
An Information Theoretic Approach to Scheduling Radial Velocity 
Follow-Up Observations for TESS Systems

Motivation

• Exoplanet survey missions like Kepler and TESS have 

discovered many more systems than can easily be followed 
up, since the further study of any one system requires 
expensive radial velocity (RV) observations.


• RV observations can give us mass constraints on planets, 
which can be combined with radius constraints from transit 
surveys to get density — and composition — estimates.


• Previous works have formulated this as an optimization 
problem to minimize observations and uncertainty and 
maximize information (Burt et al. 2018; Cloutier et al. 2018).


• We use Fisher Information to quantify the performance of 
different observing strategies and maximize followup 
efficiency.
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Example use case:

• Let’s say I want to follow up AU Mic b with the NEID 

spectrograph on Kitt Peak and have 30 observations to 
spend. My choice of target, observing budget, and location 
informs the white noise and time available to observe.


• I first feed in fitted GP model parameters from sources like 
Klein+ 2021. This informs the covariance matrix.


• I then feed in transit parameters from TESS (central 
crossing time and orbital period) and an expected K. 


• Now I can try different strategies and build a map showing 
where the best and worst of them are. 


Dots are not drawn if a strategy leads to an observing baseline that 
takes us past the end of the observing season. A strategy of {5, 2} 
would be 5 nights observing, 2 nights off, and so on until 30 
observations are made. Most strategies in this case perform 
comparably, although there are some near the edge of the observing 
baseline that are poor.
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Fisher Information

1. Fisher Information matrix is calculated as: 


2. For model, , we assume a circular, single-planet 
Keplerian orbit


3. For covariance matrix, , the kernel is a quasi-periodic 
Gaussian Process, which encodes stellar correlated noise:


4. We then use the Fisher Information to calculate 
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Observing Strategy Considerations/Beat Frequencies

1. Planets with orbital period equal to the stellar rotation period (or its integer ratios) will be 

difficult to disentangle from the stellar signal.

2. Similarly, beat frequencies between the planet orbital and stellar rotation periods produce 

circus tent-shaped features of low Fisher Information content that vary based on the choice of 
observing cadence. These contours represent strategies that result in sampling times when the 
stellar signal is entangled with the planet signal. 


3. An example of a high-information-content strategy, away from any beat frequencies. The phase 
curve shows that the sampled planet signal is not entangled in the stellar signal. 

The interplay between stellar rotation period, planet 
orbital period, and observing cadence lead to so-called 
“beat frequencies”, shown as contours of high 
uncertainty on K (or low information content). 
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