
Release 2.1

PyMC

Anand Patil

David Huard

Christopher Fonnesbeck

December 26, 2009

CONTENTS

1 Introduction 1
1.1 Purpose . 1
1.2 Features . 1
1.3 What’s new in version 2 . 1
1.4 Usage . 2
1.5 History . 2
1.6 Relationship to other packages . 3
1.7 Getting started . 3

2 Installation 5
2.1 Dependencies . 5
2.2 Installation using EasyInstall . 6
2.3 Installing from pre-built binaries . 6
2.4 Compiling the source code . 6
2.5 Development version . 7
2.6 Running the test suite . 7
2.7 Bugs and feature requests . 7

3 Tutorial 9
3.1 An example statistical model . 9
3.2 Two types of variables . 10
3.3 Parents and children . 12
3.4 Variables’ values and log-probabilities . 13
3.5 Fitting the model with MCMC . 15
3.6 Fine-tuning the MCMC algorithm . 21
3.7 Beyond the basics . 22

4 Building models 23
4.1 The Stochastic class . 23
4.2 Data . 26
4.3 The Deterministic class . 27
4.4 Containers . 29
4.5 The Potential class . 30
4.6 Graphing models . 32
4.7 Class LazyFunction and caching . 33

5 Fitting models 35

i

5.1 Creating models . 35
5.2 Maximum a posteriori estimates . 37
5.3 Normal approximations . 38
5.4 Markov chain Monte Carlo: the MCMC class . 39
5.5 Step methods . 41

6 Saving and managing sampling results 45
6.1 Accessing Sampled Data . 45
6.2 Saving Data to Disk . 46
6.3 Loading Back a Database . 46
6.4 Backends Description . 47
6.5 Writing a New Backend . 49

7 Model checking and diagnostics 51
7.1 Convergence Diagnostics . 51
7.2 Goodness of Fit . 59

8 Extending PyMC 63
8.1 Nonstandard Stochastics . 63
8.2 User-defined step methods . 63
8.3 New fitting algorithms . 68
8.4 Don’t update stochastic variables’ values in-place . 68

9 Probability distributions 71
9.1 Discrete distributions . 71
9.2 Continuous distributions . 73
9.3 Multivariate discrete distributions . 79
9.4 Multivariate continuous distributions . 80

10 Conclusion 83
10.1 How to get involved . 83

ii

CHAPTER

ONE

Introduction

1.1 Purpose

PyMC is a python module that implements Bayesian statistical models and fitting algorithms, including Markov
chain Monte Carlo. Its flexibility and extensibility make it applicable to a large suite of problems. Along with
core sampling functionality, PyMC includes methods for summarizing output, plotting, goodness-of-fit and con-
vergence diagnostics.

1.2 Features

• Fits Bayesian statistical models with Markov chain Monte Carlo and other algorithms.

• Includes a large suite of well-documented statistical distributions.

• Uses NumPy for numerics wherever possible.

• Includes a module for modeling Gaussian processes.

• Sampling loops can be paused and tuned manually, or saved and restarted later.

• Creates summaries including tables and plots.

• Traces can be saved to the disk as plain text, Python pickles, SQLite or MySQL database, or hdf5 archives.

• Several convergence diagnostics are available.

• Extensible: easily incorporates custom step methods and unusual probability distributions.

• MCMC loops can be embedded in larger programs, and results can be analyzed with the full power of
Python.

1.3 What's new in version 2

• New flexible object model and syntax (not backward-compatible).

• Reduced redundant computations: only relevant log-probability terms are computed, and these are cached.

• Optimized probability distributions.

• New adaptive blocked Metropolis step method.

• Much more!

1

1.4 Usage

First, define your model in a file, say mymodel.py (with comments, of course!):

Import relevant modules
import pymc
import numpy as np

Some data
n = 5*np.ones(4,dtype=int)
x = np.array([-.86,-.3,-.05,.73])

Priors on unknown parameters
alpha = pymc.Normal('alpha',mu=0,tau=.01)
beta = pymc.Normal('beta',mu=0,tau=.01)

Arbitrary deterministic function of parameters
@pymc.deterministic
def theta(a=alpha, b=beta):

"""theta = logit^{-1}(a+b)"""
return pymc.invlogit(a+b*x)

Binomial likelihood for data
d = pymc.Binomial('d', n=n, p=theta, value=np.array([0.,1.,3.,5.]),

\observed=True)

Save this file, then from a python shell (or another file in the same directory), call:

import pymc
import mymodel

S = pymc.MCMC(mymodel, db='pickle')
S.sample(iter=10000, burn=5000, thin=2)
pymc.Matplot.plot(S)

This example will generate 10000 posterior samples, thinned by a factor of 2, with the first half discarded as
burn-in. The sample is stored in a Python serialization (pickle) database.

1.5 History

PyMC began development in 2003, as an effort to generalize the process of building Metropolis-Hastings sam-
plers, with an aim to making Markov chain Monte Carlo (MCMC) more accessible to non-statisticians (particularly
ecologists). The choice to develop PyMC as a python module, rather than a standalone application, allowed the
use MCMC methods in a larger modeling framework. By 2005, PyMC was reliable enough for version 1.0 to be
released to the public. A small group of regular users, most associated with the University of Georgia, provided
much of the feedback necessary for the refinement of PyMC to a usable state.

In 2006, David Huard and Anand Patil joined Chris Fonnesbeck on the development team for PyMC 2.0. This
iteration of the software strives for more flexibility, better performance and a better end-user experience than
any previous version of PyMC.

2 Chapter 1. Introduction

PyMC 2.1 has been released in early 2010. It contains numerous bugfixes and optimizations, as well as a few
new features. This user guide is written for version 2.1.

1.6 Relationship to other packages

PyMC in one of many general-purpose MCMC packages. The most prominent among them is WinBUGS, which
has made MCMC and with it Bayesian statistics accessible to a huge user community. Unlike PyMC, WinBUGS is
a stand-alone, self-contained application. This can be an attractive feature for users without much programming
experience, but others may find it constraining. A related package is JAGS, which provides a more UNIX-like
implementation of the BUGS language. Other packages include Hierarchical Bayes Compiler and a number of R
packages of varying scope.

It would be difficult to meaningfully benchmark PyMC against these other packages because of the unlimited
variety in Bayesian probability models and flavors of the MCMC algorithm. However, it is possible to anticipate
how it will perform in broad terms.

PyMC’s number-crunching is done using a combination of industry-standard libraries (NumPy and the linear
algebra libraries on which it depends) and hand-optimized Fortran routines. For models that are composed of
variables valued as large arrays, PyMC will spend most of its time in these fast routines. In that case, it will be
roughly as fast as packages written entirely in C and faster than WinBUGS. For finer-grained models containing
mostly scalar variables, it will spend most of its time in coordinating Python code. In that case, despite our best
efforts at optimization, PyMC will be significantly slower than packages written in C and on par with or slower
than WinBUGS. However, as fine-grained models are often small and simple, the total time required for sampling
is often quite reasonable despite this poorer performance.

We have chosen to spend time developing PyMC rather than using an existing package primarily because it allows
us to build and efficiently fit any model we like within a full-fledged Python environment. We have emphasized
extensibility throughout PyMC’s design, so if it doesn’t meet your needs out of the box chances are you can make
it do so with a relatively small amount of code. See the testimonials page on the wiki for reasons why other users
have chosen PyMC.

1.7 Getting started

This guide provides all the information needed to install PyMC, code a Bayesian statistical model, run the sampler,
save and visualize the results. In addition, it contains a list of the statistical distributions currently available. More
examples of usage as well as tutorials are available from the PyMC web site.

1.6. Relationship to other packages 3

http://www.mrc-bsu.cam.ac.uk/bugs/
http://www-ice.iarc.fr/~martyn/software/jags/
http://www.cs.utah.edu/~hal/HBC/
http://cran.r-project.org/web/packages/
http://cran.r-project.org/web/packages/
http://code.google.com/p/pymc/wiki/Testimonials
http://code.google.com/p/pymc/
http://code.google.com/p/pymc/wiki/TutorialsAndRecipes

4

CHAPTER

TWO

Installation

PyMC is known to run on Mac OS X, Linux and Windows, but in theory should be able to work on just about any
platform for which Python, a Fortran compiler and the NumPy module are available. However, installing some
extra depencies can greatly improve PyMC’s performance and versatility. The following describes the required
and optional dependencies and takes you through the installation process.

2.1 Dependencies

PyMC requires some prerequisite packages to be present on the system. Fortunately, there are currently only a
few dependencies, and all are freely available online.

• Python version 2.5 or 2.6.

• NumPy (1.4 or newer): The fundamental scientific programming package, it provides a multidimensional
array type and many useful functions for numerical analysis.

• Matplotlib (optional) : 2D plotting library which produces publication quality figures in a variety of image
formats and interactive environments

• pyTables (optional) : Package for managing hierarchical datasets and designed to efficiently and easily
cope with extremely large amounts of data. Requires the HDF5 library.

• pydot (optional) : Python interface to Graphviz’s Dot language, it allows PyMC to create both directed and
non-directed graphical representations of models. Requires the Graphviz library.

• SciPy (optional) : Library of algorithms for mathematics, science and engineering.

• IPython (optional) : An enhanced interactive Python shell and an architecture for interactive parallel
computing.

• nose (optional) : A test discovery-based unittest extension (required to run the test suite).

There are prebuilt distributions that include all required dependencies. For Mac OS X users, we recommend the
MacPython distribution or the Enthought Python Distribution on OS X 10.5 (Leopard) and Python 2.6.1 that ships
with OS X 10.6 (Snow Leopard). Windows users should download and install the Enthought Python Distribution.
The Enthought Python Distribution comes bundled with these prerequisites. Note that depending on the currency
of these distributions, some packages may need to be updated manually.

If instead of installing the prebuilt binaries you prefer (or have) to build pymc yourself, make sure you have a
Fortran and a C compiler. There are free compilers (gfortran, gcc) available on all platforms. Other compilers
have not been tested with PyMC but may work nonetheless.

5

http://www.python.org/.
http://www.scipy.org/NumPy
http://matplotlib.sourceforge.net/
http://www.pytables.org/moin
http://www.hdfgroup.org/HDF5/
http://code.google.com/p/pydot/
http://www.graphviz.org/
http://www.scipy.org/
http://ipython.scipy.org/
http://somethingaboutorange.com/mrl/projects/nose/
http://www.activestate.com/Products/ActivePython/
http://www.enthought.com/products/epddownload.php
http://www.enthought.com/products/epddownload.php

2.2 Installation using EasyInstall

The easiest way to install PyMC is to type in a terminal:

easy_install pymc

Provided EasyInstall (part of the setuptools module) is installed and in your path, this should fetch and install
the package from the Python Package Index. Make sure you have the appropriate administrative privileges to
install software on your computer.

2.3 Installing from pre-built binaries

Pre-built binaries are available for Windows XP and Mac OS X. There are at least two ways to install these:

1. Download the installer for your platform from PyPI.

2. Double-click the executable installation package, then follow the on-screen instructions.

For other platforms, you will need to build the package yourself from source. Fortunately, this should be relatively
straightforward.

2.4 Compiling the source code

First download the source code tarball from PyPI and unpack it. Then move into the unpacked directory and
follow the platform specific instructions.

Windows

One way to compile PyMC on Windows is to install MinGW and MSYS. MinGW is the GNU Compiler Collection
(GCC) augmented with Windows specific headers and libraries. MSYS is a POSIX-like console (bash) with UNIX
command line tools. Download the Automated MinGW Installer and double-click on it to launch the installation
process. You will be asked to select which components are to be installed: make sure the g77 compiler is selected
and proceed with the instructions. Then download and install MSYS-1.0.exe, launch it and again follow the
on-screen instructions.

Once this is done, launch the MSYS console, change into the PyMC directory and type:

python setup.py install

This will build the C and Fortran extension and copy the libraries and python modules in the
C:/Python26/Lib/site-packages/pymc directory.

Mac OS X or Linux

In a terminal, type:

6 Chapter 2. Installation

http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/setuptools
http://pypi.python.org/pypi
http://pypi.python.org/pypi/pymc/
http://pypi.python.org/pypi/pymc/
http://www.mingw.org/
http://www.mingw.org/wiki/MSYS
http://sourceforge.net/projects/mingw/files/
http://downloads.sourceforge.net/mingw/MSYS-1.0.11.exe

python setup.py config_fc --fcompiler gnu95 build
python setup.py install

The above syntax also assumes that you have gFortran installed and available. The sudo command may be
required to install PyMC into the Python site-packages directory if it has restricted privileges.

2.5 Development version

You can check out the bleeding edge version of the code from the subversion repository:

svn checkout http://pymc.googlecode.com/svn/trunk/ pymc

Previous versions are available in the /tags directory.

You can also get the code from the GIT mirror:

git clone git://github.com/pymc-devs/pymc.git pymc

2.6 Running the test suite

pymc comes with a set of tests that verify that the critical components of the code work as expected. To run these
tests, users must have nose installed. The tests are launched from a python shell:

import pymc
pymc.test()

In case of failures, messages detailing the nature of these failures will appear. In case this happens (it shouldn’t),
please report the problems on the issue tracker (the issues tab on the Google Code page), specifying the version
you are using and the environment.

2.7 Bugs and feature requests

Report problems with the installation, bugs in the code or feature request at the issue tracker. Comments and
questions are welcome and should be addressed to PyMC’s mailing list.

2.5. Development version 7

http://subversion.tigris.org/
http://somethingaboutorange.com/mrl/projects/nose/
http://code.google.com/p/pymc/issues/list
http://code.google.com/p/pymc/issues/list
mailto:pymc@googlegroups.com

8

CHAPTER

THREE

Tutorial

This tutorial will guide you through a typical pymc application. Familiarity with Python is assumed, so if you
are new to Python, books such as Lutz [2007] or Langtangen [2009] are the place to start. Plenty of online
documentation can also be found on the Python documentation page.

3.1 An example statistical model

Consider the following dataset, which is a time series of recorded coal mining disasters in the UK from 1851 to
1962 [Jarrett, 1979].

1860 1880 1900 1920 1940 1960
year

0

1

2

3

4

5

6

n
u

m
b

e
r

o
f

d
is

a
st

e
rs

Occurrences of disasters in the time series is thought to be derived from a Poisson process with a large rate
parameter in the early part of the time series, and from one with a smaller rate in the later part. We are interested
in locating the change point in the series, which perhaps is related to changes in mining safety regulations.

We represent our conceptual model formally as a statistical model:

(Dt |s, e, l)∼ Poisson
�

rt
�

, rt =
�

e if t < s
l if t ≥ s , t ∈ [t l , th]

s ∼ Discrete Uniform(t l , th)
e ∼ Exponential(re)
l ∼ Exponential(rl)

(3.1)

The symbols are defined as:

9

http://www.python.org/doc/

Dt : The number of disasters in year t.

rt : The rate parameter of the Poisson distribution of disasters in year t.

s: The year in which the rate parameter changes (the switchpoint).

e: The rate parameter before the switchpoint s.

l: The rate parameter after the switchpoint s.

t l , th: The lower and upper boundaries of year t.

re, rl : The rate parameters of the priors of the early and late rates, respectively.

Because we have defined D by its dependence on s, e and l, the latter three are known as the ‘parents’ of D and
D is called their ‘child’. Similarly, the parents of s are t l and th, and s is the child of t l and th.

3.2 Two types of variables

At the model-specification stage (before the data are observed), D, s, e, r and l are all random variables. Bayesian
‘random’ variables have not necessarily arisen from a physical random process. The Bayesian interpretation of
probability is epistemic, meaning random variable x ’s probability distribution p(x) represents our knowledge and
uncertainty about x ’s value [Jaynes, 2003]. Candidate values of x for which p(x) is high are relatively more
probable, given what we know. Random variables are represented in PyMC by the classes Stochastic and
Deterministic.

The only Deterministic in the model is r. If we knew the values of r ’s parents (s, l and e), we could compute
the value of r exactly. A Deterministic like r is defined by a mathematical function that returns its value
given values for its parents. Deterministic variables are sometimes called the systemic part of the model.
The nomenclature is a bit confusing, because these objects usually represent random variables; since the parents
of r are random, r is random also. A more descriptive (though more awkward) name for this class would be
DeterminedByValuesOfParents.

On the other hand, even if the values of the parents of variables s, D (before observing the data), e or
l were known, we would still be uncertain of their values. These variables are characterized by prob-
ability distributions that express how plausible their candidate values are, given values for their parents.
The Stochastic class represents these variables. A more descriptive name for these objects might be
RandomEvenGivenValuesOfParents.

We can represent model 3.1 in a file called DisasterModel.py (the actual file can be found in ‘pymc/examples/’)
as follows. First, we import the PyMC and NumPy namespaces:

from pymc import DiscreteUniform, Exponential, deterministic, Poisson, Uniform
import numpy as np

Notice that from pymc we have only imported a select few objects that are needed for this particular model,
whereas the entire numpy namespace has been imported, and conveniently given a shorter name. Objects from
NumPy are subsequently accessed by prefixing np. to the name. Either approach is acceptable.

Next, we enter the actual data values into an array:

10 Chapter 3. Tutorial

disasters_array = np.array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3, 0, 0,
1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])

Note that you don’t have to type in this entire array to follow along; the code is available in the source tree, in
‘pymc/examples/DisasterModel.py’. Next, we create the switchpoint variable s:

s = DiscreteUniform('s', lower=0, upper=110, doc='Switchpoint[year]')

DiscreteUniform is a subclass of Stochastic that represents uniformly-distributed discrete variables. Use of
this distribution suggests that we have no preference a priori regarding the location of the switchpoint; all values
are equally likely. Now we create the exponentially-distributed variables e and l for the early and late Poisson
rates, respectively:

e = Exponential('e', beta=1)
l = Exponential('l', beta=1)

Next, we define the variable r, which selects the early rate e for times before s and the late rate l for times
after s. We create r using the deterministic decorator, which converts the ordinary Python function r into a
Deterministic object.

@deterministic(plot=False)
def r(s=s, e=e, l=l):
""" Concatenate Poisson means """

out = np.empty(len(disasters_array))
out[:s] = e
out[s:] = l
return out

The last step is to define the number of disasters D. This is a stochastic variable, but unlike s, e and l we have
observed its value. To express this, we set the argument observed to True (it is set to False by default). This
tells PyMC that this object’s value should not be changed:

D = Poisson('D', mu=r, value=disasters_array, observed=True)

Why are data and unknown variables represented by the same object?

Since its represented by a Stochastic object, D is defined by its dependence on its parent r even though its
value is fixed. This isn’t just a quirk of PyMC’s syntax; Bayesian hierarchical notation itself makes no distinction
between random variables and data. The reason is simple: to use Bayes’ theorem to compute the posterior
p(e, s, l|D) of model 3.1, we require the likelihood p(D|e, s, l). Even though D’s value is known and fixed, we
need to formally assign it a probability distribution as if it were a random variable. Remember, the likelihood

3.2. Two types of variables 11

and the probability function are essentially the same, except that the former is regarded as a function of the
parameters and the latter as a function of the data.

This point can be counterintuitive at first, as many peoples’ instinct is to regard data as fixed a priori and unknown
variables as dependent on the data. One way to understand this is to think of statistical models like (3.1) as
predictive models for data, or as models of the processes that gave rise to data. Before observing the value of D,
we could have sampled from its prior predictive distribution p(D) (i.e. the marginal distribution of the data) as
follows:

1. Sample e, s and l from their priors.

2. Sample D conditional on these values.

Even after we observe the value of D, we need to use this process model to make inferences about e, s and l
because its the only information we have about how the variables are related.

3.3 Parents and children

We have above created a PyMC probability model, which is simply a linked collection of variables. To see the
nature of the links, import or run DisasterModel.py and examine s’s parents attribute from the Python
prompt:

>>> from pymc.examples import DisasterModel
>>> DisasterModel.s.parents
>>> {'lower': 0, 'upper': 110}

The parents dictionary shows us the distributional parameters of s, which are constants. Now let’s examinine
D’s parents:

>>> DisasterModel.D.parents
>>> {'mu': <pymc.PyMCObjects.Deterministic 'r' at 0x3e51a70>}

We are using r as a distributional parameter of D (i.e. r is D’s parent). D internally labels r as mu, meaning r
plays the role of the rate parameter in D’s Poisson distribution. Now examine r ’s children attribute:

>>> DisasterModel.r.children
>>> set([<pymc.distributions.Poisson 'D' at 0x3e51290>])

Because D considers r its parent, r considers D its child. Unlike parents, children is a set (an unordered col-
lection of objects); variables do not associate their children with any particular distributional role. Try examining
the parents and children attributes of the other parameters in the model.

The following ‘directed acyclic graph’ is a visualization of the parent-child relationships in the model. Unobserved
stochastic variables s, e and l are open ellipses, observed stochastic variable D is a filled ellipse and deterministic
variable r is a triangle. Arrows point from parent to child and display the label that the child assigns to the
parent. See section 4.6 for more details.

12 Chapter 3. Tutorial

r

D

mu

e

e

l

 l

s

s

Objects and names As the examples above have shown, pymc objects need to have a name

assigned, such as lower, upper or e. These names are used for storage and post-processing:

� as keys in on-disk databases,

� as node labels in model graphs,

� as axis labels in plots of traces,

� as table labels in summary statistics.

A model instantiated with variables having identical names raises an error to avoid name con�icts in
the database storing the traces. In general however, pymc uses references to the objects themselves,
not their names, to identify variables.

3.4 Variables' values and log-probabilities

All PyMC variables have an attribute called value that stores the current value of that variable. Try examining
D’s value, and you’ll see the initial value we provided for it:

>>> DisasterModel.D.value
>>>
array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3, 5, 4, 5, 3, 1,

4, 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3,
0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0,
0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2,
0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])

If you check e’s, s’s and l ’s values, you’ll see random initial values generated by PyMC:

3.4. Variables' values and log-probabilities 13

>>> DisasterModel.s.value
>>> 44

>>> DisasterModel.e.value
>>> 0.33464706250079584

>>> DisasterModel.l.value
>>> 2.6491936762267811

Of course, since these are Stochastic elements, your values will be different than these. If you check r ’s value,
you’ll see an array whose first s elements are e (here 0.33464706), and whose remaining elements are l (here
2.64919368):

>>> DisasterModel.r.value
>>>
array([0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,

0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,
0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,
0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,
0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,
0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,
0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,
0.33464706, 0.33464706, 0.33464706, 0.33464706, 0.33464706,
0.33464706, 0.33464706, 0.33464706, 0.33464706, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368,
2.64919368, 2.64919368, 2.64919368, 2.64919368, 2.64919368])

To compute its value, r calls the funtion we used to create it, passing in the values of its parents.

Stochastic objects can evaluate their probability mass or density functions at their current values given the
values of their parents. The logarithm of a stochastic object’s probability mass or density can be accessed via the
logp attribute. For vector-valued variables like D, the logp attribute returns the sum of the logarithms of the
joint probability or density of all elements of the value. Try examining s’s and D’s log-probabilities and e’s and l ’s
log-densities:

14 Chapter 3. Tutorial

>>> DisasterModel.s.logp
>>> -4.7095302013123339

>>> DisasterModel.D.logp
>>> -1080.5149888046033

>>> DisasterModel.e.logp
>>> -0.33464706250079584

>>> DisasterModel.l.logp
>>> -2.6491936762267811

Stochastic objects need to call an internal function to compute their logp attributes, as r needed to call an
internal function to compute its value. Just as we created r by decorating a function that computes its value, it’s
possible to create custom Stochastic objects by decorating functions that compute their log-probabilities or
densities (see chapter 4). Users are thus not limited to the set of of statistical distributions provided by PyMC.

Using Variables as parents of other Variables

Let’s take a closer look at our definition of r:

@deterministic(plot=False)
def r(s=s, e=e, l=l):

""" Concatenate Poisson means """
out = np.empty(len(disasters_array))
out[:s] = e
out[s:] = l
return out

The arguments s, e and l are Stochastic objects, not numbers. Why aren’t errors raised when we attempt to
slice array out up to a Stochastic object?

Whenever a variable is used as a parent for a child variable, PyMC replaces it with its value attribute when the
child’s value or log-probability is computed. When r ’s value is recomputed, s.value is passed to the function as
argument s. To see the values of the parents of r all together, look at r.parents.value.

3.5 Fitting the model with MCMC

PyMC provides several objects that fit probability models (linked collections of variables) like ours. The primary
such object, MCMC, fits models with the Markov chain Monte Carlo algorithm Gamerman [1997]. To create an
MCMC object to handle our model, import DisasterModel.py and use it as an argument for MCMC:

>>> from pymc.examples import DisasterModel
>>> from pymc import MCMC
>>> M = MCMC(DisasterModel)

In this case M will expose variables s, e, l, r and D as attributes; that is, M.s will be the same object as
DisasterModel.s.

3.5. Fitting the model with MCMC 15

To run the sampler, call the MCMC object’s isample() (or sample()) method with arguments for the number
of iterations, burn-in length, and thinning interval (if desired):

>>> M.isample(iter=10000, burn=1000, thin=10)

After a few seconds, you should see that sampling has finished normally. The model has been fitted.

What does it mean to �t a model?

‘Fitting’ a model means characterizing its posterior distribution somehow. In this case, we are trying to represent
the posterior p(s, e, l|D) by a set of joint samples from it. To produce these samples, the MCMC sampler randomly
updates the values of s, e and l according to the Metropolis-Hastings algorithm (Gelman et al. [2004]) for iter
iterations.

As the number of samples tends to infinity, the MCMC distribution of s, e and l converges to the stationary
distribution. In other words, their values can be considered as random draws from the posterior p(s, e, l|D).
PyMC assumes that the burn parameter specifies a ‘sufficiently large’ number of iterations for convergence of the
algorithm, so it is up to the user to verify that this is the case (see chapter 7). Consecutive values sampled from
s, e and l are necessarily dependent on the previous sample, since it is a Markov chain. However, MCMC often
results in strong autocorrelation among samples that can result in imprecise posterior inference. To circumvent
this, it is often effective to thin the sample by only retaining every kth sample, where k is an integer value. This
thinning interval is passed to the sampler via the thin argument.

If you are not sure ahead of time what values to choose for the burn and thin parameters, you may want to
retain all the MCMC samples, that is to set burn=0 and thin=1, and then discard the ‘burnin period’ and thin
the samples after examining the traces (the series of samples). See Gelman et al. [2004] for general guidance.

Accessing the samples

The output of the MCMC algorithm is a ‘trace’, the sequence of retained samples for each variable in the model.
These traces can be accessed using the trace(name, chain=-1) method. For example:

>>> M.trace('s')[:]
array([41, 40, 40, ..., 43, 44, 44])

The trace slice [start:stop:step] works just like the NumPy array slice. By default, the returned trace array
contains the samples from the last call to sample, that is, chain=-1, but the trace from previous sampling runs
can be retrieved by specifying the correspondent chain index. To return the trace from all chains, simply use
chain=None.1

Sampling output

You can examine the marginal posterior of any variable by plotting a histogram of its trace:

1Note that the unknown variables s, e, l and r will all accrue samples, but D will not because its value has been observed and is not
updated. Hence D has no trace and calling M.trace('D')[:] will raise an error.

16 Chapter 3. Tutorial

>>> from pylab import hist, show
>>> hist(M.trace('l')[:])
>>>
(array([8, 52, 565, 1624, 2563, 2105, 1292, 488, 258, 45]),
array([0.52721865, 0.60788251, 0.68854637, 0.76921023, 0.84987409,

0.93053795, 1.01120181, 1.09186567, 1.17252953, 1.25319339]),
<a list of 10 Patch objects>)
>>> show()

You should see something like this:

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0

500

1000

1500

2000

2500

3000

PyMC has its own plotting functionality, via the optional matplotlib module as noted in the installation notes.
The Matplot module includes a plot function that takes the model (or a single parameter) as an argument:

>>> from pymc.Matplot import plot
>>> plot(M)

For each variable in the model, plot generates a composite figure, such as this one for the switchpoint in the
disasters model:

3.5. Fitting the model with MCMC 17

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Iteration

30

35

40

45

50

55

s

30 35 40 45 50 55
s

0

500

1000

1500

2000

Fr
e
q
u
e
n
cy

The left-hand pane of this figure shows the temporal series of the samples from s, while the right-hand pane
shows a histogram of the trace. The trace is useful for evaluating and diagnosing the algorithm’s performance
(see Gelman, Carlin, Stern, and Rubin [2004]), while the histogram is useful for visualizing the posterior.

For a non-graphical summary of the posterior, simply call M.stats().

Imputation of Missing Data

As with most “textbook examples", the models we have examined so far assume that the associated data are
complete. That is, there are no missing values corresponding to any observations in the dataset. However,
many real-world datasets contain one or more missing values, usually due to some logistical problem during the
data collection process. The easiest way of dealing with observations that contain missing values is simply to
exclude them from the analysis. However, this results in loss of information if an excluded observation contains
valid values for other quantities, and can bias results. An alternative is to impute the missing values, based on
information in the rest of the model.

For example, consider a survey dataset for some wildlife species:

Count Site Observer Temperature
15 1 1 15
10 1 2 NA
6 1 1 11

Each row contains the number of individuals seen during the survey, along with three covariates: the site on
which the survey was conducted, the observer that collected the data, and the temperature during the survey. If
we are interested in modelling, say, population size as a function of the count and the associated covariates, it is
difficult to accommodate the second observation because the temperature is missing (perhaps the thermometer
was broken that day). Ignoring this observation will allow us to fit the model, but it wastes information that is
contained in the other covariates.

18 Chapter 3. Tutorial

In a Bayesian modelling framework, missing data are accommodated simply by treating them as unknown model
parameters. Values for the missing data ỹ are estimated naturally, using the posterior predictive distribution:

p(ỹ|y) =
∫

p(ỹ|θ) f (θ |y)dθ (3.2)

This describes additional data ỹ , which may either be considered unobserved data or potential future observa-
tions. We can use the posterior predictive distribution to model the likely values of missing data.

Consider the coal mining disasters data introduced previously. Assume that two years of data are missing from
the time series; we indicate this in the data array by the use of an arbitrary placeholder value, None.

x = np.array([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, None, 2, 1, 1, 1, 1, 3, 0, 0,
1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
3, 3, 1, None, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1])

To estimate these values in PyMC, we generate a masked array. These are specialised NumPy arrays that contain a
matching True or False value for each element to indicate if that value should be excluded from any computation.
Masked arrays can be generated using NumPy’s ma.masked_equal function:

>>> masked_data = np.ma.masked_equal(x, value=None)
>>> masked_data
masked_array(data = [4 5 4 0 1 4 3 4 0 6 3 3 4 0 2 6 3 3 5 4 5 3 1 4 4 1 5 5 3
4 2 5 2 2 3 4 2 1 3 -- 2 1 1 1 1 3 0 0 1 0 1 1 0 0 3 1 0 3 2 2 0 1 1 1 0 1 0
1 0 0 0 2 1 0 0 0 1 1 0 2 3 3 1 -- 2 1 1 1 1 2 4 2 0 0 1 4 0 0 0 1 0 0 0 0 0 1
0 0 1 0 1],
mask = [False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False True False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False True
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False],

fill_value=?)

This masked array, in turn, can then be passed to PyMC’s own Impute function, which replaces the missing
values with Stochastic variables of the desired type. For the coal mining disasters problem, recall that disaster
events were modelled as Poisson variates:

3.5. Fitting the model with MCMC 19

>>> from pymc import Impute
>>> D = Impute('D', Poisson, masked_data, mu=r)
>>> D
[<pymc.distributions.Poisson 'D[0]' at 0x4ba42d0>,
<pymc.distributions.Poisson 'D[1]' at 0x4ba4330>,
<pymc.distributions.Poisson 'D[2]' at 0x4ba44d0>,
<pymc.distributions.Poisson 'D[3]' at 0x4ba45f0>,
...
<pymc.distributions.Poisson 'D[110]' at 0x4ba46d0>]

Here r is an array of means for each year of data, allocated according to the location of the switchpoint. Each
element in D is a Poisson Stochastic, irrespective of whether the observation was missing or not. The difference is
that actual observations are data Stochastics (observed=True), while the missing values are non-data Stochas-
tics. The latter are considered unknown, rather than fixed, and therefore estimated by the MCMC algorithm, just
as unknown model parameters.

In this example, we have manually generated the masked array for illustration. In practice, the Impute function
will mask arrays automatically, replacing all None values with Stochastics. Hence, only the original data array
needs to be passed.

The entire model looks very similar to the original model:

Switchpoint
s = DiscreteUniform('s', lower=0, upper=110)
Early mean
e = Exponential('e', beta=1)
Late mean
l = Exponential('l', beta=1)

@deterministic(plot=False)
def r(s=s, e=e, l=l):

"""Allocate appropriate mean to time series"""
out = np.empty(len(disasters_array))
Early mean prior to switchpoint
out[:s] = e
Late mean following switchpoint
out[s:] = l
return out

Where the value of x is None, the value is taken as missing.
D = Impute('D', Poisson, x, mu=r)

The main limitation of this approach for imputation is performance. Because each element in the data array is
modelled by an individual Stochastic, rather than a single Stochastic for the entire array, the number of nodes
in the overall model increases from 4 to 113. This significantly slows the rate of sampling, due to the overhead
costs associated with iterations over individual nodes.

20 Chapter 3. Tutorial

0 200 400 600 800 1000
Iteration

0

1

2

3

4

5

6

7

D
[8

3
]

0 1 2 3 4 5 6 7
D[83]

0

50

100

150

200

250

300

350

400

Fr
e
q
u
e
n
cy

Figure 3.1: Trace and posterior distribution of the second missing data point in the example.

3.6 Fine-tuning the MCMC algorithm

MCMC objects handle individual variables via step methods, which determine how parameters are updated at
each step of the MCMC algorithm. By default, step methods are automatically assigned to variables by PyMC. To
see which step methods M is using, look at its step_method_dict attribute with respect to each parameter:

>>> M.step_method_dict[DisasterModel.s]
>>> [<pymc.StepMethods.DiscreteMetropolis object at 0x3e8cb50>]

>>> M.step_method_dict[DisasterModel.e]
>>> [<pymc.StepMethods.Metropolis object at 0x3e8cbb0>]

>>> M.step_method_dict[DisasterModel.l]
>>> [<pymc.StepMethods.Metropolis object at 0x3e8ccb0>]

The value of step_method_dict corresponding to a particular variable is a list of the step methods M is using
to handle that variable.

You can force M to use a particular step method by calling M.use_step_method before telling it to sample. The
following call will cause M to handle l with a standard Metropolis step method, but with proposal standard
deviation equal to 2:

>>> from pymc import Metropolis
>>> M.use_step_method(Metropolis, DisasterModel.l, proposal_sd=2.)

Another step method class, AdaptiveMetropolis, is better at handling highly-correlated variables. If your
model mixes poorly, using AdaptiveMetropolis is a sensible first thing to try.

3.6. Fine-tuning the MCMC algorithm 21

3.7 Beyond the basics

That was a brief introduction to basic PyMC usage. Many more topics are covered in the subsequent sections,
including:

• Class Potential, another building block for probability models in addition to Stochastic and
Deterministic

• Normal approximations

• Using custom probability distributions

• Object architecture

• Saving traces to the disk, or streaming them to the disk during sampling

• Writing your own step methods and fitting algorithms.

Also, be sure to check out the documentation for the Gaussian process extension, which is available on PyMC’s
download page.

22 Chapter 3. Tutorial

http://code.google.com/p/pymc/downloads/list

CHAPTER

FOUR

Building models

Bayesian inference begins with specification of a probability model relating unknown variables to data. PyMC
provides three basic building blocks for probability models: Stochastic, Deterministic and Potential.

A Stochastic object represents a variable whose value is not completely determined by its parents, and a
Deterministic object represents a variable that is entirely determined by its parents. Stochastic and
Deterministic are subclasses of the Variable class, which only serves as a template for other classes and is
never actually implemented in models.

The third basic class, Potential, represents ‘factor potentials’ (Lauritzen et al. [1990], Jordan [2004]), which
are not variables but simply terms and/or constraints that are multiplied into joint distributions to modify them.
Potential and Variable are subclasses of Node.

PyMC probability models are simply linked groups of Stochastic, Deterministic and Potential objects.
These objects have very limited awareness of the models in which they are embedded and do not themselves
possess methods for updating their values in fitting algorithms. Objects responsible for fitting probability models
are described in chapter 5.

4.1 The Stochastic class

A stochastic variable has the following primary attributes:

value: The variable’s current value.

logp: The log-probability of the variable’s current value given the values of its parents.

A stochastic variable can optionally be endowed with a method called rand, which draws a value for the variable
given the values of its parents1. Stochastic variables have the following additional attributes:

parents: A dictionary containing the variable’s parents. The keys of the dictionary are to the labels assigned to
the parents by the variable, and the values correspond to the actual parents. For example, the keys of s’s
parents dictionary in model (3.1) would be 't_l' and 't_h'. The actual parents (i.e. the values of the
dictionary) may be of any class or type.

children: A set containing the variable’s children.

extended_parents: A set containing all the stochastic variables on which the variable depends either directly
or via a sequence of deterministic variables. If the value of any of these variables changes, the variable will
need to recompute its log-probability.

1Note that the random method does not provide a Gibbs sample unless the variable has no children.

23

extended_children: A set containing all the stochastic variables and potentials that depend on the variable
either directly or via a sequence of deterministic variables. If the variable’s value changes, all of these
variables and potentials will need to recompute their log-probabilities.

observed: A flag (boolean) indicating whether the variable’s value has been observed (is fixed).

dtype: A NumPy dtype object (such as numpy.int) that specifies the type of the variable’s value. The variable’s
value is always cast to this type. If this is None (default) then no type is enforced.

Creation of stochastic variables

There are three main ways to create stochastic variables, called the automatic, decorator, and direct interfaces.

Automatic Stochastic variables with standard distributions provided by PyMC (see chapter 9) can be created
in a single line using special subclasses of Stochastic. For example, the uniformly-distributed discrete
variable s in (3.1) could be created using the automatic interface as follows:

s = DiscreteUniform('s', 1851, 1962, value=1900)

In addition to the classes in chapter 9, scipy.stats.distributions’ random variable classes are
wrapped as Stochastic subclasses if SciPy is installed. These distributions are in the submodule
pymc.SciPyDistributions.

Users can call the class factory stochastic_from_dist to produce Stochastic subclasses of their own
from probability distributions not included with PyMC.

Decorator Uniformly-distributed discrete stochastic variable s in (3.1) could alternatively be created from a
function that computes its log-probability as follows:

@stochastic(dtype=int)
def s(value=1900, t_l=1851, t_h=1962):

"""The switchpoint for the rate of disaster occurrence."""
if value > t_h or value < t_l:

Invalid values
return -numpy.inf

else:
Uniform log-likelihood
return -numpy.log(t_h - t_l + 1)

Note that this is a simple Python function preceded by a Python expression called a decorator, here called
@stochastic. Generally, decorators enhance functions with additional properties or functionality. The
Stochastic object produced by the @stochastic decorator will evaluate its log-probability using the
function s. The value argument, which is required, provides an initial value for the variable. The remain-
ing arguments will be assigned as parents of s (i.e. they will populate the parents dictionary).

To emphasize, the Python function decorated by @stochastic should compute the log-density or log-
probability of the variable. That’s why the return value in the example above is − log(th − t l + 1) rather
than 1/(th− t l + 1).

The value and parents of stochastic variables may be any objects, provided the log-probability func-
tion returns a real number (float). PyMC and SciPy both provide implementations of several standard
probability distributions that may be helpful for creating custom stochastic variables. Based on informal
comparison using version 2.0, the distributions in PyMC tend to be approximately an order of magnitude
faster than their counterparts in SciPy (using version 0.7). See the wiki page on benchmarks.

24 Chapter 4. Building models

http://docs.python.org/glossary.html#term-decorator
http://code.google.com/p/pymc/wiki/Benchmarks

The decorator stochastic can take any of the arguments Stochastic.__init__ takes except
parents, logp, random, doc and value. These arguments include trace, plot, verbose, dtype,
rseed and name.

The decorator interface has a slightly more complex implementation which allows you to specify a random
method for sampling the stochastic variable’s value conditional on its parents.

@stochastic(dtype=int)
def s(value=1900, t_l=1851, t_h=1962):

"""The switchpoint for the rate of disaster occurrence."""

def logp(value, t_l, t_h):
if value > t_h or value < t_l:

return -Inf
else:

return -numpy.log(t_h - t_l + 1)

def random(t_l, t_h):
return numpy.round((t_l - t_h) * random()) + t_l

The stochastic variable again gets its name, docstring and parents from function s, but in this case it will
evaluate its log-probability using the logp function. The random function will be used when s.random()
is called. Note that random doesn’t take a value argument, as it generates values itself.

Direct It’s possible to instantiate Stochastic directly:

def s_logp(value, t_l, t_h):
if value > t_h or value < t_l:

return -Inf
else:

return -numpy.log(t_h - t_l + 1)

def s_rand(t_l, t_h):
return numpy.round((t_l - t_h) * random()) + t_l

s = Stochastic(logp = s_logp,
doc = 'The switchpoint for the rate of disaster occurrence.',
name = 's',
parents = {'t_l': 1851, 't_h': 1962},
random = s_rand,
trace = True,
value = 1900,
dtype=int,
rseed = 1.,
observed = False,
cache_depth = 2,
plot=True,
verbose = 0)

Notice that the log-probability and random variate functions are specified externally and passed to
Stochastic as arguments. This is a rather awkward way to instantiate a stochastic variable; conse-
quently, such implementations should be rare.

4.1. The Stochastic class 25

Don't update stochastic variables' values in-place

Stochastic objects’ values should not be updated in-place. This confuses PyMC’s caching scheme
and corrupts the process used for accepting or rejecting proposed values in the MCMC algorithm.
The only way a stochastic variable’s value should be updated is using statements of the following
form:

A.value = new_value

The following are in-place updates and should never be used:

• A.value += 3

• A.value[2,1] = 5

• A.value.attribute = new_attribute_value.

This restriction becomes onerous if a step method proposes values for the elements of an array-
valued variable separately. In this case, it may be preferable to partition the variable into several
scalar-valued variables stored in an array or list.

4.2 Data

Data are represented by Stochastic objects whose observed attribute is set to True. Although the data
are modelled with statistical distributions, their values should be treated as immutable (since they have been
observed). If a stochastic variable’s observed flag is True, its value cannot be changed, and it won’t be sampled
by the fitting method.

Declaring stochastic variables to be data

In each interface, an optional keyword argument observed can be set to True. In the decorator interface, this
argument is added to the @stochastic decorator:

@stochastic(observed=True)

In the other interfaces, the observed=True argument is added to the initialization arguments:

x = Binomial('x', n=n, p=p, observed=True)

Alternatively, in the decorator interface only, a Stochastic object’s observed flag can be set to true by stacking
an @observed decorator on top of the @stochastic decorator:

@observed
@stochastic(dtype=int)

26 Chapter 4. Building models

4.3 The Deterministic class

The Deterministic class represents variables whose values are completely determined by the values of their
parents. For example, in model (3.1), r is a deterministic variable. Recall it was defined by

rt =
�

e t ≤ s
l t > s ,

so r ’s value can be computed exactly from the values of its parents e, l and s.

A deterministic variable’s most important attribute is value, which gives the current value of the variable
given the values of its parents. Like Stochastic’s logp attribute, this attribute is computed on-demand and
cached for efficiency.

A Deterministic variable has the following additional attributes:

parents: A dictionary containing the variable’s parents. The keys of the dictionary correspond to the labels
assigned to the parents, and the values correspond to the actual parents.

children: A set containing the variable’s children, which must be nodes (variables or potentials).

Deterministic variables have no methods.

Creation of deterministic variables

There are several ways to create deterministic variables:

Automatic A handful of common functions have been wrapped in Deterministic subclasses. These are brief
enough to list:

LinearCombination: Has two parents x and y , both of which must be iterable (i.e. vector-valued). The
value of a linear combination is

∑

i

x T
i yi .

Index: Has two parents x and index. x must be iterable, index must be valued as an integer. The value
of an index is

x[index].

Index is useful for implementing dynamic models, in which the parent-child connections change.

Lambda: Converts an anonymous function (in Python, called lambda functions) to a Deterministic
instance on a single line.

CompletedDirichlet: PyMC represents Dirichlet variables of length k by the first k− 1 elements; since
they must sum to 1, the kth element is determined by the others. CompletedDirichlet appends
the kth element to the value of its parent D.

Logit, InvLogit, StukelLogit, StukelInvLogit: Two common link functions for generalized linear
models and their inverses.

It’s a good idea to use these classes when feasible in order to give hints to step methods.

Elementary operations on variables Certain elementary operations on variables create deterministic variables.
For example:

4.3. The Deterministic class 27

>>> x = MvNormalCov('x',ones(3),eye(3))
>>> y = MvNormalCov('y',ones(3),eye(3))
>>>
>>> print x+y
>>> <pymc.PyMCObjects.Deterministic '(x_add_y)' at 0x105c3bd10>
>>>
>>> print x[0]
>>> <pymc.CommonDeterministics.Index 'x[0]' at 0x105c52390>
>>>
>>> print x[1]+y[2]
>>> <pymc.PyMCObjects.Deterministic '(x[1]_add_y[2])' at 0x105c52410>

All the objects thus created have trace=False and plot=False by default. This convenient method of
generating simple deterministics was inspired by Kerman and Gelman [2004].

Decorator A deterministic variable can be created via a decorator in a way very similar to Stochastic’s deco-
rator interface:

@deterministic
def r(switchpoint = s, early_rate = e, late_rate = l):

"""The rate of disaster occurrence."""
value = zeros(N)
value[:switchpoint] = early_rate
value[switchpoint:] = late_rate
return value

Notice that rather than returning the log-probability, as is the case for Stochastic objects, the function
returns the value of the deterministic object, given its parents. This return value may be of any type, as
is suitable for the problem at hand. Also notice that, unlike for Stochastic objects, there is no value
argument passed, since the value is calculated deterministically by the function itself. Arguments’ keys and
values are converted into a parent dictionary as with Stochastic’s short interface. The deterministic
decorator can take trace, verbose and plot arguments, like the stochastic decorator2.

Direct Deterministic can also be instantiated directly:

2Note that deterministic variables have no observed flag. If a deterministic variable’s value were known, its parents would be restricted
to the inverse image of that value under the deterministic variable’s evaluation function. This usage would be extremely difficult to support
in general, but it can be implemented for particular applications at the StepMethod level.

28 Chapter 4. Building models

def r_eval(switchpoint = s, early_rate = e, late_rate = l):
value = zeros(N)
value[:switchpoint] = early_rate
value[switchpoint:] = late_rate
return value

r = Deterministic(eval = r_eval,
name = 'r',
parents = {'switchpoint': s, 'early_rate': e, 'late_rate': l}),
doc = 'The rate of disaster occurrence.',
trace = True,
verbose = 0,
dtype=float,
plot=False,
cache_depth = 2)

4.4 Containers

In some situations it would be inconvenient to assign a unique label to each parent of a variable. Consider y in
the following model:

x0 ∼ N(0,τx)
x i+1|x i ∼ N(x i ,τx) i = 0, . . . , N − 2

y|x ∼ N

N−1
∑

i=0

x2
i ,τy

!

Here, y depends on every element of the Markov chain x , but we wouldn’t want to manually enter N parent
labels `x_0', `x_1', etc.

This situation can be handled naturally in PyMC:

N = 10
x_0 = Normal('x_0', mu=0, tau=1)

Initialize array of stochastics
x = numpy.empty(N,dtype=object)
x[0] = x_0

Loop over number of elements in N
for i in range(1,N):

Create Normal stochastic, whose mean is the previous element in x
x[i] = Normal('x_%i' % i, mu=x[-1], tau=1)

@observed
@stochastic
def y(value = 1, mu = x, tau = 100):

return normal_like(value, numpy.sum(mu**2), tau)

PyMC automatically wraps array x in an appropriate Container class. The expression `x_%i'%i labels each

4.4. Containers 29

Normal object in the container with the appropriate index i; so if i=1, the name of the corresponding element
becomes `x_1'.

Containers, like variables, have an attribute called value. This attribute returns a copy of the (possibly nested)
iterable that was passed into the container function, but with each variable inside replaced with its corresponding
value.

Containers can currently be constructed from lists, tuples, dictionaries, Numpy arrays, modules, sets or any object
with a __dict__ attribute. Variables and non-variables can be freely mixed in these containers, and different
types of containers can be nested3. Containers attempt to behave like the objects they wrap. All containers are
subclasses of ContainerBase.

Containers have the following useful attributes in addition to value:

• variables

• stochastics

• potentials

• deterministics

• data_stochastics

• step_methods.

Each of these attributes is a set containing all the objects of each type in a container, and within any containers
in the container.

4.5 The Potential class

The joint density corresponding to model (3.1) can be written as follows:

p(D, s, l, e) = p(D|s, l, e)p(s)p(l)p(e).

Each factor in the joint distribution is a proper, normalized probability distribution for one of the variables
conditional on its parents. Such factors are contributed by Stochastic objects.

In some cases, it’s nice to be able to modify the joint density by incorporating terms that don’t correspond to
probabilities of variables conditional on parents, for example:

p(x0, x2, . . . xN−1)∝
N−2
∏

i=0

ψi(x i , x i+1).

In other cases we may want to add probability terms to existing models. For example, suppose we want to
constrain the difference between e and l in (3.1) to be less than 1, so that the joint density becomes

p(D, s, l, e)∝ p(D|s, l, e)p(s)p(l)p(e)I(|e− l|< 1).

It’s possible to express this constraint by adding variables to the model, or by grouping e and l to form a vector-
valued variable, but it’s uncomfortable to do so.

3Nodes whose parents are containers make private shallow copies of those containers. This is done for technical reasons rather than to
protect users from accidental misuse.

30 Chapter 4. Building models

Arbitrary factors such as ψ and the indicator function I(|e − l| < 1) are implemented by objects of class
Potential (Lauritzen et al. [1990] and Jordan [2004] call these terms ‘factor potentials’). Bayesian hierar-
chical notation (cf model (3.1)) doesn’t accomodate these potentials. They are often used in cases where there
is no natural dependence hierarchy, such as the first example above (which is known as a Markov random field).
They are also useful for expressing ‘soft data’ [Christakos, 2002] as in the second example above.

Potentials have one important attribute, logp, the log of their current probability or probability density value
given the values of their parents. The only other attribute of interest is parents, a dictionary containing the
potential’s parents. Potentials have no methods. They have no trace attribute, because they are not variables.
They cannot serve as parents of variables (for the same reason), so they have no children attribute.

An example of soft data

The role of potentials can be confusing, so we will provide another example: we have a dataset t consisting of
the days on which several marked animals were recaptured. We believe that the probability S that an animal is
not recaptured on any given day can be explained by a covariate vector x . We model this situation as follows:

t i |Si ∼ Geometric(Si), i = 1 . . . N

Si = logit−1(β x i), i = 1 . . . N

β ∼ N(µβ , Vβ).

So far, so good. Now suppose we have some knowledge of other related experiments and we have a good idea
of what S will be independent of the value of β . It’s not obvious how to work this ‘soft data’, because as we’ve
written the model S is completely determined by β . There are three options within the strict Bayesian hierarchical
framework:

• Work the soft data into the prior on β .

• Incorporate the data from the previous experiments explicitly into the model.

• Refactor the model so that S is at the bottom of the hierarchy, and assign the prior directly.

Factor potentials provide a convenient way to incorporate the soft data without the need for such major modifi-
cations. We can simply modify the joint distribution from

p(t|S(x ,β))p(β)

to

γ(S)p(t|S(x ,β))p(β),

where the value of γ is large if S’s value is plausible (based on our external information) and small otherwise. We
do not know the normalizing constant for the new distribution, but we don’t need it to use most popular fitting
algorithms. It’s a good idea to check the induced priors on S and β for sanity. This can be done in PyMC by fitting
the model with the data t removed.

It’s important to understand that γ is not a variable, so it does not have a value. That means, among other things,
there will be no γ column in MCMC traces.

Creation of Potentials

There are two ways to create potentials:

4.5. The Potential class 31

Decorator A potential can be created via a decorator in a way very similar to Deterministic’s decorator
interface:

@potential
def psi_i(x_lo = x[i], x_hi = x[i+1]):

"""A pair potential"""
return -(xlo - xhi)**2

The function supplied should return the potential’s current log-probability or log-density as a Numpy
float. The potential decorator can take verbose and cache_depth arguments like the stochastic
decorator.

Direct The same potential could be created directly as follows:

def psi_i_logp(x_lo = x[i], x_hi = x[i+1]):
return -(xlo - xhi)**2

psi_i = Potential(logp = psi_i_logp,
name = 'psi_i',
parents = {'xlo': x[i], 'xhi': x[i+1]},
doc = 'A pair potential',
verbose = 0,
cache_depth = 2)

4.6 Graphing models

The function graph in pymc.graph draws graphical representations of Model (Chapter 5) instances using
GraphViz via the Python package PyDot. See Lauritzen et al. [1990] and Jordan [2004] for more discussion of
useful information that can be read off of graphical models. Note that these authors do not consider deterministic
variables.

The symbol for stochastic variables is an ellipse. Parent-child relationships are indicated by arrows. These arrows
point from parent to child and are labeled with the names assigned to the parents by the children. PyMC’s symbol
for deterministic variables is a downward-pointing triangle. A graphical representation of model 3.1 follows:

r

D

mu

e

e

l

 l

s

s

32 Chapter 4. Building models

D is shaded because it is flagged as data.

The symbol for factor potentials is a rectangle, as in the following model.

aphi
p

zeta

p

gamma

p

c

chi

p

p

psi

p

b

p

p

p

e

p

p

p

d
p

p

p

Factor potentials are usually associated with undirected grahical models. In undirected representations, each
parent of a potential is connected to every other parent by an undirected edge. The undirected representation of
the model pictured above is much more compact:

a

c

b

e

d

Directed or mixed graphical models can be represented in an undirected form by ‘moralizing’, which is done by
the function pymc.graph.moral_graph.

4.7 Class LazyFunction and caching

This section gives an overview of how PyMC computes log-probabilities. This is advanced information that is not
required in order to use PyMC.

4.7. Class LazyFunction and caching 33

The logp attributes of stochastic variables and potentials and the value attributes of deterministic variables are
wrappers for instances of class LazyFunction. Lazy functions are wrappers for ordinary Python functions. A
lazy function L could be created from a function fun as follows:

L = LazyFunction(fun, arguments)

The argument arguments is a dictionary container; fun must accept keyword arguments only. When L’s get()
method is called, the return value is the same as the call

fun(**arguments.value)

Note that no arguments need to be passed to L.get; lazy functions memorize their arguments.

Before calling fun, L will check the values of its arguments’ extended children against an internal cache. This
comparison is done by reference, not by value, and this is part of the reason why stochastic variables’ values cannot
be updated in-place. If the arguments’ extended children’s values match a frame of the cache, the corresponding
output value is returned and fun is not called. If a call to fun is needed, the arguments’ extended children’s
values and the return value replace the oldest frame in the cache. The depth of the cache can be set using the
optional init argument cache_depth, which defaults to 2.

Caching is helpful in MCMC, because variables’ log-probabilities and values tend to be queried multiple times for
the same parental value configuration. The default cache depth of 2 turns out to be most useful in Metropolis-
Hastings-type algorithms involving proposed values that may be rejected.

Lazy functions are implemented in C using Pyrex , a language for writing Python extensions.

34 Chapter 4. Building models

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

CHAPTER

FIVE

Fitting models

PyMC provides three objects that fit models:

• MCMC, which coordinates Markov chain Monte Carlo algorithms. The actual work of updating stochastic
variables conditional on the rest of the model is done by StepMethod objects, which are described in this
chapter.

• MAP, which computes maximum a posteriori estimates.

• NormApprox, which computes the ‘normal approximation’ [Gelman et al., 2004]: the joint distribution of
all stochastic variables in a model is approximated as normal using local information at the maximum a
posteriori estimate.

All three objects are subclasses of Model, which is PyMC’s base class for fitting methods. MCMC and NormApprox,
both of which can produce samples from the posterior, are subclasses of Sampler, which is PyMC’s base class
for Monte Carlo fitting methods. Sampler provides a generic sampling loop method and database support for
storing large sets of joint samples. These base classes are documented at the end of this chapter.

5.1 Creating models

The first argument to any fitting method’s init method, including that of MCMC, is called input. The input
argument can be just about anything; once you have defined the nodes that make up your model, you shouldn’t
even have to think about how to wrap them in a Model instance. Some examples of model instantiation using
nodes a, b and c follow:

• M = Model(set([a,b,c]))

• M = Model({`a': a, `d': [b,c]}) In this case, M will expose a and d as attributes: M.a will be
a, and M.d will be [b,c].

• M = Model([[a,b],c])

• If file MyModule contains the definitions of a, b and c:

import MyModule
M = Model(MyModule)

In this case, M will expose a, b and c as attributes.

35

• Using a ‘model factory’ function:

def make_model(x):
a = Exponential('a',beta=x,value=0.5)

@deterministic
def b(a=a):

return 100-a

@stochastic
def c(value=0.5, a=a, b=b):

return (value-a)**2/b

return locals()

M = Model(make_model(3))

In this case, M will also expose a, b and c as attributes.

The Model class

Model serves as a container for probability models and as a base class for the classes responsible for model fitting,
such as MCMC.

Model’s init method takes the following arguments:

input: Some collection of PyMC nodes defining a probability model. These may be stored in a list, set, tuple,
dictionary, array, module, or any object with a __dict__ attribute.

verbose (optional): An integer controlling the verbosity of the model’s output.

Models’ useful methods are:

draw_from_prior(): Sets all stochastic variables’ values to new random values, which would be a sample
from the joint distribution if all data and Potential instances’ log-probability functions returned zero. If
any stochastic variables lack a random() method, PyMC will raise an exception.

seed(): Same as draw_from_prior, but only stochastics whose rseed attribute is not None are changed.

The helper function graph produces graphical representations of models [Jordan, 2004, see].

Models have the following important attributes:

• variables

• stochastics

• potentials

• deterministics

• observed_stochastics

36 Chapter 5. Fitting models

• step_methods

• value: A copy of the model, with each attribute that is a PyMC variable or container replaced by its value.

• generations: A topological sorting of the stochastics in the model.

In addition, models expose each node they contain as an attribute. For instance, if model M were produced from
model (3.1) M.s would return the switchpoint variable.

5.2 Maximum a posteriori estimates

The MAP class sets all stochastic variables to their maximum a posteriori values using functions in SciPy’s
optimize package. SciPy must be installed to use it. MAP can only handle variables whose dtype is float,
so it will not work on model 3.1. To fit the model in ‘examples/gelman_bioassay.py’ using MAP, do the following

>>> import from pymc.examples import gelman_bioassay
>>> M = MAP(gelman_bioassay)
>>> M.fit()

This call will cause M to fit the model using Nelder-Mead optimization, which does not require derivatives. The
variables in gelman_bioassay have now been set to their maximum a posteriori values:

>>> M.alpha.value
array(0.8465892309923545)
>>> M.beta.value
array(7.7488499785334168)

In addition, the AIC and BIC of the model are now available:

>>> M.AIC
7.9648372671389458
>>> M.BIC
6.7374259893787265

MAP has two useful methods:

fit(method ='fmin', iterlim=1000, tol=.0001): The optimization method may be fmin, fmin_l_-
bfgs_b, fmin_ncg, fmin_cg, or fmin_powell. See the documentation of SciPy’s optimize package
for the details of these methods. The tol and iterlim parameters are passed to the optimization function
under the appropriate names.

revert_to_max(): If the values of the constituent stochastic variables change after fitting, this function will
reset them to their maximum a posteriori values.

If you’re going to use an optimization method that requires derivatives, MAP’s init method can take additional
parameters eps and diff_order. diff_order, which must be an integer, specifies the order of the numerical
approximation (see the SciPy function derivative). The step size for numerical derivatives is controlled by
eps, which may be either a single value or a dictionary of values whose keys are variables (actual objects, not
names).

5.2. Maximum a posteriori estimates 37

http://en.wikipedia.org/wiki/Topological_sort

The useful attributes of MAP are:

logp: The joint log-probability of the model.

logp_at_max: The maximum joint log-probability of the model.

AIC: Akaike’s information criterion for this model [Akaike, 1973, Burnham and Anderson, 2002].

BIC: The Bayesian information criterion for this model [Schwarz, 1978].

One use of the MAP class is finding reasonable initial states for MCMC chains. Note that multiple Model subclasses
can handle the same collection of nodes.

5.3 Normal approximations

The NormApprox class extends the MAP class by approximating the posterior covariance of the model using
the Fisher information matrix, or the Hessian of the joint log probability at the maximum. To fit the model in
‘examples/gelman_bioassay.py’ using NormApprox, do:

>>> N = NormApprox(gelman_bioassay)
>>> N.fit()

The approximate joint posterior mean and covariance of the variables are available via the attributes mu and C:

>>> N.mu[N.alpha]
array([0.84658923])
>>> N.mu[N.alpha, N.beta]
array([0.84658923, 7.74884998])
>>> N.C[N.alpha]
matrix([[1.03854093]])
>>> N.C[N.alpha, N.beta]
matrix([[1.03854093, 3.54601911],

[3.54601911, 23.74406919]])

As with MAP, the variables have been set to their maximum a posteriori values (which are also in the mu attribute)
and the AIC and BIC of the model are available.

In addition, it’s now possible to generate samples from the posterior as with MCMC:

>>> N.sample(100)
>>> N.trace('alpha')[::10]
array([-0.85001278, 1.58982854, 1.0388088 , 0.07626688, 1.15359581,

-0.25211939, 1.39264616, 0.22551586, 2.69729987, 1.21722872])
>>> N.trace('beta')[::10]
array([2.50203663, 14.73815047, 11.32166303, 0.43115426,

10.1182532 , 7.4063525 , 11.58584317, 8.99331152,
11.04720439, 9.5084239])

Any of the database backends can be used (chapter 6).

In addition to the methods and attributes of MAP, NormApprox provides the following methods:

38 Chapter 5. Fitting models

sample(iter): Samples from the approximate posterior distribution are drawn and stored.

isample(iter): An ‘interactive’ version of sample(): sampling can be paused, returning control to the user.

draw: Sets all variables to random values drawn from the approximate posterior.

It provides the following additional attributes:

mu: A special dictionary-like object that can be keyed with multiple variables. N.mu[p1, p2, p3] would return
the approximate posterior mean values of stochastic variables p1, p2 and p3, ravelled and concatenated to
form a vector.

C: Another special dictionary-like object. N.C[p1, p2, p3] would return the approximate posterior covari-
ance matrix of stochastic variables p1, p2 and p3. As with mu, these variables’ values are ravelled and
concatenated before their covariance matrix is constructed.

5.4 Markov chain Monte Carlo: the MCMC class

The MCMC class implements PyMC’s core business: producing ‘traces’ for a model’s variables which can be con-
sidered sequences of joint samples from the posterior. See chapter 3 for an example of basic usage.

MCMC’s primary job is to create and coordinate a collection of ‘step methods’, each of which is responsible for
updating one or more variables. The available step methods are described below. Instructions on how to create
your own step method are available in chapter 8.

MCMC provides the following useful methods:

sample(iter, burn, thin, tune_interval, tune_throughout, save_interval, verbose):
Runs the MCMC algorithm and produces the traces. The iter argument controls the total number
of MCMC iterations. No tallying will be done during the first burn iterations; these samples will be
forgotten. After this burn-in period, tallying will be done each thin iterations. Tuning will be done each
tune_interval iterations. If tune_throughout=False, no more tuning will be done after the burnin
period. The model state will be saved every save_interval iterations, if given.

isample(iter, burn, thin, tune_interval, tune_throughout, save_interval, verbose):
An interactive version of sample. The sampling loop may be paused at any time, returning control to the
user.

use_step_method(method, *args, **kwargs): Creates an instance of step method class method to han-
dle some stochastic variables. The extra arguments are passed to the init method of method. Assigning
a step method to a variable manually will prevent the MCMC instance from automatically assigning one.
However, you may handle a variable with multiple step methods.

goodness(): Calculates goodness-of-fit (GOF) statistics according to Brooks et al. [2000].

save_state(): Saves the current state of the sampler, including all stochastics, to the database. This allows
the sampler to be reconstituted at a later time to resume sampling. This is not supported yet for the RDBMS
backends, sqlite and mysql.

restore_state(): Restores the sampler to the state stored in the database.

stats(): Generates summary statistics for all nodes in the model.

remember(trace_index): Set all variables’ values from frame trace_index in the database.

5.4. Markov chain Monte Carlo: the MCMC class 39

MCMC samplers’ step methods can be accessed via the step_method_dict attribute. M.step_method_-
dict[x] returns a list of the step methods M will use to handle the stochastic variable x.

After sampling, the information tallied by M can be queried via M.db.trace_names. In addition to the values
of variables, tuning information for adaptive step methods is generally tallied. These ‘traces’ can be plotted to
verify that tuning has in fact terminated.

You can produce ‘traces’ for arbitrary functions with zero arguments as well. If you issue the command M._-
funs_to_tally['trace_name'] = f before sampling begins, then each time the model variables’ values
are tallied f will be called with no arguments, and the return value will be tallied. After sampling ends you can
retrieve the trace as M.trace['trace_name']

The Sampler class

MCMC is a subclass of a more general class called Sampler. Samplers fit models with Monte Carlo fitting
methods, which characterize the posterior distribution by approximate samples from it. They are initial-
ized as follows: Sampler(input=None, db='ram', name='Sampler', reinit_model=True, calc_-
deviance=False). The input argument is a module, list, tuple, dictionary, set, or object that contains all
elements of the model, the db argument indicates which database backend should be used to store the samples
(see chapter 6), reinit_model is a boolean flag that indicates whether the model should be re-initialised before
running, and calc_deviance is a boolean flag indicating whether deviance should be calculated for the model
at each iteration. Samplers have the following important methods:

sample(iter, length=None, verbose=0): Samples from the joint distribution. The iter argument con-
trols how many times the sampling loop will be run, and the length argument controls the initial size of
the database that will be used to store the samples.

isample(iter, length=None, verbose=0): The same as sample, but the sampling is done interactively:
you can pause sampling at any point and be returned to the Python prompt to inspect progress and adjust
fitting parameters. While sampling is paused, the following methods are useful:

icontinue(): Continue interactive sampling.

halt(): Truncate the database and clean up.

tally(): Write all variables’ current values to the database. The actual write operation depends on the specified
database backend.

save_state(): Saves the current state of the sampler, including all stochastics, to the database. This allows
the sampler to be reconstituted at a later time to resume sampling. This is not supported yet for the RDBMS
backends, sqlite and mysql.

restore_state(): Restores the sampler to the state stored in the database.

stats(): Generates summary statistics for all nodes in the model.

remember(trace_index): Set all variables’ values from frame trace_index in the database. Note that the
trace_index is different from the current iteration, since not all samples are necessarily saved due to
burning and thinning.

In addition, the sampler attribute deviance is a deterministic variable valued as the model’s deviance at its
current state.

40 Chapter 5. Fitting models

5.5 Step methods

Step method objects handle individual stochastic variables, or sometimes groups of them. They are responsible
for making the variables they handle take single MCMC steps conditional on the rest of the model. Each subclass
of StepMethod implements a method called step(), which is called by MCMC. Step methods with adaptive
tuning parameters can optionally implement a method called tune(), which causes them to assess performance
so far and adjust.

The major subclasses of StepMethod are Metropolis, AdaptiveMetropolis and Gibbs. PyMC provides
several flavors of the basic Metropolis steps, but the Gibbs steps are not ready for use as of the current release.
However, because it is feasible to write Gibbs step methods for particular applications, the Gibbs base class will
be documented here.

Metropolis step methods

Metropolis and subclasses implement Metropolis-Hastings steps. To tell an MCMC object M to handle a variable
x with a Metropolis step method, you might do the following:

M.use_step_method(Metropolis, x, proposal_sd=1., proposal_distribution='Normal')

Metropolis itself handles float-valued variables, and subclasses DiscreteMetropolis and
BinaryMetropolis handle integer- and boolean-valued variables, respectively. Subclasses of Metropolis
must implement the following methods:

propose(): Sets the values of the variables handled by the Metropolis step method to proposed values.

reject(): If the Metropolis-Hastings acceptance test fails, this method is called to reset the values of the
variables to their values before propose() was called.

Note that there is no accept() method; if a proposal is accepted, the variables’ values are simply left alone.
Subclasses that use proposal distributions other than symmetric random-walk may specify the ‘Hastings factor’
by changing the hastings_factor method. See chapter 8 for an example.

Metropolis’ init method takes the following arguments:

stochastic: The variable to handle.

proposal_sd: A float or array of floats. This sets the default proposal standard deviation if the proposal
distribution is normal.

scale: A float, defaulting to 1. If the scale argument is provided but not proposal_sd, proposal_sd is
computed as follows:

if all(self.stochastic.value != 0.):
self.proposal_sd = ones(shape(self.stochastic.value)) * \

abs(self.stochastic.value) * scale
else:

self.proposal_sd = ones(shape(self.stochastic.value)) * scale

5.5. Step methods 41

proposal_distribution: A string indicating which distribution should be used for proposals. Current op-
tions are 'Normal' and 'Prior'. If proposal_distribution=None, the proposal distribution is cho-
sen automatically. It is set to 'Prior' if the variable has no children and has a random method, and to
'Normal' otherwise.

verbose: An integer. By convention, 0 indicates minimal output and 2 indicates maximum verbosity.

Although the proposal_sd attribute is fixed at creation, Metropolis step methods adjust this initial value using
an attribute called adaptive_scale_factor. When tune() is called, the acceptance ratio of the step method
is examined and this scale factor is updated accordingly. If the proposal distribution is normal, proposals will
have standard deviation self.proposal_sd * self.adaptive_scale_factor.

By default, tuning will continue throughout the sampling loop, even after the burnin period is over. This can
be changed via the tune_throughout argument to MCMC.sample. If an adaptive step method’s tally flag is
set (the default for Metropolis), a trace of its tuning parameters will be kept. If you allow tuning to continue
throughout the sampling loop, it is important to verify that the ‘Diminishing Tuning’ condition of Roberts and
Rosenthal [2007] is satisfied: the amount of tuning should decrease to zero, or tuning should become very
infrequent.

If a Metropolis step method handles an array-valued variable, it proposes all elements independently but simul-
taneously. That is, it decides whether to accept or reject all elements together but it does not attempt to take
the posterior correlation between elements into account. The AdaptiveMetropolis class (see below), on the
other hand, does make correlated proposals.

The AdaptiveMetropolis class

The AdaptativeMetropolis (AM) step method works like a regular Metropolis step method, with the excep-
tion that its variables are block-updated using a multivariate jump distribution whose covariance is tuned during
sampling. Although the chain is non-Markovian, it has correct ergodic properties (see Haario et al. [2001]).

To tell an MCMC object M to handle variables x , y and z with an AdaptiveMetropolis instance, you might do
the following:

M.use_step_method(AdaptiveMetropolis, [x,y,z], \
scales={x:1, y:2, z:.5}, delay=10000)

AdaptativeMetropolis’ init method takes the following arguments:

stochastics: The stochastic variables to handle. These will be updated jointly.

cov (optional): An initial covariance matrix. Defaults to the identity matrix, adjusted according to the scales
argument.

delay (optional): The number of iterations to delay before computing the empirical covariance matrix.

scales (optional): The initial covariance matrix will be diagonal, and its diagonal elements will be set to
scales times the stochastics’ values, squared.

interval (optional): The number of iterations between updates of the covariance matrix. Defaults to 1000.

greedy (optional): If True, only accepted jumps will be counted toward the delay before the covariance is first
computed. Defaults to True.

verbose (optional): An integer from 0 to 3 controlling the verbosity of the step method’s printed output.

42 Chapter 5. Fitting models

shrink_if_necessary (optional): Whether the proposal covariance should be shrunk if the acceptance rate
becomes extremely small.

In this algorithm, jumps are proposed from a multivariate normal distribution with covariance matrix C . The
algorithm first iterates until delay samples have been drawn (if greedy is true, until delay jumps have been
accepted). At this point, C is given the value of the empirical covariance of the trace so far and sampling resumes.
The covariance is then updated each interval iterations throughout the entire sampling run1. It is this constant
adaptation of the proposal distribution that makes the chain non-Markovian.

The DiscreteMetropolis class

This class is just like Metropolis, but specialized to handle Stochastic instances with dtype int. The jump
proposal distribution can either be 'Normal', 'Prior' or 'Poisson'. In the normal case, the proposed value
is drawn from a normal distribution centered at the current value and then rounded to the nearest integer. In the
Poisson case, the proposed value is obtained by adding or substracting (with equal probability) a random value
drawn from a Poisson distribution.

The BinaryMetropolis class

This class is specialized to handle Stochastic instances with dtype bool.

For array-valued variables, BinaryMetropolis can be set to propose from the prior by passing in
dist="Prior". Otherwise, the argument p_jump of the init method specifies how probable a change is. Like
Metropolis’ attribute proposal_sd, p_jump is tuned throughout the sampling loop via adaptive_scale_-
factor.

For scalar-valued variables, BinaryMetropolis behaves like a Gibbs sampler, since this requires no additional
expense. The p_jump and adaptive_scale_factor parameters are not used in this case.

Granularity of step methods: one-at-a-time vs. block updating

There is currently no way for a stochastic variable to compute individual terms of its log-probability; it is com-
puted all together. This means that updating the elements of a array-valued variable individually would be
inefficient, so all existing step methods update array-valued variables together, in a block update.

To update an array-valued variable’s elements individually, simply break it up into an array of scalar-valued
variables. Instead of this:

A = Normal('A', value=numpy.zeros(100), mu=0., tau=1.)

do this:

A = [Normal('A_%i'%i, value=0., mu=0., tau=1.) for i in xrange(100)]

An individual step method will be assigned to each element of A in the latter case, and the elements will be
updated individually. Note that A can be broken up into larger blocks if desired.

1The covariance is estimated recursively from the previous value and the last interval samples, instead of computing it each time from
the entire trace.

5.5. Step methods 43

Automatic assignment of step methods

Every step method subclass (including user-defined ones) that does not require any init arguments other than
the stochastic variable to be handled adds itself to a list called StepMethodRegistry in the PyMC names-
pace. If a stochastic variable in an MCMC object has not been explicitly assigned a step method, each class in
StepMethodRegistry is allowed to examine the variable.

To do so, each step method implements a class method called competence, whose only argument is a single
stochastic variable. These methods return values from 0 to 3; 0 meaning the step method cannot safely handle
the variable and 3 meaning it will most likely be the best available step method for variables like this. The MCMC
object assigns the step method that returns the highest competence value to each of its stochastic variables.

44 Chapter 5. Fitting models

CHAPTER

SIX

Saving and managing sampling results

XXX TODO: HOW TO TALLY FUNCTIONS OTHER THAN VARIABLE VALUES

In the examples seen so far, traces are simply held in memory and discarded once the Python session ends. PyMC
provides the means to store these traces on disk, load them back and add additional samples. Internally, this is
implemented in what we call database backends. Each one of these backends is built from two classes: Database
and Trace which all present a similar interface to users. PyMC counts seven such backends: ram, no_trace,
pickle, txt, sqlite, mysql and hdf5. In the following, we present the common interface to those backends
and a description of each individual backend.

6.1 Accessing Sampled Data

The recommended way to access data from an MCMC run, irrespective of the database backend, is to use the
trace method:

>>> M = MCMC(DisasterModel)
>>> M.sample(10)
>>> M.trace('e')[:]
array([2.28320992, 2.28320992, 2.28320992, 2.28320992, 2.28320992,

2.36982455, 2.36982455, 3.1669422 , 3.1669422 , 3.14499489])

M.trace('e') returns a copy of the Trace instance belonging to the tallyable object e:

>>> M.trace('e')
<pymc.database.ram.Trace object at 0x7fa4877a8b50>

Samples from the trace are obtained using the slice notation [], similarly to NumPy arrays. By default, trace
returns the samples from the last chain. To return samples from all the chains, set chain=None:

>>> M.sample(5)
>>> M.trace('e', chain=None)[:]
array([2.28320992, 2.28320992, 2.28320992, 2.28320992, 2.28320992,

2.36982455, 2.36982455, 3.1669422 , 3.1669422 , 3.14499489,
3.14499489, 3.14499489, 3.14499489, 2.94672454, 3.10767686])

45

6.2 Saving Data to Disk

By default, the database backend selected by the MCMC sampler is the ram backend, which simply holds the data
in RAM. Now, we create a sampler that, instead, writes data to a pickle file:

>>> M = MCMC(DisasterModel, db='pickle', dbname='Disaster.pickle')
>>> M.db
<pymc.database.pickle.Database object at 0x7fa486623d90>

>>> M.sample(10)
>>> M.db.close()

Note that in this particular case, no data is written to disk before the call to db.close. The close method will
flush data to disk and prepare the database for a potential session exit. Closing a Python session without calling
close beforehand is likely to corrupt the database, making the data irretrievable. To simply flush data to disk
without closing the database, use the commit method.

Some backends not only have the ability to store the traces, but also the state of the step methods at the end of
sampling. This is particularly useful when long warm-up periods are needed to tune the jump parameters. When
the database is loaded in a new session, the step methods query the database to fetch the state they were in at
the end of the last trace.

Warning

Check that you close the database before closing the Python session.

6.3 Loading Back a Database

To load a file created in a previous session, use the load function from the appropriate backend:

>>> db = pymc.database.pickle.load('Disaster.pickle')
>>> len(db.trace('e')[:])
10

The db object also has a trace method identical to that of Sampler. You can hence inspect the results of a
model, even if you don’t have the model around.

To add a new trace to this file, we need to create an MCMC instance. This time, instead of setting db='pickle',
we will pass the existing Database instance and sample as usual. A new trace will be appended to the first:

>>> M = MCMC(DisasterModel, db=db)
>>> M.sample(5)
>>> len(M.trace('e', chain=None)[:])
15
>>> M.db.close()

46 Chapter 6. Saving and managing sampling results

6.4 Backends Description

ram

Used by default, this backend simply holds a copy in memory, with no output written to disk. This is useful for
short runs or testing. For long runs generating large amount of data, using this backend may fill the available
memory, forcing the OS to store data in the cache, slowing down all other applications.

no_trace

This backend simply does not store the trace. This may be useful for testing purposes.

txt

With the txt backend, the data is written to disk in ASCII files. More precisely, the dbname argument is used to
create a top directory into which chain directories, called Chain_<#>, are created each time sample is called:

dbname/
Chain_0/

<object0 name>.txt
<object1 name>.txt
...

Chain_1/
<object0 name>.txt
<object1 name>.txt
...

...

In each one of these chain directories, files named <variable name>.txt are created, storing the values of
the variable as rows of text:

Variable: e
Sample shape: (5,)
Date: 2008-11-18 17:19:13.554188
3.033672373807017486e+00
3.033672373807017486e+00
...

While the txt backend makes it easy to load data using other applications and programming languages, it is not
optimized for speed nor memory efficiency. If you plan on generating and handling large datasets, read on for
better options.

pickle

The pickle database relies on the cPickle module to save the traces. Use of this backend is appropriate for
small scale, short-lived projects. For longer term or larger projects, the pickle backend should be avoided since
the files it creates might be unreadable across different Python versions. The pickled file is a simple dump of a
dictionary containing the NumPy arrays storing the traces, as well as the state of the Sampler’s step methods.

6.4. Backends Description 47

sqlite

The sqlite backend is based on the python module sqlite3 (a Python 2.5 built-in) . It opens an SQL database
named dbname, and creates one table per tallyable objects. The rows of this table store a key, the chain index
and the values of the objects:

key (INT), trace (INT), v1 (FLOAT), v2 (FLOAT), v3 (FLOAT) ...

The key is autoincremented each time a new row is added to the table, that is, each time tally is called by the
sampler. Note that the savestate feature is not implemented, that is, the state of the step methods is not stored
internally in the database.

mysql

The mysql backend depends on the MySQL library and its python wrapper MySQLdb. Like the sqlite backend,
it creates an SQL database containing one table per tallyable object. The main difference with sqlite is that it
can connect to a remote database, provided the url and port of the host server is given, along with a valid user
name and password. These parameters are passed when the Sampler is instantiated:

• dbname (string) The name of the database file.

• dbuser (string) The database user name.

• dbpass (string) The user password for this database.

• dbhost (string) The location of the database host.

• dbport (int) The port number to use to reach the database host.

• dbmode {a, w} File mode. Use a to append values, and w to overwrite an existing database.

The savestate feature is not implemented in the mysql backend.

hdf5

The hdf5 backend uses pyTables to save data in binary HDF5 format. The hdf5 database is fast and can store
huge traces, far larger than the available RAM. Data can be compressed and decompressed on the fly to reduce
the disk footprint. Another feature of this backend is that it can store arbitrary objects. Whereas most of the
other backends are limited to numerical values, hdf5 can tally any object that can be pickled, opening the door
for powerful and exotic applications (see pymc.gp).

The internal structure of an HDF5 file storing both numerical values and arbitrary objects is as follows:

/ (root)
/chain0/ (Group) 'Chain #0'

/chain0/PyMCSamples (Table(N,)) 'PyMC Samples'
/chain0/group0 (Group) 'Group storing objects.'

/chain0/group0/<object0 name> (VLArray(N,)) '<object0 name> samples.'
/chain0/group0/<object1 name> (VLArray(N,)) '<object1 name> samples.'
...

/chain1/ (Group) 'Chain #1'
...

48 Chapter 6. Saving and managing sampling results

http://www.sqlite.org
http://www.mysql.com/downloads/
http://sourceforge.net/projects/mysql-python
http://www.pytables.org/moin

All standard numerical values are stored in a Table, while objects are stored in individual VLArrays.

The hdf5 Database takes the following parameters:

• dbname (string) Name of the hdf5 file.

• dbmode {a, w, r} File mode: a: append, w: overwrite, r: read-only.

• dbcomplevel : (int (0-9)) Compression level, 0: no compression.

• dbcomplib (string) Compression library (zlib, bzip2, lzo)

According the the pyTables manual, zlib has a fast decompression, relatively slow compression, and a good com-
pression ratio; LZO has a fast compression, but a low compression ratio; and bzip2 has an excellent compression
ratio but requires more CPU. Note that some of these compression algorithms require additional software to work
(see the pyTables manual).

6.5 Writing a New Backend

It is relatively easy to write a new backend for PyMC. The first step is to look at the database.base module,
which defines barebone Database and Trace classes. This module contains documentation on the methods
that should be defined to get a working backend.

Testing your new backend should be fairly straightforward, since the test_database module contains a generic
test class that can easily be subclassed to check that the basic features required of all backends are implemented
and working properly.

6.5. Writing a New Backend 49

http://www.pytables.org/moin
http://www.pytables.org/moin

50

CHAPTER

SEVEN

Model checking and diagnostics

7.1 Convergence Diagnostics

Valid inferences from sequences of MCMC samples are based on the assumption that samples are derived from the
true posterior distribution of interest. Theory guarantees this condition as the number of iterations approaches
infinity. It is important, therefore, to determine the minimum number of samples required to ensure a reasonable
approximation to the target posterior density. Unfortunately, no universal threshold exists across all problems,
so convergence must be assessed independently each time MCMC estimation is performed. The procedures for
verifying convergence are collectively known as convergence diagnostics.

One approach to analyzing convergence is analytical, whereby the variance of the sample at different sections
of the chain are compared to that of the limiting distribution. These methods use distance metrics to analyze
convergence, or place theoretical bounds on the sample variance, and though they are promising, they are
generally difficult to use and are not prominent in the MCMC literature. More common is a statistical approach
to assessing convergence. Statistical techniques, rather than considering the properties of the theoretical target
distribution, only consider the statistical properties of the observed chain. Reliance on the sample alone restricts
such convergence criteria to heuristics, and hence, convergence cannot be guaranteed. Although evidence for
lack of convergence using statistical convergence diagnostics will correctly imply lack of convergence in the chain,
the absence of such evidence will not guarantee convergence in the chain. Nevertheless, negative results for one
or more criteria will provide some measure of assurance to users that their sample will provide valid inferences.

For most simple models, convergence will occur quickly, sometimes within the first several hundred iterations,
after which all remaining samples of the chain may be used to calculate posterior quantities. For many more
complex models, convergence requires a significantly longer burn-in period; sometimes orders of magnitude
more samples are needed. Frequently, lack of convergence will be caused by poor mixing (Figure 7.1). Mixing
refers to the degree to which the Markov chain explores the support of the posterior distribution. Poor mixing
may stem from inappropriate proposals (if one is using the Metropolis-Hastings sampler) or from attempting to
estimate models with highly correlated variables.

Informal Methods

The most straightforward approach for assessing convergence is based on simply plotting and inspecting traces
and histograms of the observed MCMC sample. If the trace of values for each of the stochastics exhibits asymptotic
behaviour1 over the last m iterations, this may be satisfactory evidence for convergence. A similar approach
involves plotting a histogram for every set of k iterations (perhaps 50-100) beyond some burn-in threshold n;
if the histograms are not visibly different among the sample intervals, this is some evidence for convergence.
Note that such diagnostics should be carried out for each stochastic estimated by the MCMC algorithm, because
convergent behaviour by one variable does not imply evidence for convergence for other variables in the model.

1Asymptotic behaviour implies that the variance and the mean value of the sample stays relatively constant over some arbitrary period.

51

Figure 7.1: An example of a poorly-mixing sample in two dimensions. Notice that the chain is trapped in a region
of low probability relative to the mean (dot) and variance (oval) of the true posterior quantity.

An extension of this approach can be taken when multiple parallel chains are run, rather than just a single, long
chain. In this case, the final values of c chains run for n iterations are plotted in a histogram; just as above, this
is repeated every k iterations thereafter, and the histograms of the endpoints are plotted again and compared to
the previous histogram. This is repeated until consecutive histograms are indistinguishable.

Another ad hoc method for detecting convergence is to examine the traces of several MCMC chains initialized with
different starting values. Overlaying these traces on the same set of axes should (if convergence has occurred)
show each chain tending toward the same equilibrium value, with approximately the same variance. Recall that
the tendency for some Markov chains to converge to the true (unknown) value from diverse initial values is
called ergodicity. This property is guaranteed by the reversible chains constructed using MCMC, and should be
observable using this technique. Again, however, this approach is only a heuristic method, and cannot always
detect lack of convergence, even though chains may appear ergodic.

A principal reason that evidence from informal techniques cannot guarantee convergence is a phenomenon called
metastability. Chains may appear to have converged to the true equilibrium value, displaying excellent qualities
by any of the methods described above. However, after some period of stability around this value, the chain
may suddenly move to another region of the parameter space (Figure 7.2). This period of metastability can
sometimes be very long, and therefore escape detection by these convergence diagnostics. Unfortunately, there
is no statistical technique available for detecting metastability.

Formal Methods

Along with the ad hoc techniques described above, a number of more formal methods exist which are prevalent
in the literature. These are considered more formal because they are based on existing statistical methods, such
as time series analysis.

PyMC currently includes functions for two formal convergence diagnostic procedures. The first, proposed by
Geweke [1992], is a time-series approach that compares the mean and variance of segments from the beginning

52 Chapter 7. Model checking and diagnostics

Figure 7.2: An example of metastability in a two-dimensional parameter space. The chain appears to be stable
in one region of the parameter space for an extended period, then unpredictably jumps to another region of the
space.

and end of a single chain.

z =
θ̄a − θ̄b

p

Var(θa) + Var(θb)
(7.1)

where a is the early interval and b the late interval. If the z-scores (theoretically distributed as standard normal
variates) of these two segments are similar, it can provide evidence for convergence. PyMC calculates z-scores of
the difference between various initial segments along the chain, and the last 50% of the remaining chain. If the
chain has converged, the majority of points should fall within 2 standard deviations of zero.

Diagnostic z-scores can be obtained by calling the geweke function. It accepts either (1) a single trace, (2) a
Node or Stochastic object, or (3) an entire Model object.

Method Usage
geweke(pymc_object, first=0.1, last=0.5, intervals=20)

• pymc_object: The object that is or contains the output trace(s).

• first (optional): First portion of chain to be used in Geweke diagnostic. Defaults to 0.1 (i.e. first 10% of
chain).

• last (optional): Last portion of chain to be used in Geweke diagnostic. Defaults to 0.5 (i.e. last 50% of
chain).

• intervals (optional): Number of sub-chains to analyze. Defaults to 20.

The resulting scores are best interpreted graphically, using the geweke_plot function. This displays the scores
in series, in relation to the 2 standard deviation boundaries around zero. Hence, it is easy to see departures from
the standard normal assumption.

7.1. Convergence Diagnostics 53

Figure 7.3: Sample plots of Geweke z-scores for a variable using geweke_plot. The occurrence of the scores
well within 2 standard deviations of zero gives does not indicate lack of convergence (top), while deviations
exceeding 2 standard deviations suggests that additional samples are required to achieve convergence (bottom).

geweke_plot takes either a single set of scores, or a dictionary of scores (output by geweke when an entire
Sampler is passed) as its argument:

Method Usage
geweke_plot(scores, name='geweke', format='png', suffix='-diagnostic', \

path='./', fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}, verbose=1)

54 Chapter 7. Model checking and diagnostics

• scores: The object that contains the Geweke scores. Can be a list (one set) or a dictionary (multiple sets).

• name (optional): Name used for output files. For multiple scores, the dictionary keys are used as names.

• format (optional): Graphic output file format (defaults to png).

• suffix (optional): Suffix to filename (defaults to -diagnostic)

• path (optional): The path for output graphics (defaults to working directory).

• fontmap (optional): Dictionary containing the font map for the labels of the graphic.

• verbose (optional): Verbosity level for output (defaults to 1).

To illustrate, consider a model my_model that is used to instantiate a MCMC sampler. The sampler is then run
for a given number of iterations:

>>> S = pm.MCMC(my_model)
>>> S.sample(10000, burn=5000)

It is easiest simply to pass the entire sampler S to the geweke function:

>>> scores = pm.geweke(S, intervals=20)
>>> pm.Matplot.geweke_plot(scores)

Alternatively, individual stochastics within S can be analyzed for convergence:

>>> trace = S.alpha.trace()
>>> alpha_scores = pm.geweke(trace, intervals=20)
>>> pm.Matplot.geweke_plot(alpha_scores, 'alpha')

An example of convergence and non-convergence of a chain using geweke_plot is given in Figure 7.3.

The second diagnostic provided by PyMC is the Raftery and Lewis [1995] procedure. This approach estimates the
number of iterations required to reach convergence, along with the number of burn-in samples to be discarded
and the appropriate thinning interval. A separate estimate of both quantities can be obtained for each variable
in a given model.

As the criterion for determining convergence, the Raftery and Lewis approach uses the accuracy of estimation of
a user-specified quantile. For example, we may want to estimate the quantile q = 0.975 to within r = 0.005 with
probability s = 0.95. In other words,

Pr(|q̂− q| ≤ r) = s (7.2)

From any sample of θ , one can construct a binary chain:

Z (j) = I(θ (j) ≤ uq) (7.3)

where uq is the quantile value and I is the indicator function. While {θ (j)} is a Markov chain, {Z (j)} is not
necessarily so. In any case, the serial dependency among Z (j) decreases as the thinning interval k increases. A
value of k is chosen to be the smallest value such that the first order Markov chain is preferable to the second
order Markov chain.

7.1. Convergence Diagnostics 55

This thinned sample is used to determine number of burn-in samples. This is done by comparing the remaining
samples from burn-in intervals of increasing length to the limiting distribution of the chain. An appropriate value
is one for which the truncated sample’s distribution is within ε (arbitrarily small) of the limiting distribution. See
Raftery and Lewis [1995] or Gamerman [1997] for computational details. Estimates for sample size tend to be
conservative.

This diagnostic is best used on a short pilot run of a particular model, and the results used to parameterize a
subsequent sample that is to be used for inference.

Method Usage
raftery_lewis(pymc_object, q, r, s=.95, epsilon=.001, verbose=1)

• pymc_object: The object that contains the Geweke scores. Can be a list (one set) or a dictionary (multiple
sets).

• q: Desired quantile to be estimated.

• r: Desired accuracy for quantile.

• s(optional): Probability of attaining the requested accuracy (defaults to 0.95).

• epsilon (optional) : Half width of the tolerance interval required for the q-quantile (defaults to 0.001).

• verbose (optional) : Verbosity level for output (defaults to 1).

The code for raftery_lewis is based on the FORTRAN program gibbsit, which was written by Steven Lewis.

For example, consider again a sampler S run for some model my_model:

>>> S = pm.MCMC(my_model)
>>> S.sample(10000, burn=5000)

One can pass either the entire sampler S or any stochastic within S to the raftery_lewis function, along with
suitable arguments. Here, we have chosen q = 0.025 (the lower limit of the equal-tailed 95% interval) and error
r = 0.01:

>>> pm.raftery_lewis(S, q=0.025, r=0.01)

This yields diagnostics as follows for each stochastic of S, as well as a dictionary containing the diagnostic
quantities:

56 Chapter 7. Model checking and diagnostics

========================
Raftery-Lewis Diagnostic
========================

937 iterations required (assuming independence) to achieve 0.01 accuracy
with 95 percent probability.

Thinning factor of 1 required to produce a first-order Markov chain.

39 iterations to be discarded at the beginning of the simulation (burn-in).

11380 subsequent iterations required.

Thinning factor of 11 required to produce an independence chain.

Additional convergence diagnostics are available in the R statistical package, via the CODA module. PyMC
includes a method coda for exporting model traces in a format that may be directly read by CODA.

Method Usage
pm.utils.coda(pymc_object)

• pymc_object: The PyMC sampler for which output is desired.

Calling coda yields two files, one containing raw trace values (suffix .out) and another containing indices to
the trace values (suffix .ind).

Autocorrelation Plots

Samples from MCMC algorithms are ususally autocorrelated, due partly to the inherent Markovian dependence
structure. The degree of autocorrelation can be quantified using the autocorrelation function:

ρk =
Cov(X t , X t+k)

p

Var(X t)Var(X t+k)

=
E[(X t − θ)(X t+k − θ)]

p

E[(X t − θ)2]E[(X t+k − θ)2]

PyMC includes a function for plotting the autocorrelation function for each stochastic in the sampler (Figure
7.4). This allows users to examine the relationship among successive samples within sampled chains. Significant
autocorrelation suggests that chains require thinning prior to use of the posterior statistics for inference.

autocorrelation(pymc_object, name, maxlag=100, format='png', suffix='-acf',
path='./', fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}, verbose=1)

• pymc_object: The object that is or contains the output trace(s).

• name: Name used for output files.

7.1. Convergence Diagnostics 57

http://lib.stat.cmu.edu/R/CRAN/
http://www-fis.iarc.fr/coda/

Figure 7.4: Sample autocorrelation plots for two Poisson variables from coal mining disasters example model.

• maxlag: The highest lag interval for which autocorrelation is calculated.

• format (optional): Graphic output file format (defaults to png).

• suffix (optional): Suffix to filename (defaults to -diagnostic)

• path (optional): The path for output graphics (defaults to working directory).

• fontmap (optional): Dictionary containing the font map for the labels of the graphic.

• verbose (optional): Verbosity level for output (defaults to 1).

Using any given model my_model as an example, autocorrelation plots can be obtained simply by passing the
sampler for that model to the autocorrelation function (within the Matplot module) directly:

>>> S = pm.MCMC(my_model)
>>> S.sample(10000, burn=5000)
>>> pm.Matplot.autocorrelation(S)

Alternatively, variables within a model can be plotted individually. For example, a hypothetical variable beta
that was estimated using sampler S will yield a correlation plot as follows:

>>> pm.Matplot.autocorrelation(S.beta)

58 Chapter 7. Model checking and diagnostics

7.2 Goodness of Fit

Checking for model convergence is only the first step in the evaluation of MCMC model outputs. It is possible
for an entirely unsuitable model to converge, so additional steps are needed to ensure that the estimated model
adequately fits the data. One intuitive way for evaluating model fit is to compare model predictions with actual
observations. In other words, the fitted model can be used to simulate data, and the distribution of the simulated
data should resemble the distribution of the actual data.

Fortunately, simulating data from the model is a natural component of the Bayesian modelling framework. Recall,
from the discussion on imputation of missing data, the posterior predictive distribution:

p(ỹ|y) =
∫

p(ỹ|θ) f (θ |y)dθ (7.4)

Here, ỹ represents some hypothetical new data that would be expected, taking into account the posterior uncer-
tainty in the model parameters. Sampling from the posterior predictive distribution is easy in PyMC. The code
looks identical to the corresponding data stochastic, with two modifications: (1) the node should be specified as
deterministic and (2) the statistical likelihoods should be replaced by random number generators. As an example,
consider the Poisson data likelihood of the coal mining disasters example:

@pm.stochastic(observed=True, dtype=int)
def disasters(value = disasters_array,

early_mean = early_mean,
late_mean = late_mean,
switchpoint = switchpoint):

"""Annual occurences of coal mining disasters."""
return pm.poisson_like(value[:switchpoint],early_mean) +

pm.poisson_like(value[switchpoint:],late_mean)

This is a mixture of Poisson processes, one with a higher early mean and another with a lower late mean. Here
is the corresponding sample from the posterior predictive distribution:

@pm.deterministic
def disasters_sim(early_mean = early_mean,

late_mean = late_mean,
switchpoint = switchpoint):

"""Coal mining disasters sampled from the posterior predictive distribution"""
return concatenate((pm.rpoisson(early_mean, size=switchpoint),

pm.rpoisson(late_mean, size=n-switchpoint)))

Notice that @pm.stochastic has been replaced with @pm.deterministic and pm.poisson_like with
pm.rpoisson. The simulated values from each of the Poisson processes are concatenated together before re-
turning them.

The degree to which simulated data correspond to observations can be evaluated in at least two ways. First, these
quantities can simply be compared visually. This allows for a qualitative comparison of model-based replicates
and observations. If there is poor fit, the true value of the data may appear in the tails of the histogram of
replicated data, while a good fit will tend to show the true data in high-probability regions of the posterior
predictive distribution (Figure 7.5).

The Matplot module in PyMC provides an easy way of producing such plots, via the gof_plot function. To
illustrate, consider a single observed data point x and an array of values x_sim sampled from the posterior

7.2. Goodness of Fit 59

Figure 7.5: Data sampled from the posterior predictive distribution of a model for some observation x. The true
value of x is shown by the dotted red line.

predictive distribution. The histogram is generated by calling:

pm.Matplot.gof_plot(x_sim, x, name='x')

A second approach for evaluating goodness of fit using samples from the posterior predictive distribution involves
the use of a statistical criterion. For example, the Bayesian p-value [Gelman et al., 1996] uses a discrepancy mea-
sure that quantifies the difference between data (observed or simulated) x and the expected value e, conditional
on some model. One such discrepancy measure is the Freeman-Tukey statistic [Brooks et al., 2000]:

D(x |θ) =
∑

j

(
p

x j −
p

e j)
2 (7.5)

Model fit is assessed by comparing the discrepancies from observed data to those from simulated data. On
average, we expect the difference between them to be zero; hence, the Bayesian p-value is simply the proportion
of simulated discrepancies that are larger than their corresponding observed discrepancies:

p = Pr[D(sim)> D(obs)] (7.6)

If p is very large (e.g. > 0.975) or very small (e.g. < 0.025) this implies that the model is not consistent with the
data, and thus is evidence of lack of fit. Graphically, data and simulated discrepancies plotted together should be
clustered along a 45 degree line passing through the origin, as shown in Figure 7.6.

The discrepancy function in the diagnostics module can be used to generate discrepancy statistics from
arrays of data, simulated values, and expected values:

60 Chapter 7. Model checking and diagnostics

Figure 7.6: Plot of deviates of observed and simulated data from expected values. The cluster of points symmet-
rically about the 45 degree line (and the reported p-value) suggests acceptable fit for the modeled parameter.

D = pm.diagnostics.discrepancy(observed, simulated, expected)

A call to this function returns two arrays of discrepancy values (one for observed data and one for simulated
data), which can be passed to the discrepancy_plot function in the Matplot module to generate a scatter
plot, and if desired, a p-value:

pm.Matplot.discrepancy_plot(D, name='D', report_p=True)

Additional optional arguments for discrepancy_plot are identical to other PyMC plotting functions.

7.2. Goodness of Fit 61

62

CHAPTER

EIGHT

Extending PyMC

PyMC tries to make standard things easy, but keep unusual things possible. Its openness, combined with Python’s
flexibility, invite extensions from using new step methods to exotic stochastic processes (see the Gaussian process
module). This chapter briefly reviews the ways PyMC is designed to be extended.

8.1 Nonstandard Stochastics

The simplest way to create a Stochastic object with a nonstandard distribution is to use the medium or long
decorator syntax. See chapter 4. If you want to create many stochastics with the same nonstandard distribution,
the decorator syntax can become cumbersome. An actual subclass of Stochastic can be created using the class
factory stochastic_from_dist. This function takes the following arguments:

• The name of the new class,

• A logp function,

• A random function (which may be None),

• The NumPy datatype of the new class (for continuous distributions, this should be float; for discrete
distributions, int; for variables valued as non-numerical objects, object),

• A flag indicating whether the resulting class represents a vector-valued variable.

The necessary parent labels are read from the logp function, and a docstring for the new class is automatically
generated.

Full subclasses of Stochastic may be necessary to provide nonstandard behaviors (see gp.GP).

8.2 User-de�ned step methods

The StepMethod class is meant to be subclassed. There are an enormous number of MCMC step methods in
the literature, whereas PyMC provides only about half a dozen. Most user-defined step methods will be either
Metropolis-Hastings or Gibbs step methods, and these should subclass Metropolis or Gibbs respectively. More
unusual step methods should subclass StepMethod directly.

Example: an asymmetric Metropolis step

Consider the probability model in ‘examples/custom_step.py’:

63

mu = pymc.Normal('mu',0,.01, value=0)
tau = pymc.Exponential('tau',.01, value=1)
cutoff = pymc.Exponential('cutoff',1, value=1.3)
D = pymc.TruncatedNormal('D',mu,tau,-numpy.inf,cutoff,value=data,observed=True)

The stochastic variable cutoff cannot be smaller than the largest element of D, otherwise D’s density would
be zero. The standard Metropolis step method can handle this case without problems; it will propose illegal
values occasionally, but these will be rejected.

Suppose we want to handle cutoff with a smarter step method that doesn’t propose illegal values. Specifically,
we want to use the nonsymmetric proposal distribution

xp|x ∼ Truncnorm(x ,σ, max(D),∞).

We can implement this Metropolis-Hastings algorithm with the following step method class:

class TruncatedMetropolis(pymc.Metropolis):
def __init__(self, stochastic, low_bound, up_bound, *args, **kwargs):

self.low_bound = low_bound
self.up_bound = up_bound
pymc.Metropolis.__init__(self, stochastic, *args, **kwargs)

Propose method generates proposal values
def propose(self):

tau = 1./(self.adaptive_scale_factor * self.proposal_sd)**2
self.stochastic.value = \

pymc.rtruncnorm(self.stochastic.value, tau, self.low_bound, self.up_bound)

Hastings factor method accounts for asymmetric proposal distribution
def hastings_factor(self):

tau = 1./(self.adaptive_scale_factor * self.proposal_sd)**2
cur_val = self.stochastic.value
last_val = self.stochastic.last_value

lp_for = pymc.truncnorm_like(cur_val, last_val, tau, self.low_bound, self.up_bound)
lp_bak = pymc.truncnorm_like(last_val, cur_val, tau, self.low_bound, self.up_bound)

if self.verbose > 1:
print self._id + ': Hastings factor %f'%(lp_bak - lp_for)

return lp_bak - lp_for

The propose method sets the step method’s stochastic’s value to a new value, drawn from a truncated normal
distribution. The precision of this distribution is computed from two factors: self.proposal_sd, which can
be set with an input argument to Metropolis, and self.adaptive_scale_factor. Metropolis step methods’
default tuning behavior is to reduce adaptive_scale_factor if the acceptance rate is too low, and to increase
adaptive_scale_factor if it is too high. By incorporating adaptive_scale_factor into the proposal
standard deviation, we avoid having to write our own tuning infrastructure. If we don’t want the proposal to
tune, we don’t have to use adaptive_scale_factor.

The hastings_factor method adjusts for the asymmetric proposal distribution [Gelman et al., 2004]. It
computes the log of the quotient of the ‘backward’ density and the ‘forward’ density. For symmetric proposal
distributions, this quotient is 1, so its log is zero.

64 Chapter 8. Extending PyMC

Having created our custom step method, we need to tell MCMC instances to use it to handle the variable cutoff.
This is done in ‘custom_step.py’ with the following line:

M.use_step_method(TruncatedMetropolis, cutoff, D.value.max(), numpy.inf)

This call causes M to pass the arguments cutoff, D.value.max(), numpy.inf to a
TruncatedMetropolis object’s init method, and use the object to handle cutoff.

It’s often convenient to get a handle to a custom step method instance directly for debugging purposes. M.step_-
method_dict[cutoff] returns a list of all the step methods M will use to handle cutoff:

>>> M.step_method_dict[cutoff]
[<custom_step.TruncatedMetropolis object at 0x3c91130>]

There may be more than one, and conversely step methods may handle more than one stochastic variable. To
see which variables step method S is handling, try

>>> S.stochastics
set([<pymc.distributions.Exponential 'cutoff' at 0x3cd6b90>])

General step methods

All step methods must implement the following methods:

step(): Updates the values of self.stochastics.

tune(): Tunes the jumping strategy based on performance so far. A default method is available that increases
self.adaptive_scale_factor (see below) when acceptance rate is high, and decreases it when ac-
ceptance rate is low. This method should return True if additional tuning will be required later, and False
otherwise.

competence(s): A class method that examines stochastic variable s and returns a value from 0 to 3 expressing
the step method’s ability to handle the variable. This method is used by MCMC instances when automatically
assigning step methods. Conventions are:

0 I cannot safely handle this variable.

1 I can handle the variable about as well as the standard Metropolis step method.

2 I can do better than Metropolis.

3 I am the best step method you are likely to find for this variable in most cases.

For example, if you write a step method that can handle NewStochasticSubclass well, the competence
method might look like this:

8.2. User-de�ned step methods 65

class NewStepMethod(pymc.StepMethod):
def __init__(self, stochastic, *args, **kwargs):

...

@classmethod
def competence(self, stochastic):

if isinstance(stochastic, NewStochasticSubclass):
return 3

else:
return 0

Note that PyMC will not even attempt to assign a step method automatically if its init method cannot be
called with a single stochastic instance, that is NewStepMethod(x) is a legal call. The list of step methods
that PyMC will consider assigning automatically is called pymc.StepMethodRegistry.

current_state(): This method is easiest to explain by showing the code:

state = {}
for s in self._state:

state[s] = getattr(self, s)
return state

self._state should be a list containing the names of the attributes needed to reproduce the current
jumping strategy. If an MCMC object writes its state out to a database, these attributes will be preserved. If
an MCMC object restores its state from that database later, the corresponding step method will have these
attributes set to their saved values.

Step methods should also maintain the following attributes:

_id: A string that can identify each step method uniquely (usually something like <class_name>_-
<stochastic_name>).

adaptive_scale_factor: An ‘adaptive scale factor’. This attribute is only needed if the default tune()
method is used.

_tuning_info: A list of strings giving the names of any tuning parameters. For Metropolis instances, this
would be ['adaptive_scale_factor']. This list is used to keep traces of tuning parameters in order
to verify ‘diminishing tuning’ [Roberts and Rosenthal, 2007].

All step methods have a property called loglike, which gives the sum of the log-probabilities of the union
of the extended children of self.stochastics. This quantity is one term in the log of the Metropolis-
Hastings acceptance ratio. The logp_plus_loglike property gives the sum of that and the log-probabilities of
self.stochastics.

Metropolis-Hastings step methods

A Metropolis-Hastings step method only needs to implement the following methods, which are called by
Metropolis.step():

reject(): Usually just

66 Chapter 8. Extending PyMC

def reject(self):
self.rejected += 1
[s.value = s.last_value for s in self.stochastics]

propose(): Sets the values of all self.stochastics to new, proposed values. This method may use the
adaptive_scale_factor attribute to take advantage of the standard tuning scheme.

Metropolis-Hastings step methods may also override the tune and competence methods.

Metropolis-Hastings step methods with asymmetric jumping distributions must implement a method called
hastings_factor(), which returns the log of the ratio of the ‘reverse’ and ‘forward’ proposal probabilities.
Note that no accept() method is needed or used.

Metropolis-Hastings step methods should log the number of jumps they have accepted and rejected using at-
tributes called accepted and rejected.

Gibbs step methods

Gibbs step methods handle conjugate submodels. These models usually have two components: the ‘parent’ and
the ‘children’. For example, a gamma-distributed variable serving as the precision of several normally-distributed
variables is a conjugate submodel; the gamma variable is the parent and the normal variables are the children.

This section describes PyMC’s current scheme for Gibbs step methods, several of which are in a semi-working
state in the sandbox. It is meant to be as generic as possible to minimize code duplication, but it is admittedly
complicated. Feel free to subclass StepMethod directly when writing Gibbs step methods if you prefer.

Gibbs step methods that subclass PyMC’s Gibbs should define the following class attributes:

child_class: The class of the children in the submodels the step method can handle.

parent_class: The class of the parent.

parent_label: The label the children would apply to the parent in a conjugate submodel. In the gamma-
normal example, this would be tau.

linear_OK: A flag indicating whether the children can use linear combinations involving the parent as their
actual parent without destroying the conjugacy.

A subclass of Gibbs that defines these attributes only needs to implement a propose() method, which will be
called by Gibbs.step(). The resulting step method will be able to handle both conjugate and ‘non-conjugate’
cases. The conjugate case corresponds to an actual conjugate submodel. In the nonconjugate case all the children
are of the required class, but the parent is not. In this case the parent’s value is proposed from the likelihood and
accepted based on its prior. The acceptance rate in the nonconjugate case will be less than one.

The inherited class method Gibbs.competence will determine the new step method’s ability to handle a vari-
able x by checking whether:

• all x ’s children are of class child_class, and either apply parent_label to x directly or (if linear_-
OK=True) to a LinearCombination object (chapter 4), one of whose parents contains x .

• x is of class parent_class

8.2. User-de�ned step methods 67

If both conditions are met, pymc.conjugate_Gibbs_competence will be returned. If only the first is met,
pymc.nonconjugate_Gibbs_competence will be returned.

8.3 New �tting algorithms

PyMC provides a convenient platform for non-MCMC fitting algorithms in addition to MCMC. All fitting algo-
rithms should be implemented by subclasses of Model. There are virtually no restrictions on fitting algorithms,
but many of Model’s behaviors may be useful. See chapter 5.

Monte Carlo �tting algorithms

Unless there is a good reason to do otherwise, Monte Carlo fitting algorithms should be implemented by sub-
classes of Sampler to take advantage of the interactive sampling feature and database backends. Subclasses
using the standard sample() and isample() methods must define one of two methods:

draw(): If it is possible to generate an independent sample from the posterior at every iteration, the draw
method should do so. The default _loop method can be used in this case.

_loop(): If it is not possible to implement a draw() method, but you want to take advantage of the interactive
sampling option, you should override _loop(). This method is responsible for generating the posterior
samples and calling tally() when it is appropriate to save the model’s state. In addition, _loop should
monitor the sampler’s status attribute at every iteration and respond appropriately. The possible values
of status are:

'ready': Ready to sample.

'running': Sampling should continue as normal.

'halt': Sampling should halt as soon as possible. _loop should call the halt() method and re-
turn control. _loop can set the status to 'halt' itself if appropriate (eg the database is full or a
KeyboardInterrupt has been caught).

'paused': Sampling should pause as soon as possible. _loop should return, but should be able to pick
up where it left off next time it’s called.

Samplers may alternatively want to override the default sample() method. In that case, they should call the
tally() method whenever it is appropriate to save the current model state. Like custom _loop() methods,
custom sample() methods should handle KeyboardInterrupts and call the halt() method when sampling
terminates to finalize the traces.

8.4 Don't update stochastic variables' values in-place

If you’re going to implement a new step method, fitting algorithm or unusual (non-numeric-valued) Stochastic
subclass, you should understand the issues related to in-place updates of Stochastic objects’ values. Fitting
methods should never update variables’ values in-place for two reasons:

• In algorithms that involve accepting and rejecting proposals, the ‘pre-proposal’ value needs to be preserved
uncorrupted. It would be possible to make a copy of the pre-proposal value and then allow in-place updates,
but in PyMC we have chosen to store the pre-proposal value as Stochastic.last_value and require
proposed values to be new objects. In-place updates would corrupt Stochastic.last_value, and this
would cause problems.

68 Chapter 8. Extending PyMC

• LazyFunction’s caching scheme checks variables’ current values against its internal cache by reference.
That means if you update a variable’s value in-place, it or its child may miss the update and incorrectly skip
recomputing its value or log-probability.

However, a Stochastic object’s value can make in-place updates to itself if the updates don’t change its identity.
For example, the Stochastic subclass gp.GP is valued as a gp.Realization object. GP realizations represent
random functions, which are infinite-dimensional stochastic processes, as literally as possible. The strategy they
employ is to ‘self-discover’ on demand: when they are evaluated, they generate the required value conditional on
previous evaluations and then make an internal note of it. This is an in-place update, but it is done to provide the
same interface as a single random function whose value everywhere has been determined since it was created.

8.4. Don't update stochastic variables' values in-place 69

70

CHAPTER

NINE

Probability distributions

PyMC provides 35 built-in probability distributions. For each distribution, PyMC provides:

• A function that evaluates its log-probability or log-density, for example normal_like().

• A function that draws random variables, for example rnormal().

• A function that computes the expectation associated with the distribution, for example normal_expval().

• A Stochastic subclass generated from the distribution, for example Normal.

This section describes the likelihood functions of these distributions.

9.1 Discrete distributions

bernoulli_like(x, p)
The Bernoulli distribution describes the probability of successes (x=1) and failures (x=0).

f (x | p) = px(1− p)1−x

Parameters

•x : Series of successes (1) and failures (0). x = 0,1
•p : Probability of success. 0< p < 1.

Example

@PYGaQ[@textgreater[]@textgreater[]@textgreater[]]bernoulli@_like(@PYGZlb[]@PYGaw[0],@PYGaw[1],@PYGaw[0],@PYGaw[1]@PYGZrb[], @PYGbe[.]@PYGaw[4])
@PYGaa[-2.8542325496673584]

Note:

•E(x) = p

•Var(x) = p(1− p)

binomial_like(x, n, p)
Binomial log-likelihood. The discrete probability distribution of the number of successes in a sequence of n independent
yes/no experiments, each of which yields success with probability p.

f (x | n, p) =
n!

x!(n− x)!
px(1− p)n−x

71

Parameters

•x : [int] Number of successes, > 0.
•n : [int] Number of Bernoulli trials, > x.
•p : Probability of success in each trial, p ∈ [0,1].

Note:

•E(X) = np

•Var(X) = np(1− p)

categorical_like(x, p)
Categorical log-likelihood. The most general discrete distribution.

f (x = i | p) = pi

for i ∈ 0 . . . k− 1.

Parameters

•x : [int] x ∈ 0 . . . k− 1
•p : [float] p > 0,

∑

p = 1

discrete_uniform_like(x, lower, upper)
Discrete uniform log-likelihood.

f (x | lower, upper) =
1

upper − lower

Parameters

•x : [int] lower ≤ x ≤ upper
•lower : Lower limit.
•upper : Upper limit (upper > lower).

geometric_like(x, p)
Geometric log-likelihood. The probability that the first success in a sequence of Bernoulli trials occurs on the x’th trial.

f (x | p) = p(1− p)x−1

Parameters

•x : [int] Number of trials before first success (x > 0).
•p : Probability of success on an individual trial, p ∈ [0,1]

Note:

•E(X) = 1/p

•Var(X) = 1−p
p2

hypergeometric_like(x, n, m, N)
Hypergeometric log-likelihood. Discrete probability distribution that describes the number of successes in a sequence
of draws from a finite population without replacement.

f (x | n, m, N) =

�m
x

��N−m
n−x

�

�N
n

�

72 Chapter 9. Probability distributions

Parameters

•x : [int] Number of successes in a sample drawn from a population.
•n : [int] Size of sample drawn from the population.
•m : [int] Number of successes in the population.
•N : [int] Total number of units in the population.

Note: E(X) = nn
N

negative_binomial_like(x, mu, alpha)
Negative binomial log-likelihood. The negative binomial distribution describes a Poisson random variable whose rate
parameter is gamma distributed. PyMC’s chosen parameterization is based on this mixture interpretation.

f (x | µ,α) =
Γ(x +α)
x!Γ(α)

(α/(µ+α))α(µ/(µ+α))x

Parameters

•x : Input data (x > 0).
•mu : mu > 0
•alpha : alpha > 0

Note:

•E[x] = µ

•In Wikipedia’s parameterization, r = α p = α/(µ+α) µ= r(1− p)/p

poisson_like(x, mu)
Poisson log-likelihood. The Poisson is a discrete probability distribution. It is often used to model the number of events
occurring in a fixed period of time when the times at which events occur are independent. The Poisson distribution can
be derived as a limiting case of the binomial distribution.

f (x | µ) =
e−µµx

x!

Parameters

•x : [int] x ∈ 0, 1,2, ...
•mu : Expected number of occurrences during the given interval, µ≥ 0.

Note:

•E(x) = µ

•Var(x) = µ

9.2 Continuous distributions

beta_like(x, alpha, beta)
Beta log-likelihood. The conjugate prior for the parameter :math: p of the binomial distribution.

f (x | α,β) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1

9.2. Continuous distributions 73

Parameters

•x : 0 < x < 1

•alpha : alpha > 0

•beta : beta > 0

Example

@PYGaQ[@textgreater[]@textgreater[]@textgreater[]]beta@_like(@PYGbe[.]@PYGaw[4],@PYGaw[1],@PYGaw[2])
@PYGaa[0.18232160806655884]

Note:

•E(X) = α

α+β

•Var(X) = αβ

(α+β)2(α+β+1)

cauchy_like(x, alpha, beta)
Cauchy log-likelihood. The Cauchy distribution is also known as the Lorentz or the Breit-Wigner distribution.

f (x | α,β) =
1

πβ[1+ (x−α
β
)2]

Parameters

•alpha : Location parameter.

•beta : Scale parameter > 0.

Note:

•Mode and median are at alpha.

chi2_like(x, nu)
Chi-squared χ2 log-likelihood.

f (x | ν) =
x (ν−2)/2e−x/2

2ν/2Γ(ν/2)

Parameters

•x : > 0

•nu : [int] Degrees of freedom (nu > 0)

Note:

•E(X) = ν

•Var(X) = 2ν

degenerate_like(x, k)
Degenerate log-likelihood.

f (x | k) =
�

1 if x = k
0 if x 6= k

Parameters

•x : Input value.

74 Chapter 9. Probability distributions

•k : Degenerate value.

exponential_like(x, beta)
Exponential log-likelihood.

The exponential distribution is a special case of the gamma distribution with alpha=1. It often describes the time until
an event.

f (x | β) =
1

β
e−x/β

Parameters

•x : x > 0

•beta : Survival parameter (beta > 0).

Note:

•E(X) = β

•Var(X) = β2

exponweib_like(x, alpha, k, loc=0, scale=1)
Exponentiated Weibull log-likelihood.

The exponentiated Weibull distribution is a generalization of the Weibull family. Its value lies in being able to model
monotone and non-monotone failure rates.

f (x | α, k, loc, scale) =
αk

scale
(1− e−zk

)α−1e−zk
zk−1

z =
x − loc

scale

Parameters

•x : x > 0

•alpha : Shape parameter

•k : k > 0

•loc : Location parameter

•scale : Scale parameter (scale > 0).

gamma_like(x, alpha, beta)
Gamma log-likelihood.

Represents the sum of alpha exponentially distributed random variables, each of which has mean beta.

f (x | α,β) =
βαxα−1e−β x

Γ(α)

Parameters

•x : math:x ge 0
•alpha : Shape parameter (alpha > 0).

•beta : Scale parameter (beta > 0).

Note:

•E(X) = α

β

9.2. Continuous distributions 75

•Var(X) = α

β2

half_normal_like(x, tau)
Half-normal log-likelihood, a normal distribution with mean 0 limited to the domain x ∈ [0,∞).

f (x | τ) =

r

2τ

π
exp

¨

−x2τ

2

«

Parameters

•x : x ≥ 0

•tau : tau > 0

hypergeometric_like(x, n, m, N)
Hypergeometric log-likelihood. Discrete probability distribution that describes the number of successes in a sequence
of draws from a finite population without replacement.

f (x | n, m, N) =

�m
x

��N−m
n−x

�

�N
n

�

Parameters

•x : [int] Number of successes in a sample drawn from a population.

•n : [int] Size of sample drawn from the population.

•m : [int] Number of successes in the population.

•N : [int] Total number of units in the population.

Note: E(X) = nn
N

inverse_gamma_like(x, alpha, beta)
Inverse gamma log-likelihood, the reciprocal of the gamma distribution.

f (x | α,β) =
βα

Γ(α)
x−α−1 exp

�−β
x

�

Parameters

•x : x > 0

•alpha : Shape parameter (alpha > 0).

•beta : Scale parameter (beta > 0).

Note: E(X) = β

α−1
for α > 1 Var(X) = β2

(α−1)2(α)
for α > 2

laplace_like(x, mu, tau)
Laplace (double exponential) log-likelihood.

The Laplace (or double exponential) distribution describes the difference between two independent, identically dis-
tributed exponential events. It is often used as a heavier-tailed alternative to the normal.

f (x | µ,τ) =
τ

2
e−τ|x−µ|

Parameters

76 Chapter 9. Probability distributions

•x : −∞< x <∞
•mu : Location parameter :math: -infty < mu < infty
•tau : Scale parameter τ > 0

Note:

•E(X) = µ

•Var(X) = 2
τ2

logistic_like(x, mu, tau)
Logistic log-likelihood.
The logistic distribution is often used as a growth model; for example, populations, markets. Resembles a heavy-tailed
normal distribution.

f (x | µ, tau) =
τexp(−τ[x −µ])

[1+ exp(−τ[x −µ])]2

Parameters

•x : −∞< x <∞
•mu : Location parameter −∞< mu<∞
•tau : Scale parameter (tau > 0)

Note:

•E(X) = µ

•Var(X) = π2

3τ2

lognormal_like(x, mu, tau)
Log-normal log-likelihood. Distribution of any random variable whose logarithm is normally distributed. A variable
might be modeled as log-normal if it can be thought of as the multiplicative product of many small independent factors.

f (x | µ,τ) =
Ç

τ

2π

exp
¦

− τ
2
(ln(x)−µ)2

©

x

Parameters

•x : x > 0
•mu : Location parameter.
•tau : Scale parameter (tau > 0).

Note: E(X) = eµ+
1

2τ Var(X) = (e1/τ − 1)e2µ+ 1
τ

normal_like(x, mu, tau)
Normal log-likelihood.

f (x | µ,τ) =
Ç

τ

2π
exp
§

−
τ

2
(x −µ)2

ª

Parameters

•x : Input data.
•mu : Mean of the distribution.
•tau : Precision of the distribution, which corresponds to 1/σ2 (tau > 0).

9.2. Continuous distributions 77

Note:

•E(X) = µ

•Var(X) = 1/τ

skew_normal_like(x, mu, tau, alpha)
Azzalini’s skew-normal log-likelihood

f (x | µ,τ,α) = 2Φ((x −µ)
p
τα)φ(x ,µ,τ)

where :math: Phi is the normal CDF and :math: phi is the normal PDF.

Parameters

•x : Input data.
•mu : Mean of the distribution.
•tau : Precision of the distribution (> 0).
•alpha : Shape parameter of the distribution.

Note: See http://azzalini.stat.unipd.it/SN/

t_like(x, nu)
Student’s T log-likelihood. Describes a zero-mean normal variable whose precision is gamma distributed. Alternatively,
describes the mean of several zero-mean normal random variables divided by their sample standard deviation.

f (x | ν) =
Γ(ν+1

2
)

Γ(ν
2
)
p
νπ

�

1+
x2

ν

�− ν+1
2

Parameters

•x : Input data.
•nu : Degrees of freedom.

truncnorm_like(x, mu, tau, a, b)
Truncated normal log-likelihood.

f (x | µ,τ, a, b) =
φ(x−µ

σ
)

Φ(b−µ
σ
)−Φ(a−µ

σ
)
,

where σ2 = 1/τ, phi is the standard normal PDF and Phi is the standard normal CDF.

Parameters

•x : Input data.
•mu : Mean of the distribution.
•tau : Precision of the distribution, which corresponds to 1/sigma**2 (tau > 0).
•a : Left bound of the distribution.
•b : Right bound of the distribution.

uniform_like(x, lower, upper)
Uniform log-likelihood.

f (x | lower, upper) =
1

upper − lower

78 Chapter 9. Probability distributions

http://azzalini.stat.unipd.it/SN/

Parameters

•x : lower ≤ x ≤ upper
•lower : Lower limit.

•upper : Upper limit (upper > lower).

von_mises_like(x, mu, kappa)
von Mises log-likelihood.

f (x | µ, k) =
ek cos(x−µ)

2πI0(k)

where I_0 is the modified Bessel function of order 0.

Parameters

•x : Input data.

•mu : Mean of the distribution.

•kappa : Dispersion of the distribution

Note:

•E(X) = µ

weibull_like(x, alpha, beta)
Weibull log-likelihood

f (x | α,β) =
αxα−1 exp(−(x

β
)α)

βα

Parameters

•x : x ≥ 0

•alpha : alpha > 0

•beta : beta > 0

Note:

•E(x) = βΓ(1+ 1
α
)

•Var(x) = β2Γ(1+ 2
α
−µ2)

9.3 Multivariate discrete distributions

multivariate_hypergeometric_like(x, m)

The multivariate hypergeometric describes the probability of drawing x[i] elements of the ith category, when the
number of items in each category is given by m.

∏

i

�mi
xi

�

�N
n

�

where N =
∑

i mi and n=
∑

i x i .

9.3. Multivariate discrete distributions 79

Parameters

•x : [int sequence] Number of draws from each category, (x < m).
•m : [int sequence] Number of items in each categoy.

multinomial_like(x, n, p)
Multinomial log-likelihood. Generalization of the binomial distribution, but instead of each trial resulting in “success”
or “failure”, each one results in exactly one of some fixed finite number k of possible outcomes over n independent
trials. ‘x[i]’ indicates the number of times outcome number i was observed over the n trials.

f (x | n, p) =
n!

∏k
i=1 x i!

k
∏

i=1

pxi
i

Parameters

x[(ns, k) int] Random variable indicating the number of time outcome i is observed.
∑k

i=1 x i = n, x i ≥ 0.
n[int] Number of trials.

p[(k,)] Probability of each one of the different outcomes.
∑k

i=1 pi = 1), pi ≥ 0.

Note:

•E(X i) = npi

•Var(X i) = npi(1− pi)

•Cov(X i , X j) =−npi p j

9.4 Multivariate continuous distributions

dirichlet_like(x, theta)
Dirichlet log-likelihood.
This is a multivariate continuous distribution.

f (x) =
Γ(
∑k

i=1 θi)
∏

Γ(θi)

k−1
∏

i=1

xθi−1
i ·

1−
k−1
∑

i=1

x i

!θ

k

Parameters

x[(n, k-1) array] Array of shape (n, k-1) where n is the number of samples and k the dimension. 0 < x i < 1,
∑k−1

i=1 x i < 1
theta[array] An (n,k) or (1,k) array > 0.

Note: Only the first k-1 elements of x are expected. Can be used as a parent of Multinomial and Categorical neverthe-
less.

inverse_wishart_like(X, n, Tau)
Inverse Wishart log-likelihood. The inverse Wishart distribution is the conjugate prior for the covariance matrix of a
multivariate normal distribution.

f (X | n, T) =
| T |n/2| X |(n−k−1)/2 exp

¦

− 1
2

Tr(T X−1)
©

2nk/2Γp(n/2)

where k is the rank of X.

80 Chapter 9. Probability distributions

Parameters

•X : Symmetric, positive definite matrix.

•n : [int] Degrees of freedom (n > 0).

•Tau : Symmetric and positive definite matrix.

Note: Step method MatrixMetropolis will preserve the symmetry of Wishart variables.

mv_normal_like(x, mu, tau)
Multivariate normal log-likelihood

f (x | π, T) =
|T |1/2

(2π)1/2
exp
�

−
1

2
(x −µ)′T (x −µ)

�

Parameters

•x : (n,k)

•mu : (k) Location parameter sequence.

•Tau : (k,k) Positive definite precision matrix.

See Also:

mv_normal_chol_like(), mv_normal_cov_like()

mv_normal_chol_like(x, mu, sig)
Multivariate normal log-likelihood.

f (x | π,σ) =
1

(2π)1/2|σ|)
exp
�

−
1

2
(x −µ)′(σσ′)−1(x −µ)

�

Parameters

•x : (n,k)

•mu : (k) Location parameter.

•sigma : (k,k) Lower triangular matrix.

See Also:

mv_normal_like(), mv_normal_cov_like()

mv_normal_cov_like(x, mu, C)
Multivariate normal log-likelihood parameterized by a covariance matrix.

f (x | π, C) =
1

(2π|C |)1/2
exp
�

−
1

2
(x −µ)′C−1(x −µ)

�

Parameters

•x : (n,k)

•mu : (k) Location parameter.

•C : (k,k) Positive definite covariance matrix.

See Also:

mv_normal_like(), mv_normal_chol_like()

9.4. Multivariate continuous distributions 81

wishart_like(X, n, Tau)
Wishart log-likelihood. The Wishart distribution is the probability distribution of the maximum-likelihood estimator
(MLE) of the precision matrix of a multivariate normal distribution. If Tau=1, the distribution is identical to the
chi-square distribution with n degrees of freedom.

For an alternative parameterization based on C = T−1, see wishart_cov_like.

f (X | n, T) = | T |n/2| X |(n−k−1)/2 exp
�

−
1

2
Tr(T X)

�

where k is the rank of X.

Parameters

X[matrix] Symmetric, positive definite.

n[int] Degrees of freedom, > 0.

Tau[matrix] Symmetric and positive definite

Note: Step method MatrixMetropolis will preserve the symmetry of Wishart variables.

wishart_cov_like(X, n, C)
Wishart log-likelihood. The Wishart distribution is the probability distribution of the maximum-likelihood estimator
(MLE) of the covariance matrix of a multivariate normal distribution. If C=1, the distribution is identical to the
chi-square distribution with n degrees of freedom.

For an alternative parameterization based on T = C−1, see wishart_like.

f (X | n, C) = | C−1 |n/2| X |(n−k−1)/2 exp
�

−
1

2
Tr(C−1X)

�

where k is the rank of X.

Parameters

X[matrix] Symmetric, positive definite.

n[int] Degrees of freedom, > 0.

C[matrix] Symmetric and positive definite

82 Chapter 9. Probability distributions

CHAPTER

TEN

Conclusion

MCMC is a surprisingly difficult and bug-prone algorithm to implement by hand. We find PyMC makes it much
easier and less stressful. PyMC also makes our work more dynamic; getting hand-coded MCMC’s working used
to be so much work that we were reluctant to change anything, but with PyMC changing models is a breeze. We
hope it does the same for you!

10.1 How to get involved

We welcome new contributors at all levels. If you would like to contribute new code, improve documentation,
share your results or provide ideas for new features, please introduce yourself on our mailing list. Our wiki page
also hosts a number of tutorials and examples from users that could give you some ideas. We have taken great
care to make the code easy to extend, whether by adding new database backends, step methods or entirely new
sampling algorithms. Contributing to open source projects is a great experience, so don’t hesitate to jump in and
become part of pymc !

83

file:pymc@googlegroups.com
http://code.google.com/p/pymc/w/list

84

BIBLIOGRAPHY

H. Akaike. Information theory as an extension of the maximum likelihood principle. In B.N. Petrov and F. Csaki,
editors, Second International Symposium on Information Theory, pages 267–281, Akademiai Kiado, Budapest,
1973.

J.M. Bernardo, J. Berger, A.P. Dawid, and J.F.M. Smith, editors. Bayesian Statistics 4. Oxford University Press,
Oxford, 1992.

S.P. Brooks, E.A. Catchpole, and B.J.T. Morgan. Bayesian animal survival estimation. Statistical Science, 15:
357–376, 2000.

K.P. Burnham and D.R. Anderson. Model Selection and Multi-Model Inference: A Practical, Information-theoretic
Approach. Springer, New York, 2002.

G. Christakos. On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques.
Advances in Water Resources, 2002.

D. Gamerman. Markov Chain Monte Carlo: statistical simulation for Bayesian inference. Chapman and Hall, 1997.

A. Gelman, X.L. Meng, and H. Stern. Posterior predictive assessment of model fitness via realized discrepencies
with discussion. Statistica Sinica, 6, 1996.

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis, Second Edition. Chapman and
Hall/CRC, Boca Raton, FL, 2004.

J. Geweke. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bernardo
et al. [1992], pages 169–193.

H. Haario, E. Saksman, and J. Tamminen. An adaptive metropolis algorithm. Bernoulli, 7(2):223–242, 2001.

R.G. Jarrett. A note on the intervals between coal mining disasters. Biometrika, 66:191–193, 1979.

E.T. Jaynes. Probability theory: the logic of science. Cambridge university press, 2003.

M.I. Jordan. Graphical models. Statist. Sci., 19(1):140–155, 2004.

J. Kerman and A. Gelman. Fully Bayesian computing. Available at SSRN: http://ssrn.com/abstract=1010387,
2004.

Hans Petter Langtangen. Python Scripting for Computational Science. Springer-Verlag, 2009.

S.L. Lauritzen, A.P. Dawid, B.N. Larsen, and H.G. Leimer. Independence properties of directed Markov fields.
Networks, 20:491–505, 1990.

85

Mark Lutz. Learning Python. O’Reilly, 2007.

A.E. Raftery and S.M. Lewis. The number of iterations, convergence diagnostics and generic metropolis al-
gorithms. In D.J. Spiegelhalter W.R. Gilks and S. Richardson, editors, Practical Markov Chain Monte Carlo.
Chapman and Hall, London, U.K., 1995.

Gareth O. Roberts and Jeffrey S. Rosenthal. Implementing componentwise Hastings algorithms. Journal of Applied
Probability, 44(2):458–475, 2007.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.

86 Bibliography

	Introduction
	Purpose
	Features
	What's new in version 2
	Usage
	History
	Relationship to other packages
	Getting started

	Installation
	Dependencies
	Installation using EasyInstall
	Installing from pre-built binaries
	Compiling the source code
	Development version
	Running the test suite
	Bugs and feature requests

	Tutorial
	An example statistical model
	Two types of variables
	Parents and children
	Variables' values and log-probabilities
	Fitting the model with MCMC
	Imputation of Missing Data
	Fine-tuning the MCMC algorithm
	Beyond the basics

	Building models
	The Stochastic class
	Data
	The Deterministic class
	Containers
	The Potential class
	Graphing models
	Class LazyFunction and caching

	Fitting models
	Creating models
	Maximum a posteriori estimates
	Normal approximations
	Markov chain Monte Carlo: the MCMC class
	Step methods

	Saving and managing sampling results
	Accessing Sampled Data
	Saving Data to Disk
	Loading Back a Database
	Backends Description
	Writing a New Backend

	Model checking and diagnostics
	Convergence Diagnostics
	Goodness of Fit

	Extending PyMC
	Nonstandard Stochastics
	User-defined step methods
	New fitting algorithms
	Don't update stochastic variables' values in-place

	Probability distributions
	Discrete distributions
	Continuous distributions
	Multivariate discrete distributions
	Multivariate continuous distributions

	Conclusion
	How to get involved

