pybind11 Documentation

Wenzel Jakob

Feb 14, 2024



10

11

12

13

14

15

16

17

18

19

Changelog

Upgrade guide
Installing the library
First steps
Object-oriented code
Build systems
Functions

Classes

Exceptions

Smart pointers

Type conversions

Python C++ interface

Embedding the interpreter

Miscellaneous

Frequently asked questions

Benchmark
Limitations
Reference

CMake helpers

Bibliography

Index

CONTENTS

35
44
46
51
60
70
80
101
107
110
130
144
149
156
161
164
166
187
191

192




pybind11 Documentation

pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python
bindings of existing C++ code. Its goals and syntax are similar to the excellent Boost.Python library by David Abra-
hams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time
introspection.

The main issue with Boost.Python—and the reason for creating such a similar project—is Boost. Boost is an enor-
mously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This
compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of
compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become
an excessively large and unnecessary dependency.

Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn’t relevant
for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python
(3.6+, or PyPy) and the C++ standard library. This compact implementation was possible thanks to some of the new
C++11 language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this li-
brary has grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common
situations.

Tutorial and reference documentation is provided at pybind1 1 .readthedocs.io. A PDF version of the manual is available
here. And the source code is always available at github.com/pybind/pybind11.

Core features
pybind11 can map the following core C++ features to Python:
* Functions accepting and returning custom data structures per value, reference, or pointer
* Instance methods and static methods
¢ Overloaded functions
* Instance attributes and static attributes
 Arbitrary exception types
* Enumerations
* Callbacks
e [terators and ranges
» Custom operators
* Single and multiple inheritance
e STL data structures
* Smart pointers with reference counting like std: : shared_ptr
* Internal references with correct reference counting
e C++ classes with virtual (and pure virtual) methods can be extended in Python
Goodies
In addition to the core functionality, pybind11 provides some extra goodies:

* Python 3.6+, and PyPy3 7.3 are supported with an implementation-agnostic interface (pybind11 2.9 was the last
version to support Python 2 and 3.5).

e Itis possible to bind C++11 lambda functions with captured variables. The lambda capture data is stored inside
the resulting Python function object.

* pybind11 uses C++11 move constructors and move assignment operators whenever possible to efficiently transfer
custom data types.

CONTENTS 1


http://www.boost.org/doc/libs/1_58_0/libs/python/doc/
https://pybind11.readthedocs.io/en/latest
https://pybind11.readthedocs.io/_/downloads/en/latest/pdf/
https://github.com/pybind/pybind11

pybind11 Documentation

* It’s easy to expose the internal storage of custom data types through Pythons’ buffer protocols. This is handy
e.g.for fast conversion between C++ matrix classes like Eigen and NumPy without expensive copy operations.

* pybindl1 can automatically vectorize functions so that they are transparently applied to all entries of one or more
NumPy array arguments.

» Python’s slice-based access and assignment operations can be supported with just a few lines of code.
» Everything is contained in just a few header files; there is no need to link against any additional libraries.

* Binaries are generally smaller by a factor of at least 2 compared to equivalent bindings generated by Boost.Python.
A recent pybind11 conversion of PyRosetta, an enormous Boost.Python binding project, reported a binary size
reduction of 5.4x and compile time reduction by 5.8x.

* Function signatures are precomputed at compile time (using constexpr), leading to smaller binaries.
» With little extra effort, C++ types can be pickled and unpickled similar to regular Python objects.
Supported compilers
1. Clang/LLVM 3.3 or newer (for Apple Xcode’s clang, this is 5.0.0 or newer)
GCC 4.8 or newer
Microsoft Visual Studio 2017 or newer
Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI)
Cygwin/GCC (previously tested on 2.5.1)
NVCC (CUDA 11.0 tested in CI)
NVIDIA PGI (20.9 tested in CI)
About

A T o

This project was created by Wenzel Jakob. Significant features and/or improvements to the code were contributed by
Jonas Adler, Lori A. Burns, Sylvain Corlay, Eric Cousineau, Aaron Gokaslan, Ralf Grosse-Kunstleve, Trent Houliston,
Axel Huebl, @hulucc, Yannick Jadoul, Sergey Lyskov, Johan Mabille, Tomasz Miasko, Dean Moldovan, Ben Pritchard,
Jason Rhinelander, Boris Schiling, Pim Schellart, Henry Schreiner, Ivan Smirnov, Boris Staletic, and Patrick Stewart.

We thank Google for a generous financial contribution to the continuous integration infrastructure used by this project.
Contributing

See the contributing guide for information on building and contributing to pybind11.

License

pybind11 is provided under a BSD-style license that can be found in the LICENSE file. By using, distributing, or
contributing to this project, you agree to the terms and conditions of this license.

CONTENTS 2


https://graylab.jhu.edu/Sergey/2016.RosettaCon/PyRosetta-4.pdf
http://rgl.epfl.ch/people/wjakob
https://github.com/pybind/pybind11/blob/master/.github/CONTRIBUTING.md
https://github.com/pybind/pybind11/blob/master/LICENSE

CHAPTER
ONE

CHANGELOG

Starting with version 1.8.0, pybind11 releases use a semantic versioning policy.

Changes will be added here periodically from the “Suggested changelog entry” block in pull request descriptions.

1.1 IN DEVELOPMENT

Changes will be summarized here periodically.

1.2 Version 2.11.1 (July 17, 2023)

Changes:

e PYBIND11_NO_ASSERT_GIL_HELD_INCREF_DECREF is now provided as an option for disabling the default-on
PyGILState_Check()’sin pybind11::handle’s inc_ref() & dec_ref(). #4753

e PYBIND11_ASSERT_GIL_HELD_INCREF_DECREF was disabled for PyPy in general (not just PyPy Windows).
#4751

1.3 Version 2.11.0 (July 14, 2023)

New features:

¢ The newly added pybind11: :detail::is_move_constructible trait can be specialized for cases in which
std::is_move_constructible does not work as needed. This is very similar to the long-established
pybindll::detail::is_copy_constructible. #4631

¢ Introduce recursive_container_traits. #4623

* pybindl1l/type_caster_pyobject_ptr.h wasadded to support automatic wrapping of APIs that make use of
PyObject *. This header needs to included explicitly (i.e. it is not included implicitly with pybind/pybind11.
h). #4601

e format_descriptor<> & npy_format_descriptor<>PyObject * specializations were added. The latter
enables py: :array_t<PyObject *> to/from-python conversions. #4674

e buffer_info gained an item_type_is_equivalent_to<T>() member function. #4674
* The capsule API gained a user-friendly constructor (py: : capsule(ptr, "name", dtor)). #4720

Changes:



http://semver.org
https://github.com/pybind/pybind11/pull/4753
https://github.com/pybind/pybind11/pull/4751
https://github.com/pybind/pybind11/pull/4631
https://github.com/pybind/pybind11/pull/4623
https://github.com/pybind/pybind11/pull/4601
https://github.com/pybind/pybind11/pull/4674
https://github.com/pybind/pybind11/pull/4674
https://github.com/pybind/pybind11/pull/4720

