates a search for an Irreducible Infeasible Set (IIS) in an infeasible problem. The returned value canbe 0 for success, 1 if the problem is feasible, or 2 in case of error.
Synopsis

status_code = problem.iisfirst(iismode)

Argument
iismode The IIS search mode:
0 stops after finding the initial infeasible subproblem;
1 find an IIS, emphasizing simplicity of the IIS;
2 find an IIS, emphasizing a quick result.

Example This looks for the first IIS.
p.iisfirst(1)

Further information
1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. Forthis reason the Optimizer can find an IIS for each of the infeasibilities in a model. For the generation ofseveral independent IISs use functions problem.iisnext or problem.iisall.
2. IIS sensitivity filter: after an optimal but infeasible first phase primal simplex, it is possible to identify asubproblem containing all the infeasibilities (corresponding to the given basis) to reduce the size of theIIS working problem dramatically, i.e., rows with zero duals (thus with artificials of zero reduced cost)and columns that have zero reduced costs may be deleted. Moreover, for rows and columns withnonzero costs, the sign of the cost is used to relax equality rows either to less than or greater thanequal rows, and to drop either possible upper or lower bounds on columns.
3. Initial infeasible subproblem: The subproblem identified after the sensitivity filter is referred to as initialinfeasible subproblem. Its size is crucial to the running time of the deletion filter and it contains all theinfeasibilities of the first phase simplex, thus if the corresponding rows and bounds are removed theproblem becomes feasible.
4. problem.iisfirst performs the initial sensitivity analysis on rows and columns to reduce theproblem size, and sets up the initial infeasible subproblem. This subproblem significantly speeds upthe generation of IISs, however in itself it may serve as an approximation of an IIS, since itsidentification typically takes only a fraction of time compared to the identification of an IIS.
5. The IIS approximation and the IISs generated so far are always available.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisisolations,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 288

Reference Manual

problem.iisisolations

Purpose Performs the isolation identification procedure for an Irreducible Infeasible Set (IIS).
Synopsis

problem.iisisolations(num)

Argument
num The number of the IIS identified by either problem.iisfirst, problem.iisnext, or

problem.iisall in which the isolations should be identified.
Example This example finds the first IIS and searches for the isolations in that IIS.

if p.iisfirst(1) == 0:
iisisolations(1)

Further information
1. An IIS isolation is a special constraint or bound in an IIS. Removing an IIS isolation constraint or boundwill remove all infeasibilities in the IIS without increasing the infeasibilities in any row or column outsidethe IIS, thus in any other IISs. The IIS isolations thus indicate the likely cause of each independentinfeasibility and give an indication of which constraint or bound to drop or modify. It is not alwayspossible to find IIS isolations.
2. Generally, one should first look for rows or columns in the IIS which are both in isolation, and have ahigh dual multiplier relative to the others.
3. The num parameter cannot be zero: the concept of isolations is meaningless for the initial infeasiblesubproblem.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisnext, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 289

Reference Manual

problem.iisnext

Purpose Continues the search for further Irreducible Infeasible Sets (IIS), or calls problem.iisfirst if no IIShas been identified yet. The returned value is 0 in case of success; 1 if no more IIS could be found, orproblem is feasible if no problem.iisfirst call preceded; or 2 in case of an error.
Synopsis

status_code = problem.iisnext()

Example This looks for a further IIS.
while p.iisnext() == 0:

[...] # do something with the iis

Further information
1. A model may have several infeasibilities. Repairing a single IIS may not make the model feasible. Forthis reason the Optimizer attempts to find an IIS for each of the infeasibilities in a model. Call the
problem.iisnext function repeatedly, or use the problem.iisall function to retrieve all IIS atonce.

2. This function is not affected by the control MAXIIS.
3. If the problem has been modified since the last call to problem.iisfirst or problem.iisnext,the generation process has to be started from scratch.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisstatus, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 290

Reference Manual

problem.iisstatus

Purpose Returns statistics on the Irreducible Infeasible Sets (IIS) found so far by problem.iisfirst,
problem.iisnext, or problem.iisall. The returned value is the number of IISs found so far.

Synopsis
iiscount = problem.iisstatus(rowsizes, colsizes, suminfeas, numinfeas)

Arguments
rowsizes Number of rows in the IISs.
colsizes Number of bounds in the IISs.
suminfeas The sum of infeasibilities in the IISs after the first phase simplex.
numinfeas The number of infeasible variables in the IISs after the first phase simplex.

Example This example first retrieves the number of IISs found so far, and then retrieves their main properties.Note that the arrays have size count+1, since the first index is reserved for the initial infeasible subset.
rs = []
cs = []
ninf = []
p.iisstatus(rs, cs, numinfeas=ninf) # suminf is not of interest

Further information
1. The arrays are 0 based, index 0 corresponding to the initial infeasible subproblem.
2. The arrays may be None if not required.
3. For the initial infeasible problem (at position 0) the subproblem size is returned (which may be differentfrom the number of bounds), while for the IISs the number of bounds is returned (usually much smallerthan the number of columns in the IIS).
4. Note that the values in suminfeas and numinfeas heavily depend on the actual basis where thesimplex has stopped.
5. iiscount is set to -1 if the search for IISs has not yet started.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisnext, problem.iiswrite.

Fair Isaac Corporation Confidential and Proprietary Information 291

Reference Manual

problem.iiswrite

Purpose Writes an LP/MPS/CSV file containing a given Irreducible Infeasible Set (IIS). If 0 is passed as the IISnumber parameter, the initial infeasible subproblem is written.
Synopsis

problem.iiswrite(num, fn, type, typeflags)

Arguments
num The ordinal number of the IIS to be written.
fn The name of the file to be created.
type Type of file to be created:
0 creates an lp/mps file containing the IIS as a linear programming problem;
1 creates a comma separated (csv) file containing the description and supplementaryinformation on the given IIS.
typeflags Flags passed to the problem.write function.

Example This writes the first IIS (if one exists and is already found) as an lp file.
p.iiswrite(1, "iis.lp", 0, "l")

Further information
1. Please note that there are problems on the boundary of being infeasible or not. For such problems,feasibility or infeasibility often depends on tolerances or even on scaling. This phenomenon makes itpossible that after writing an IIS out as an LP file and reading it back, it may report feasibility. As a firstcheck it is advised to consider the following options:

(a) save the IIS using MPS hexadecimal format to eliminate rounding errors associated withconversion between internal and decimal representation.
(b) turn presolve off since the nature of an IIS makes it necessary that during their identification thepresolve is turned off.
(c) use the primal simplex method to solve the problem.

2. Note that the original sense of the original objective function plays no role in an IIS.
3. Even though an attempt is made to identify the most infeasible IISs first by the problem.iisfirst,

problem.iisnext, and problem.iisall functions, it is also possible that an IIS becomes justinfeasible in problems that are otherwise highly infeasible. In such cases, it is advised to try to deal withthe more stable IISs first, and consider to use the infeasibility breaker tool if only slight infeasibilitiesremain.
4. The LP or MPS files created by problem.iiswrite corresponding to an IIS contain no objectivefunction, since infeasibility is independent from the objective.

Related topics
problem.getiisdata, problem.iisall, problem.iisclear, problem.iisfirst,
problem.iisisolations, problem.iisnext, problem.iisstatus.

Fair Isaac Corporation Confidential and Proprietary Information 292

Reference Manual

problem.interrupt

Purpose Interrupts the Optimizer algorithms.
Synopsis

problem.interrupt(reason)

Argument
reason The reason for stopping. Possible reasons are:

xpress.stop_timelimit time limit hit;
xpress.stop_ctrlc control C hit;
xpress.stop_nodelimit node limit hit;
xpress.stop_iterlimit iteration limit hit;
xpress.stop_mipgap MIP gap is sufficiently small;
xpress.stop_sollimit solution limit hit;
xpress.stop_user user interrupt.

Further informationThe interrupt command can be called from any callback.

Fair Isaac Corporation Confidential and Proprietary Information 293

Reference Manual

problem.loadbasis

Purpose Loads a basis as specified by the user.
Synopsis

problem.loadbasis(rstatus, cstatus)

Arguments
rstatus Array of length problem.attributes.rows containing the basis status of the slack,surplus or artificial variable associated with each row. The status must be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.

cstatus Array of length problem.attributes.cols containing the basis status of each ofthe columns in the constraint matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has nolower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example This example loads a problem and then reloads a (previously optimized) basis from a similar problemto speed up the optimization:
p.read("problem", "")
p.loadbasis(rstatus, cstatus)
p.lpoptimize("")

Further informationIf the problem has been altered since saving an advanced basis, one can alter the basis as followsbefore loading it:
� Make new variables non-basic at their lower bound (cstatus[icol]=0), unless a variable has aninfinite lower bound and a finite upper bound, in which case make the variable non-basic at itsupper bound (cstatus[icol]=2);
� Make new constraints basic (rstatus[jrow]=1);
� Try not to delete basic variables, or non-basic constraints.

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadpresolvebasis.

Fair Isaac Corporation Confidential and Proprietary Information 294

Reference Manual

problem.loadbranchdirs

Purpose Loads directives into the current problem to specify which global entities the Optimizer should continueto branch on when a node solution is global feasible.
Synopsis

problem.loadbranchdirs(mcols, mbranch)

Arguments
mcols Array containing the column numbers. A negative value indicates a set number (the firstset being -1, the second -2, and so on).
mbranch Array containing either 0 or 1 for the entities given in mcols. Entities for which mbranchis set to 1 will be branched on until fixed before a global feasible solution is returned. If

mbranch is None, the branching directive will be set for all entities in mcols.
Related topics

problem.loaddirs, problem.readdirs.

Fair Isaac Corporation Confidential and Proprietary Information 295

Reference Manual

problem.loadcoefs

Purpose Load non-linear coefficients into the SLP problem
Synopsis

problem.loadcoefs(rowindex, colindex, factor, fstart, parsed, type, value)

Arguments
rowindex Integer array holding index of row for the coefficient.
colindex Integer array holding index of column for the coefficient.
factor Double array holding factor by which formula is scaled. If this is None, then a value of1.0 will be used.
fstart Integer array holding the start position in the arrays Type and Value of the formula forthe coefficients. FormulaStart[nSLPCoef] should be set to the next position afterthe end of the last formula.
parsed Integer indicating whether the token arrays are formatted as internal unparsed(Parsed=0) or internal parsed reverse Polish (Parsed=1).
type Array of token types providing the formula for each coefficient.
value Array of values corresponding to the types in Type.

Example Assume that the rows and columns of Prob are named Row1, Row2 ..., Col1, Col2 ... The followingexample loads coefficients representing:
Col2 ⁎ Col3 + Col6 ⁎ Col2ˆ2 into Row1 and
Col2 ˆ 2 into Row3.

rowindex = [Row1,Row1,Row3]
colindex = [Col2,Col6,Col2]

formulastart = []

n = 0
ncoef = 0

formulastart[ncoef], ncoef = n, ncoef + 1
Type[n], Value[n], n = xslp_op_col, 3, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], Value[n], n = xslp_op_op, xslp_MULTIPLY, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef], ncoef = n, ncoef + 1

Type[n], Value[n], n = xslp_op_col, 2, n+1
Type[n], n = xslp_op_eof, n+1

formulastart[ncoef] = n

Fair Isaac Corporation Confidential and Proprietary Information 296

Reference Manual

p.loadcoefs(rowindex, colindex, None, formulastart, 1, Type, Value)

The first coefficient in Row1 is in Col2 and has the formula Col3, so it represents Col2 ⁎ Col3.
The second coefficient in Row1 is in Col6 and has the formula Col2 ⁎ Col2 so it represents Col6 ⁎
Col2ˆ2. The formulae are described as parsed (parsed=1), so the formula is written as
Col2 Col2 ⁎rather than the unparsed form
Col2 ⁎ Col2
The last coefficient, in Row3, is in Col2 and has the formula Col2, so it represents Col2 ⁎ Col2.

Further informationThe jth coefficient is made up of two parts: Factor and Formula. Factor is a constant multiplier,which can be provided in the Factor array. If Xpress Nonlinear can identify a constant factor in
Formula, then it will use that as well, to minimize the size of the formula which has to be calculated.
Formula is made up of a list of tokens in Type and Value starting at FormulaStart[j]. The tokensfollow the rules for parsed or unparsed formulae as indicated by the setting of Parsed. The formulamust be terminated with an xslp_op_eof token. If several coefficients share the same formula, theycan have the same value in FormulaStart. For possible token types and values see the chapter on"Formula Parsing".
The loadcoefs function loads items into the SLP problem. Any existing items of the same type aredeleted first. The corresponding addcoefs function adds or replace items leaving other items of thesame type unchanged.

Related topics
problem.addcoefs, problem.chgnlcoef, problem.chgccoef, problem.getcoefformula,
problem.getccoef

Fair Isaac Corporation Confidential and Proprietary Information 297

Reference Manual

problem.loadcuts

Purpose Loads cuts from the cut pool into the matrix. Without calling loadcuts the cuts will remain in the cutpool but will not be active at the node. Cuts loaded at a node remain active at all descendant nodesunless they are deleted using problem.delcuts.
Synopsis

problem.loadcuts(itype, interp, cutind)

Arguments
itype Cut type.
interp The way in which the cut type is interpreted:

-1 load all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - load cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - 0 load cut if all bits match those set in itype.

mcutind Array containing the cuts to be loaded into the matrix.
Related topics

problem.addcuts, problem.delcpcuts, problem.delcuts, problem.getcpcutlist, Section"Working with the cut manager" of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 298

Reference Manual

problem.loaddelayedrows

Purpose Specifies that a set of rows in the problem will be treated as delayed rows during a global search.These are rows that must be satisfied for any integer solution, but will not be loaded into the active setof constraints until required.
Synopsis

problem.loaddelayedrows(mrows)

Argument
mrows An array of rows (i.e. xpress.constraint objects, indices, or names) to treat asdelayed rows.

Example This sets the first six matrix rows as delayed rows in the global problem prob.
p.loaddelayedrows([0,1,2,3,4,5])
p.mipoptimize("")

Further informationDelayed rows must be set up before solving the problem. Any delayed rows will be removed from theproblem after presolve and added to a special pool. A delayed row will be added back into the activematrix only when such a row is violated by an integer solution found by the Optimizer.
Related topics

problem.loadmodelcuts.

Fair Isaac Corporation Confidential and Proprietary Information 299

Reference Manual

problem.loaddfs

Purpose Load a set of distribution factors
Synopsis

problem.loaddfs(colindex, rowindex, value)

Arguments
colindex Array of columns whose distribution factor is to be changed.
rowindex Array of rows where each distribution factor applies.
value Array of the new values of the distribution factors.

Example The following example loads distribution factors as follows:column 282 in row 134 = 0.1column 282 in row 136 = 0.15column 285 in row 133 = 1.0.Any other first-order derivative placeholders are set to xslp_DELTA_Z.
colindex = [282, 282, 285]
rowindex = [134, 136, 133]
value = [0.1, 0.15, 1]
p.loaddfs(colindex, rowindex, value)

Further informationThe distribution factor of a column in a row is the matrix coefficient of the corresponding delta vector inthe row. Distribution factors are used in conventional recursion models, and are essentially normalizedfirst-order derivatives. Xpress SLP can accept distribution factors instead of initial values, provided thatthe values of the variables involved can all be calculated after optimization using determining rows, orby a callback.
The adddfs functions load additional items into the SLP problem. The corresponding loaddfsfunctions delete any existing items first.

Related topics
problem.adddfs, problem.chgdf, problem.getdf

Fair Isaac Corporation Confidential and Proprietary Information 300

Reference Manual

problem.loaddirs

Purpose Loads directives into the problem.
Synopsis

problem.loaddirs(mcols, mpri, qbr, dupc, ddpc)

Arguments
mcols Array containing the column numbers. A negative value indicates a set number (the firstset being -1, the second -2, and so on).
mpri Array containing the priorities for the columns or sets. Priorities must be between 0 and1000. May be None if not required.
qbr Character array specifying the branching direction for each column or set:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.May be None if not required.

dupc Array containing the up pseudo costs for the columns or sets. May be None if notrequired.
ddpc Array containing the down pseudo costs for the columns or sets. May be None if notrequired.

Related topics
problem.getdirs, problem.loadpresolvedirs, problem.readdirs.

Fair Isaac Corporation Confidential and Proprietary Information 301

Reference Manual

problem.loadlpsol

Purpose Loads an LP solution for the problem into the Optimizer. The returned status is either 0 if the solution isloaded or 1 if the solution is not loaded because the problem is in presolved status.
Synopsis

status = problem.loadlpsol(x, slack, dual, dj)

Arguments
x Optional: Array of length problem.attributes.cols (for the original problem andnot the presolve problem) containing the values of the variables.
slack Optional: double array of length problem.attributes.rows containing the values ofslack variables.
dual Optional: double array of length problem.attributes.rows containing the values ofdual variables.
dj Optional: double array of length problem.attributes.cols containing the values ofreduced costs.

Example This example loads a problem and loads a solution for the problem.
p.read("problem", "")
status = p.loadlpsol(x, None, dual, None)

Further information
1. At least one of variables x and dual variables dualmust be provided.
2. When variables x is None, the variables will be set to their bounds.
3. When slack variables slack is None, it will be computed from variables x. If slacks are provided,variables cannot be omitted.
4. When dual variables dual is None, both dual variables and reduced costs will be set to zero.
5. When reduced costs dj is None, it will be computed from dual variables dual. If reduced costs areprovided, dual variables cannot be omitted.

Related topics
problem.getlpsol.

Fair Isaac Corporation Confidential and Proprietary Information 302

Reference Manual

problem.loadmipsol

Purpose Loads a MIP solution for the problem into the Optimizer. The returned status is one of the followingvalues:
� -1: Solution rejected because an error occurred;
� 0: Solution accepted. When loading a solution before a MIP solve, the solution is always accepted.See Further Information below.
� 1: Solution rejected because it is infeasible;
� 2: Solution rejected because it is cut off;
� 3: Solution rejected because the LP reoptimization was interrupted.

Synopsis
status = problem.loadmipsol(dsol)

Argument
dsol Array of length problem.attributes.cols (for the original problem and not thepresolve problem) containing the values of the variables.

Example This example loads a problem and then loads a solution found previously for the problem to help speedup the MIP search:
p.read("problem", "")
status = p.loadmipsol(dsol)
p.mipoptimize("")

Further information
1. When a solution is loaded before a MIP solve, the solution is simply placed in temporary storage untilthe MIP solve is started. Only after the MIP solve has commenced and any presolve has been applied,will the loaded solution be checked and possibly accepted as a new incumbent integer solution. Thereare no checks performed on the solution before the MIP solve and the returned status in
problem.loadmipsol will always be 0 for accepted.

2. Solutions can be loaded during a MIP solve using the optnode callback function. Any solution loadedthis way is immediately checked and the returned status will be one of the values 0 through 3.
3. Loaded solution values will automatically be adjusted to fit within the current problem bounds.

Related topics
problem.getmipsol, problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 303

Reference Manual

problem.loadmodelcuts

Purpose Specifies that a set of rows in the problem will be treated as model cuts.
Synopsis

problem.loadmodelcuts(mrows)

Argument
mrows An array of rows (i.e. xpress.constraint objects, indices, or names) to be treated ascuts.

Example This sets the first six matrix rows as model cuts in the global problem myprob.
p.loadmodelcuts([0,1,2,3,4,5])
p.mipoptimize("")

Further information
1. During presolve the model cuts are removed from the problem and added to an internal cut pool. Duringthe global search, the Optimizer will regularly check this cut pool for any violated model cuts and addthose that cuts off a node LP solution.
2. The model cuts must be "true" model cuts, in the sense that they are redundant at the optimal MIPsolution. The Optimizer does not guarantee to add all violated model cuts, so they must not be requiredto define the optimal MIP solution.

Fair Isaac Corporation Confidential and Proprietary Information 304

Reference Manual

problem.loadpresolvebasis

Purpose Loads a presolved basis from the user’s areas.
Synopsis

problem.loadpresolvebasis(rstatus, cstatus)

Arguments
rstatus Array containing the basis status of the slack, surplus or artificial variable associatedwith each row. The status must be one of:

0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.

cstatus Array containing the basis status of each of the columns in the matrix. The status mustbe one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has nolower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example The following example saves the presolved basis for one problem, loading it into another:
p1 = xpress.problem()
p2 = xpress.problem()

p1.read("myprob", "")
p1.mipoptimize("l")
rs = []
cs = []
p1.getpresolvebasis(rs, cs)

p2.read("myprob2", "")
p2.mipoptimize("l")
p2.loadpresolvebasis(rs, cs)

Related topics
problem.getbasis, problem.getpresolvebasis, problem.loadbasis.

Fair Isaac Corporation Confidential and Proprietary Information 305

Reference Manual

problem.loadpresolvedirs

Purpose Loads directives into the presolved matrix.
Synopsis

problem.loadpresolvedirs(mcols, mpri, qbr, dupc, ddpc)

Arguments
mcols Array containing the column numbers. A negative value indicates a set number (-1being the first set, -2 the second, and so on).
mpri Array containing the priorities for the columns or sets. May be None if not required.
qbr Character array specifying the branching direction for each column or set:

U the entity is to be forced up;
D the entity is to be forced down;
N not specified.May be None if not required.

dupc Array containing the up pseudo costs for the columns or sets. May be None if notrequired.
ddpc Array containing the down pseudo costs for the columns or sets. May be None if notrequired.

Example The following loads priority directives for column 0 in the problem:
p.mipoptimize("l")
p.loadpresolvedirs([0], [1], None, None, None)
p.mipoptimize("")

Related topics
problem.getdirs, problem.loaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 306

Reference Manual

problem.loadproblem

Purpose Load an optimization problem, possibly with quadratic objective and/or constraints, and integervariables.
Synopsis

problem.loadproblem(probname, qrtypes, rhs, range, obj, mstart, mnel,
mrwind, dmatval, dlb, dub, mqcol1, mqcol2, dqe, qcrows, qcnquads,
qcmqcol1, qcmqcol2, qcdqval, qgtype, mgcols, dlim, qstype, msstart,
mscols, dref, colnames, rownames)

Arguments
probname A string of up to 200 characters containing the problem name.
qrtype Character array containing the row types:

L indicates a <= constraint;
E indicates an = constraint;
G indicates a >= constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Array containing the right hand side coefficients of the rows. The right hand side valuefor a range row gives the upper bound on the row.
range Array containing the range values for range rows. Values for all other rows will beignored. May be None if there are no ranged constraints. The lower bound on a rangerow is the right hand side value minus the range value. The sign of the range value isignored - the absolute value is used in all cases.
obj Array containing the objective function coefficients.
mstart Array containing the offsets in the mrwind and dmatval arrays of the start of theelements for each column. This array is of length equal to the number ncol of addedvariables or, if mnel is None, ncol+1. If mnel is None the extra entry of mstart,

mstart[ncol], contains the position in the mrwind and dmatval arrays at which anextra column would start, if it were present.
mnel Array containing the number of nonzero elements in each column. May be None if allelements are contiguous and mstart[ncol] contains the offset where the elementsfor column ncol+1 would start. This array is not required if the non-zero coefficients inthe mrwind and dmatval arrays are continuous, and the mstart array has ncol+1entries as described above. It may be None if not required.
mrwind Array containing the row indices for the nonzero elements in each column. If the indicesare input contiguously, with the columns in ascending order, the length of the mrwind is

mstart[ncol-1]+mnel[ncol-1] or, if mnel is None, mstart[ncol].
dmatval Array containing the nonzero element values; length as for mrwind.
dlb Array containing the lower bounds on the columns. Use -xpress.infinity torepresent a lower bound of minus infinity.
dub Array containing the upper bounds on the columns. Use xpress.infinity torepresent an upper bound of plus infinity.
mqc1 (optional) Array with the first variable in each quadratic term.
mqc2 (optional) Array with the second variable in each quadratic term.
dqe (optional) Array with the quadratic coefficients.
qcrows (optional) Integer containing the indices of rows with quadratic matrices in them. Notethat the rows are expected to be defined in qrtype as type L.
qcnquads (optional) Array containing the number of nonzeros in each quadratic constraint matrix.

Fair Isaac Corporation Confidential and Proprietary Information 307

Reference Manual

qcmqcol1 (optional) Array with a number of elements equal to the sum of the elements in
qcnquads (i.e. the total number of quadratic matrix elements in all the constraints). Itcontains the first column indices of the quadratic matrices. Indices for the first matrixare listed from 0 to qcnquads[0]-1, for the second matrix from qcnquads[0] to
qcnquads[0]+ qcnquads[1]-1, etc.

qcmqcol2 (optional) Array containing the second index for the quadratic constraint matrices.
qcdqval (optional) Array containing the coefficients for the quadratic constraint matrices.
qgtype Character array containing the entity types:

B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols (optional) Array containing the variables of the global entities.
dlim (optional) Array containing the integer limits for the partial integer variables and lowerbounds for semi-continuous and semi-continuous integer variables (any entries in thepositions corresponding to binary and integer variables will be ignored). May be None ifnot required.
qstype (optional) Character array of length equal to the number of sets specified,

problem.attributes.nsets, and specifies the set types:
1 SOS1 type sets;
2 SOS2 type sets.
May be None if not required.

msstart (optional) Array containing the offsets in the mscols and dref arrays indicating thestart of the sets. This array is of length nsets+1, the last member containing the offsetwhere set nsets+1 would start. May be None if not required.
mscols (optional) Array of length msstart[nsets]-1 containing the columns in each set.May be None if not required.
dref (optional) Array of length msstart[nsets]-1 containing the reference row entries foreach member of the sets. May be None if not required.
colname (optional) Array of containing the column names for all variables added.
rowname (optional) Array of containing the row names for all constraints added.

Further information

1. The objective function is of the form cTx+ 1/2 xTQx where Q is positive semi-definite forminimization problems and negative semi-definite for maximization problems. If this is not the casethe optimization algorithms may converge to a local optimum or may not converge at all. Note that onlythe upper or lower triangular part of the Qmatrix is specified.
2. All Qmatrices in the constraints must be positive semi-definite. Note that only the upper or lowertriangular part of the Qmatrix is specified for constraints as well.
3. If indices are specified, both row and column indices are from 0 to rows-1 and 0 to cols-1respectively.
4. Semi-continuous lower bounds are taken from the dlim array. If this is None then they are given adefault value of 1.0. If a semi-continuous variable has a positive lower bound then this will be used asthe semi-continuous lower bound and the lower bound on the variable will be set to zero.

Related topics
problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 308

Reference Manual

problem.loadsecurevecs

Purpose Allows the user to mark rows and columns in order to prevent the presolve removing these rows andcolumns from the problem.
Synopsis

problem.loadsecurevecs(mrow, mcol)

Arguments
mrow Array containing the rows to be marked. May be None if not required.
mcol Array containing the columns to be marked. May be None if not required.

Example This sets the first six rows and the first four columns to not be removed during presolve.
p.read("myprob", "")
p.loadsecurevecs(mrow=[0,1,2,3,4,5], mcol=[0,1,2,3])
p.mipoptimize("")

Fair Isaac Corporation Confidential and Proprietary Information 309

Reference Manual

problem.loadtolsets

Purpose Load sets of standard tolerance values into an SLP problem
Synopsis

problem.loadtolsets(slptol)

Argument
slptol Array of 9h items containing the 9 tolerance values for each set in order.

Example The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; thesecond has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolutetolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).
tol = 9⁎[0.005]+[0]+[0.01,0.001]⁎4
p.loadtolsets(tol)

Further informationA tolerance set is an array of 9 values containing the following tolerances:
Entry / Bit Tolerance XSLP constant XSLP bit constant

0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, whilethe xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a givenSLP variable.
Once created, a tolerance set can be used to set the tolerances for any SLP variable. If a tolerance valueis zero, then the default tolerance will be used instead. To force the use of a tolerance, use the
problem.chgtolset function and set the Status variable appropriately.
See the section "Convergence Criteria" in the SLP reference manual for a fuller description of tolerancesand their uses. The loadtolsets functions load items into the SLP problem. Any existing items of thesame type are deleted first. The corresponding addtolsets functions add or replace items leavingother items of the same type unchanged.

Related topics
problem.addtolsets, problem.deltolsets, problem.chgtolset, problem.gettolset

Fair Isaac Corporation Confidential and Proprietary Information 310

Reference Manual

problem.loadvars

Purpose Load SLP variables defined as matrix columns into an SLP problem
Synopsis

problem.loadvars (colindex, vartype, detrow, seqnum, tolindex, initvalue,
stepbound)

Arguments
colindex Integer array holding the index of the matrix column corresponding to each SLP variable.
vartype Bitmap giving information about the SLP variable as follows:

Bit 1 Variable has a delta vector;
Bit 2 Variable has an initial value;
Bit 14 Variable is the reserved "=" column;May be None if not required.

detrow Integer array holding the index of the determining row for each SLP variable (a negativevalue means there is no determining row)May be None if not required.
seqnum Integer array holding the index sequence number for cascading for each SLP variable (azero value means there is no pre-defined order for this variable)May be None if not required.
tolindex Integer array holding the index of the tolerance set for each SLP variable (a zero valuemeans the default tolerances are used)May be None if not required.
initvalue Double array holding the initial value for each SLP variable (use the VarType bit map toindicate if a value is being provided)May be None if not required.
stepbound Double array holding the initial step bound size for each SLP variable (a zero valuemeans that no initial step bound size has been specified). If a value of

xpress.infinity is used for a value in StepBound, the delta will never have stepbounds applied, and will almost always be regarded as converged.May be None if not required.
Example The following example loads two SLP variables into the problem. They correspond to columns 23 and25 of the underlying LP problem. Column 25 has an initial value of 1.42; column 23 has no specificinitial value

colindex = [23,25]
vartype = [0,2]
initvalue = [0,1.42]

p.loadvars(colindex, vartype, None, None, None, initvalue, None)

InitValue is not set for the first variable, because it is not used (VarType = 0). Bit 1 of VarType isset for the second variable to indicate that the initial value has been set. The arrays for determiningrows, sequence numbers, tolerance sets and step bounds are not used at all, and so have been passedto the function as None.
Further informationThe loadvars functions load items into the SLP problem. Any existing items of the same type aredeleted first. The corresponding addvars functions add or replace items leaving other items of thesame type unchanged.

Fair Isaac Corporation Confidential and Proprietary Information 311

Reference Manual

Related topics
problem.addvars, problem.chgvar, problem.delvars, problem.getvar

Fair Isaac Corporation Confidential and Proprietary Information 312

Reference Manual

problem.lpoptimize

Purpose This function begins a search for the optimal continuous (LP) solution. The direction of optimization isgiven by OBJSENSE. The status of the problem when the function completes can be checked using
LPSTATUS. Any global entities in the problem will be ignored.

Synopsis
problem.lpoptimize(flags)

Argument
flags (optional) Flags to pass to lpoptimize. The default is "" or None, in which case thealgorithm used is determined by the DEFAULTALG control. If the argument includes:

b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
n (lower case N), the network part of the model will be identified and solved usingthe network simplex algorithm;

Further information
1. The algorithm used to optimize is determined by the DEFAULTALG control if no flags are provided. Bydefault, the dual simplex is used for linear problems and the barrier is used for non-linear problems.
2. The d and p flags can be used with the n flag to complete the solution of the model with either the dualor primal algorithms once the network algorithm has solved the network part of the model.
3. The b flag cannot be used with the n flag.

Related topics
problem.mipoptimize, Chapter 4 of the Xpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 313

Reference Manual

problem.mipoptimize

Purpose This function begins a global search for the optimal MIP solution. The direction of optimization is givenby OBJSENSE. The status of the problem when the function completes can be checked using
MIPSTATUS.

Synopsis
problem.mipoptimize(flags)

Argument
flags (optional) Flags to pass to problem.mipoptimize, which specifies how to solve theinitial continuous problem where the global entities are relaxed. If the argumentincludes:

b the initial continuous relaxation will be solved using the Newton barrier method;
p the initial continuous relaxation will be solved using the primal simplex algorithm;
d the initial continuous relaxation will be solved using the dual simplex algorithm;
n the network part of the initial continuous relaxation will be identified and solvedusing the network simplex algorithm;
l stop after having solved the initial continous relaxation.

Further information
1. If the l flag is used, the Optimizer will stop immediately after solving the initial continuous relaxation.The status of the continuous solve can be checked with LPSTATUS and standard LP results areavailable, such as the objective value (LPOBJVAL) and solution (use problem.getlpsol), dependingon LPSTATUS.
2. It is possible for the Optimizer to find integer solutions before solving the initial continuous relaxation,either through heuristics or by having the user load an initial integer solution. This can potentially resultin the global search finishing before solving the continuous relaxation to optimality.
3. If the function returns without having completed the search for an optimal solution, the search can beresumed from where it stopped by calling problem.mipoptimize again.
4. The algorithm used to reoptimize the continuous relaxations during the global search is given by

DEFAULTALG. The default is to use the dual simplex algorithm.
Related topics

problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 314

Reference Manual

problem.msaddcustompreset

Purpose A combined version of msaddjob and msaddpreset. The preset described is loaded, topped up with thespecific settings supplied
Synopsis

problem.msaddcustompreset(description, preset, count, ivcols, ivvalues,
control, job_object)

Arguments
description Text description of the job. Used for messaging, may be None if not required.
preset Which preset to load.
ivcols Indices of the variables for which to set an initial value. May be None if nIVs is zero.
ivvalues Initial values for the variables for which to set an initial value. May be None if nIVs iszero.
control Python dictionary with control strings as keys and numbers as values. Note that onlynumerical controls are allowed.
job_object Job-specific user context object to be passed to the multistart callbacks.

Further informationThis function allows for repeatedly calling the same multistart preset (e.g. initial values) using differentbasic controls.
Related topics

problem.msaddpreset, problem.msaddjob, problem.msclear

Fair Isaac Corporation Confidential and Proprietary Information 315

Reference Manual

problem.msaddjob

Purpose Adds a multistart job to the multistart pool
Synopsis

problem.msaddjob(description, ivcols, ivvalues, control, job_object)

Arguments
description Text description of the job. Used for messaging, may be None if not required.
ivcols Indices of the variables for which to set an initial value. May be None if nIVs is zero.
ivvalues Initial values for the variables for which to set an initial value. May be None if nIVs iszero.
control Python dictionary with control strings as keys and numbers as values. Note that onlynumerical controls are allowed.
job_object Job-specific user context object to be passed to the multistart callbacks.

Further informationAdds a mutistart job, applying the specified initial point and option combinations on top of the baseproblem, i.e. the options and initial values specified to the function is applied on top of the existingsettigns.
This function allows for loading empty template jobs, that can then be identified using the pJobObjectvariable.

Related topics
problem.msaddpreset, problem.msaddcustompreset, problem.msclear

Fair Isaac Corporation Confidential and Proprietary Information 316

Reference Manual

problem.msaddpreset

Purpose Loads a preset of jobs into the multistart job pool.
Synopsis

problem.msaddpreset(description, preset, count, job_object)

Arguments
description Text description of the preset. Used for messaging, may be None if not required.
preset Which preset to load.
count Maximum number of jobs to be added to the multistart pool.
job_object Job-specific user context object to be passed to the multistart callbacks.

Further informationThe following presets are defined:
msset_initialvalues: generate count number of random base points.
msset_solvers: load all solvers.
msset_slp_basic: load the most typical SLP tuning settings. A maximum of count jobs are loaded.
msset_slp_extended: load a comprehensive set of SLP tuning settings. A maximum of count jobsare loaded.
msset_knitro_basic: load the most typical Knitro tuning settings. A maximum of count jobs areloaded.
msset_knitro_extended: load a comprehensive set of Knitro tuning settings. A maximum of
count jobs are loaded.
msset_initialfiltered: generate count number of random base points, filtered by a meritfunction centred on initial feasibility.
See xslp_MSMAXBOUNDRANGE for controlling the range in which initial values are generated.

Related topics
problem.msaddjob, problem.msaddcustompreset, problem.msclear

Fair Isaac Corporation Confidential and Proprietary Information 317

Reference Manual

problem.msclear

Purpose Removes all scheduled jobs from the multistart job pool
Synopsis

problem.msclear()

Related topics
problem.msaddjob, problem.msaddpreset, problem.msaddcustompreset

Fair Isaac Corporation Confidential and Proprietary Information 318

Reference Manual

problem.name

Purpose Returns the name of the problem as a Python string.
Synopsis

brian = problem.name()

Related topics
problem.setprobname.

Fair Isaac Corporation Confidential and Proprietary Information 319

Reference Manual

problem.nlpoptimize

Purpose Solves an SLP problem
Synopsis

problem.nlpoptimize(flags)

Argument
flags Flags affecting the solve. See the SLP reference manual for their meaning

Related topics
problem.globalsol

Fair Isaac Corporation Confidential and Proprietary Information 320

Reference Manual

problem.objsa

Purpose Returns upper and lower sensitivity ranges for specified objective function coefficients. If the objectivecoefficients are varied within these ranges the current basis remains optimal and the reduced costsremain valid.
Synopsis

problem.objsa(mindex, lower, upper)

Arguments
mindex Array containing the columns (i.e. xpress.var objects, indices, or names) whoseobjective function coefficients sensitivity ranges are required.
lower Array of the same size as mindex where the objective function lower range values areto be returned.
upper Array of the same size as mindex where the objective function upper range values areto be returned.

Example Here we obtain the objective function ranges for the three columns: 2, 6 and 8:
l = []
u = []
p.objsa([2,8,6], l, u)

After which l and u contain:
l = [5, 3.8, 5.7]
u = [7, 5.2, 1e+20]

Meaning that the current basis remains optimal when 5.0 ≤ C2 ≤ 7.0, 3.8 ≤ C8 ≤ 5.2 and 5.7 ≤ C6, Cibeing the objective coefficient of column i.
Further information

objsa can only be called when an optimal solution to the current LP has been found. It cannot be usedwhen the problem is MIP presolved.
Related topics

problem.rhssa.

Fair Isaac Corporation Confidential and Proprietary Information 321

Reference Manual

problem.postsolve

Purpose Postsolve the current problem when it is in a presolved state.
Synopsis

problem.postsolve()

Further informationA problem is left in a presolved state whenever a LP or MIP optimization does not complete. In thesecases postsolve can be called to get the problem back into its original state.
Related topics

problem.lpoptimize, problem.mipoptimize.

Fair Isaac Corporation Confidential and Proprietary Information 322

Reference Manual

problem.presolve

Purpose Perform a nonlinear presolve on the problem
Synopsis

problem.presolve()

Example The following example reads a problem from file, sets the presolve control, presolves the problem andthen maximizes it.
p.readprob("Matrix", "")
p.controls.xslp_presolve = 1
p.presolve()
p.solve("")

Further informationIf bit 1 of xslp_presolve is not set, no nonlinear presolve will be performed. Otherwise, the presolvewill be performed in accordance with the bit settings. problem.presolve is called automatically by
problem.construct, so there is no need to call it explicitly unless there is a requirement to interruptthe process between presolve and optimization. problem.presolvemust be called before
problem.construct or any of the SLP optimization procedures..

Related topics
xslp_presolve

Fair Isaac Corporation Confidential and Proprietary Information 323

Reference Manual

problem.presolverow

Purpose Presolves a row formulated in terms of the original variables such that it can be added to a presolvedproblem. Returns a tuple of two elements containing, respectively, the presolved right-hand side andthe status of the presolved row:
� -3: Failed to presolve the row due to presolve dual reductions;
� -2: Failed to presolve the row due to presolve duplicate column reductions;
� -1: Failed to presolve the row due to an error. Check the Optimizer error code for the cause;
� 0: The row was successfully presolved;
� 1: The row was presolved, but may be relaxed.

Synopsis
drhsp, status = problem.presolverow(qrtype, mcolso, dvalo, drhso,

maxcoeffs, mcolsp, dvalp)
Arguments

qrtype The type of the row:
L indicates a ≤ row;
G indicates a ≥ row.

mcolso Array containing the columns (i.e. xpress.var objects, indices, or names) of the rowto presolve.
dvalo Array containing the non-zero coefficients of the row to presolve.
drhso The right-hand side constant of the row to presolve.
maxcoeffs Maximum number of elements to return in the mcolsp and dvalp arrays.
mcolsp Array which will be filled with the columns of the presolved row.
dvalp Array which will be filled with the coefficients of the presolved row.

Example Adding the row 2x1 + x2 ≤ 1 to our presolved problem can be done as follows:
presind = []
prescoe = []
prhs, status = p.presolverow('L', [1,2], [2,1], 1.0,

p.attributes.cols, presind, prescoe)

Further informationThere are certain presolve operations that can prevent a row from being presolved exactly. If the rowcontains a coefficient for a column that was eliminated due to duplicate column reductions orsingleton column reductions, the row might have to be relaxed to remain valid for the presolvedproblem. The relaxation will be done automatically by the problem.presolverow function, but areturn status of +1 will be returned. If it is not possible to relax the row, a status of -2 will be returnedinstead. Likewise, it is possible that certain dual reductions prevents the row from being presolved. Insuch a case a status of -3 will be returned instead.
If problem.presolverow is used for presolving e.g. branching bounds or constraints, then dualreductions and duplicate column reductions should be disabled, by clearing the corresponding bits of
PRESOLVEOPS. By clearing these bits, the default value for PRESOLVEOPS changes to 471.
If the user knows in advance which columns will have non-zero coefficients in rows that will bepresolved, it is possible to protect these individual columns through the problem.loadsecurevecsfunction. This way the Optimizer is left free to apply all possible reductions to the remaining columns.

Related topics
problem.addcuts, problem.loadsecurevecs, problem.setbranchcuts,
problem.storecuts.

Fair Isaac Corporation Confidential and Proprietary Information 324

Reference Manual

problem.printmemory

Purpose Print the dimensions and memory allocations for a problem
Synopsis

problem.printmemory()

Example The following example loads a problem from file and then prints the dimensions of the arrays.
p.readprob("Matrix1", "")
p.printmemory()

The output is similar to the following:
Arrays
and dimensions: Array Item Used Max Allocated Memory Size Items Items
Memory Control MemList 28 103 129 4K String 1 8779 13107 13K
xslp_MEM_STRING Xv 16 2 1000 16K xslp_MEM_XV Xvitem 48 11 1000 47K
xslp_MEM_XVITEM

Further information
printmemory lists the current sizes and amounts used of the variable arrays in the current problem.For each array, the size of each item, the number used and the number allocated are shown, togetherwith the size of memory allocated and, where appropriate, the name of the memory control variable toset the array size. Loading and execution of some problems can be speeded up by setting the memorycontrols immediately after the problem is created. If an array has to be moved to re-allocate it with alarger size, there may be insufficient memory to hold both the old and new versions; pre-setting thememory controls reduces the number of such re-allocations which take place and may allow largerproblems to be solved.

Fair Isaac Corporation Confidential and Proprietary Information 325

Reference Manual

problem.printevalinfo

Purpose Print a summary of any evaluation errors that may have occurred during solving a problem
Synopsis

problem.printevalinfo()

Related topics
problem.setcbcoefevalerror

Fair Isaac Corporation Confidential and Proprietary Information 326

Reference Manual

problem.read

Purpose Read an optimization problem into a Python problem object created prior to the call. All formatsallowed by the Xpress Optimizer C API are allowed.
Synopsis

problem.read(filename, flags)

Arguments
filename A string of up to 200 characters with the name of the file to be read.
flags (optional) Flags to pass to read:

l only the .lp version of the file is searched.
z read the input file in compressed .gz format.

Example Read problem problem1.lp and output an optimal solution:
p.read("problem1", "l")
p.solve("", "")
print("solution of problem1.lp:", p.getSolution())

Related topics
problem.write.

Fair Isaac Corporation Confidential and Proprietary Information 327

Reference Manual

problem.readbasis

Purpose Instructs the Optimizer to read in a previously saved basis from a file.
Synopsis

problem.readbasis(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the basis is to beread. If omitted, the default problem_name is used with a .bss extension.
flags (optional) Flags to pass to readbasis:

i output the internal presolved basis.
t input a compact advanced form of the basis;

Example If an advanced basis is available for the current problem the Optimizer input might be:
p.read("filename", "")
p.readbasis("", "")
p.mipoptimize("")

This reads in a matrix file, inputs an advanced starting basis and maximizes the MIP.
Further information

1. The only check done when reading compact basis is that the number of rows and columns in the basisagrees with the current number of rows and columns.
2. readbasis will read the basis for the original problem even if the problem has been presolved. TheOptimizer will read the basis, checking that it is valid, and will display error messages if it detectsinconsistencies.

Related topics
problem.loadbasis, problem.writebasis.

Fair Isaac Corporation Confidential and Proprietary Information 328

Reference Manual

problem.readbinsol

Purpose Reads a solution from a binary solution file.
Synopsis

problem.readbinsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the solution is tobe read. If omitted, the default problem_name is used with a .sol extension.
flags (optional) Flags to pass to readbinsol:

m load the solution as a solution for the MIP.
Example A previously saved solution can be loaded into memory and a print file created from it with thefollowing commands:

p.read("myprob", "")
p.readbinsol("", "")
p.writeprtsol("", "")

Related topics
problem.getlpsol, problem.getmipsol, problem.writebinsol, problem.writesol,
problem.writeprtsol.

Fair Isaac Corporation Confidential and Proprietary Information 329

Reference Manual

problem.readdirs

Purpose Reads a directives file to help direct the global search.
Synopsis

problem.readdirs(filename)

Argument
filename A string of up to 200 characters containing the file name from which the directives are tobe read. If omitted (or None), the default problem_name is used with a .dir extension.

Example The following example reads in directives from the file dirfile.dir for use with the problem, prob2:
p.read("prob2","")
p.readdirs("dirfile")
p.mipoptimize("")

Further information
1. Directives cannot be read in after a model has been presolved, so unless presolve has been disabled bysetting PRESOLVE to 0, this command must be issued before problem.mipoptimize.
2. Directives can be given relating to priorities, forced branching directions, pseudo costs and model cuts.There is a priority value associated with each global entity. The lower the number, the more likely theentity is to be selected for branching; the higher, the less likely. By default, all global entities have apriority value of 500 which can be altered with a priority entry in the directives file. In general, it isadvantageous for the entity’s priority to reflect its relative importance in the model. Priority entries withvalues in excess of 1000 are illegal and are ignored. A full description of the directives file format maybe found in the Xpress Optimizer reference manual.
3. By default, problem.mipoptimize will explore the branch expected to yield the best integer solutionfrom each node, irrespective of whether this forces the global entity up or down. This can be overriddenwith an UP or DN entry in the directives file, which forces mipoptimize to branch up first or down firston the specified entity.
4. Pseudo-costs are estimates of the unit cost of forcing an entity up or down. By default mipoptimizeuses dual information to calculate estimates of the unit up and down costs and these are added to thedefault pseudo costs which are set to the PSEUDOCOST control. The default pseudo costs can beoverridden by a PU or PD entry in the directives file.
5. If model cuts are used, then the specified constraints are removed from the problem and added to theOptimizer cut pool, and only put back in the problem when they are violated by an LP solution at one ofthe nodes in the global search.
6. If creating a directives file by hand, wild cards can be used to specify several vectors at once, forexample PR x1⁎ 2 will give all global entities whose names start with x1 a priority of 2.

Related topics
problem.loaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 330

Reference Manual

problem.readslxsol

Purpose Reads an ASCII solution file (.slx) created by the problem.writeslxsol function.
Synopsis

problem.readslxsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to beread. If omitted, the default problem_name is used with a .slx extension.
flags (optional) Flags to pass to writeslxsol:

l read the solution as an LP solution in case of a MIP problem;
m read the solution as a solution for the MIP problem;
a reads multiple MIP solutions from the .slx file and adds them to the MIPproblem.

Example

p.readslxsol("lpsolution", "")

This loads the solution to the MIP problem if the problem contains global entities, or otherwise loads itas an LP (barrier in case of quadratic problems) solution into the problem.
Further information

1. When readslxsol is called before a MIP solve, the loaded solutions will not be checked before calling
problem.mipoptimize. By default, only the last MIP solution read from the .slx file will be stored.Use the a flag to store all MIP solutions read from the file.

2. When using the a flag, read solutions will be queued similarly to the user of the problem.addmipsolfunction. Each name string given by the NAME field in the .slx file will be associated with thecorresponding solution. Any registered usersolnotify callback will be fired when the solution hasbeen checked, and will include the read name string as one of its arguments.
3. Refer to the Appendix of the Xpress Optimizer reference manual on Log and File Formats for adescription of the ASCII Solution (.slx) file format.

Related topics
problem.readbinsol, problem.writeslxsol, problem.writebinsol,
problem.readbinsol, problem.addmipsol, problem.addcbusersolnotify.

Fair Isaac Corporation Confidential and Proprietary Information 331

Reference Manual

problem.refinemipsol

Purpose Runs the MIP solution refiner.
Synopsis

problem.refinemipsol(options, flags, solution, refined_solution)

Arguments
options Refinement options:

0 Reducing MIP fractionality is priority.
1 Reducing LP infeasiblity is priority

flags Flags passed to any optimization calls during refinement.
solution The MIP solution to refine. Must be a valid MIP solution.
refined_solution The refined MIP solution in case of success
refinestatus Refinement results:

0 An error has occurred
1 The solution has been refined
2 Current solution meets target criteria
3 Solution cannot be refined

Further informationThe function provides a mechanism to refine the MIP solution by attempting to round any fractionalglobal entity and by attempting to reduce LP infeasiblity.
Related topics

REFINEOPS.

Fair Isaac Corporation Confidential and Proprietary Information 332

Reference Manual

problem.reinitialize

Purpose Reset the SLP problem to match a just augmented system
Synopsis

problem.reinitialize()

Further informationCan be used to rerun the SLP optimization process with updated parameters, penalties or initial values,but unchanged augmentation.
Related topics

problem.unconstruct, problem.setcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 333

Reference Manual

problem.removecbbariteration

Purpose Removes a barrier iteration callback function previously added by addcbbariteration. Thespecified callback function will no longer be called after it has been removed.
Synopsis

problem.removecbbariteration(callback, data)

Arguments
callback The callback function to remove. If None then all bariteration callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all barrier iteration callbacks with the function callback will beremoved.

Related topics
problem.addcbbariteration.

Fair Isaac Corporation Confidential and Proprietary Information 334

Reference Manual

problem.removecbbarlog

Purpose Removes a newton barrier log callback function previously added by addcbbarlog. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

problem.removecbbarlog(callback, data)

Arguments
callback The callback function to remove. If None then all barrier log callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all barrier log callbacks with the function callback will be removed.

Related topics
problem.addcbbarlog.

Fair Isaac Corporation Confidential and Proprietary Information 335

Reference Manual

problem.removecbchecktime

Purpose Removes a callback function previously added by problem.addcbchecktime. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

problem.removecbchecktime(callback, data)

Arguments
callback The callback function to remove. If None, then all checktime callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all checktime callbacks with the function pointer callback will beremoved.

Related topics
problem.addcbchecktime

Fair Isaac Corporation Confidential and Proprietary Information 336

Reference Manual

problem.removecbchgbranchobject

Purpose Removes a callback function previously added by addcbchgbranchobject. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

problem.removecbchgbranchobject(callback, data)

Arguments
callback The callback function to remove. If None then all branch object callback functionsadded with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, the object value will not bechecked and all branch object callbacks with the function callback will be removed.

Related topics
problem.addcbchgbranchobject.

Fair Isaac Corporation Confidential and Proprietary Information 337

Reference Manual

problem.removecbcutlog

Purpose Removes a cut log callback function previously added by addcbcutlog. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

problem.removecbcutlog(callback, data)

Arguments
callback The callback function to remove. If None then all cut log callback functions added withthe given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all cut log callbacks with the function callback will be removed.

Related topics
problem.addcbcutlog.

Fair Isaac Corporation Confidential and Proprietary Information 338

Reference Manual

problem.removecbdestroymt

Purpose Removes a slave thread destruction callback function previously added by addcbdestroymt. Thespecified callback function will no longer be called after it has been removed.
Synopsis

problem.removecbdestroymt(callback, data)

Arguments
callback The callback function to remove. If None then all thread destruction callback functionsadded with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all thread destruction callbacks with the function callback will beremoved.

Related topics
problem.addcbdestroymt.

Fair Isaac Corporation Confidential and Proprietary Information 339

Reference Manual

problem.removecbgapnotify

Purpose Removes a callback function previously added by problem.addcbgapnotify. The specifiedcallback function will no longer be removed after it has been returned.
Synopsis

problem.removecbgapnotify(callback, data)

Arguments
callback The callback function to remove. If None then all gapnotify callback functions addedwith the given user-defined value will be removed.
data The user-defined object that the callback was added with. If None then the object willnot be checked and all the gapnotify callbacks with the function callback will beremoved.

Related topics
problem.addcbgapnotify.

Fair Isaac Corporation Confidential and Proprietary Information 340

Reference Manual

problem.removecbgloballog

Purpose Removes a global log callback function previously added by addcbgloballog. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

problem.removecbgloballog(callback, data)

Arguments
callback The callback function to remove. If None then all global log callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all global log callbacks with the function callback will be removed.

Example The following code sets and removes a callback function:
prob.controls.miplog = 3
prob.addcbgloballog(globalLog, None, 0)
prob.mipoptimize("")
prob.removecbgloballog(globalLog, None)

Related topics
problem.addcbgloballog.

Fair Isaac Corporation Confidential and Proprietary Information 341

Reference Manual

problem.removecbinfnode

Purpose Removes a user infeasible node callback function previously added by addcbinfnode. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

problem.removecbinfnode(callback, data)

Arguments
callback The callback function to remove. If None then all user infeasible node callbackfunctions added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all user infeasible node callbacks with the function callback will beremoved.

Related topics
problem.addcbinfnode.

Fair Isaac Corporation Confidential and Proprietary Information 342

Reference Manual

problem.removecbintsol

Purpose Removes an integer solution callback function previously added by addcbintsol. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

problem.removecbintsol(callback, data)

Arguments
callback The callback function to remove. If None then all integer solution callback functionsadded with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all integer solution callbacks with the function callback will beremoved.

Related topics
problem.addcbintsol.

Fair Isaac Corporation Confidential and Proprietary Information 343

Reference Manual

problem.removecblplog

Purpose Removes a simplex log callback function previously added by addcblplog. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

problem.removecblplog(callback, data)

Arguments
callback The callback function to remove. If None then all lplog callback functions added withthe given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all lplog callbacks with the function callback will be removed.

Example The following code sets and removes a callback function:
prob.controls.lplog = 10
prob.addcblplog(lpLog, None, 0)
prob.readprob("problem", "")
prob.lpoptimize("")
prob.removecblplog(lpLog, None)

Related topics
problem.addcblplog.

Fair Isaac Corporation Confidential and Proprietary Information 344

Reference Manual

problem.removecbmessage

Purpose Removes a message callback function previously added by addcbmessage. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

problem.removecbmessage(callback, data)

Arguments
callback The callback function to remove. If None then all message callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all message callbacks with the function callback will be removed.

Related topics
problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 345

Reference Manual

problem.removecbmipthread

Purpose Removes a callback function previously added by addcbmipthread. The specified callback functionwill no longer be called after it has been removed.
Synopsis

problem.removecbmipthread(callback, data)

Arguments
callback The callback function to remove. If None then all variable branching callback functionsadded with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all variable branching callbacks with the function callback will beremoved.

Related topics
problem.addcbmipthread.

Fair Isaac Corporation Confidential and Proprietary Information 346

Reference Manual

problem.removecbnewnode

Purpose Removes a new-node callback function previously added by addcbnewnode. The specified callbackfunction will no longer be called after it has been removed.
Synopsis

problem.removecbnewnode(callback, data)

Arguments
callback The callback function to remove. If None then all separation callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all separation callbacks with the function callback will be removed.

Related topics
problem.addcbnewnode.

Fair Isaac Corporation Confidential and Proprietary Information 347

Reference Manual

problem.removecbnodecutoff

Purpose Removes a node-cutoff callback function previously added by addcbnodecutoff. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

problem.removecbnodecutoff(callback, data)

Arguments
callback The callback function to remove. If None then all node-cutoff callback functions addedwith the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all node-cutoff callbacks with the function callback will be removed.

Related topics
problem.addcbnodecutoff.

Fair Isaac Corporation Confidential and Proprietary Information 348

Reference Manual

problem.removecboptnode

Purpose Removes a node-optimal callback function previously added by addcboptnode. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

problem.removecboptnode(callback, data)

Arguments
callback The callback function to remove. If None then all node-optimal callback functionsadded with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all node-optimal callbacks with the function callback will be removed.

Related topics
problem.addcboptnode.

Fair Isaac Corporation Confidential and Proprietary Information 349

Reference Manual

problem.removecbpreintsol

Purpose Removes a pre-integer solution callback function previously added by addcbpreintsol. Thespecified callback function will no longer be called after it has been removed.
Synopsis

problem.removecbpreintsol(callback, data)

Arguments
callback The callback function to remove. If None then all user infeasible node callbackfunctions added with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all user infeasible node callbacks with the function callback will beremoved.

Related topics
problem.addcbpreintsol.

Fair Isaac Corporation Confidential and Proprietary Information 350

Reference Manual

problem.removecbprenode

Purpose Removes a preprocess node callback function previously added by addcbprenode. The specifiedcallback function will no longer be called after it has been removed.
Synopsis

problem.removecbprenode(callback, data)

Arguments
callback The callback function to remove. If None then all preprocess node callback functionsadded with the given user-defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all preprocess node callbacks with the function callback will beremoved.

Related topics
problem.addcbprenode.

Fair Isaac Corporation Confidential and Proprietary Information 351

Reference Manual

problem.removecbusersolnotify

Purpose Removes a user solution notification callback previously added by problem.addcbusersolnotify.The specified callback function will no longer be called after it has been removed.
Synopsis

problem.removecbusersolnotify(callback, data)

Arguments
callback The callback function to remove. If None then all user solution notification callbackfunctions added with the given user defined object value will be removed.
data The object value that the callback was added with. If None, then the object value will notbe checked and all integer solution callbacks with the function callback will beremoved.

Related topics
problem.addcbusersolnotify.

Fair Isaac Corporation Confidential and Proprietary Information 352

Reference Manual

problem.repairinfeas

Purpose Provides a simplified interface for problem.repairweightedinfeas. The returned value is asfollows:
� 0: relaxed optimum found;
� 1: relaxed problem is infeasible;
� 2: relaxed problem is unbounded;
� 3: solution of the relaxed problem regarding the original objective is nonoptimal;
� 4: error (when return code is nonzero);
� 5: numerical instability;
� 6: analysis of an infeasible relaxation was performed, but the relaxation is feasible.

Synopsis
status_code = problem.repairinfeas(pflags, oflags, gflags, lrp, grp, lbp,

ubp, delta)

Arguments
pflags The type of penalties created from the preferences:

c each penalty is the reciprocal of the preference (default);
s the penalties are placed in the scaled problem.

oflags Controls the second phase of optimization:
o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for theanalys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for theanalys of the problem.

gflags Specifies if the global search should be done:
g do the global search (default);
l solve as a linear model ignoring the discreteness of variables.

lrp Preference for relaxing the less or equal side of row.
grp Preference for relaxing the greater or equal side of a row.
lbp Preferences for relaxing lower bounds.
ubp Preferences for relaxing upper bounds.
delta The relaxation multiplier in the second phase -1. A positive value means a relativerelaxation by multiplying the first phase objective with (delta-1), while a negativevalue means an absolute relaxation, by adding abs(delta) to the first phase objective.

Fair Isaac Corporation Confidential and Proprietary Information 353

Reference Manual

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility ofthe row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable(infeasibility breaker) s>=0 is added to the row, which becomes aTx +s = b. Observe that aTx may nowtake smaller values than b. To minimize such violations, the weighted sum of these new variables isminimized.
2. A preference of 0 results in the row or bound not being relaxed.
3. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on aper constraint side or bound basis.
4. Note that the set of preferences are scaling independent.
5. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum ofviolations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect tothe original objective function. A nonzero delta increases the freedom of the original problem.
6. Note that on some problems, slight modifications of delta may affect the value of the original objectivedrastically.
7. Note that because of their special associated modeling properties, binary and semi-continuousvariables are not relaxed.
8. The default algorithm for the first phase is the simplex algorithm, since the primal problem can beefficiently warm started in case of the extended problem. These may be altered by setting the value ofcontrol DEFAULTALG.
9. If pflags is set such that each penalty is the reciprocal of the preference, the following rules areapplied while introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2
lrp <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2
grp = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2
grp >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2
ubp upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2
lbp lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

10. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through theIIS retrieval functions, see NUMIIS and problem.getiisdata.
Related topics

problem.repairweightedinfeas.

Fair Isaac Corporation Confidential and Proprietary Information 354

Reference Manual

problem.repairweightedinfeas

Purpose By relaxing a set of selected constraints and bounds of an infeasible problem, it attempts to identify a’solution’ that violates the selected set of constraints and bounds minimally, while satisfying all otherconstraints and bounds. Among such solution candidates, it selects one that is optimal regarding tothe original objective function. Similar to repairinfeas, the returned value is as follows:
� 1: relaxed problem is infeasible;
� 2: relaxed problem is unbounded;
� 3: solution of the relaxed problem regarding the original objective is nonoptimal;
� 4: error (when return code is nonzero);
� 5: numerical instability;
� 6: analysis of an infeasible relaxation was performed, but the relaxation is feasible.

Synopsis
status_code = problem.repairweightedinfeas(lrp_array, grp_array, lbp_array,

ubp_array, phase2, delta, optflags)

Arguments
lrp_array Array of size ROWS containing the preferences for relaxing the less or equal side of row.
grp_array Array of size ROWS containing the preferences for relaxing the greater or equal side of arow.
lbp_array Array of size COLS containing the preferences for relaxing lower bounds.
ubp_array Array of size COLS containing preferences for relaxing upper bounds.
phase2 Controls the second phase of optimization:

o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for theanalys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for theanalys of the problem.

delta The relaxation multiplier in the second phase -1.
optflags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Confidential and Proprietary Information 355

Reference Manual

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility ofthe row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable(’infeasibility breaker’) s>=0 is added to the row, which becomes aTx +s = b. Observe that aTx may nowtake smaller values than b. To minimize such violations, the weighted sum of these new variables isminimized.
2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the morewilling the modeller is to relax a given row or bound.
3. The weight of each infeasibility breaker in the objective minimizing the violations is 1/p, where p is thepreference associated with the infeasibility breaker. Thus the higher the preference is, the lower apenalty is associated with the infeasibility breaker while minimizing the violations.
4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum ofviolations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect tothe original objective function. A nonzero delta increases the freedom of the original problem.
5. Note that on some problems, slight modifications of delta may affect the value of the original objectivedrastically.
6. Note that because of their special associated modeling properties, binary and semi-continuousvariables are not relaxed.
7. If pflags is set such that each penalty is the reciprocal of the preference, the following rules areapplied while introducing the auxiliary variables:

Pref. array Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp_array = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2
lrp_array <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2
grp_array = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2
grp_array >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2
ubp_array upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2
lbp_array lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

8. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through the IISretrieval functions, see NUMIIS and problem.getiisdata.
Related topics

problem.repairinfeas, problem.repairweightedinfeasbounds.

Fair Isaac Corporation Confidential and Proprietary Information 356

Reference Manual

problem.repairweightedinfeasbounds

Purpose An extended version of problem.repairweightedinfeas that allows for bounding the level ofrelaxation allowed. The returned value is the same as repairweightedinfeas.
Synopsis

status = problem.repairweightedinfeasbounds(lrp_array, grp_array,
lbp_array, ubp_array, lrb_array, grb_array, lbb_array, ubb_array,
phase2, delta, optflags)

Arguments
lrp_array Array of size ROWS containing the preferences for relaxing the less or equal side of row.
grp_array Array of size ROWS containing the preferences for relaxing the greater or equal side of arow.
lbp_array Array of size COLS containing the preferences for relaxing lower bounds.
ubp_array Array of size COLS containing preferences for relaxing upper bounds.
lrb_array Array of size ROWS containing the upper bounds on the amount the less or equal side ofa row can be relaxed.
grb_array Array of size ROWS containing the upper bounds on the amount the greater or equal sideof a row can be relaxed.
lbb_array Array of size COLS containing the upper bounds on the amount the lower bounds can berelaxed.
ubb_array Array of size COLS containing the upper bounds on the amount the upper bounds can berelaxed.
phase2 Controls the second phase of optimization:

o use the objective sense of the original problem (default);
x maximize the relaxed problem using the original objective;
f skip optimization regarding the original objective;
n minimize the relaxed problem using the original objective;
i if the relaxation is infeasible, generate an irreducible infeasible subset for theanalys of the problem;
a if the relaxation is infeasible, generate all irreducible infeasible subsets for theanalys of the problem.

delta The relaxation multiplier in the second phase -1.
optflags Specifies flags to be passed to the Optimizer.

Fair Isaac Corporation Confidential and Proprietary Information 357

Reference Manual

Further information
1. A row or bound is relaxed by introducing a new nonnegative variable that will contain the infeasibility ofthe row or bound. Suppose for example that row aTx = b is relaxed from below. Then a new variable(’infeasibility breaker’) s>=0 is added to the row, which becomes aTx +s = b. Observe that aTx may nowtake smaller values than b. To minimize such violations, the weighted sum of these new variables isminimized.
2. A preference of 0 results in the row or bound not being relaxed. The higher the preference, the morewilling the modeller is to relax a given row or bound.
3. A negative preference indicates that a quadratic penalty cost should be applied. This can specified on aper constraint side or bound basis.
4. If a feasible solution is identified for the relaxed problem, with a sum of violations p, then the sum ofviolations is restricted to be no greater than (1+delta)p, and the problem is optimized with respect tothe original objective function. A nonzero delta increases the freedom of the original problem.
5. Note that on some problems, slight modifications of delta may affect the value of the original objectivedrastically.
6. Note that because of their special associated modeling properties, binary and semi-continuousvariables are not relaxed.
7. Given any row j with preferences lrp=lrp_array[j] and grp=grp_array[j], or variable i withbound preferences ubp=ubp_array[i] and lbp=lbp_array[i], the following rules are appliedwhile introducing the auxiliary variables:

Preference Affects Relaxation Cost if pref.>0 Cost if pref.<0
lrp = rows aTx - aux_var = b 1/lrp⁎aux_var 1/lrp⁎aux_var2
lrp <= rows aTx - aux_var <= b 1/lrp⁎aux_var 1/lrp⁎aux_var2
grp = rows aTx + aux_var = b 1/grp⁎aux_var 1/grp⁎aux_var2
grp >= rows aTx + aux_var >= b 1/grp⁎aux_var 1/grp⁎aux_var2
ubp upper bounds xi - aux_var <= u 1/ubp⁎aux_var 1/ubp⁎aux_var2
lbp lower bounds xi + aux_var >= l 1/lbp⁎aux_var 1/lbp⁎aux_var2

8. Only positive bounds are applied; a zero or negative bound is ignored and the amount of relaxationallowed for the corresponding row or bound is not limited. The effect of a zero bound on a row orbound would be equivalent with not relaxing it, and can be achieved by setting its preference array valueto zero instead, or not including it in the preference arrays.
9. If an irreducible infeasible set (IIS) has been identified, the generated IIS(s) are accesible through the IISretrieval functions, see NUMIIS and problem.getiisdata.

Related topics
problem.repairinfeas.

Fair Isaac Corporation Confidential and Proprietary Information 358

Reference Manual

problem.reset

Purpose Clears all information regarding an optimization problem and returns it to the same status as it wouldbe after creation (i.e. after the instruction p = xpress.problem()).
Synopsis

problem.reset()

Example

p = xpress.problem()
p.read("problem0", "l")
p.solve()
x0 = p.getSolution()
p.reset()
p.read("problem1", "")
p.solve()
x1 = p.getSolution()

Related topics
problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 359

Reference Manual

problem.restore

Purpose Restores the Optimizer’s data structures from a file created by problem.save. Optimization may thenrecommence from the point at which the file was created.
Synopsis

problem.restore(probname, flags)

Arguments
probname A string of up to 200 characters containing the problem name.
flags f Force the restoring of a save file even if its from a different version.

Example

p.restore("", "")

Further information
1. This routine restores the data structures from the file probname.svf that was created by a previousexecution of save. The file probname.sol is also required and, if recommencing optimization in aglobal search, the files problem_name.glb and problem_name.ctp are required too. Note that .svffiles are particular to the release of the Optimizer used to create them. They can only be read using thesame release Optimizer as used to create them.
2. The use of the ’f’ flag is not recommended and can cause unexpected results.

Related topics
problem.save.

Fair Isaac Corporation Confidential and Proprietary Information 360

Reference Manual

problem.rhssa

Purpose Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coefficients. Ifthe RHS coefficients are varied within these ranges the current basis remains optimal and the reducedcosts remain valid.
Synopsis

problem.rhssa(mindex, lower, upper)

Arguments
mindex Array containing the rows (i.e. xpress.constraint objects, indices, or names) whoseRHS coefficients sensitivity ranges are required.
lower Array where the RHS lower range values are to be returned.
upper Array where the RHS upper range values are to be returned.

Example Here we obtain the RHS function ranges for the three columns: 2, 6 and 8:
l = []
u = []
p.rhssa([2,8,6], l, u)

After which lower and upper contain:
l = [5, 3.8, 5.7]
u = [7, 5.2, 1e+20]

Meaning that the current basis remains optimal when 5.0 ≤ rhs2, 3.8 ≤ rhs8 ≤ 5.2 and 5.7 ≤ rhs6, rhsibeing the RHS coefficient of row i.
Further information

rhssa can only be called when an optimal solution to the current LP has been found. It cannot be usedwhen the problem is MIP presolved.
Related topics

problem.objsa.

Fair Isaac Corporation Confidential and Proprietary Information 361

Reference Manual

problem.save

Purpose Saves the current data structures, i.e. matrices, control settings and problem attribute settings to fileand terminates the run so that optimization can be resumed later.
Synopsis

problem.save(filename=None)

Example

p.save()

Further informationThe data structures are written to the file problem_name.svf. Optimization may recommence from thesame point when the data structures are restored by a call to problem.restore. Under suchcircumstances, the file problem_name.sol and, if a branch and bound search is in progress, the globalfiles problem_name.glb and problem_name.ctp are also required. These files will be present afterexecution of save, but will be modified by subsequent optimization, so no optimization calls may bemade after the call to save. Note that the .svf files created are particular to the release of theOptimizer used to create them. They can only be read using the same release Optimizer as used tocreate them.
Related topics

problem.restore.

Fair Isaac Corporation Confidential and Proprietary Information 362

Reference Manual

problem.scale

Purpose Re-scales the current problem.
Synopsis

problem.scale(mrscal, mcscal)

Arguments
mrscal Array of size ROWS containing the exponents of the powers of 2 with which to scale therows, or None if not required.
mcscal Array of size COLS containing the exponents of the powers of 2 with which to scale thecolumns, or None if not required.

Example

p.read("prob1", "")
p.scale([1] ⁎ p.attributes.rows, [3] ⁎ p.attributes.cols)
p.lpoptimize("")

This reads the MPS file prob1.mat, rescales the problem and seeks the minimum objective value.
Further information

1. If mrscal and mcscal are both non-None then they will be used to scale the problem. Otherwise theproblem will be scaled according to the control SCALING. This routine may be useful when the currentproblem has been modified by calls to routines such as problem.chgmcoef and problem.addrows.
2. scale cannot be called if the current problem is presolved.

Related topics
problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 363

Reference Manual

problem.scaling

Purpose Analyze the current matrix for largest/smallest coefficients and ratios
Synopsis

problem.scaling()

Example The following example analyzes the matrix
p.scaling()

Further informationThe current matrix (including augmentation if it has been carried out) is scanned for the absolute andrelative sizes of elements. The following information is reported:
� Largest and smallest elements in the matrix;
� Counts of the ranges of row ratios in powers of 10 (e.g. number of rows with ratio between 10 and100);
� List of the rows (with largest and smallest elements) which appear in the highest range;
� Counts of the ranges of column ratios in powers of 10;
� List of the columns (with largest and smallest elements) which appear in the highest range;
� Element ranges in powers of 10.

Where any of the reported items (largest or smallest element in the matrix or any reported row orcolumn element) is in a penalty error vector, the results are repeated, excluding all penalty error vectors.

Fair Isaac Corporation Confidential and Proprietary Information 364

Reference Manual

problem.setbranchbounds

Purpose Specifies the bounds previously stored using problem.storebounds that are to be applied in orderto branch on a user global entity.
Synopsis

problem.setbranchbounds(mindex)

Argument
mindex Object previously defined in a call to problem.storebounds that references thestored bounds to be used to separate the node.

Related topics
problem.loadcuts, problem.storebounds, Section "Working with the cut manager" of the XpressOptimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 365

Reference Manual

problem.setbranchcuts

Purpose Specifies the cuts in the cut pool that are to be applied in order to branch on a user global entity..
Synopsis

problem.setbranchcuts(mindex)

Argument
mindex Array containing cuts in the cut pool that are to be applied. Typically obtained from

problem.storecuts.
Related topics

problem.getcpcutlist, problem.storecuts, Section "Working with the cut manager" of theXpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 366

Reference Manual

problem.setcbcascadeend

Purpose Set a user callback to be called at the end of the cascading process, after the last variable has beencascaded
Synopsis

problem.setcbcascadeend(callback, data)
value = callback(prob, myobject)

Arguments
callback The function to be called at the end of the cascading process. callback returns aninteger value. The return value is noted by Xpress SLP but it has no effect on theoptimization.
prob The problem passed to the callback function.
myobject The user-defined object passed as data to setcbcascadeend.
data User-defined object, which can be used for any purpose by the function. data is passedto callback as my_object.

Example The following example sets up a callback to be executed at the end of the cascading process whichchecks if any of the values have been changed significantly:
csol = [1,2,3,4]
p.setcbcascadeend(CBCascEnd, csol)

A suitable callback function might resemble this:
def CBCascEnd(prob, obj):

for iCol in range(prob.controls.cols):
(a,b,c,s,d,e,f,value,g,h,i,j,k,l,m,n) = prob.getvar(iCol)
if abs(value - obj[iCol]) > .01:

print("Col {0} changed from {1} to {2}".format(iCol, obj[iCol], value)
return 0

The obj argument is used here to hold the original solution values.
Further informationThis callback can be used at the end of the cascading, when all the solution values have beenrecalculated.
Related topics

problem.cascade, problem.setcbcascadestart, problem.setcbcascadevar,
problem.setcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 367

Reference Manual

problem.setcbcascadestart

Purpose Set a user callback to be called at the start of the cascading process, before any variables have beencascaded
Synopsis

problem.setcbcascadestart(callback, data)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the start of the cascading process. callback returns aninteger value. If the return value is nonzero, the cascading process will be omitted forthe current SLP iteration, but the optimization will continue.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcascadestart.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to callback as my_object.
Further informationThis callback can be used at the start of the cascading, before any of the solution values have beenrecalculated.
Related topics

problem.cascade, problem.setcbcascadeend, problem.setcbcascadevar,
problem.setcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 368

Reference Manual

problem.setcbcascadevar

Purpose Set a user callback to be called after each column has been cascaded
Synopsis

problem.setcbcascadevar(callback, data)
retval = callback(my_prob, my_object, colindex)

Arguments
callback The function to be called after each column has been cascaded. callback returns aninteger value. If the return value is nonzero, the cascading process will be omitted for theremaining variables during the current SLP iteration, but the optimization will continue.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to problem.setcbcascadevar.
colindex The number of the column which has been cascaded.
data User-defined object, which can be used for any purpose by the function. data is passedto callback as my_object.

Example The following example sets up a callback to be executed after each variable has been cascaded:
obj = []
p.setcbcascadevar(CBCascVar, obj)

The following sample callback function resets the value of the variable if the cascaded value is of theopposite sign to the original value:
def CBCascVar(myprob, obj, iCol):
(a,b,c,d,e,f,value,g,h,i,j,k,l,m,n) = myprob.getvar(iCol)

if value ⁎ obj[iCol] < 0:
p.chgvar(myprob, ColNum, None, None, None, None,

None, None, obj[iCol], None, None, None,
None)

return 0

The data argument is used here to hold the address of the array cSol which we assume has beenpopulated with the original solution values.
Further informationThis callback can be used after each variable has been cascaded and its new value has beencalculated.
Related topics

problem.cascade, problem.setcbcascadeend, problem.setcbcascadestart,
problem.setcbcascadevarfail

Fair Isaac Corporation Confidential and Proprietary Information 369

Reference Manual

problem.setcbcascadevarfail

Purpose Set a user callback to be called after cascading a column was not successful
Synopsis

problem.setcbcascadevarfail(callback, data)
retval = callback(my_prob, my_object, colindex)

Arguments
callback The function to be called after cascading a column was not successful. callbackreturns an integer value. If the return value is nonzero, the cascading process will beomitted for the remaining variables during the current SLP iteration, but the optimizationwill continue.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcascadevarfail.
colindex The number of the column which has been cascaded.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to callback as my_object.
Further informationThis callback can be used to provide user defined updates for SLP variables having a determining rowthat were not successfully cascaded due to the determining row being close to singular around thecurrent values. This callback will always be called in place of the cascadevar callback in such cases,and in no situation will both the cascadevar and the cascadevarfail callback be called in the sameiteration for the same variable.
Related topics

problem.cascade, problem.setcbcascadeend, problem.setcbcascadestart,
problem.setcbcascadevar

Fair Isaac Corporation Confidential and Proprietary Information 370

Reference Manual

problem.setcbcoefevalerror

Purpose Set a user callback to be called when an evaluation of a coefficient fails during the solve
Synopsis

problem.setcbcoefevalerror(callback, data)
retval = callback(my_prob, my_object, rowindex, colindex)

Arguments
callback The function to be called when an evaluation fails.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbcoefevalerror.
rowindex The row position of the coefficient.
colindex The column position of the coefficient.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to callback as my_object.
Further informationThis callback can be used to capture when an evaluation of a coefficient fails. The callback is calledonly once for each coefficient.
Related topics

problem.printevalinfo

Fair Isaac Corporation Confidential and Proprietary Information 371

Reference Manual

problem.setcbconstruct

Purpose Set a user callback to be called during the Xpress SLP augmentation process
Synopsis

problem.setcbconstruct(callback, data)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called during problem augmentation. callback returns an integervalue. See below for an explanation of the values.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as data to setcbconstruct.
data Address of a user-defined object, which can be used for any purpose by the function.

data is passed to callback as my_object.
Example The following example sets up a callback to be executed during the Xpress SLP problem augmentation:

value = []
p.setcbconstruct(CBConstruct, value)

The following sample callback function sets values for the variables the first time the function is calledand returns to problem.construct to recalculate the initial matrix. The second time it is called itfrees the allocated memory and returns to problem.construct to proceed with the rest of theaugmentation.
def CBConstruct(myprob, obj):

if obj is None:
n = myprob.attributes.cols
cValue = n ⁎ [0]
initialize with values (not shown here)
for i in range(n):
store into SLP structures
myprob.chgvar(i, None, None, None, None,

None, None, cValue[i], None, None, None,
None)

set Object non-null to indicate we have processed data
obj = cValue
return -1

else:
obj = None

return 0

Further informationThis callback can be used during the problem augmentation, generally (although not exclusively) tochange the initial values for the variables.
The following return codes are accepted:
0 Normal return: augmentation continues
-1 Return to recalculate matrix values
-2 Return to recalculate row weights and matrix entries
other Error return: augmentation terminates, problem.construct terminates with anonzero error code.

Fair Isaac Corporation Confidential and Proprietary Information 372

Reference Manual

The return values -1 and -2 will cause the callback to be called a second time after the matrix has beenrecalculated. It is the responsibility of the callback to ensure that it does ultimately exit with a returnvalue of zero.
Related topics

problem.construct

Fair Isaac Corporation Confidential and Proprietary Information 373

Reference Manual

problem.setcbdestroy

Purpose Set a user callback to be called when an SLP problem is about to be destroyed
Synopsis

problem.setcbdestroy(callback, data)
callback(prob, my_object)

Arguments
callback The function to be called when the SLP problem is about to be destroyed. callbackreturns an integer value. At present the return value is ignored.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbdestroy.
object Address of a user-defined object, which can be used for any purpose by the function.

object is passed to callback as my_object.
Example The following example sets up a callback to be executed before the SLP problem is destroyed:

p.setcbdestroy(CBDestroy, cSol)

The following sample callback function frees the memory associated with the user-defined object:
def CBDestroy(myprob, Obj):

if Obj is not None:
Obj.inuse = 0

return 0

The object argument is used here to hold the address of the array cSol which we assume wasassigned using one of the malloc functions.
Further informationThis callback can be used when the problem is about to be destroyed to free any user-definedresources which were allocated during the life of the problem.

Fair Isaac Corporation Confidential and Proprietary Information 374

Reference Manual

problem.setcbdrcol

Purpose Set a user callback used to override the update of variables with small determining column
Synopsis

problem.setcbdrcol(callback, object)
newvalue = callback(my_prob, my_object, colindex, drcolindex, drcolvalue,

vlb, vub)

Arguments
callback The function to be called after each column has been cascaded. callback returns aninteger value. If the return value is positive, it will indicate that the value has been fixed,and cascading should be omitted for the variable. A negative value indicates that apreviously fixed value has been relaxed. If no action is taken, a 0 return value should beused.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbcascadevar.
ColIndex The column (i.e. xpress.var object, index, or name) for which the determiningcolumns is checked.
DrColIndex The index of the determining column for the column that is being updated.
DrColValue The value of the determining column in the current SLP iteration.
NewValue Used to return the new value for column ColIndex, should it need to be updated, inwhich case the callback must return a positive value to indicate that this value should beused.
VLB The original lower bound of column ColIndex. The callback provides this value as areference, should the bound be updated or changed during the solution process.
VUB The original upper bound of column ColIndex. The callback provides this value as areference, should the bound be updated or changed during the solution process.
object Address of a user-defined object, which can be used for any purpose. by the function.

object is passed to callback as my_object.
Further informationIf set, this callback is called as part of the cascading procedure. Please see the chapter on cascadingof the SLP Reference Manual for more information.
Related topics

xslp_DRCOLTOL, problem.cascade, problem.setcbcascadeend,
problem.setcbcascadestart

Fair Isaac Corporation Confidential and Proprietary Information 375

Reference Manual

problem.setcbintsol

Purpose Set a user callback to be called during MISLP when an integer solution is obtained
Synopsis

problem.setcbintsol(callback, data)
callback(prob, data)

Arguments
callback The function to be called when an integer solution is obtained.
prob The problem passed to the callback function.
data The user-defined object passed as Object to setcbintsol.

Example The following example sets up a callback to be executed whenever an integer solution is found duringMISLP:
cSol = []
p.setcbintsol(CBIntSol, cSol)

The following sample callback function saves the solution values for the integer solution just found:
def CBIntSol(prob, cSol):

prob.getmipsol(x=cSol, None, None, None)}

Related topics
problem.setcboptnode, problem.setcbprenode

Fair Isaac Corporation Confidential and Proprietary Information 376

Reference Manual

problem.setcbiterend

Purpose Set a user callback to be called at the end of each SLP iteration
Synopsis

problem.setcbiterend(callback, object)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the end of each SLP iteration. callback returns an integervalue. If the return value is nonzero, the SLP iterations will stop.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbiterend.
object Address of a user-defined object, which can be used for any purpose by the function.

object is passed to callback as my_object.
Example The following example sets up a callback to be executed at the end of each SLP iteration. It records thenumber of LP iterations in the latest optimization and stops if there were fewer than 10:

p.setcbiterend(CBIterEnd, None)

A suitable callback function might resemble this:
def CBIterEnd(MyProb, Obj):

niter = MyProb.attributes.simplexiter
return (niter < 10)

The object argument is not used here, and so is passed as None.
Further informationThis callback can be used at the end of each SLP iteration to carry out any further processing and/orstop any further SLP iterations.
Related topics

problem.setcbiterstart, problem.setcbitervar

Fair Isaac Corporation Confidential and Proprietary Information 377

Reference Manual

problem.setcbiterstart

Purpose Set a user callback to be called at the start of each SLP iteration
Synopsis

problem.setcbiterstart(callback, object)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the start of each SLP iteration. callback returns an integervalue. If the return value is nonzero, the SLP iterations will stop.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbiterstart.
object Address of a user-defined object, which can be used for any purpose by the function.

object is passed to callback as my_object.
Example The following example sets up a callback to be executed at the start of the optimization to save to savethe values of the variables from the previous iteration:

p.setcbiterstart(CBIterStart, cSol)

A suitable callback function might resemble this:
def CBIterStart(MyProb, Obj):

niter = MyProb.attributes.xslp_iter
if nIter == 0:

return 0 # no previous solution
Obj = []
MyProb.getsol(Obj, None, None, None)
return 0

The object argument is used here to hold the address of the array cSol which we populate with thesolution values.
Further informationThis callback can be used at the start of each SLP iteration before the optimization begins.
Related topics

problem.setcbiterend, problem.setcbitervar

Fair Isaac Corporation Confidential and Proprietary Information 378

Reference Manual

problem.setcbitervar

Purpose Set a user callback to be called after each column has been tested for convergence
Synopsis

problem.setcbitervar(callback, object)
retval = callback(my_prob, my_object, colindex)

Arguments
callback The function to be called after each column has been tested for convergence.

callback returns an integer value. The return value is interpreted as a convergencestatus. The possible values are:
< 0 The variable has not converged;
0 The convergence status of the variable is unchanged;
1 to 10 The column has converged on a system-defined convergence criterion(these values should not normally be returned);
> 10 The variable has converged on user criteria.

my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbitervar.
ColIndex The number of the column which has been tested for convergence.
object A user-defined object, which can be used for any purpose by the function. object ispassed to callback as my_object.

Example The following example sets up a callback to be executed after each variable has been tested forconvergence. The user object Important is an integer array which has already been set up and holdsa flag for each variable indicating whether it is important that it converges.
Obj = None
p.setcbitervar(CBIterVar, Obj)

The following sample callback function tests if the variable is already converged. If not, then it checks ifthe variable is important. If it is not important, the function returns a convergence status of 99.
def CBIterVar(MyProb, Obj, iCol):

(a,b,c,d,e,f,g,h,i,converged,j,k,l,m,n) = MyProb.getvar(iCol)
if converged:

return 0
if Obj[iCol]:

return 99
return -1

The object argument is used here to hold the address of the array Important.
Further informationThis callback can be used after each variable has been checked for convergence, and allows theconvergence status to be reset if required.
Related topics

problem.setcbiterend, problem.setcbiterstart

Fair Isaac Corporation Confidential and Proprietary Information 379

Reference Manual

problem.setcbmessage

Purpose Set a user callback to be called whenever Xpress Nonlinear outputs a line of text
Synopsis

problem.setcbmessage(callback, object)
callback(my_prob, my_object, msg, msgtype)

Arguments
callback The function to be called whenever Xpress Nonlinear outputs a line of text. callbackdoes not return a value.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbmessage.
msg String to be output.
msgtype Type of message. The following are system-defined:

1 Information message
3 Warning message
4 Error messageA negative value indicates that the Optimizer is about to finish and any buffers shouldbe flushed at this time. User-defined values are also possible for msgtype.

object Address of a user-defined object, which can be used for any purpose by the function.
object is passed to callback as my_object.

Example The following example creates a log file into which all messages are placed. System messages arealso printed on standard output:
log = ''
p.setcbmessage(CBMessage, log)

A suitable callback function could resemble the following:
def CBMessage(Obj, msg, msgtype):

if msgtype < 0:
print(log)
log = ''
return

if msgtype >= 1 and msgtype <= 4:
print(msg)

else:
log += msg + ';'

Further informationIf a user message callback is defined, screen output is automatically disabled.
Output can be directed into a log file by using problem.setlogfile.
Also, because of Python’s garbage collection functions, it is advised to explicitly delete a problem at theend of its use (with the del command) if a message callback was set for that problem using
setcbmessage. def CBMessage(Obj, msg, msgtype): pass
p = xp.problem() p.setcbmessage(CBMessage, None) [...] del p

Related topics
problem.setlogfile

Fair Isaac Corporation Confidential and Proprietary Information 380

Reference Manual

problem.setcbmsjobend

Purpose Set a user callback to be called every time a new multistart job finishes. Can be used to overwrite thedefault solution ranking function
Synopsis

problem.setcbmsjobend(callback, object)
status = callback(my_prob, my_object, job_object, description)

Arguments
callback The function to be called when a new multistart job is created
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbmsjobend.
job_object Job specific user-defined object, as specified in by the multistart job creating APIfunctions.
description The description of the problem as specified in by the multistart job creating APIfunctions.
status User return status variable:0 - use the default evaluation of the finished job1 - disregard the result and continue2 - stop the multistart search

Further informationThe multistart pool is dynamic, and this callback can be used to load new multistart jobs using thenormal API functions.
Related topics

problem.setcbmsjobstart, problem.setcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 381

Reference Manual

problem.setcbmsjobstart

Purpose Set a user callback to be called every time a new multistart job is created, and the pre-loaded settingsare applied
Synopsis

problem.setcbmsjobstart(callback, object)
status = callback(my_prob, my_object, job_object, description)

Arguments
callback The function to be called when a new multistart job is created;
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbmsjobstart.
job_object Job specific user-defined object, as specified in by the multistart job creating APIfunctions.
description The description of the problem as specified in by the multistart job creating APIfunctions.
status User return status variable:0 - normal return, solve the job,1 - disregard this job and continue,2 - Stop multistart.

Further informationAll mulit-start jobs operation on an independent copy of the original problem, and any modification tothe problem is allowed, including structural changes. Please note however, that any modification will becarried over to the base problem, should a modified problem be declared the winner prob.
Related topics

problem.setcbmsjobend, problem.setcbmswinner

Fair Isaac Corporation Confidential and Proprietary Information 382

Reference Manual

problem.setcbmswinner

Purpose Set a user callback to be called every time a new multistart job is created, and the pre-loaded settingsare applied
Synopsis

problem.setcbmswinner(callback, object)
callback(my_prob, my_object, job_object, description)

Arguments
callback The function to be called when a new multistart job is created
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbmswinner.
job_object Job specific user-defined object, as specified in by the multistart job creating APIfunctions.
description The description of the problem as specified in by the multistart job creating APIfunctions.

Further informationThe multistart pool is dynamic, and this callback can be used to load new multistart jobs using thenormal API functions.
Related topics

problem.setcbmsjobstart, problem.setcbmsjobend

Fair Isaac Corporation Confidential and Proprietary Information 383

Reference Manual

problem.setcboptnode

Purpose Set a user callback to be called during MISLP when an optimal SLP solution is obtained at a node
Synopsis

problem.setcboptnode(callback, object)
feas = callback(prob, object)

Arguments
callback The function to be called when an optimal SLP solution is obtained at a node. It mustreturns an integer value. If the return value is nonzero, or if the feasibility flag is setnonzero, then further processing of the node will be terminated (it is declaredinfeasible).
prob The problem passed to the callback function.
object The user-defined object passed to setcboptnode.
feas Integer containing the feasibility flag. If nonzero, the node is declared infeasible.

Example The following example defines a callback function to be run at each node when an SLP optimal solutionis found. If there are significant penalty errors in the solution, the node is declared infeasible.
p.setcboptnode(CBOptNode, None)

A suitable callback function might resemble the following:
def CBOptNode(prob, data) {

total = prob.attributes.xslp_errorcosts
objval = prob.attributes.xslp_objval
if abs(total) > abs(objval) ⁎ 0.001 and abs(total) > 1:

return 1
else:

return 0

Further informationIf a node is declared infeasible from the callback function, the cost of exploring the node further will beavoided.
This callback must be used in place of setcboptnode when optimizing with MISLP.

Related topics
problem.setcbprenode, problem.setcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 384

Reference Manual

problem.setcbprenode

Purpose Set a user callback to be called during MISLP after the set-up of the SLP problem to be solved at anode, but before SLP optimization
Synopsis

problem.setcbprenode(callback, data)
feas = callback(prob, data)

Arguments
prob The current SLP problem.
callback The function to be called after the set-up of the SLP problem to be solved at a node.

callback returns an integer value. If the return value is nonzero, then furtherprocessing of the node will be terminated (it is declared infeasible).
prob The problem passed to the callback function.
data The user-defined object passed as Object to setcbprenode.
feas feasibility flag. If callback return a nonzero, the node is declared infeasible.

Example The following example sets up a callback function to be executed at each node before the SLPoptimization starts. The array IntList contains a list of integer variables, and the function prints thebounds on these variables.
IntList = [...]
prob.setcbprenode(CBPreNode, IntList)

A suitable callback function might resemble the following:
def CBPreNode(myProb, intlist):

for i in intlist:
LO,UP = [],[]
myProb.getlb(LO,i,i);
myProb.getub(UP,i,i);
lb,ub = LO[0], UP[0]
if lb > 0 or ub < xp.infinity:

print("Col {0}: {1} <= {2}".format(i,lb,ub)
return 0

Further informationIf a node can be identified as infeasible by the callback function, then the initial optimization at thecurrent node is avoided, as well as further exploration of the node.
Related topics

problem.setcboptnode, problem.setcbslpnode

Fair Isaac Corporation Confidential and Proprietary Information 385

Reference Manual

problem.setcbslpend

Purpose Set a user callback to be called at the end of the SLP optimization
Synopsis

problem.setcbslpend(callback, object)
callback(my_prob, my_object)

Arguments
callback The function to be called at the end of the SLP optimization. callback returns aninteger value. If the return value is nonzero, the optimization will return an error codeand the "User Return Code" error will be set.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbslpend.
object Address of a user-defined object, which can be used for any purpose by the function.

object is passed to callback as my_object.
Example The following example sets up a callback to be executed at the end of the SLP optimization. It frees thememory allocated to the object created when the optimization began:

ObjData = None
p.setcbslpend(CBSlpEnd, ObjData)

A suitable callback function might resemble this:
def CBSlpEnd(MyProb, Obj):

if Obj is not None:
Obj = []

return 0

Further informationThis callback can be used at the end of the SLP optimization to carry out any further processing orhousekeeping before the optimization function returns.
Related topics

problem.setcbslpstart

Fair Isaac Corporation Confidential and Proprietary Information 386

Reference Manual

problem.setcbslpnode

Purpose Set a user callback to be called during MISLP after the SLP optimization at each node.
Synopsis

problem.setcbslpnode(callback, object)
(retval, feas) = callback(my_prob, my_object)

Arguments
callback The function to be called after the set-up of the SLP problem to be solved at a node.

callback returns an integer value. If the return value is nonzero, or if the feasibility flagis set nonzero, then further processing of the node will be terminated (it is declaredinfeasible).
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbslpnode.
feas Address of an integer containing the feasibility flag. If callback sets the flag nonzero,the node is declared infeasible.
object Address of a user-defined object, which can be used for any purpose by the function.

object is passed to callback as my_object.
Example The following example sets up a callback function to be executed at each node after the SLPoptimization finishes. If the solution value is worse than a target value (referenced through the userobject), the node is cut off (it is declared infeasible).

objtarget = []
p.setcbslpnode(CBSLPNode, objtarget)

A suitable callback function might resemble the following:
def CBSLPNode(my_prob, my_obj):

lpval = my_prob.attributes.lpobjval
return (0, (lpval < my_obj))

Further informationIf a node can be cut off by the callback function, then further exploration of the node is avoided.

Fair Isaac Corporation Confidential and Proprietary Information 387

Reference Manual

problem.setcbslpstart

Purpose Set a user callback to be called at the start of the SLP optimization
Synopsis

problem.setcbslpstart(callback, object)
retval = callback(my_prob, my_object)

Arguments
callback The function to be called at the start of the SLP optimization. callback returns aninteger value. If the return value is nonzero, the optimization will not be carried out.
my_prob The problem passed to the callback function.
my_object The user-defined object passed as object to setcbslpstart.
object User-defined object, which can be used for any purpose by the function. object ispassed to callback as my_object.

Example The following example sets up a callback to be executed at the start of the SLP optimization:
Objdata = []
p.setcbslpstart(CBSlpStart, Objdata)

A suitable callback function might resemble this:
def CBSlpStart(object):

object.append(1)
return 0

Further informationThis callback can be used at the start of the SLP optimization to carry out any housekeeping before theoptimization actually starts. Note that a nonzero return code from the callback will terminate theoptimization immediately.
Related topics

problem.setcbslpend

Fair Isaac Corporation Confidential and Proprietary Information 388

Reference Manual

problem.setControl

Purpose Sets one or more controls of a problem.
Synopsis

problem.setControl(string, value)

Example

p = xpress.problem()
p.setControl('miprelstop', 1e-4)
p.setControl({'feastol': 1e-4, 'presolve': 0})

Further information
1. As mentioned in the previous chapter, there is an alternative way to set and retrieve controls. It worksby querying the data structure controls of each problem or, if one wants to set a control to be used byall problems defined subsequently, the global control object xpress.controls.
2. This function can be used in two ways depending on whether one wants to set one or more controls. Inthe first case, the arguments form a pair (string, value) where the first element is the lower-case nameof a control (see the Xpress Optimizer reference manual for a complete list of controls). In the secondcase, the argument is a Python dictionary whose keys are control name string and whose values are thevalue of the control.

Related topics
problem.getControl.

Fair Isaac Corporation Confidential and Proprietary Information 389

Reference Manual

problem.setcurrentiv

Purpose Transfer the current solution to initial values
Synopsis

problem.setcurrentiv()

Further informationProvides a way to set the current iterates solution as initial values, make changes to parameters or tothe underlying nonlinear problem and then rerun the SLP optimization process.
Related topics

problem.reinitialize, problem.unconstruct

Fair Isaac Corporation Confidential and Proprietary Information 390

Reference Manual

problem.setdefaultcontrol

Purpose Sets one control to its default values. Must be called before the problem is read or loaded by
problem.read and problem.loadproblem.

Synopsis
problem.setdefaultcontrol(control)

Argument
control Name of the control to be set to default.

Example The following turns off presolve to solve a problem, before resetting the control defaults, reading it andsolving it again:
p.controls.presolve = 0
p.mipoptimize("")
p.writeprtsol()
p.setdefaultcontrol('presolve')
p.read()
p.mipoptimize("")

Related topics
xpress.setdefaultcontrol, xpress.setdefaults, problem.setdefaultcontrol.

Fair Isaac Corporation Confidential and Proprietary Information 391

Reference Manual

problem.setdefaults

Purpose Sets all controls to their default values. It must be called before the problem is read with
problem.read or loaded with problem.loadproblem.

Synopsis
problem.setdefaults()

Example The following turns off presolve to solve a problem, before resetting the control defaults, reading it andsolving it again:
p.controls.presolve = 0
p.mipoptimize("")
p.writeprtsol()
p.setdefaults()
p.read()
p.mipoptimize("")

Related topics
xpress.setdefaultcontrol, xpress.setdefaults, problem.setdefaults.

Fair Isaac Corporation Confidential and Proprietary Information 392

Reference Manual

problem.setindicators

Purpose Specifies that a set of rows in the problem will be treated as indicator constraints during a globalsearch. An indicator constraint is made of a condition and a linear inequality. The
condition is of the type "bin = value", where bin is a binary variable and value is either 0 or 1.The linear inequality is any linear row in the problem with type <= (L) or >= (G). During globalsearch, a row configured as an indicator constraint is enforced only when condition holds, that is only ifthe indicator variable bin has the specified value.

Synopsis
problem.setindicators(mrows, inds, comps)

Arguments
mrows Array containing the rows (i.e. xpress.constraint objects, indices, or names) thatdefine the linear inequality part for the indicator constraints.
inds Array containing the columns (i.e. xpress.var objects, indices, or names) of theindicator variables.
comps Array with the complement flags:

0 not an indicator constraint (in this case the corresponding entry in the indsarray is ignored);
1 for indicator constraints with condition "bin = 1";
-1 for indicator constraints with condition "bin = 0";

Example This sets the first two matrix rows as indicator rows in the global problem prob; the first row controlledby condition x4=1 and the second row controlled by condition x5=0 (assuming x4 and x5 correspondto columns indices 4 and 5).
p.setindicators([0,1],[4,5],[1,-1])
p.mipoptimize("")

Further informationIndicator rows must be set up before solving the problem. Any indicator row will be removed from theproblem after presolve and added to a special pool. An indicator row will be added back into the activematrix only when its associated condition holds. An indicator variable can be used in multiple indicatorrows and can also appear in normal rows and in the objective function.
Related topics

problem.getindicators.

Fair Isaac Corporation Confidential and Proprietary Information 393

Reference Manual

problem.setlogfile

Purpose This directs all Optimizer output to a log file.
Synopsis

problem.setlogfile(filename)

Argument
filename The name of the file to which all output will be directed. If set to None, redirection of theoutput will stop and all screen output will be turned back on (except for DLL users wherescreen output is always turned off).

Example The following directs output to the file logfile.log:
p = xpress.problem()
p.setlogfile("logfile.log")

Further information
1. It is recommended that a log file be set up for each problem being worked on, since it provides a meansfor obtaining any errors or warnings output by the Optimizer during the solution process.
2. If output is redirected with setlogfile all screen output will be turned off.
3. Alternatively, an output callback can be defined using problem.addcbmessage, which will be calledevery time a line of text is output. Defining a user output callback will turn all screen output off. Todiscard all output messages the OUTPUTLOG integer control can be set to 0.

Related topics
problem.addcbmessage.

Fair Isaac Corporation Confidential and Proprietary Information 394

Reference Manual

problem.setmessagestatus

Purpose Manages suppression of messages.
Synopsis

problem.setmessagestatus(errcode, status)

Arguments
errcode The id number of the message. Refer to the Section 9 of the Xpress Optimizer referencemanual for a list of possible message numbers.
status Non-zero if the message is not suppressed; 0 otherwise.

Example Attempting to optimize a problem that has no matrix loaded gives error 91. The following code uses
setmessagestatus to suppress the error message:

p = xpress.problem()
p.setmessagestatus(91, 0)
p.lpoptimize("")

Further informationIf a message is suppressed globally then the message can only be enabled for any problem once theglobal suppression is removed with a call to setmessagestatus with prob passed as None.
Related topics

problem.getmessagestatus.

Fair Isaac Corporation Confidential and Proprietary Information 395

Reference Manual

problem.setObjective

Purpose Sets the objective function of the problem.
Synopsis

problem.setObjective(expr, sense=xpress.minimize)

Arguments
expr A linear or quadratic function of the variables that were added to the problem prior tothis call. An error will be returned if any variable in the linear or quadratic part of theobjective was not added to the problem via addVariable.
sense Either xpress.minimize or xpress.maximize.

Example The following example sets the objective function of the problem to [2x21 + 3x1x2 + 5x22 + 4x1 + 4]:
x1 = xpress.var()
x2 = xpress.var()
p = xpress.problem()
p.addVariable(x1, x2)
p.setObjective(2⁎x1⁎⁎2 + 3⁎x1⁎x2 + 5⁎x2⁎⁎2 + 4⁎x1 + 4)

Further informationMultiple calls to setObjective are allowed, and each replaces the old objective function with a newone.
Related topics

problem.addVariable.

Fair Isaac Corporation Confidential and Proprietary Information 396

Reference Manual

problem.setprobname

Purpose Sets the current default problem name.
Synopsis

problem.setprobname(probname)

Argument
probname A string of up to MAXPROBNAMELENGTH characters containing the problem name.

Related topics
problem.read, problem.name, MAXPROBNAMELENGTH.

Fair Isaac Corporation Confidential and Proprietary Information 397

Reference Manual

problem.solve

Purpose Solves the current problem.
Synopsis

problem.solve(flags)

Argument
flags (optional) a string with flags expressed as characters.

Fair Isaac Corporation Confidential and Proprietary Information 398

Reference Manual

problem.storebounds

Purpose Stores bounds for node separation using user separate callback function.
Synopsis

mindex = problem.storebounds(mcols, type, bds)

Arguments
mcols Array containing the columns (i.e. xpress.var objects, indices, or names).
type Array containing the bounds types:

U indicates an upper bound;
L indicates a lower bound.

bds Array containing the bound values.
mindex Object that the user will use to reference the stored bounds for the Optimizer in

problem.setbranchbounds.
Related topics

problem.setbranchbounds.

Fair Isaac Corporation Confidential and Proprietary Information 399

Reference Manual

problem.storecuts

Purpose Stores cuts into the cut pool, but does not apply them to the current node. These cuts must be explicitlyloaded into the matrix using problem.loadcuts or problem.setbranchcuts before they becomeactive.
Synopsis

problem.storecuts(nodupl, mtype, rtype, rhs, mstart, mindex, mcols,
dmatval)

Arguments
nodupl 0 do not exclude duplicates from the cut pool;

1 duplicates are to be excluded from the cut pool;
2 duplicates are to be excluded from the cut pool, ignoring cut type.

mtype Array containing the cut types. The cut types can be any integer and are used to identifythe cuts.
rtype Character array containing the row types:

L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row.

rhs Array containing the right hand side elements for the cuts.
mstart Array containing offsets into the mcols and dmtval arrays indicating the start of eachcut. This array is of length ncuts+1 where ncuts is the length of drhs, with the lastelement mstart[ncuts] being where cut ncuts+1 would start.
mindex Array where the cuts will be returned.
mcols Array containing the columns in the cuts.
dmatval Array containing the matrix values for the cuts.

Further information
1. storecuts can be used to eliminate duplicate cuts. If the nodupl parameter is set to 1, the cut poolwill be checked for duplicate cuts with a cut type identical to the cuts being added. If a duplicate cut isfound the new cut will only be added if its right hand side value makes the cut stronger. If the cut in thepool is weaker than the added cut it will be removed unless it has been applied to an active node of thetree. If nodupl is set to 2 the same test is carried out on all cuts, ignoring the cut type.
2. storecuts returns a list of the cuts added to the cut pool in the mindex array. If the cut is not addedto the cut pool because a stronger cut exits a None will be returned. The mindex array can be passeddirectly to problem.loadcuts or problem.setbranchcuts to load the most recently stored cutsinto the matrix.
3. The columns and elements of the cuts must be stored contiguously in the mcols and dmtval arrayspassed to storecuts. The starting point of each cut must be stored in the mstart array. Todetermine the length of the final cut the mstart array must be of length ncuts+1 with the last elementof this array containing where the cut ncuts+1 would start.

Related topics
problem.loadcuts, problem.setbranchcuts, Section "Working with the cut manager" of theXpress Optimizer reference manual.

Fair Isaac Corporation Confidential and Proprietary Information 400

Reference Manual

problem.strongbranch

Purpose Performs strong branching iterations on all specified bound changes. For each candidate boundchange, strongbranch performs dual simplex iterations starting from the current optimal solution ofthe base LP, and returns both the status and objective value reached after these iterations.
Synopsis

problem.strongbranch(mbndind, cbndtype, dbndval, itrlimit, dsbobjval,
msbstatus)

Arguments
mbndind Array containing the columns (i.e. xpress.var objects, indices, or names) on whichthe bounds will change.
cbndtype Character array indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

dbndval Array giving the new bound values.
itrlimit Maximum number of LP iterations to perform for each bound change.
dsobjval Objective value of each LP after performing the strong branching iterations.
msbstatus Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.
Example Suppose that the current LP relaxation has two integer columns (columns 0 and 1 which are fractionalsat 0.3 and 1.5, respectively, and we want to perform strong branching in order to choose which tobranch on. This could be done in the following way:

dsbobjval = []
msbstatus = []
p.strongbranch([0,0,1,0], ['','','',''], [1,0,2,1],

1000, dsbobjval, msbstatus)

Further informationPrior to calling strongbranch, the current LP problem must have been solved to optimality and anoptimal basis must be available.

Fair Isaac Corporation Confidential and Proprietary Information 401

Reference Manual

problem.strongbranchcb

Purpose Performs strong branching iterations on all specified bound changes. For each candidate boundchange, strongbranchcb performs dual simplex iterations starting from the current optimal solutionof the base LP, and returns both the status and objective value reached after these iterations.
Synopsis

problem.strongbranchcb(bndind, bndtype, bndval, itrlimit, objval, status,
sbsolvecb, vContext)

ret = sbsolvecb(prob, vContext, ibnd)

Arguments
bndind Array containing the columns (i.e. xpress.var objects, indices, or names) on whichthe bounds will change.
bndtype Character array indicating the type of bound to change:

U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bndval Array giving the new bound values.
itrlimit Maximum number of LP iterations to perform for each bound change.
objval Objective value of each LP after performing the strong branching iterations.
status Status of each LP after performing the strong branching iterations, as detailed for the

LPSTATUS attribute.
sbsolvecb Function to be called after each strong branch has been reoptimized.
vContext User context to be provided for sbsolvecb.
ibnd The index of bound for which sbsolvecb is called.

Further informationPrior to calling strongbranchcb, the current LP problem must have been solved to optimality and anoptimal basis must be available.
strongbranchcb is an extension to problem.strongbranch. If identical input arguments areprovided both will return identical results, the difference being that for the case of
PRSstrongbranchcb the sbnodecb function is called at the end of each LP reoptimization. For eachbranch optimized, the LP can be interrogated: the LP status of the branch is available through checking
LPSTATUS, and the objective function value is available through LPOBJVAL. It is possible to access thefull current LP solution by using problem.getlpsol.

Fair Isaac Corporation Confidential and Proprietary Information 402

Reference Manual

problem.tune

Purpose Begin a tuner session for the current problem. The tuner will solve the problem multiple times whileevaluating a list of control settings and promising combinations of them. When finished, the tuner willselect and set the best control setting on the problem. Note that the direction of optimization is givenby xpress.attributes.objsense.
Synopsis

problem.tune(flags)

Argument
flags Flags to specify whether to tune the current problem as an LP or a MIP problem, andthe algorithm for solving the LP problem or the initial LP relaxation of the MIP. Theflags are optional. If the argument includes:

l will tune the problem as an LP (mutually exclusive with flag g);
g will tune the problem as a MIP (mutually exclusive with flag l);
d will use the dual simplex method;
p will use the primal simplex method;
b will use the barrier method;
n will use the network simplex method.

Example

p.tune('dp')

This tunes the current problem. The problem type is automatically determined. If it is an LP problem, itwill be solved with a concurrent run of the dual and primal simplex method. If it is a MIP problem, theinitial LP relaxation of the MIP will be solved with a concurrent run of primal and dual simplex.
Further informationPlease refer to the Xpress Optimizer reference manual for a detailed guide of how to use the tuner.

Fair Isaac Corporation Confidential and Proprietary Information 403

Reference Manual

problem.tunerreadmethod

Purpose Load a user defined tuner method from the given file.
Synopsis

problem.tunerreadmethod(methodfile)

Argument
methodfile The method file name, from which the tuner can load a user-defined tuner method.

Example

p.tunerreadmethod('method.xtm')

This loads the tuner method from the method.xtm file.
Further informationPlease refer to the Xpress Optimizer reference manual for more information about the tuner methodand for the format of the tuner method file.

Fair Isaac Corporation Confidential and Proprietary Information 404

Reference Manual

problem.tunerwritemethod

Purpose Writes the current tuner method to a given file or prints it to the console.
Synopsis

problem.tunerwritemethod(methodfile)

Argument
methodfile The file name to which the tuner will write the current tuner method. If the input is

stdout or STDOUT, then the tuner will print the method to the console instead.
Example 1 (Library)

p.tunerwritemethod('method.xtm')

This writes the tuner method to the file method.xtm.
Example 2 (Library)

p.tunerwritemethod('stdout')

This prints the tuner method to the console.
Further informationPlease refer to the Xpress Optimizer reference manual for more information about the tuner methodand for the format of the tuner method file.

Fair Isaac Corporation Confidential and Proprietary Information 405

Reference Manual

problem.unconstruct

Purpose Reset the SLP problem and removes the augmentation structures
Synopsis

problem.unconstruct()

Further informationCan be used to rerun the SLP optimization process with changed parameters or underlying lienar /nonlienar strcutures.
Related topics

problem.reinitialize, problem.setcurrentiv,

Fair Isaac Corporation Confidential and Proprietary Information 406

Reference Manual

problem.updatelinearization

Purpose Updates the current linearization
Synopsis

problem.updatelinearization()

Further informationUpdates the augmented probem (the linearization) to match the current base point. The base point isthe current SLP solution. The values of the SLP variables can be changed using problem.chgvar.
The linearization must be present, and this function can only be called after the problem has beenaugmented by problem.construct.

Related topics
problem.construct

Fair Isaac Corporation Confidential and Proprietary Information 407

Reference Manual

problem.validate

Purpose Validate the feasibility of constraints in a converged solution
Synopsis

problem.validate()

Example The following example sets the validation tolerance parameters, validates the converged solution andretrieves the validation indices.
p.controls.xslp_validationtol_a = 0.001
p.controls.xslp_validationtol_r = 0.001
p.validate()
indexA = p.attributes.xslp_validationindex_a
indexR = p.attributes.xslp_validationindex_r

Further information
validate checks the feasibility of a converged solution against relative and absolute tolerances foreach constraint. The left hand side and the right hand side of the constraint are calculated using theconverged solution values. If the calculated values imply that the constraint is infeasible, then thedifference (D) is tested against the absolute and relative validation tolerances.If D < XSLP_VALIDATIONTOL_Athen the constraint is within the absolute validation tolerance. The total positive (TPos) and negativecontributions (TNeg) to the left hand side are also calculated.If D < MAX(ABS(TPos),ABS(TNeg)) ∗ XSLP_VALIDATIONTOL_Rthen the constraint is within the relative validation tolerance. For each constraint which is outside boththe absolute and relative validation tolerances, validation factors are calculated which are the factorsby which the infeasibility exceeds the corresponding validation tolerance; the smallest factor is printedin the validation report.The validation index xslp_validationindex_a is the largest absolute validation factor multipliedby the absolute validation tolerance; the validation index xslp_validationindex_r is the largestrelative validation factor multiplied by the relative validation tolerance.

Related topics
xslp_validationindex_A, xslp_validationindex_R, xslp_validationtol_A,
xslp_validationtol_R

Fair Isaac Corporation Confidential and Proprietary Information 408

Reference Manual

problem.validatekkt

Purpose Validates the first order optimality conditions also known as the Karush-Kuhn-Tucker (KKT) conditionsversus the currect solution
Synopsis

problem.validatekkt(calculationmode, respectbasisstatus, updatemultipliers,
kktviolationtarget)

Arguments
calculationmode The calculation mode can be:

0 recalculate the reduced costs at the current solution using the current dualsolution.
1 minimize the sum of KKT violations by adjusting the dual solution.
2 perform both.

respectbasisstatus The following ways are defined to assess if a constraint is active:
0 evaluate the recalculated slack activity versus xslp_ECFTOL_R.
1 use the basis status of the slack in the linearized problem if available.
2 use both.

updatemultipliers The calculated values can be:
0 only used to calculate the xslp_validationindex_kmeasure.
1 used to update the current dual solution and reduced costs.

kktviolationtarget When calculating the best KKT multipliers, it is possible to enforce an evendistribution of reduced costs violations by enforcing a bound on them.
Further informationThe bounds enforced by kktviolationtarget are automatically relaxed if the desired accuracycannot be achieved.

Fair Isaac Corporation Confidential and Proprietary Information 409

Reference Manual

problem.validaterow

Purpose Prints an extensive analysis on a given constraint of the SLP problem
Synopsis

problem.validate(row)

Argument
row The row (i.e. xpress.constraint object, index, or name) to be analyzed.

Further informationThe analysis will include the readable format of the original constraint and the augmented constraint.For infeasible constraints, the absolute and relative infeasibility is calculated. Variables in theconstraints are listed including their value in the solution of the last linearization, the internal value (e.g.cascaded), reduced cost, step bound and convergence status. Scaling analysis is also provided.

Fair Isaac Corporation Confidential and Proprietary Information 410

Reference Manual

problem.validatevector

Purpose Validate the feasibility of constraints for a given solution
Synopsis

(suminf, sumscaledinf, obj) = problem.validate(vector)

Arguments
vector A vector of length xpress.attributes.cols containing the solution vector to bechecked.
suminf The sum of infeasibilities.
sumscaledinf The sum of scaled (relative) infeasibilities.
obj The net objective.

Further information
validatevector works the same way as problem.validate, and will update
xslp_validationindex_a and xslp_validationindex_r.

Related topics
Xslp_Validationindex_a, xslp_validationindex_r, xslp_validationtol_a,
xslp_validationtol_r

Fair Isaac Corporation Confidential and Proprietary Information 411

Reference Manual

problem.write

Purpose Writes the current problem to an MPS or LP file.
Synopsis

problem.write(filename, flags)

Arguments
filename A string of up to 200 characters to contain the file name to which the problem is to bewritten. If omitted, the default problem_name is used with a .mps extension, unless the

l flag is used in which case the extension is .lp.
flags (optional) Flags, which can be one or more of the following:

h single precision of numerical values;
o one element per line;
n scaled;
s scrambled vector names;
l output in LP format;
x output MPS file in hexadecimal format.
p obsolete flag (now default behavior).

Example The following example outputs the current problem in full precision, LP format with scrambled vectornames to the file problem_name.lp.
p.write("", "lps")

Further information
1. If problem.loadproblem is used to obtain a problem then there is no association between theobjective function and the N rows in the problem and so a separate N row (called __OBJ___) is createdupon a write. Also, if after a call to read either the objective row or the N row in the problemcorresponding to the objective row are changed, the association between the two is lost and the
__OBJ___ row is created with an write. To remove the objective row from the problem when doing a
read, set keepnrows to -1 before read.

2. The hexadecimal format is useful for saving the exact internal precision of the problem.
3. Warning: If problem.read is used to input a problem, then the input file will be overwritten by writeif a new filename is not specified.

Related topics
problem.read.

Fair Isaac Corporation Confidential and Proprietary Information 412

Reference Manual

problem.writebasis

Purpose Writes the current basis to a file for later input into the Optimizer.
Synopsis

problem.writebasis (filename, flags)

Arguments
filename A string of up to 200 characters containing the file name from which the basis is to bewritten. If omitted, the default problem_name is used with a .bss extension.
flags (optional) Flags to pass to writebasis:

i output the internal presolved basis.
t output a compact advanced form of the basis.
n output basis file containing current solution values.
h output values in single precision.
x output values in hexadecimal format.
p obsolete flag (now default behavior).

Example After an LP has been solved it may be desirable to save the basis for future input as an advancedstarting point for other similar problems. This may save significant amounts of time if the LP iscomplex. The Optimizer input commands might then be:
p.read("myprob", "")
p.lpoptimize("")
p.writebasis("", "")

This reads in a problem file, maximizes the LP and saves the basis. Loading a basis for a MIP problemcan disable some MIP presolve operations which can result in a large increase in solution times so it isgenerally not recommended.
Further information

1. The t flag is only useful for later input to a similar problem using the t flag with problem.readbasis.
2. If the Newton barrier algorithm has been used for optimization then crossover must have beenperformed before there is a valid basis. This basis can then only be used for restarting the simplex(primal or dual) algorithm.
3. writebasis will output the basis for the original problem even if the problem has been presolved.

Related topics
problem.getbasis, problem.readbasis.

Fair Isaac Corporation Confidential and Proprietary Information 413

Reference Manual

problem.writebinsol

Purpose Writes the current MIP or LP solution to a binary solution file for later input into the Optimizer.
Synopsis

problem.writebinsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to bewritten. If omitted, the default problem_name is used with a .sol extension.
flags (optional) Flags to pass to writebinsol:

x output the LP solution.
Example After an LP has been solved or a MIP solution has been found the solution can be saved to file. If a MIPsolution exists it will be written to file unless the x flag is passed to writebinsol in which case the LPsolution will be written.

p.read("myprob", "")
p.mipoptimize("")
p.writebinsol("", "")

Related topics
problem.getlpsol, problem.getmipsol, problem.readbinsol, problem.writesol,
problem.writeprtsol.

Fair Isaac Corporation Confidential and Proprietary Information 414

Reference Manual

problem.writedirs

Purpose Writes the global search directives from the current problem to a directives file.
Synopsis

problem.writedirs(filename)

Argument
filename A string of up to 200 characters containing the file name to which the directives shouldbe written. If omitted (or None), the default problem_name is used with a .dirextension.

Further informationIf the problem has been presolved, only the directives for columns in the presolved problem will bewritten to file.
Related topics

problem.loaddirs.

Fair Isaac Corporation Confidential and Proprietary Information 415

Reference Manual

problem.writeprtsol

Purpose Writes the current solution to a fixed format ASCII file, problem_name.prt.
Synopsis

problem.writeprtsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to bewritten. If omitted, the default problem_name will be used. The extension .prt will beappended.
flags (optional) Flags for writeprtsol are:

x write the LP solution instead of the current MIP solution.
Example This example shows the standard use of this function, outputting the solution to file immediatelyfollowing optimization:

p.read("myprob", "")
p.lpoptimize("")
p.writeprtsol("", "")

Further information
1. The fixed width ASCII format created by this command is not as readily useful as that produced by
problem.writesol. The main purpose of writeprtsol is to create a file that can be sent directly toa printer. The format of this fixed format ASCII file is described in the Xpress Optimizer referencemanual.

2. To create a prt file for a previously saved solution, the solution must first be loaded with the
problem.readbinsol function.

Related topics
problem.getlpsol, problem.getmipsol, problem.readbinsol, problem.writebinsol,
problem.writesol.

Fair Isaac Corporation Confidential and Proprietary Information 416

Reference Manual

problem.writeslxsol

Purpose Creates an ASCII solution file (.slx) using a similar format to MPS files. These files can be read backinto the Optimizer using the problem.readslxsol function.
Synopsis

problem.writeslxsol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to bewritten. If omitted, the default problem_name is used with a .slx extension.
flags (optional) Flags to pass to writeslxsol:

l write the LP solution in case of a MIP problem;
m write the MIP solution;
p use full precision for numerical values;
x use hexadecimal format to write values;
d LP solution only: including dual variables;
s LP solution only: including slack variables;
r LP solution only: including reduced cost.

Example

p.writeslxsol("lpsolution", "")

This saves the MIP solution if the problem contains global entities, or otherwise saves the LP(barrier incase of quadratic problems) solution of the problem.
Related topics

problem.readslxsol, problem.writeprtsol, problem.writebinsol,
problem.readbinsol.

Fair Isaac Corporation Confidential and Proprietary Information 417

Reference Manual

problem.writesol

Purpose Writes the current solution to a CSV format ASCII file, problem_name.asc(and .hdr).
Synopsis

problem.writesol(filename, flags)

Arguments
filename A string of up to 200 characters containing the file name to which the solution is to bewritten. If omitted, the default problem_name will be used. The extensions .hdr and

.asc will be appended.
flags (optional) Flags to control which optional fields are output:

s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (columns), slack (rows);
l lower bound;
u upper bound;
d dj (column; reduced costs), dual value (rows; shadow prices);
r right hand side (rows).
If no flags are specified, all fields are output.Additional flags:
e outputs every MIP or goal programming solution saved;
p outputs in full precision;
q only outputs vectors with nonzero optimum value;
x output the current LP solution instead of the MIP solution.

Example In this example the basis status is output (along with the sequence number) following optimization:
p.read("prob1", "")
p.lpoptimize("")
p.writesol("", "sb")

Further information

1. The command produces two readable files: filename.hdr (the solution header file) and
filename.asc (the CSV foramt solution file). The header file contains summary information, all inone line. The ASCII file contains one line of information for each row and column in the problem. Anyfields appearing in the .asc file will be in the order the flags are described above. The order that theflags are specified by the user is irrelevant.

2. Additionally, the mask control OUTPUTMASKmay be used to control which names are reported to theASCII file. Only vectors whose names match OUTPUTMASK are output. OUTPUTMASK is set by default to"????????", so that all vectors are output.
Related topics

problem.getlpsol, problem.getmipsol, problem.writeprtsol.

Fair Isaac Corporation Confidential and Proprietary Information 418

Reference Manual

branchobj.addbounds

Purpose Adds new bounds to a branch of a user branching object.
Synopsis

branchobj.addbounds(ibranch, bndtype, bndcol, bndval)

Arguments
ibranch The number of the branch to add the new bounds for. This branch must already havebeen created using branchobj.addbranches. Branches are indexed starting fromzero.
bndtype Character array indicating the type of bounds to add:

L Lower bound.
U Upper bound.

bndcol Array containing the columns for the new bounds.
bndval Array giving the bound values.

Fair Isaac Corporation Confidential and Proprietary Information 419

Reference Manual

branchobj.addbranches

Purpose Adds new, empty branches to a user defined branching object.
Synopsis

branchobj.addbranches(nbranches)

Argument
nbranches Number of new branches to create.

Fair Isaac Corporation Confidential and Proprietary Information 420

Reference Manual

branchobj.addcuts

Purpose Adds stored user cuts as new constraints to a branch of a user branching object.
Synopsis

branchobj.addcuts(ibranch, cutind)

Arguments
ibranch The number of the branch to add the cuts for. This branch must already have beencreated using branchobj.addbranches. Branches are indexed starting from zero.
cutind Array containing the user cuts that should be added to the branch.

Related topics
branchobj.addrows.

Fair Isaac Corporation Confidential and Proprietary Information 421

Reference Manual

branchobj.addrows

Purpose Adds new constraints to a branch of a user branching object.
Synopsis

branchobj.addrows(ibranch, rtype, rhs, beg, mcol, val)

Arguments
ibranch The number of the branch to add the new constraints for. This branch must already havebeen created using branchobj.addbranches. Branches are indexed starting fromzero.
rtype Character array indicating the type of constraints to add:

L Less than type.
G Greater than type.
E Equality type.

rhs Array containing the right-hand side values.
beg Array containing the offsets of the mcol and dval arrays of the start of the non zerocoefficients in the new constraints.
mcol Array containing the columns for the non zero coefficients.
dval Array containing the non-zero coefficient values.

Example The following function will create a branching object that branches on constraints x1 + x2 ≥ 1 or
x1 + x2 ≤ 0:

def CreateConstraintBranch(mip, icol):

Create the new object with two empty branches.
bo = xpress.branchobj(mip, isoriginal=True)
bo.addbranches(2)

Add the constraint of the branching object:
x1 + x2 >= 1
x1 + x2 <= 0
bo.addrows(0, 1, 2, ['G'], [1.0], [0], [0,1], [1.0,1.0])
bo.addrows(1, 1, 2, ['L'], [0.0], [0], [0,1], [1.0,1.0])

Set a low priority value so our branch object is picked up
before the default branch candidates.
bo.setpriority(100)

return bo

Fair Isaac Corporation Confidential and Proprietary Information 422

Reference Manual

branchobj.getbounds

Purpose Returns the bounds for a branch of a user branching object. The returned value is the actual number ofbounds returned in the output arrays.
Synopsis

branchobj.getbounds(ibranch, nbounds_size, bndtype, bndcol, bndval)

Arguments
ibranch The number of the branch to get the bounds for.
nbounds_size Maximum number of bounds to return.
bndtype Character array of length nbounds_size where the types of bounds twill be returned:

L Lower bound.
U Upper bound.

bndcol Array of length nbounds_size where the columns will be returned.
bndval Array of length nbounds_size where the bound values will be returned.

Related topics
branchobj.addbounds.

Fair Isaac Corporation Confidential and Proprietary Information 423

Reference Manual

branchobj.getbranches

Purpose Returns the number of branches of a branching object.
Synopsis

branchobj.getbranches()

Related topics
branchobj.addbranches.

Fair Isaac Corporation Confidential and Proprietary Information 424

Reference Manual

branchobj.getid

Purpose Returns the unique identifier assigned to a branching object.
Synopsis

branchobj.getid()

Further information

1. Branching objects associated with existing column entities (binaries, integers, semi–continuous andpartial integers), are given an identifier from 1 to MIPENTS.
2. Branching objects associated with existing Special Ordered Sets are given an identifier from

MIPENTS+1 to MIPENTS+SETS.
3. User created branching objects will always have a negative identifier.

Fair Isaac Corporation Confidential and Proprietary Information 425

Reference Manual

branchobj.getlasterror

Purpose Returns the last error encountered during a call to the given branch object.
Synopsis

(id,msg) = branchobj.getlasterror()

Arguments
id Error code.
msg A string with the last error message relating to the branching object will be returned.

Example The following shows how this function might be used in error checking:
obranch = xpress.branchobj()

try:
obranch.setpreferredbranch(3)

except:
(i,m) = obranch.getlasterror()
print("ERROR when setting preferred branch:", m)

Fair Isaac Corporation Confidential and Proprietary Information 426

Reference Manual

branchobj.getrows

Purpose Returns the constraints for a branch of a user branching object.
Synopsis

branchobj.getrows(ibranch, nrows_size, nelems_size, rtype, rrhs, rbeg,
mcol, dval)

Arguments
ibranch The number of the branch to get the constraints from.
nrows_size Maximum number of rows to return.
nelems_size Maximum number of non zero coefficients to return.
rtype Character array of length nrows_size where the types of the rows will be returned:

L Less than type.
G Greater than type.
E Equality type.

rhs Array of length nrows_size where the right hand side values will be returned.
mbeg Array of length nrows_size which will be filled with the offsets of the mcol and dvalarrays of the start of the non zero coefficients in the returned constraints.
mcol Array of length nelems_size which will be filled with the column indices for the nonzero coefficients.
dval Array of length nelems_size which will be filled with the non zero coefficient values.

Related topics
branchobj.addrows.

Fair Isaac Corporation Confidential and Proprietary Information 427

Reference Manual

branchobj.setpreferredbranch

Purpose Specifies which of the child nodes corresponding to the branches of the object should be explored first.
Synopsis

branchobj.setpreferredbranch(ibranch)

Argument
ibranch The number of the branch to mark as preferred.

Fair Isaac Corporation Confidential and Proprietary Information 428

Reference Manual

branchobj.setpriority

Purpose Sets the priority value of a user branching object.
Synopsis

branchobj.setpriority(ipriority)

Argument
ipriority The new priority value to assign to the branching object, which must be a number from 0to 1000. User branching objects are created with a default priority value of 500.

Further information
1. A candidate branching object with lowest priority number will always be selected for branching beforean object with a higher number.
2. Priority values must be an integer from 0 to 1000. User branching objects and global entities are bydefault assigned a priority value of 500. Special branching objects, such as those arising fromstructural branches or split disjunctions are assigned a priority value of 400.

Fair Isaac Corporation Confidential and Proprietary Information 429

Reference Manual

branchobj.store

Purpose Adds a new user branching object to the Optimizer’s list of candidates for branching. This function isavailable only through the callback function set by problem.addcboptnode.
Synopsis

status = branchobj.store()

Argument
status The returned status from checking the provided branching object:

0 The object was accepted successfully.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.
The object was not added to the candidate list if a non zero status is returned.

Further information
1. To ensure that a user branching object expressed in terms of the original matrix columns can beapplied to the presolved problem, it might be necessary to turn off certain presolve operations.
2. If any of the original matrix columns referred to in the object are unbounded, dual reductions mightprevent the corresponding bound or constraint from being presolved. To avoid this, dual reductionsshould be turned off in presolve, by clearing bit 3 of the integer control PRESOLVEOPS.
3. If one or more of the original matrix columns of the object are duplicates in the original matrix, but notin the branching object, it might not be possible to presolve the object due to duplicate columneliminations in presolve. To avoid this, duplicate column eliminations should be turned off in presolve,by clearing bit 5 of PRESOLVEOPS.
4. As an alternative to turning off the above mentioned presolve features, it is possible to protect individualcolumns of a the problem from being modified by presolve. Use the problem.loadsecurevecsfunction to mark any columns that might be branched on using branching objects.

Related topics
branchobj.validate.

Fair Isaac Corporation Confidential and Proprietary Information 430

Reference Manual

branchobj.validate

Purpose Verifies that a given branching object is valid for branching on the current branch-and-bound node of aMIP solve. The function will check that all branches are non-empty, and if required, verify that thebranching object can be presolved.
Synopsis

status = branchobj.validate()

Argument
status The returned status from checking the provided branching object:

0 The object is acceptable.
1 Failed to presolve the object due to dual reductions in presolve.
2 Failed to presolve the object due to duplicate column reductions in presolve.
3 The object contains an empty branch.

Fair Isaac Corporation Confidential and Proprietary Information 431

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following sections formore information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a FICOtechnical support engineer. Support is available to all clients who have purchased a FICO product andhave an active support or maintenance contract. You can find support contact information and a link tothe Customer Self Service Portal (online support) on the Product Support home page(www.fico.com/en/product-support).
The FICO Customer Self Service Portal is a secure web portal that is available 24 hours a day, 7 days aweek from the Product Support home page. The portal allows you to open, review, update, and closecases, as well as find solutions to common problems in the FICO Knowledge Base.
Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.Product Education offers instructor-led classroom courses, web-based training, seminars, and trainingtools for both new user enablement and ongoing performance support. For additional information, visitthe Product Education homepage at www.fico.com/en/product-training or emailproducteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and services weprovide. If you have comments or suggestions regarding how we can improve this documentation, letus know by sending your suggestions to techpubs@fico.com.
Please include your contact information (name, company, email address, and optionally, your phonenumber) so we may reach you if we have questions.

Fair Isaac Corporation Confidential and Proprietary Information 432

Contacting FICO

Sales and maintenance

If you need information on other Xpress Optimization products, or you need to discuss maintenancecontracts or other sales-related items, contact FICO by:
� Phone: +1 (408) 535-1500 or +44 207 940 8718
� Web: http://www.fico.com/optimization and use the available contact forms

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of consulting timeto assist you in using FICO Optimization Modeler to meet your business needs. Additional consultingtime can be arranged by contract.
Conferences and Seminars: FICO offers conferences and seminars on our products and services. Forannouncements concerning these events, go to www.fico.com or contact your FICO accountrepresentative.

FICO Community

The FICO Community is a great resource to find the experts and information you need to collaborate,support your business, and solve common business challenges. You can get informal technicalsupport, build relationships with local and remote professionals, and improve your business practices.For additional information, visit the FICO Community (community.fico.com/welcome).

About FICO

FICO (NYSE:FICO) powers decisions that help people and businesses around the world prosper.Founded in 1956 and based in Silicon Valley, the company is a pioneer in the use of predictive analyticsand data science to improve operational decisions. FICO holds more than 165 US and foreign patentson technologies that increase profitability, customer satisfaction, and growth for businesses infinancial services, telecommunications, health care, retail, and many other industries. Using FICOsolutions, businesses in more than 100 countries do everything from protecting 2.6 billion paymentcards from fraud, to helping people get credit, to ensuring that millions of airplanes and rental cars arein the right place at the right time. Learn more at www.fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 433

Index

B
branchobj.addbounds, 419
branchobj.addbranches, 420
branchobj.addcuts, 421
branchobj.addrows, 422
branchobj.getbounds, 423
branchobj.getbranches, 424
branchobj.getid, 425
branchobj.getlasterror, 426
branchobj.getrows, 427
branchobj.setpreferredbranch, 428
branchobj.setpriority, 429
branchobj.store, 430
branchobj.validate, 431
O
object.extractLinear, 65
object.extractQuadratic, 66
P
problem.addcbbariteration, 112
problem.addcbbarlog, 114
problem.addcbchecktime, 115
problem.addcbchgbranchobject, 116
problem.addcbcutlog, 117
problem.addcbdestroymt, 118
problem.addcbgapnotify, 119
problem.addcbgloballog, 121
problem.addcbinfnode, 122
problem.addcbintsol, 123
problem.addcblplog, 124
problem.addcbmessage, 125
problem.addcbmipthread, 126
problem.addcbnewnode, 127
problem.addcbnodecutoff, 128
problem.addcboptnode, 129
problem.addcbpreintsol, 130
problem.addcbprenode, 131
problem.addcbusersolnotify, 132
problem.addcoefs, 133
problem.addcols, 135
problem.addConstraint, 137
problem.addcuts, 138
problem.adddfs, 139
problem.addgencons, 140
problem.addIndicator, 141
problem.addmipsol, 142
problem.addpwlcons, 143
problem.addqmatrix, 144
problem.addrows, 145
problem.addsetnames, 146
problem.addSOS, 147

problem.addtolsets, 148
problem.addVariable, 149
problem.addvars, 150
problem.basisstability, 151
problem.btran, 152
problem.calcobjective, 153
problem.calcreducedcosts, 154
problem.calcslacks, 155
problem.calcsolinfo, 156
problem.cascade, 157
problem.cascadeorder, 158
problem.chgbounds, 159
problem.chgcascadenlimit, 162
problem.chgccoef, 163
problem.chgcoef, 160
problem.chgcoltype, 161
problem.chgdeltatype, 164
problem.chgdf, 165
problem.chgglblimit, 166
problem.chgmcoef, 167
problem.chgmqobj, 168
problem.chgnlcoef, 169
problem.chgobj, 170
problem.chgobjsense, 171
problem.chgqobj, 172
problem.chgqrowcoeff, 173
problem.chgrhs, 174
problem.chgrhsrange, 175
problem.chgrowstatus, 176
problem.chgrowtype, 177
problem.chgrowwt, 178
problem.chgtolset, 179
problem.chgvar, 180
problem.construct, 182
problem.copy, 183
problem.copycallbacks, 184
problem.copycontrols, 185
problem.crossoverlpsol, 186
problem.delcoefs, 187
problem.delConstraint, 188
problem.delcpcuts, 189
problem.delcuts, 190
problem.delgencons, 191
problem.delindicators, 192
problem.delpwlcons, 193
problem.delqmatrix, 194
problem.delSOS, 195
problem.deltolsets, 196
problem.delVariable, 197
problem.delvars, 198
problem.dumpcontrols, 199
problem.estimaterowdualranges, 200

Fair Isaac Corporation Confidential and Proprietary Information 434

Index

problem.evaluatecoef, 201
problem.evaluateformula, 202
problem.fixglobals, 203
problem.fixpenalties, 204
problem.ftran, 205
problem.getAttrib, 206
problem.getattribinfo, 207
problem.getbasis, 208
problem.getbasisval, 209
problem.getccoef, 210
problem.getcoef, 211
problem.getcoefformula, 212
problem.getcoefs, 213
problem.getcolinfo, 214
problem.getcols, 215
problem.getcoltype, 216
problem.getConstraint, 217
problem.getControl, 218
problem.getcontrolinfo, 219
problem.getcpcutlist, 220
problem.getcpcuts, 221
problem.getcutlist, 222
problem.getcutmap, 223
problem.getcutslack, 224
problem.getdf, 226
problem.getdirs, 225
problem.getDual, 227
problem.getdualray, 228
problem.getgencons, 229
problem.getglobal, 230
problem.getiisdata, 231
problem.getIndex, 233
problem.getIndexFromName, 234
problem.getindicators, 235
problem.getinfeas, 236
problem.getlastbarsol, 237
problem.getlasterror, 238
problem.getlb, 239
problem.getlpsol, 240
problem.getlpsolval, 241
problem.getmessagestatus, 242
problem.getmipsol, 243
problem.getmipsolval, 244
problem.getmqobj, 245
problem.getnamelist, 246
problem.getobj, 247
problem.getObjVal, 248
problem.getpivotorder, 249
problem.getpivots, 250
problem.getpresolvebasis, 251
problem.getpresolvemap, 252
problem.getpresolvesol, 253
problem.getprimalray, 254
problem.getProbStatus, 255
problem.getProbStatusString, 256
problem.getpwlcons, 257
problem.getqobj, 258
problem.getqrowcoeff, 259
problem.getqrowqmatrix, 260
problem.getqrowqmatrixtriplets, 261

problem.getqrows, 262
problem.getRCost, 263
problem.getrhs, 264
problem.getrhsrange, 265
problem.getrowinfo, 266
problem.getrows, 267
problem.getrowstatus, 268
problem.getrowtype, 269
problem.getrowwt, 270
problem.getscaledinfeas, 271
problem.getSlack, 272
problem.getslpsol, 273
problem.getSolution, 274
problem.getSOS, 276
problem.gettolset, 277
problem.getub, 278
problem.getunbvec, 279
problem.getvar, 280
problem.getVariable, 282
problem.globalsol, 283
problem.hasdualray, 284
problem.hasprimalray, 285
problem.iisall, 286
problem.iisclear, 287
problem.iisfirst, 288
problem.iisisolations, 289
problem.iisnext, 290
problem.iisstatus, 291
problem.iiswrite, 292
problem.interrupt, 293
problem.loadbasis, 294
problem.loadbranchdirs, 295
problem.loadcoefs, 296
problem.loadcuts, 298
problem.loaddelayedrows, 299
problem.loaddfs, 300
problem.loaddirs, 301
problem.loadlpsol, 302
problem.loadmipsol, 303
problem.loadmodelcuts, 304
problem.loadpresolvebasis, 305
problem.loadpresolvedirs, 306
problem.loadproblem, 307
problem.loadsecurevecs, 309
problem.loadtolsets, 310
problem.loadvars, 311
problem.lpoptimize, 313
problem.mipoptimize, 314
problem.msaddcustompreset, 315
problem.msaddjob, 316
problem.msaddpreset, 317
problem.msclear, 318
problem.name, 319
problem.nlpoptimize, 320
problem.objsa, 321
problem.postsolve, 322
problem.presolve, 323
problem.presolverow, 324
problem.printevalinfo, 326
problem.printmemory, 325

Fair Isaac Corporation Confidential and Proprietary Information 435

Index

problem.read, 327
problem.readbasis, 328
problem.readbinsol, 329
problem.readdirs, 330
problem.readslxsol, 331
problem.refinemipsol, 332
problem.reinitialize, 333
problem.removecbbariteration, 334
problem.removecbbarlog, 335
problem.removecbchecktime, 336
problem.removecbchgbranchobject, 337
problem.removecbcutlog, 338
problem.removecbdestroymt, 339
problem.removecbgapnotify, 340
problem.removecbgloballog, 341
problem.removecbinfnode, 342
problem.removecbintsol, 343
problem.removecblplog, 344
problem.removecbmessage, 345
problem.removecbmipthread, 346
problem.removecbnewnode, 347
problem.removecbnodecutoff, 348
problem.removecboptnode, 349
problem.removecbpreintsol, 350
problem.removecbprenode, 351
problem.removecbusersolnotify, 352
problem.repairinfeas, 353
problem.repairweightedinfeas, 355
problem.repairweightedinfeasbounds, 357
problem.reset, 359
problem.restore, 360
problem.rhssa, 361
problem.save, 362
problem.scale, 363
problem.scaling, 364
problem.setbranchbounds, 365
problem.setbranchcuts, 366
problem.setcbcascadeend, 367
problem.setcbcascadestart, 368
problem.setcbcascadevar, 369
problem.setcbcascadevarfail, 370
problem.setcbcoefevalerror, 371
problem.setcbconstruct, 372
problem.setcbdestroy, 374
problem.setcbdrcol, 375
problem.setcbintsol, 376
problem.setcbiterend, 377
problem.setcbiterstart, 378
problem.setcbitervar, 379
problem.setcbmessage, 380
problem.setcbmsjobend, 381
problem.setcbmsjobstart, 382
problem.setcbmswinner, 383
problem.setcboptnode, 384
problem.setcbprenode, 385
problem.setcbslpend, 386
problem.setcbslpnode, 387
problem.setcbslpstart, 388
problem.setControl, 389
problem.setcurrentiv, 390

problem.setdefaultcontrol, 391
problem.setdefaults, 392
problem.setindicators, 393
problem.setlogfile, 394
problem.setmessagestatus, 395
problem.setObjective, 396
problem.setprobname, 397
problem.solve, 398
problem.storebounds, 399
problem.storecuts, 400
problem.strongbranch, 401
problem.strongbranchcb, 402
problem.tune, 403
problem.tunerreadmethod, 404
problem.tunerwritemethod, 405
problem.unconstruct, 406
problem.updatelinearization, 407
problem.validate, 408
problem.validatekkt, 409
problem.validaterow, 410
problem.validatevector, 411
problem.write, 412
problem.writebasis, 413
problem.writebinsol, 414
problem.writedirs, 415
problem.writeprtsol, 416
problem.writeslxsol, 417
problem.writesol, 418
X
xpress.abs, 67
xpress.acos, 68
xpress.addcbmsghandler, 69
xpress.And, 70
xpress.asin, 71
xpress.atan, 72
xpress.cos, 73
xpress.Dot, 74
xpress.erf, 76
xpress.erfc, 77
xpress.evaluate, 78
xpress.examples, 80
xpress.exp, 81
xpress.featurequery, 82
xpress.free, 83
xpress.getbanner, 84
xpress.getcheckedmode, 85
xpress.getdaysleft, 86
xpress.getlasterror, 87
xpress.getlicerrmsg, 88
xpress.getversion, 89
xpress.init, 90
xpress.log, 91
xpress.log10, 92
xpress.manual, 93
xpress.max, 94
xpress.min, 95
xpress.Or, 96
xpress.Prod, 98
xpress.pwl, 97

Fair Isaac Corporation Confidential and Proprietary Information 436

Index

xpress.removecbmsghandler, 99
xpress.setarchconsistency, 100
xpress.setcheckedmode, 101
xpress.setdefaultcontrol, 103
xpress.setdefaults, 102
xpress.sign, 104
xpress.sin, 105
xpress.sqrt, 106
xpress.Sum, 107
xpress.tan, 108
xpress.user, 109
xpress.vars, 110

Fair Isaac Corporation Confidential and Proprietary Information 437

	Introduction
	Outline
	Installing the Python Xpress module
	Installation from the Python Package Index (PyPI)
	Installation from Conda
	Troubleshooting the installation

	Modeling an optimization problem
	Getting started
	Creating a problem
	Variables
	Variable names and Python objects

	Constraints
	Objective function
	Compact formulation
	Special Ordered Sets (SOSs)
	Indicator constraints
	Piecewise linear functions
	General constraints
	Using loadproblem for efficiency
	Modeling and solving nonlinear problems
	Solving a problem
	Querying a problem
	Reading and writing a problem
	Hints for building models efficiently
	Exceptions

	Using Python numerical libraries
	Using NumPy in the Xpress Python interface
	Products of NumPy arrays

	Controls and Attributes
	Controls
	Examples
	Attributes
	Examples
	Accessing controls and attributes as object members

	Using Callbacks
	Introduction

	Examples of use
	Creating simple problems
	Generating a small Linear Programming problem
	A Mixed Integer Linear Programming problem

	Modeling examples
	A simple model
	Using IIS to investigate an infeasible problem
	Modeling a problem using Python lists and vectors
	A knapsack problem
	A Min-cost-flow problem using NumPy
	A nonlinear model
	Finding the maximum-area n-gon
	Solving the n-queens problem
	Solving Sudoku problems

	Examples using NumPy
	Using NumPy multidimensional arrays to create variables
	Using the dot product to create arrays of expressions
	Using the Dot product to create constraints and quadratic functions
	Using NumPy to create quadratic optimization problems

	Advanced examples: callbacks and problem querying, modifying, and analysis
	Visualize the branch-and-bound tree of a problem
	Query and modify a simple problem
	Change a problem after solution
	Comparing the coefficients of two equally sized problems
	Combining modeling and API functions
	A simple Traveling Salesman Problem (TSP) solver
	Solving a nonconvex MIQCQP

	Translated Mosel examples

	Reference Manual
	Using this chapter
	Format of the reference

	Global methods of the Xpress module
	Methods of the class problem
	Methods for branching objects
	Methods for adding/removing callbacks of a problem object
	Methods to be used within a callback of a problem object
	object.extractLinear
	object.extractQuadratic
	xpress.abs
	xpress.acos
	xpress.addcbmsghandler
	xpress.And
	xpress.asin
	xpress.atan
	xpress.cos
	xpress.Dot
	xpress.erf
	xpress.erfc
	xpress.evaluate
	xpress.examples
	xpress.exp
	xpress.featurequery
	xpress.free
	xpress.getbanner
	xpress.getcheckedmode
	xpress.getdaysleft
	xpress.getlasterror
	xpress.getlicerrmsg
	xpress.getversion
	xpress.init
	xpress.log
	xpress.log10
	xpress.manual
	xpress.max
	xpress.min
	xpress.Or
	xpress.pwl
	xpress.Prod
	xpress.removecbmsghandler
	xpress.setarchconsistency
	xpress.setcheckedmode
	xpress.setdefaults
	xpress.setdefaultcontrol
	xpress.sign
	xpress.sin
	xpress.sqrt
	xpress.Sum
	xpress.tan
	xpress.user
	xpress.vars
	problem.addcbbariteration
	problem.addcbbarlog
	problem.addcbchecktime
	problem.addcbchgbranchobject
	problem.addcbcutlog
	problem.addcbdestroymt
	problem.addcbgapnotify
	problem.addcbgloballog
	problem.addcbinfnode
	problem.addcbintsol
	problem.addcblplog
	problem.addcbmessage
	problem.addcbmipthread
	problem.addcbnewnode
	problem.addcbnodecutoff
	problem.addcboptnode
	problem.addcbpreintsol
	problem.addcbprenode
	problem.addcbusersolnotify
	problem.addcoefs
	problem.addcols
	problem.addConstraint
	problem.addcuts
	problem.adddfs
	problem.addgencons
	problem.addIndicator
	problem.addmipsol
	problem.addpwlcons
	problem.addqmatrix
	problem.addrows
	problem.addsetnames
	problem.addSOS
	problem.addtolsets
	problem.addVariable
	problem.addvars
	problem.basisstability
	problem.btran
	problem.calcobjective
	problem.calcreducedcosts
	problem.calcslacks
	problem.calcsolinfo
	problem.cascade
	problem.cascadeorder
	problem.chgbounds
	problem.chgcoef
	problem.chgcoltype
	problem.chgcascadenlimit
	problem.chgccoef
	problem.chgdeltatype
	problem.chgdf
	problem.chgglblimit
	problem.chgmcoef
	problem.chgmqobj
	problem.chgnlcoef
	problem.chgobj
	problem.chgobjsense
	problem.chgqobj
	problem.chgqrowcoeff
	problem.chgrhs
	problem.chgrhsrange
	problem.chgrowstatus
	problem.chgrowtype
	problem.chgrowwt
	problem.chgtolset
	problem.chgvar
	problem.construct
	problem.copy
	problem.copycallbacks
	problem.copycontrols
	problem.crossoverlpsol
	problem.delcoefs
	problem.delConstraint
	problem.delcpcuts
	problem.delcuts
	problem.delgencons
	problem.delindicators
	problem.delpwlcons
	problem.delqmatrix
	problem.delSOS
	problem.deltolsets
	problem.delVariable
	problem.delvars
	problem.dumpcontrols
	problem.estimaterowdualranges
	problem.evaluatecoef
	problem.evaluateformula
	problem.fixglobals
	problem.fixpenalties
	problem.ftran
	problem.getAttrib
	problem.getattribinfo
	problem.getbasis
	problem.getbasisval
	problem.getccoef
	problem.getcoef
	problem.getcoefformula
	problem.getcoefs
	problem.getcolinfo
	problem.getcols
	problem.getcoltype
	problem.getConstraint
	problem.getControl
	problem.getcontrolinfo
	problem.getcpcutlist
	problem.getcpcuts
	problem.getcutlist
	problem.getcutmap
	problem.getcutslack
	problem.getdirs
	problem.getdf
	problem.getDual
	problem.getdualray
	problem.getgencons
	problem.getglobal
	problem.getiisdata
	problem.getIndex
	problem.getIndexFromName
	problem.getindicators
	problem.getinfeas
	problem.getlastbarsol
	problem.getlasterror
	problem.getlb
	problem.getlpsol
	problem.getlpsolval
	problem.getmessagestatus
	problem.getmipsol
	problem.getmipsolval
	problem.getmqobj
	problem.getnamelist
	problem.getobj
	problem.getObjVal
	problem.getpivotorder
	problem.getpivots
	problem.getpresolvebasis
	problem.getpresolvemap
	problem.getpresolvesol
	problem.getprimalray
	problem.getProbStatus
	problem.getProbStatusString
	problem.getpwlcons
	problem.getqobj
	problem.getqrowcoeff
	problem.getqrowqmatrix
	problem.getqrowqmatrixtriplets
	problem.getqrows
	problem.getRCost
	problem.getrhs
	problem.getrhsrange
	problem.getrowinfo
	problem.getrows
	problem.getrowstatus
	problem.getrowtype
	problem.getrowwt
	problem.getscaledinfeas
	problem.getSlack
	problem.getslpsol
	problem.getSolution
	problem.getSOS
	problem.gettolset
	problem.getub
	problem.getunbvec
	problem.getvar
	problem.getVariable
	problem.globalsol
	problem.hasdualray
	problem.hasprimalray
	problem.iisall
	problem.iisclear
	problem.iisfirst
	problem.iisisolations
	problem.iisnext
	problem.iisstatus
	problem.iiswrite
	problem.interrupt
	problem.loadbasis
	problem.loadbranchdirs
	problem.loadcoefs
	problem.loadcuts
	problem.loaddelayedrows
	problem.loaddfs
	problem.loaddirs
	problem.loadlpsol
	problem.loadmipsol
	problem.loadmodelcuts
	problem.loadpresolvebasis
	problem.loadpresolvedirs
	problem.loadproblem
	problem.loadsecurevecs
	problem.loadtolsets
	problem.loadvars
	problem.lpoptimize
	problem.mipoptimize
	problem.msaddcustompreset
	problem.msaddjob
	problem.msaddpreset
	problem.msclear
	problem.name
	problem.nlpoptimize
	problem.objsa
	problem.postsolve
	problem.presolve
	problem.presolverow
	problem.printmemory
	problem.printevalinfo
	problem.read
	problem.readbasis
	problem.readbinsol
	problem.readdirs
	problem.readslxsol
	problem.refinemipsol
	problem.reinitialize
	problem.removecbbariteration
	problem.removecbbarlog
	problem.removecbchecktime
	problem.removecbchgbranchobject
	problem.removecbcutlog
	problem.removecbdestroymt
	problem.removecbgapnotify
	problem.removecbgloballog
	problem.removecbinfnode
	problem.removecbintsol
	problem.removecblplog
	problem.removecbmessage
	problem.removecbmipthread
	problem.removecbnewnode
	problem.removecbnodecutoff
	problem.removecboptnode
	problem.removecbpreintsol
	problem.removecbprenode
	problem.removecbusersolnotify
	problem.repairinfeas
	problem.repairweightedinfeas
	problem.repairweightedinfeasbounds
	problem.reset
	problem.restore
	problem.rhssa
	problem.save
	problem.scale
	problem.scaling
	problem.setbranchbounds
	problem.setbranchcuts
	problem.setcbcascadeend
	problem.setcbcascadestart
	problem.setcbcascadevar
	problem.setcbcascadevarfail
	problem.setcbcoefevalerror
	problem.setcbconstruct
	problem.setcbdestroy
	problem.setcbdrcol
	problem.setcbintsol
	problem.setcbiterend
	problem.setcbiterstart
	problem.setcbitervar
	problem.setcbmessage
	problem.setcbmsjobend
	problem.setcbmsjobstart
	problem.setcbmswinner
	problem.setcboptnode
	problem.setcbprenode
	problem.setcbslpend
	problem.setcbslpnode
	problem.setcbslpstart
	problem.setControl
	problem.setcurrentiv
	problem.setdefaultcontrol
	problem.setdefaults
	problem.setindicators
	problem.setlogfile
	problem.setmessagestatus
	problem.setObjective
	problem.setprobname
	problem.solve
	problem.storebounds
	problem.storecuts
	problem.strongbranch
	problem.strongbranchcb
	problem.tune
	problem.tunerreadmethod
	problem.tunerwritemethod
	problem.unconstruct
	problem.updatelinearization
	problem.validate
	problem.validatekkt
	problem.validaterow
	problem.validatevector
	problem.write
	problem.writebasis
	problem.writebinsol
	problem.writedirs
	problem.writeprtsol
	problem.writeslxsol
	problem.writesol
	branchobj.addbounds
	branchobj.addbranches
	branchobj.addcuts
	branchobj.addrows
	branchobj.getbounds
	branchobj.getbranches
	branchobj.getid
	branchobj.getlasterror
	branchobj.getrows
	branchobj.setpreferredbranch
	branchobj.setpriority
	branchobj.store
	branchobj.validate

	Appendix
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	FICO Community
	About FICO

	Index

