estimation.feols_compressed_.FeolsCompressed
estimation.feols_compressed_.FeolsCompressed(self, FixestFormula, data, ssc_dict, drop_singletons, drop_intercept, weights, weights_type, collin_tol, fixef_tol, lookup_demeaned_data, solver='np.linalg.solve', store_data=True, copy_data=True, lean=False, reps=100, seed=None)
Non-user-facing class for compressed regression with fixed effects.
See the paper “You only compress once” by Wong et al (https://arxiv.org/abs/2102.11297) for details on regression compression.
Parameters
Name | Type | Description | Default |
---|---|---|---|
FixestFormula |
FixestFormula | The formula object. | required |
data |
pd.DataFrame | The data. | required |
ssc_dict |
dict[str, Union[str, bool]] | The ssc dictionary. | required |
drop_singletons |
bool | Whether to drop columns with singleton fixed effects. | required |
drop_intercept |
bool | Whether to include an intercept. | required |
weights |
Optional[str] | The column name of the weights. None if no weights are used. For this method, weights needs to be None. | required |
weights_type |
Optional[str] | The type of weights. For this method, weights_type needs to be ‘fweights’. | required |
collin_tol |
float | The tolerance level for collinearity. | required |
fixef_tol |
float | The tolerance level for the fixed effects. | required |
lookup_demeaned_data |
dict[str, pd.DataFrame] | The lookup table for demeaned data. | required |
solver |
str | The solver to use. | 'np.linalg.solve' |
store_data |
bool | Whether to store the data. | True |
copy_data |
bool | Whether to copy the data. | True |
lean |
bool | Whether to keep memory-heavy objects as attributes or not. | False |
reps |
int | The number of bootstrap repetitions. Default is 100. Only used for CRV1 inference, where a wild cluster bootstrap is used. | 100 |
seed |
Optional[int] | The seed for the random number generator. Only relevant for CRV1 inference, where a wild cluster bootstrap is used. | None |
Methods
Name | Description |
---|---|
predict | Compute predicted values. |
prepare_model_matrix | Prepare model inputs for estimation. |
vcov | Compute the variance-covariance matrix for the compressed regression. |
predict
estimation.feols_compressed_.FeolsCompressed.predict(newdata=None, atol=1e-06, btol=1e-06, type='link')
Compute predicted values.
Parameters
Name | Type | Description | Default |
---|---|---|---|
newdata |
Optional[DataFrameType] | The new data. If None, makes a prediction based on the uncompressed data set. | None |
atol |
float | The absolute tolerance. | 1e-06 |
btol |
float | The relative tolerance. | 1e-06 |
type |
str | The type of prediction. | 'link' |
Returns
Type | Description |
---|---|
np.ndarray | The predicted values. If newdata is None, the predicted values are based on the uncompressed data set. |
prepare_model_matrix
estimation.feols_compressed_.FeolsCompressed.prepare_model_matrix()
Prepare model inputs for estimation.
vcov
estimation.feols_compressed_.FeolsCompressed.vcov(vcov, data=None)
Compute the variance-covariance matrix for the compressed regression.