
Chapter 1

Intro, Quick Sort and BSP
By Sariel Har-Peled, December 30, 2015¬

Finally: It was stated at the outset, that this system would not be here, and at once, perfected. You cannot but plainly
see that I have kept my word. But I now leave my cetological System standing thus unfinished, even as the great
Cathedral of Cologne was left, with the crane still standing upon the top of the uncompleted tower. For small erections
may be finished by their first architects; grand ones, true ones, ever leave the copestone to posterity. God keep me
from ever completing anything. This whole book is but a draft - nay, but the draft of a draft. Oh, Time, Strength, Cash,
and Patience!

– Herman Melville, Moby Dick.

1.1. General Introduction

1.1.1. Administrivia
• prerequisites: algorithms course, ability to do proofs
• homework weekly (first next week)
• books.

1.1.2. What are randomized algorithms?
Randomized algorithms are algorithms that makes random decision during their execution. Specifically, they
are allowed to use variables that their value is taken from some random distribution. It is not immediately clear
why adding the ability to consult with randomness would help an algorithm. But it turns out that the benefits
are quite substantial:
Best. There are cases were only randomized algorithm is known or possible, especially for games. For exam-

ple, consider the 3 coins example.
Speed. In some cases randomized algorithms are considerably faster than any deterministic algorithm.
Simplicity. Even if a randomized algorithm is not faster, often it is considerably simpler than its deterministic

counterpart.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Derandomization. Some deterministic algorithms arises from derandomizing the randomized algorithms, and
this the only algorithm we know for these problems (i.e., discrepancy).

Adversary arguments and lower bounds. The standard worst case analysis relies on the idea that the
adversary can select the input on which the algorithm performs worst. Inherently, the adversary is more
powerful than the algorithm, since the algorithm is completely predictable. By using a randomized
algorithm, we can make the algorithm unpredictable and break the adversary lower bound.
Namely, randomness makes the algorithm vs. adversary game a more balanced game, by giving the
algorithm additional power against the adversary.

1.1.3. The benefits of unpredictability
Consider the following game. The adversary has a equilateral triangle, with three coins on the vertices of the
triangle (which are, numbered by, I don’t known, 1,2,3). At every step of the game, the play can ask the player
can ask the adversary to flip certain coins (say, flip coins at vertex 1 and 3). If after the flips all three coins have
the same side up, then the game stop. Otherwise, the adversary is allowed to rotate the board by 0, 120 or −120
degrees, as she seems fit. And the game continues from this point on.

1.1.3.0.1. Randomized algorithm. The randomized algorithm in this case is easy – the play randomly
chooses a number among 1, 2, 3 at every stage. Since, at every point in time, there are two coins that have
the same side up, and the other coin is the other side up, a random choice hits the lonely coin, and thus finishes
the game, with probability 1/3 at each step. In particular, the number of iterations of the game till it termi-
nates is a geometric variable with geometric distribution with expectation 3. Clearly, the probability that the
game continues for more than i rounds, when the player uses this random algorithm, is (2/3)i. In particular, it
vanishes to zero relatively quickly.

1.1.3.0.2. Deterministic algorithm. The surprise here is that there is no deterministic algorithm that can
generate a winning sequence. Indeed, if the player uses a deterministic algorithm, then the adversary can
simulate the algorithm herself, and know at every stage what coin the player would ask to flip (it is easy to
verify that flipping two coins in a step is equivalent to flipping toe other coin – so we can restrict ourselves to a
single coin flip at each step). In particular, the adversary can rotate the board such that every stage, the player
flips one of the two coins that are in the same state. Namely, the player never wins.

1.1.3.0.3. The shocker. One can play the same game with a board of size 4 (i.e., a square), where at each
stage the player can flip one or two coins, and the adversary can rotate the board by 0, 90, 180, 270 degrees after
each round. Surprisingly, there is a deterministic winning strategy for this case. The interested reader can think
what it is (this is one of these brain teasers that are not immediate, and might take you 15 minutes to solve, or
longer).

1.1.4. Randomized vs average-case analysis
Randomized algorithms are not the same as average-case analysis. In average case analysis, one assumes that
is given some distribution on the input, and one tries to analyze an algorithm execution on such an input.

On the other hand, randomized algorithms do not assume random inputs – inputs can be arbitrary. As such,
randomized algorithm analysis is more widely applicable, and more general.

while there is a lot of average case analysis in the literature, the problem that it is hard to find distribution
on inputs that are meaningful in comparison to real world inputs. In particular, for numerous cases, the average
case analysis exposes structure that does not exist in real world input.
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1.2. Basic probability
Here we recall some definitions about probability. The reader already familiar with these definition can happily
skip this section.

1.2.1. Formal basic definitions: Sample space, σ-algebra, and probability
Here we formally define some basic notions in probability. The reader familiar with these concepts can safely
skip this part.

A sample space Ω is a set of all possible outcomes of an experiment. We also have a set of events F , where
every member of F is a subset of Ω. Formally, we will require that F is a σ-algebra.

Definition 1.2.1. A single element of Ω is an elementary event or an atomic event.

Definition 1.2.2. A set F of subsets of Ω is a σ-algebra if:
(i) F is not empty,

(ii) if X ∈ F then X = (Ω \ X) ∈ F , and
(iii) if X,Y ∈ F then X ∪ Y ∈ F .

More generally, we will require that if Xi ∈ F , for i ∈ ZZ, then ∪iXi ∈ F . A member of F an event.

As a concrete example, if we are rolling a dice, then Ω = {1, 2, 3, 4, 5, 6} and F would be the power set of
all possible subsets of Ω.

Definition 1.2.3. A probability measure is a mapping Pr : F → [0, 1] assigning probabilities to events. The
function Pr needs to have the following properties:

(i) Additive: for X,Y ∈ F disjoint sets, we have that Pr
[
X ∪ Y

]
= Pr

[
X
]
+ Pr

[
Y
]
, and

(ii) Pr[Ω] = 1.

Definition 1.2.4. A probability space is a triple (Ω,F ,Pr), whereΩ is a sample space, F is a σ-algebra defined
over Ω, and Pr is a probability measure.

Definition 1.2.5. A random variable f is a mapping from Ω into some set G. We will require that the proba-
bility of the random variable to take on any value in a given subset of values is well defined. Formally, we will
require that for any subset U ⊆ G, we have that f −1(U) ∈ F . That is, Pr

[
f ∈ U

]
= Pr

[
f −1(U)

]
is defined.

Going back to the dice example, the number on the top of the dice when we roll it is a random variable.
Similarly, let X be one if the number rolled is larger than 3, and zero otherwise. Clearly X is a random variable.

We denote the probability of a random variable X to get the value x, by Pr[X = x] (or sometime Pr[x], if
we are lazy).

1.2.2. Expectation and conditional probability
Definition 1.2.6 (Expectation). The expectation of a random variable X, is its average. Formally, the expecta-
tion of X is

E
[
X
]
=

∑
x

x Pr
[
X = x

]
.

Definition 1.2.7 (Conditional Probability.). The conditional probability of X given Y , is the probability that
X = x given that Y = y. We denote this quantity by Pr

[
X = x

∣∣∣ Y = y
]
.
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Conditional probability specially is mental chaos. One useful way to think about conditional probability
Pr

[
X

∣∣∣ Y ]
is as a function, between the given value of Y (i.e., y), and the probability of X (to be equal to x) in

this case. Since in many cases x and y are omitted in the notation, it is somewhat confusing.
The conditional probability can be computed using the formula

Pr
[
X = x

∣∣∣ Y = y
]
=

Pr
[

(X = x) ∩ (Y = y)
]

Pr
[
Y = y

] .

For example, let us roll a dice and let X be the number we got. Let Y be the random variable that is true if
the number we get is even. Then, we have that

Pr
[
X = 2

∣∣∣ Y = true
]
=

1
3
.

Definition 1.2.8. Two random variables X and Y are independent if Pr
[
X = x

∣∣∣ Y = y
]
= Pr[X = x], for all x

and y.

Observation 1.2.9. If X and Y are independent then Pr
[
X = x

∣∣∣ Y = y
]
= Pr[X = x] which is equivalent

to
Pr

[
X = x ∩ Y = y

]
Pr

[
Y = y

] = Pr[X = x]. That is, X and Y are independent, if for all x and y, we have that

Pr
[
X = x ∩ Y = y

]
= Pr

[
X = x

]
Pr

[
Y = y

]
.

Lemma 1.2.10 (Linearity of expectation). Linearity of expectation is the property that for any two random
variables X and Y, we have that E

[
X + Y

]
= E

[
X
]
+ E

[
Y
]
.

Proof: E
[
X + Y

]
=

∑
ω∈Ω

Pr[ω]
(
X(ω) + Y(ω)

)
=

∑
ω∈Ω

Pr[ω] X(ω) +
∑
ω∈Ω

Pr[ω] Y(ω) = E
[
X
]
+ E

[
Y
]
. �

1.3. QuickSort
Let the input be a set t1, . . . , tn of n items to be sorted. We remind the reader, that the QuickSort algorithm
randomly pick a pivot element (uniformly), splits the input into two subarrays of all the elements smaller than
the pivot, and all the elements larger than the pivot, and then it recurses on these two subarrays (the pivot is
not included in these two subproblems). Here we will show that the expected running time of QuickSort is
O(n log n).

Definition 1.3.1. For an event E, let X be a random variable which is 1 if E occurred and 0 otherwise. The
random variable X is an indicator variable.

Observation 1.3.2. For an indicator variable X of an event E, we have

E
[
X
]
= 0 · Pr

[
X = 0

]
+ 1 · Pr

[
X = 1

]
= Pr

[
X = 1

]
= Pr

[
E
]
.

Let S 1, . . . , S n be the elements in their sorted order (i.e., the output order). Let Xi j = 1 be the indicator
variable which is one iff QuickSort compares S i to S j, and let pi j denote the probability that this happens.
Clearly, the number of comparisons performed by the algorithm is C =

∑
i< j Xi j. By linearity of expectations,

we have

E
[
C
]
= E

∑
i< j

Xi j

 =∑
i< j

E
[
Xi j

]
=

∑
i< j

pi j.
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We want to bound pi j, the probability that the S i is compared to S j. Consider the last recursive call involving
both S i and S j. Clearly, the pivot at this step must be one of S i, . . . , S j, all equally likely. Indeed, S i and S j

were separated in the next recursive call.
Observe, that S i and S j get compared if and only if pivot is S i or S j. Thus, the probability for that is

2/( j − i + 1). Indeed,

pi j = Pr
[
S i or S j picked

∣∣∣ picked pivot from S i, . . . , S j

]
=

2
j − i + 1

.

Thus,

n∑
i=1

∑
j>i

pi j =

n∑
i=1

∑
j>i

2/( j − i + 1) =
n∑

i=1

n−i+1∑
k=1

2
k
≤ 2

n∑
i=1

n∑
k=1

1
k
≤ 2nHn ≤ n + 2n ln n,

where Hn is the harmonic number­ Hn =

n∑
i=1

1
i
. We thus proved the following result.

Lemma 1.3.3. QuickSort performs in expectation at most n + 2n ln n comparisons, when sorting n elements.

Note, that this holds for all inputs. No assumption on the input is made. Similar bounds holds not only in
expectation, but also with high probability.

This raises the question, of how does the algorithm pick a random element? We assume we have access to
a random source that can get us number between 1 and n uniformly.

Note, that the algorithm always works, but it might take quadratic time in the worst case.

1.4. Binary space partition (BSP)
Let assume that we would like to render an image of a three dimensional scene on the computer screen. The
input is in general a collection of polygons in three dimensions. The painter algorithm, render the scene by
drawing things from back to front; and let front stuff overwrite what was painted before.

The problem is that it is not always possible to order the objects in three dimensions. This ordering might
have cycles. So, one possible solution is to build a binary space partition. We build a binary tree. In the
root, we place a polygon P. Let h be the plane containing P. Next, we partition the input polygons into two
sets, depending on which side of h they fall into. We recursively construct a BSP for each set, and we hang it
from the root node. If a polygon intersects h then we cut it into two polygons as split by h. We continue the
construction recursively on the objects on one side of h, and the objects on the other side. What we get, is a
binary tree that splits space into cells, and furthermore, one can use the painter algorithm on these objects. The
natural question is how big is the resulting partition.

We will study the easiest case, of disjoint segments in the plane.

1.4.1. BSP for disjoint segments
Let P = {s1, . . . , sn} be n disjoint segments in the plane. We will build the BSP by using the lines defined by
these segments. This kind of BSP is called autopartition.

To recap, the BSP is a binary tree, at every internal node we store a segment of P, where the line associated
with it splits its region into its two children. Finally, each leaf of the BSP stores a single segment. A fragment

­Using integration to bound summation, we have Hn ≤ 1 +
∫ n

x=1
1
x dx ≤ 1 + ln n. Similarly, Hn ≥

∫ n
x=1

1
x dx = ln n.
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is just going to be a subsegment formed by this splitting. Clearly, every internal node, stores a fragment that
defines its split. As such, the size of the BSP is proportional to the number of fragments generated when
building the BSP.

One application of such a BSP is ray shooting - given a ray you would like to determine what is the first
segment it hits. Start from the root, figure out which child contains the apex of the ray, and first (recursively)
compute the first segment stored in this child that the ray intersect. Contain into the second child only if the
first subtree does not contain any segment that intersect the ray.

1.4.1.1. The algorithm

We pick a random permutation σ of 1, . . . , n, and in the ith step we insert sσ(i) splitting all the cells that si

intersects.
Observe, that if si crosses a cell completely, it just splits it into two and no new fragments are created. As

such, the bad case is when a segment s is being inserted, and its line intersect some other segment t.
So, let E(s, t) denote the event that when inserted s it had split t. In particular, let index(s, t) denote the

number of segments on the line of s between s (closer) endpoint and t (including t. If the line of s does not
intersect t, then index(s, t) = ∞.

We have that

Pr
[
E(s, t)

]
=

1
1 + index(s, t)

.

Let Xs,t be the indicator variable that is 1 if E(s, t) happens. We have that

S = number of fragments =
n∑

i=1

n∑
j=1,i, j

Xsi,s j .

As such, by linearity of expectations, we have

E[S ] = E

 n∑
i=1

n∑
j=1,i, j

Xsi,s j

 = n∑
i=1

n∑
j=1,i, j

E
[
Xsi,s j

]
=

n∑
i=1

n∑
j=1,i, j

Pr
[
E(si, s j)

]
=

n∑
i=1

n∑
j=1,i, j

1

1 + index
(
si, s j

)
≤

n∑
i=1

n∑
j=1

2
1 + j

= 2nHn.

Since the size of the BSP is proportional to the number of fragments created, we have the following result.

Theorem 1.4.1. Given n disjoint segments in the plane, one can build a BSP for them of size O(n log n).

Csaba Tóth [Tót03] showed that BSP for segments in the plane, in the worst case, has complexityΩ
(
n

log n
log log n

)
.

1.5. Extra: QuickSelect running time
We remind the reader that QuickSelect receives an array t[1 . . . n] of n real numbers, and a number k, and
returns the element of rank k in the sorted order of the elements of t. We can of course, use QuickSort, and
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just return the kth element in the sorted array, but a more efficient algorithm, would be to modify QuickSelect,
so that it recurses on the subproblem that contains the element we are interested in. Formally, QuickSelect
chooses a random pivot, splits the array according to the pivot. This implies that we now know the rank of
the pivot, and if its equal to m, we return it. Otherwise, we recurse on the subproblem containing the required
element (modifying m as we go down the recursion. Namely, QuickSelect is a modification of QuickSort
performing only a single recursive call (instead of two).

As before, to bound the expected running time, we will bound the expected number of comparisons. As
before, let S 1, . . . , S n be the elements of t in their sorted order. Now, for i < j, let Xi j be the indicator variable
that is one if S i is being compared to S j during the execution of QuickSelect. There are several possibilities to
consider:

(i) If i < j < m: Here, S i is being compared to S j, if and only if the first pivot in the range S i, . . . , S k is either
S i or S j. The probability for that is 2/(k − i + 1). As such, we have that

α1 = E

 ∑
i< j<m

Xi j

 = E

m−2∑
i=1

m−1∑
j=i+1

Xi j

 = m−2∑
i=1

m−1∑
j=i+1

2
m − i + 1

=

med−2∑
i=1

2(m − i − 1)
m − i + 1

≤ 2
(
m − 2

)
.

(ii) If m < i < j: Using the same analysis as above, we have that Pr
[
Xi j = 1

]
= 2/( j −m + 1). As such,

α2 = E

 n∑
j=m+1

j−1∑
i=m+1

Xi j

 = n∑
j=m+1

j−1∑
i=m+1

2
j −m + 1

=

n∑
j=m+1

2( j −m − 1)
j −m + 1

≤ 2
(
n −m

)
.

(iii) i < m < j: Here, we compare S i to S j if and only if the first indicator in the range S i, . . . , S j is either S i

or S j. As such, E
[
Xi j

]
= Pr

[
Xi j = 1

]
= 2/( j − i + 1). As such, we have

α3 = E

m−1∑
i=1

n∑
j=m+1

Xi j

 = m−1∑
i=1

n∑
j=m+1

2
j − i + 1

.

Observe, that for a fixed ∆ = j − i + 1, we are going to handle the gap ∆ in the above summation, at most
∆ − 2 times. As such, α3 ≤

∑n
∆=3 2(∆ − 2)/∆ ≤ 2n.

(iv) i = m. We have α4 =

n∑
j=m+1

E
[
Xi j

]
=

n∑
j=m+1

2
j −m + 1

= ln n + 1.

(v) j = m. We have α5 =

m−1∑
i=1

E
[
Xi j

]
=

m−1∑
i=1

2
m − i + 1

≤ ln m + 1.

Thus, the expected number of comparisons performed by QuickSelect is bounded by∑
i

αi ≤ 2(m − 2) + 2(n −m) + 2n + ln n + 1 + ln m = 4n − 2 + ln n + ln m.

Theorem 1.5.1. In expectation, QuickSelect performs at most 4n−2+ ln n+ ln m comparisons, when selecting
the mth element out of n elements.

A different approach can reduce the number of comparisons (in expectation) to 1.5n + o(n). More on that
later in the course.
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Chapter 2

Verifying Identities, Changing Minimum, Closest
Pair and Some Complexity
By Sariel Har-Peled, December 30, 2015¬

The events of 8 September prompted Foch to draft the later legendary signal: “My centre is giving way, my right is in
retreat, situation excellent. I attack.” It was probably never sent.

– John Keegan, The first world war.

2.1. Verifying equality

2.1.1. Vectors

You are given two binary vectors v = (v1, . . . , vn),u = (u1, . . . , un) ∈
{
0, 1
}n

and you would like to decide if
they are equal or not. Unfortunately, the only access you have to the two vectors is via a black-box that enables
you to compute the dot-product of two binary vectors over ZZ2. Formally, given two binary vectors as above,
their dot-product is 〈v,u〉 =

∑n
i=1 viui (which is a non-negative integer number). Their dot product modulo 2, is

〈v,u〉 mod 2 (i.e., it is 1 if 〈v,u〉 is odd and 0 otherwise).
Naturally, we could the use the black-box to read the vectors (using 2n calls), but since we interested only

in deciding if they are equal or not, this should require less calls to the black-box (which is expensive).

Lemma 2.1.1. Given two binary vectors v,u ∈
{
0, 1
}n

, a randomized algorithm can, using two computations
of dot-product modulo 2, decide if v is equal to vecB or not. The algorithm may return the following.
,: Then v , u.
=: Then the probability that the algorithm made a mistake (i.e., the vectors are different) is at most 1/2.

The running time of the algorithm is O(n + B(n)), where B(n) is the time to compute a single dot-product of
vectors of length n.

Proof: Pick a random vector r = (r1, . . . , rn) ∈
{
0, 1
}n

by picking each coordinate independently with probabil-
ity 1/2. Compute 〈v, r〉 and 〈u, r〉.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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• If 〈v, r〉 ≡ 〈v, r〉 mod 2 ⇒ the algorithm returns ‘=’.
• If 〈v, r〉 . 〈v, r〉 mod 2 ⇒ the algorithm returns ‘,’.

Clearly, if the ‘,’ then it is correct.
So, assume that the algorithm returns ‘=’ but v , u. For the sake of simplicity of exposition, assume that

un , vn. We then have that

α = 〈v, r〉 =

=α′︷ ︸︸ ︷
n−1∑
i=1

viri + vnrn and β = 〈u, r〉 =

=β′︷ ︸︸ ︷
n−1∑
i=1

uiri + unrn.

Now, there are two possibilities:
• If α′ . β′ mod 2, then, with probability half, we have ri = 0, and as such α . β mod 2.
• If α′ ≡ β′ mod 2, then, with probability half, we have ri = 1, and as such α . β mod 2.

As such, with probability at most half, the algorithm would fail to discover that the two vectors are different.�

2.1.1.1. Amplification

Of course, this is not a satisfying algorithm – it returns the correct answer only with probability half if the
vectors are different. So, let us run the algorithm t times. Let T1, . . . , Tt be the returned values from all these
executions. If any of the t executions returns that the vectors are different, then we know that they are different.

Pr
[
Algorithm fails

]
= Pr
[
v , u, but all t executions return ‘=’

]
= Pr
[(

T1 = ‘=’
)
∩
(
T2 = ‘=’

)
∩ · · · ∩

(
Tt = ‘=’

)]
= Pr
[
T1 = ‘=’

]
Pr
[
T2 = ‘=’

]
· · ·Pr

[
Tt = ‘=’

]
≤

t∏
i=1

1
2
=

1
2t .

We thus get the following result.

Lemma 2.1.2. Given two binary vectors v,u ∈
{
0, 1
}n

and a confidence parameter δ > 0, a randomized
algorithm can decide if v is equal to vecB or not. More precisely:
,: If the returned result is that the two vectors are not equal then indeed they are.
=: If the returned is that the two vectors are equal then the probability it made a mistake is at most δ.

The running time of the algorithm is O
((

n + B(n)
)

ln(1/δ)
)
, where B(n) is the time to compute a single dot-

product of two vectors of length n.

Proof: Follows from the above by setting t =
⌈
lg(1/δ)

⌉
. �

2.1.2. Matrices
Given three binary matrices B, C, D of size n × n, we are interested in the question of deciding if BC = D.
Computing BC is expensive – the fastest known (theoretical!) algorithm has running time (roughly) O

(
n2.37
)
.

On the other hand, multiplying such a matrix with a vector r (modulo 2, as usual) takes only O(n2) and is a
much simpler algorithm.

Lemma 2.1.3. Given three binary matrices B,C,D ∈
{
0, 1
}n×n

and aconfidence parameter δ > 0, a randomized
algorithm can decide if BC = D or not. More precisely the algorithm can return one of the following two
results:
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,: Then BC , D.
=: Then the probability that BC , D is at most δ.

The running time of the algorithm is O
(
n2 ln 1

δ

)
.

Proof: Compute a random vector r = {r1, . . . , rn}, and compute the quantity x = BCr = B(Cr) in O(n2) time,
using the associative property of matrix multiplication. Similarly, compute y = Dr. Now, if x , y then return
‘=’.

Now, we execute this algorithm t =
⌈
lg 1/δ

⌉
times. If all of these independent runs return that the matrices

are equal then return ‘=’.
The algorithm fails only if BC , D, but then, assume the ith row in two matrices BC and D are different.

But then, the probability that the algorithm would not detect that these rows are different is at most 1/2, by
Lemma 2.1.1. As such, the probability that all t runs failed is at most 1/2t ≤ δ, as desired. �

2.2. How many times can a minimum change?
Let a1, . . . , an be a set of n numbers, and let us randomly permute them into the sequence b1, . . . , bn. Next,
let ci = mini

k=1 bi, and let X be the random variable which is the number of distinct values that appears in the
sequence c1, . . . , cn. What is the expectation of X?

Lemma 2.2.1. In expectation, the number of times the minimum of a prefix of n randomly permuted numbers
change, is O(log n). That is E[X] = O(log n).

Proof: Consider the indicator variable Xi, such that Xi = 1 if ci , ci−1. The probability for that is ≤ q1/i,
since this is the probability that the smallest number if b1, . . . , bi is bi. As such, we have X =

∑
i Xi, and

E[X] =
∑

i

E[Xi] =
n∑

i=1

1
i
= O(log n). �

2.3. Closest Pair
Assumption 2.3.1. Throughout the discourse, we are going to assume that every hashing operation takes
(worst case) constant time. This is quite a reasonable assumption when true randomness is available (using
for example perfect hashing [CLRS01]). We probably will revisit this issue later in the course.

For a real positive number r and a point p = (x, y) in R2, define

Gr(p) :=
( ⌊ x

r

⌋
r ,
⌊y
r

⌋
r
)
∈ R2.

We call r the width of the grid Gr. Observe that Gr partitions the plane into square regions, which we call grid
cells. Formally, for any i, j ∈ Z, the intersection of the half-planes x ≥ ri, x < r(i + 1), y ≥ r j and y < r( j + 1)
is said to be a grid cell. Further we define a grid cluster as a block of 3 × 3 contiguous grid cells.

For a point set P, and a parameter r, the partition of P into subsets by the grid Gr, is denoted by Gr(P). More
formally, two points p, q ∈ P belong to the same set in the partition Gr(P), if both points are being mapped to
the same grid point or equivalently belong to the same grid cell.

Note, that every grid cell C of Gr, has a unique ID; indeed, let p = (x, y) be any point in C, and consider
the pair of integer numbers idC = id(p) = (bx/rc , by/rc). Clearly, only points inside C are going to be mapped
to idC. This is very useful, since we can store a set P of points inside a grid efficiently. Indeed, given a point
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p, compute its id(p). We associate with each unique id a data-structure that stores all the points falling into
this grid cell (of course, we do not maintain such data-structures for grid cells which are empty). So, once we
computed id(p), we fetch the data structure for this cell, by using hashing. Namely, we store pointers to all
those data-structures in a hash table, where each such data-structure is indexed by its unique id. Since the ids
are integer numbers, we can do the hashing in constant time.

We are interested in solving the following problem.

Problem 2.3.2. Given a set P of n points in the plane, find the pair of points closest to each other. Formally,
return the pair of points realizing CP(P) = minp,q∈P ‖pq‖.

Lemma 2.3.3. Given a set P of n points in the plane, and a distance r, one can verify in linear time, whether
or not CP(P) < r or CP(P) ≥ r.

Proof: Indeed, store the points of P in the grid Gr. For every non-empty grid cell, we maintain a linked list
of the points inside it. Thus, adding a new point p takes constant time. Indeed, compute id(p), check if id(p)
already appears in the hash table, if not, create a new linked list for the cell with this ID number, and store p in
it. If a data-structure already exist for id(p), just add p to it.

This takes O(n) time. Now, if any grid cell in Gr(P) contains more than, say, 9 points of P, then it must be
that the CP(P) < r. Indeed, consider a cell C containing more than four points of P, and partition C into 3 × 3
equal squares. Clearly, one of those squares must contain two points of P, and let C′ be this square. Clearly,
the diameter of C′ = diam(C)/3 =

√
r2 + r2/3 < r. Thus, the (at least) two points of P in C′ are in distance

smaller than r from each other.
Thus, when we insert a point p, we can fetch all the points of P that were already inserted, for the cell of P,

and the 8 adjacent cells. All those cells, must contain at most 9 points of P (otherwise, we would already have
stopped since the CP(·) of inserted points, is smaller than r). Let S be the set of all those points, and observe
that |S | ≤ 9 · 9 = O(1). Thus, we can compute by brute force the closest point to p in S . This takes O(1) time.
If d(p, S ) < r, we stop, otherwise, we continue to the next point, where d(p, S ) = mins∈S ‖ps‖.

Overall, this takes O(n) time. As for correctness, first observe that if CP(P) > r then the algorithm would
never make a mistake, since it returns ‘CP(P) < r’ only after finding a pair of points of P with distance smaller
than r. Thus, assume that p, q are the pair of points of P realizing the closest pair, and ‖pq‖ = CP(P) < r.
Clearly, when the later of them, say p, is being inserted, the set S would contain q, and as such the algorithm
would stop and return “CP(P) < r”. �

Lemma 2.3.3 hints on a natural way to compute CP(P). Indeed, permute the points of P in arbitrary fashion,
and let P = 〈p1, . . . , pn〉. Next, let ri = CP({p1, . . . , pi}). We can check if ri+1 < ri, by just calling the algorithm
for Lemma 2.3.3 on Pi+1 and ri. In fact, if ri+1 < ri, the algorithm of Lemma 2.3.3, would give us back the
distance ri+1 (with the other point realizing this distance).

In fact, consider the “good” case, where ri+1 = ri = ri−1. Namely, the length of the shortest pair does not
change. In this case, we do not need to rebuild the data structure of Lemma 2.3.3, for each point. We can just
reuse it from the previous iteration. Thus, inserting a single point takes constant time, as long as the closest
pair does not change.

Things become bad, when ri < ri−1. Because then, we need to rebuild the grid, and reinsert all the points of
Pi = 〈p1, . . . , pi〉 into the new grid Gri(Pi). This takes O(i) time.

So, if the closest pair radius, in the sequence r1, . . . , rn changes only k times, then the running time of our
algorithm would be O(nk). In fact, we can do even better.

Theorem 2.3.4. Let P be a set of n points in the plane, one can compute the closest pair of points of P in
expected linear time.
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Proof: Pick a random permutation of the points of P, let 〈p1, . . . , pn〉 be this permutation. Let r2 = ‖p1 p2‖,
and start inserting the points into the data structure of Lemma 2.3.3. In the ith iteration, if ri = ri−1, then
this insertion takes constant time. If ri < ri−1, then we rebuild the grid and reinsert the points. Namely, we
recompute Gri(Pi).

To analyze the running time of this algorithm, let Xi be the indicator variable which is 1 if ri , ri−1, and 0
otherwise. Clearly, the running time is proportional to

R = 1 +
n∑

i=2

(1 + Xi · i).

Thus, the expected running time is

E[R] = 1 + E

1 + n∑
i=2

(1 + Xi · i)

 = n +
n∑

i=2

(E[Xi] · i) = n +
n∑

i=2

i · Pr[X1 = 1] ,

by linearity of expectation and since for an indicator variable Xi, we have that E[Xi] = Pr[Xi = 1].
Thus, we need to bound Pr[Xi = 1] = Pr[ri < ri−1]. To bound this quantity, fix the points of Pi, and

randomly permute them. A point q ∈ Pi is called critical, if CP(Pi \ {q}) > CP(Pi). If there are no critical
points, then ri−1 = ri and then Pr[Xi = 1] = 0. If there is one critical point, than Pr[Xi = 1] = 1/i, as this is the
probability that this critical point, would be the last point in the random permutation of Pi.

If there are two critical points, and let p, q be this unique pair of points of Pi realizing CP(Pi). The quantity
ri is smaller than ri−1, if either p or q are pi. But the probability for that is 2/i (i.e., the probability in a random
permutation of i objects, that one of two marked objects would be the last element in the permutation).

Observe, that there can not be more than two critical points. Indeed, if p and q are two points that realize
the closest distance, than if there is a third critical point r, then CP(Pi \ {r}) = ‖pq‖, and r is not critical.

We conclude that

E[R] = n +
n∑

i=2

i · Pr[X1 = 1] ≤ n +
n∑

i=2

i ·
2
i
≤ 3n.

As such, the expected running time of this algorithm is O(E[R]) = O(n). �

Theorem 2.3.4 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers are all
distinct) can be solved in linear time. However, there is a lower bound of Ω(n log n) on uniqueness, using the
comparison tree model. This reality dysfunction, can be easily explained, once one realizes that the model of
computation of Theorem 2.3.4 is considerably stronger, using hashing, randomization, and the floor function.

2.4. Las Vegas and Monte Carlo algorithms

Definition 2.4.1. A Las Vegas algorithm is a randomized algorithms that always return the correct result. The
only variant is that it’s running time might change between executions.

An example for a Las Vegas algorithm is the QuickSort algorithm.

Definition 2.4.2. A Monte Carlo algorithm is a randomized algorithm that might output an incorrect result.
However, the probability of error can be diminished by repeated executions of the algorithm.

The MinCut algorithm was an example of a Monte Carlo algorithm.
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2.4.1. Complexity Classes
I assume people know what are Turing machines, NP, NPC, RAM machines, uniform model, logarithmic
model. PSPACE, and EXP. If you do now know what are those things, you should read about them. Some
of that is covered in the randomized algorithms book, and some other stuff is covered in any basic text on
complexity theory.

Definition 2.4.3. The class P consists of all languages L that have a polynomial time algorithm Alg, such that
for any input Σ∗, we have
• x ∈ L⇒ Alg(x) accepts,
• x < L⇒ Alg(x) rejects.

Definition 2.4.4. The class NP consists of all languages L that have a polynomial time algorithm Alg, such
that for any input Σ∗, we have:

(i) If x ∈ L ⇒ then ∃y ∈ Σ∗, Alg(x, y) accepts, where |y| (i.e. the length of y) is bounded by a polynomial in
|x|.

(ii) If x < L⇒ then ∀y ∈ Σ∗Alg(x, y) rejects.

Definition 2.4.5. For a complexity class C, we define the complementary class co-C as the set of languages
whose complement is in the class C. That is

co − C =
{
L
∣∣∣ L ∈ C} ,

where L = Σ∗ \ L.

It is obvious that P = co−P and P ⊆ NP∩ co−NP. (It is currently unknown if P = NP∩ co−NP or whether
NP = co−NP, although both statements are believed to be false.)

Definition 2.4.6. The class RP (for Randomized Polynomial time) consists of all languages L that have a
randomized algorithm Alg with worst case polynomial running time such that for any input x ∈ Σ∗, we have

(i) If x ∈ L then Pr
[
Alg(x) accepts

]
≥ 1/2.

(ii) x < L then Pr
[
Alg(x) accepts

]
= 0.

An RP algorithm is a Monte Carlo algorithm, but this algorithm can make a mistake only if x ∈ L. As such,
co−RP is all the languages that have a Monte Carlo algorithm that make a mistake only if x < L. A problem
which is in RP ∩ co−RP has an algorithm that does not make a mistake, namely a Las Vegas algorithm.

Definition 2.4.7. The class ZPP (for Zero-error Probabilistic Polynomial time) is the class of languages that
have Las Vegas algorithms in expected polynomial time.

Definition 2.4.8. The class PP (for Probabilistic Polynomial time) is the class of languages that have a ran-
domized algorithm Alg with worst case polynomial running time such that for any input x ∈ Σ∗, we have

(i) If x ∈ L then Pr
[
Alg(x) accepts

]
> 1/2.

(ii) If x < L then Pr
[
Alg(x) accepts

]
< 1/2.

The class PP is not very useful. Why?
Well, lets think about it. A randomized algorithm that just return yes/no with probability half is almost in

PP, as it return the correct answer with probability half. An algorithm is in PP needs to be slightly better, and
be correct with probability better than half, but how much better can be made to be arbitrarily close to 1/2. In
particular, there is no way to do effective amplification with such an algorithm.
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Definition 2.4.9. The class BPP (for Bounded-error Probabilistic Polynomial time) is the class of languages
that have a randomized algorithm Alg with worst case polynomial running time such that for any input x ∈ Σ∗,
we have

(i) If x ∈ L then Pr
[
Alg(x) accepts

]
≥ 3/4.

(ii) If x < L then Pr
[
Alg(x) accepts

]
≤ 1/4.

2.5. Bibliographical notes
Section 2.4 follows [MR95, Section 1.5]. The closest-pair algorithm follows Golin et al. [GRSS95]. This is in
turn a simplification of a result of Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00].
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Chapter 3

Min Cut
By Sariel Har-Peled, December 30, 2015¬

To acknowledge the corn - This purely American expression means to admit the losing of an argument, especially in
regard to a detail; to retract; to admit defeat. It is over a hundred years old. Andrew Stewart, a member of Congress,
is said to have mentioned it in a speech in 1828. He said that haystacks and cornfields were sent by Indiana, Ohio and
Kentucky to Philadelphia and New York. Charles A. Wickliffe, a member from Kentucky questioned the statement
by commenting that haystacks and cornfields could not walk. Stewart then pointed out that he did not mean literal
haystacks and cornfields, but the horses, mules, and hogs for which the hay and corn were raised. Wickliffe then rose
to his feet, and said, "Mr. Speaker, I acknowledge the corn".

– Funk, Earle, A Hog on Ice and Other Curious Expressions.

3.1. Branching processes – Galton-Watson Process

3.1.1. The problem
In the 19th century, Victorians were worried that aristocratic surnames were disappearing, as family names
passed on only through the male children. As such, a family with no male children had its family name
disappear. So, imagine the number of male children of a person is an independent random variable X ∈
{0, 1, 2, . . .}. Starting with a single person, its family (as far as male children are concerned) is a random tree
with the degree of a node being distributed according to X. We continue recursively in constructing this tree,
again, sampling the number of children for each current leaf according to the distribution of X. It is not hard to
see that a family disappears if E[X] ≤ 1, and it has a constant probability of surviving if E[X] > 1.

Francis Galton asked the question of what is the probability of such a blue-blood family name to survive,
and this question was answered by Henry William Watson [WG75]. The Victorians were worried about strange
things, see [Gre69] for a provocatively titled article from the period, and [Ste12] for a more recent take on this
issue.

Of course, since infant mortality is dramatically down (as is the number of aristocrat males dying to main-
tain the British empire), the probability of family names to disappear is now much lower than it was in the 19th
century. Interestingly, countries with family names that were introduced long time ago have very few surnames

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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(i.e., Korean have 250 surnames, and three surnames form 45% of the population). On the other hand, coun-
tries that introduced surnames more recently have dramatically more surnames (for example, the Dutch have
surnames only for the last 200 years, and there are 68, 000 different family names).

Here we are going to look on a very specific variant of this problem. Imagine that starting with a single
male. A male has exactly two children, and one of them is a male with probability half (i.e., the Y-chromosome
is being passed only to its male children). As such, the natural question is what is the probability that h
generations down, there is a male decedent that all his ancestors are male (i.e., it caries the original family
name, and the original Y-chromosome).

3.1.2. On coloring trees
Let Th be a complete binary tree of height h. We randomly color its edges by black and white. Namely, for each
edge we independently choose its color to be either black or white, with equal probability (say, black indicates
the child is male). We are interested in the event that there exists a path from the root of Th to one of its leafs,
that is all black. Let Eh denote this event, and let ρh = Pr[Eh]. Observe that ρ0 = 1 and ρ1 = 3/4 (see below).

To bound this probability, consider the root u of Th and its two children ul and ur. The probability that
there is a black path from ul to one of its children is ρh−1, and as such, the probability that there is a black path
from u through ul to a leaf of the subtree of ul is Pr

[
the edge uul is colored black

]
· ρh−1 = ρh−1/2. As such, the

probability that there is no black path through ul is 1 − ρh−1/2. As such, the probability of not having a black
path from u to a leaf (through either children) is (1 − ρh−1/2)2. In particular, there desired probability, is the
complement; that is

ρh = 1 −
(
1 −
ρh−1

2

)2
=
ρh−1

2

(
2 −
ρh−1

2

)
= ρh−1 −

ρ2
h−1

4
.

In particular, ρ0 = 1, and ρ1 = 3/4.

Lemma 3.1.1. We have that ρh ≥ 1/(h + 1).

Proof: The proof is by induction. For h = 1, we have ρ1 = 3/4 ≥ 1/(1 + 1).
Observe that ρh = f (ρh−1) for f (x) = x−x2/4, and f ′(x) = 1−x/2. As such, f ′(x) > 0 for x ∈ [0, 1] and f (x)

is increasing in the range [0, 1]. As such, by induction, we have that ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2 .

We need to prove that ρh ≥ 1/(h + 1), which is implied by the above if
1
h
−

1
4h2 ≥

1
h + 1

⇔ 4h(h + 1) − (h + 1) ≥ 4h2 ⇔ 4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

which trivially holds. �

Lemma 3.1.2. We have that ρh = O(1/h).

Proof: The claim trivially holds for small values of h. Let h j be the minimal index such that ρh j ≤ 1/2 j. It is
easy to verify that ρh j ≥ 1/2 j+1. As such,

h j+1 − h j ≤
ρh j − ρh j+1(
ρh j+1

)2
/4
≤

1/2 j − 1/2 j+2

1/22( j+2)+2 = 2 j+6 + 2 j+4 = O
(
2 j

)
.

Arguing similarly, we have

h j+2 − h j ≥
ρh j − ρh j+2(
ρh j

)2
/4
≥

1/2 j+1 − 1/2 j+2

1/22 j+2 = 2 j+1 + 2 j = Ω
(
2 j

)
.

We conclude that h j = (h j − h j−2) + (h j−2 − h j−4) + · · · = Ω(2 j), implying the claim. �
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3.2. Min Cut

3.2.1. Problem Definition

V \ SS

Let G = (V,E) be an undirected graph with n vertices and m edges. We are
interested in cuts in G.

Definition 3.2.1. A cut in G is a partition of the vertices of V into two sets S
and V \ S , where the edges of the cut are

(S ,V \ S ) =
{
uv

∣∣∣ u ∈ S , v ∈ V \ S , and uv ∈ E
}
,

where S , ∅ and V \ S , ∅. We will refer to the number of edges in the cut
(S ,V\S ) as the size of the cut. For an example of a cut, see figure on the right.

We are interested in the problem of computing the minimum cut (i.e., mincut), that is, the cut in the graph
with minimum cardinality. Specifically, we would like to find the set S ⊆ V such that (S ,V \ S ) is as small as
possible, and S is neither empty nor V \ S is empty.

3.2.2. Some Definitions

We remind the reader of the following concepts. The conditional probability of X given Y is Pr
[
X = x

∣∣∣ Y = y
]
=

Pr
[
(X = x) ∩ (Y = y)

]
/Pr

[
Y = y

]
. An equivalent, useful restatement of this is that

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x

∣∣∣ Y = y
]
· Pr

[
Y = y

]
. (3.1)

The following is easy to prove by induction using Eq. (3.1).

Lemma 3.2.2. Let E1, . . . ,En be n events which are not necessarily independent. Then,

Pr
[
∩n

i=1Ei

]
= Pr

[
E1

]
∗ Pr

[
E2

∣∣∣E1

]
∗ Pr

[
E3

∣∣∣E1 ∩ E2

]
∗ . . . ∗ Pr

[
En

∣∣∣E1 ∩ . . . ∩ En−1

]
.

3.3. The Algorithm

x y {x, y}

(a) (b)

Figure 3.1: (a) A contraction of the edge xy. (b)
The resulting graph.

The basic operation used by the algorithm is edge
contraction, depicted in Figure 3.1. We take an edge
e = xy in G and merge the two vertices into a single
vertex. The new resulting graph is denoted by G/xy.
Note, that we remove self loops created by the contrac-
tion. However, since the resulting graph is no longer
a regular graph, it has parallel edges – namely, it is a
multi-graph. We represent a multi-graph, as a regular
graph with multiplicities on the edges. See Figure 3.2.
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Figure 3.3: (a) Original graph. (b)–(j) a sequence of contractions in the graph, and (h) the cut in the original
graph, corresponding to the single edge in (h). Note that the cut of (h) is not a mincut in the original graph.

2
2

2
2

(a) (b)

Figure 3.2: (a) A multi-graph. (b) A minimum cut
in the resulting multi-graph.

The edge contraction operation can be implemented
in O(n) time for a graph with n vertices. This is done
by merging the adjacency lists of the two vertices being
contracted, and then using hashing to do the fix-ups (i.e.,
we need to fix the adjacency list of the vertices that are
connected to the two vertices).

Note, that the cut is now computed counting multi-
plicities (i.e., if e is in the cut and it has weight w, then
the contribution of e to the cut weight is w).

Observation 3.3.1. A set of vertices in G/xy corresponds to a set of vertices in the graph G. Thus a cut in G/xy
always corresponds to a valid cut in G. However, there are cuts in G that do not exist in G/xy. For example,
the cut S = {x}, does not exist in G/xy. As such, the size of the minimum cut in G/xy is at least as large as the
minimum cut in G (as long as G/xy has at least one edge). Since any cut in G/xy has a corresponding cut of
the same cardinality in G.

Our algorithm works by repeatedly performing edge contractions. This is beneficial as this shrinks the
underlying graph, and we would compute the cut in the resulting (smaller) graph. An “extreme” example of
this, is shown in Figure 3.3, where we contract the graph into a single edge, which (in turn) corresponds to
a cut in the original graph. (It might help the reader to think about each vertex in the contracted graph, as
corresponding to a connected component in the original graph.)

Figure 3.3 also demonstrates the problem with taking this approach. Indeed, the resulting cut is not the
minimum cut in the graph.

4



So, why did the algorithm fail to find the minimum cut in this case?­ The failure occurs because of the
contraction at Figure 3.3 (e), as we had contracted an edge in the minimum cut. In the new graph, depicted in
Figure 3.3 (f), there is no longer a cut of size 3, and all cuts are of size 4 or more. Specifically, the algorithm
succeeds only if it does not contract an edge in the minimum cut.

Observation 3.3.2. Let e1, . . . , en−2 be a sequence of edges in G, such that none of them is in the minimum cut,
and such that G′ = G/ {e1, . . . , en−2} is a single multi-edge. Then, this multi-edge corresponds to a minimum
cut in G.

Algorithm MinCut(G)
G0 ← G
i = 0
while Gi has more than two vertices do

Pick randomly an edge ei from the edges of Gi

Gi+1 ← Gi/ei

i← i + 1
Let (S ,V \ S ) be the cut in the original graph

corresponding to the single edge in Gi

return (S ,V \ S ).
Figure 3.4: The minimum cut algorithm.

Note, that the claim in the above observation is
only in one direction. We might be able to still com-
pute a minimum cut, even if we contract an edge in a
minimum cut, the reason being that a minimum cut is
not unique. In particular, another minimum cut might
survived the sequence of contractions that destroyed
other minimum cuts.

Using Observation 3.3.2 in an algorithm is prob-
lematic, since the argumentation is circular, how can
we find a sequence of edges that are not in the cut
without knowing what the cut is? The way to slice
the Gordian knot here, is to randomly select an edge at each stage, and contract this random edge.

See Figure 3.4 for the resulting algorithm MinCut.

3.3.1. Analysis

3.3.1.1. The probability of success.

Naturally, if we are extremely lucky, the algorithm would never pick an edge in the mincut, and the algorithm
would succeed. The ultimate question here is what is the probability of success. If it is relatively “large” then
this algorithm is useful since we can run it several times, and return the best result computed. If on the other
hand, this probability is tiny, then we are working in vain since this approach would not work.

Lemma 3.3.3. If a graph G has a minimum cut of size k and G has n vertices, then |E(G)| ≥ kn
2 .

Proof: Each vertex degree is at least k, otherwise the vertex itself would form a minimum cut of size smaller
than k. As such, there are at least

∑
v∈V degree(v)/2 ≥ nk/2 edges in the graph. �

Lemma 3.3.4. If we pick in random an edge e from a graph G, then with probability at most 2/n it belong to
the minimum cut.

Proof: There are at least nk/2 edges in the graph and exactly k edges in the minimum cut. Thus, the probability
of picking an edge from the minimum cut is smaller then k/(nk/2) = 2/n. �

The following lemma shows (surprisingly) that MinCut succeeds with reasonable probability.

Lemma 3.3.5. MinCut outputs the mincut with probability ≥
2

n(n − 1)
.

­Naturally, if the algorithm had succeeded in finding the minimum cut, this would have been our success.
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Proof: Let Ei be the event that ei is not in the minimum cut of Gi. By Observation 3.3.2, MinCut outputs the
minimum cut if the events E0, . . . ,En−3 all happen (namely, all edges picked are outside the minimum cut).

By Lemma 3.3.4, it holds Pr
[
Ei

∣∣∣E0 ∩ E1 ∩ . . . ∩ Ei−1

]
≥ 1 −

2
|V(Gi)|

= 1 −
2

n − i
. Implying that

∆ = Pr[E0 ∩ . . . ∩ En−3] = Pr[E0] · Pr
[
E1

∣∣∣E0

]
· Pr

[
E2

∣∣∣E0 ∩ E1

]
· . . . · Pr

[
En−3

∣∣∣E0 ∩ . . . ∩ En−4

]
.

As such, we have

∆ ≥

n−3∏
i=0

(
1 −

2
n − i

)
=

n−3∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . . ·
2
4
·

1
3
=

2
n · (n − 1)

. �

3.3.1.2. Running time analysis.

Observation 3.3.6. MinCut runs in O(n2) time.

Observation 3.3.7. The algorithm always outputs a cut, and the cut is not smaller than the minimum cut.

Definition 3.3.8. (informal) Amplification is the process of running an experiment again and again till the
things we want to happen, with good probability, do happen.

Let MinCutRep be the algorithm that runs MinCut n(n − 1) times and return the minimum cut computed
in all those independent executions of MinCut.

Lemma 3.3.9. The probability that MinCutRep fails to return the minimum cut is < 0.14.

Proof: The probability of failure of MinCut to output the mincut in each execution is at most 1 − 2
n(n−1) , by

Lemma 3.3.5. Now, MinCutRep fails, only if all the n(n − 1) executions of MinCut fail. But these executions
are independent, as such, the probability to this happen is at most(

1 −
2

n(n − 1)

)n(n−1)

≤ exp
(
−

2
n(n − 1)

· n(n − 1)
)
= exp(−2) < 0.14,

since 1 − x ≤ e−x for 0 ≤ x ≤ 1. �

Theorem 3.3.10. One can compute the minimum cut in O(n4) time with constant probability to get a correct
result. In O

(
n4 log n

)
time the minimum cut is returned with high probability.

3.4. A faster algorithm
The algorithm presented in the previous section is extremely simple. Which raises the question of whether we
can get a faster algorithm®?

So, why MinCutRep needs so many executions? Well, the probability of success in the first ν iterations is

Pr[E0 ∩ . . . ∩ Eν−1] ≥
ν−1∏
i=0

(
1 −

2
n − i

)
=

ν−1∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . . =
(n − ν)(n − ν − 1)

n · (n − 1)
. (3.2)

®This would require a more involved algorithm, thats life.
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Contract ( G, t )
begin

while |(G)| > t do
Pick a random edge e in G.
G← G/e

return G
end

FastCut(G = (V, E))
G – multi-graph

begin
n← |V(G)|
if n ≤ 6 then

Compute (via brute force) minimum cut
of G and return cut.

t ←
⌈
1 + n/

√
2
⌉

H1 ← Contract(G, t)
H2 ← Contract(G, t)
/* Contract is randomized!!! */
X1 ← FastCut(H1),
X2 ← FastCut(H2)
return minimum cut out of X1 and X2.

end

Figure 3.5: Contract(G, t) shrinks G till it has only t vertices. FastCut computes the minimum cut using
Contract.

Namely, this probability deteriorates very quickly toward the end of the execution, when the graph becomes
small enough. (To see this, observe that for ν = n/2, the probability of success is roughly 1/4, but for ν = n−

√
n

the probability of success is roughly 1/n.)
So, the key observation is that as the graph get smaller the probability to make a bad choice increases. So,

instead of doing the amplification from the outside of the algorithm, we will run the new algorithm more times
when the graph is smaller. Namely, we put the amplification directly into the algorithm.

The basic new operation we use is Contract, depicted in Figure 3.5, which also depict the new algorithm
FastCut.

Lemma 3.4.1. The running time of FastCut(G) is O
(
n2 log n

)
, where n = |V(G)|.

Proof: Well, we perform two calls to Contract(G, t) which takes O(n2) time. And then we perform two
recursive calls on the resulting graphs. We have:

T (n) = O
(
n2

)
+ 2T

(
n
√

2

)
.

The solution to this recurrence is O
(
n2 log n

)
as one can easily (and should) verify. �

Exercise 3.4.2. Show that one can modify FastCut so that it uses only O(n2) space.

Lemma 3.4.3. The probability that Contract
(
G, n/

√
2
)

had not contracted the minimum cut is at least 1/2.
Namely, the probability that the minimum cut in the contracted graph is still a minimum cut in the original

graph is at least 1/2.

Proof: Just plug in ν = n − t = n −
⌈
1 + n/

√
2
⌉

into Eq. (3.2). We have

Pr
[
E0 ∩ . . . ∩ En−t

]
≥

t(t − 1)
n · (n − 1)

=

⌈
1 + n/

√
2
⌉ (⌈

1 + n/
√

2
⌉
− 1

)
n(n − 1)

≥
1
2
. �
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The following lemma bounds the probability of success.

Lemma 3.4.4. FastCut finds the minimum cut with probability larger than Ω
(
1/ log n

)
.

Proof: Let Th be the recursion tree of the algorithm of depth h = Θ(log n). Color an edge of recursion tree by
black if the contraction succeeded. Clearly, the algorithm succeeds if there is a path from the root to a leaf that
is all black. This is exactly the settings of Lemma 3.1.1, and we conclude that the probability of success is at
least 1/(h + 1) = Θ(1/ log n), as desired. �

Exercise 3.4.5. Prove, that running FastCut repeatedly c · log2 n times, guarantee that the algorithm outputs
the minimum cut with probability ≥ 1 − 1/n2, say, for c a constant large enough.

Theorem 3.4.6. One can compute the minimum cut in a graph G with n vertices in O(n2 log3 n) time. The
algorithm succeeds with probability ≥ 1 − 1/n2.

Proof: We do amplification on FastCut by running it O(log2 n) times. The running time bound follows from
Lemma 3.4.1. The bound on the probability follows from Lemma 3.4.4, and using the amplification analysis
as done in Lemma 3.3.9 for MinCutRep. �

3.5. Bibliographical Notes
The MinCut algorithm was developed by David Karger during his PhD thesis in Stanford. The fast algorithm
is a joint work with Clifford Stein. The basic algorithm of the mincut is described in [MR95, pages 7–9], the
faster algorithm is described in [MR95, pages 289–295].

3.5.0.0.1. Galton-Watson process. The idea of using coloring of the edges of a tree to analyze FastCut
might be new (i.e., Section 3.1.2).

Bibliography
[Gre69] W.R. Greg. Why are Women Redundant? Trübner, 1869.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge,
UK, 1995.

[Ste12] E. Steinlight. Why novels are redundant: Sensation fiction and the overpopulation of literature. ELH,
79(2):501–535, 2012.

[WG75] H. W. Watson and F. Galton. On the probability of the extinction of families. J. Anthrop. Inst. Great
Britain, 4:138–144, 1875.

8

http://books.google.com/books?id=R0aQ36xR1sAC
http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655


Chapter 4

The Occupancy and Coupon Collector problems
By Sariel Har-Peled, December 30, 2015¬

4.1. Preliminaries

Definition 4.1.1 (Variance and Standard Deviation). For a random variable X, let V
[
X
]
= E

[
(X − µX)2

]
=

E
[
X2

]
− µ2

X denote the variance of X, where µX = E
[
X
]
. Intuitively, this tells us how concentrated is the

distribution of X.
The standard deviation of X, denoted by σX is the quantity

√
V
[
X
]
.

Observation 4.1.2. (i) For any constant c ≥ 0, we have V
[
cX

]
= c2 V

[
X
]
.

(ii) For X and Y independent variables, we have V
[
X + Y

]
= V

[
X
]
+ V

[
Y
]
.

Definition 4.1.3 (Bernoulli distribution). Assume, that one flips a coin and get 1 (heads) with probability p,
and 0 (i.e., tail) with probability q = 1 − p. Let X be this random variable. The variable X is has Bernoulli
distribution with parameter p.

We have that E
[
X
]
= 1 · p + 0 · (1 − p) = p, and

V
[
X
]
= E

[
X2

]
− µ2

X = E
[
X2

]
− p2 = p − p2 = p(1 − p) = pq.

Definition 4.1.4 (Binomial distribution). Assume that we repeat a Bernoulli experiment n times (independently!).
Let X1, . . . , Xn be the resulting random variables, and let X = X1 + · · · + Xn. The variable X has the binomial
distribution with parameters n and p. We denote this fact by X ∼ Bin(n, p). We have

b(k; n, p) = Pr
[
X = k

]
=

(
n
k

)
pkqn−k.

Also, E
[
X
]
= np, and V

[
X
]
= V

[∑n
i=1 Xi

]
=

∑n
i=1 V

[
Xi

]
= npq.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Observation 4.1.5. Let C1, . . . ,Cn be random events (not necessarily independent). Than

Pr
 n⋃

i=1

Ci

 ≤ n∑
i=1

Pr[Ci] .

(This is usually referred to as the union bound.) If C1, . . . ,Cn are disjoint events then

Pr
 n⋃

i=1

Ci

 = n∑
i=1

Pr[Ci] .

4.1.1. Geometric distribution
Definition 4.1.6. Consider a sequence X1, X2, . . . of independent Bernoulli trials with probability p for success.
Let X be the number of trials one has to perform till encountering the first success. The distribution of X is
geometric distribution with parameter p. We denote this by X ∼ Geom(p).

Lemma 4.1.7. For a variable X ∼ Geom(p), we have, for all i, that Pr
[
X = i

]
= (1 − p)i−1 p. Furthermore,

E
[
X
]
= 1/p and V

[
X
]
= (1 − p)/p2.

Proof: The proof of the expectation and variance is included for the sake of completeness, and the reader is
of course encouraged to skip (reading) this proof. So, let f (x) =

∑∞
i=0 xi = 1

1−x , and observe that f ′(x) =∑∞
i=1 ixi−1 = (1 − x)−2. As such, we have

E
[
X
]
=

∞∑
i=1

i (1 − p)i−1 p = p f ′(1 − p) =
p

(1 − (1 − p))2 =
1
p
.

V
[
X
]
= E

[
X2

]
−

1
p2 =

∞∑
i=1

i2 (1 − p)i−1 p −
1
p2 . = p + p(1 − p)

∞∑
i=2

i2 (1 − p)i−2 −
1
p2 .

We need to do a similar trick to what we did before, to this end, we observe that

f ′′(x) =
∞∑

i=2

i(i − 1)xi−2 =
(
(1 − x)−1

)′′
=

2
(1 − x)3 .

As such, we have that

∆(x) =
∞∑

i=2

i2xi−2 =

∞∑
i=2

i(i − 1)xi−2 +

∞∑
i=2

ixi−2 = f ′′(x) +
1
x

∞∑
i=2

ixi−1 = f ′′(x) +
1
x
(
f ′(x) − 1

)
=

2
(1 − x)3 +

1
x

(
1

(1 − x)2 − 1
)
=

2
(1 − x)3 +

1
x

(
1 − (1 − x)2

(1 − x)2

)
=

2
(1 − x)3 +

1
x
·

x(2 − x)
(1 − x)2

=
2

(1 − x)3 +
2 − x

(1 − x)2 .

As such, we have that

V
[
X
]
= p + p(1 − p)∆(1 − p) −

1
p2 = p + p(1 − p)

(
2
p3 +

1 + p
p2

)
−

1
p2 = p +

2(1 − p)
p2 +

1 − p2

p
−

1
p2

=
p3 + 2(1 − p) + p − p3 − 1

p2 =
1 − p

p2 . �
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4.1.2. Some needed math
Lemma 4.1.8. For any positive integer n, we have:

(i) (1 + 1/n)n ≤ e.
(ii) (1 − 1/n)n−1 ≥ e−1.

(iii) n! ≥ (n/e)n.

(iv) For any k ≤ n, we have:
(n
k

)k
≤

(
n
k

)
≤

(ne
k

)k
.

Proof: (i) Indeed, 1 + 1/n ≤ exp(1/n), since 1 + x ≤ ex, for x ≥ 0. As such (1 + 1/n)n ≤ exp(n(1/n)) = e.
(ii) Rewriting the inequality, we have that we need to prove

(
n−1

n

)n−1
≥ 1

e . This is equivalence to proving

e ≥
(

n
n−1

)n−1
=

(
1 + 1

n−1

)n−1
, which is our friend from (i).

(iii) Indeed,

nn

n!
≤

∞∑
i=0

ni

i!
= en,

by the Taylor expansion of ex =
∑∞

i=0
xi

i! . This implies that (n/e)n ≤ n!, as required.
(iv) Indeed, for any k ≤ n, we have n

k ≤
n−1
k−1 since kn − n = n(k − 1) ≤ k(n − 1) = kn − k. As such, n

k ≤
n−i
k−i ,

for 1 ≤ i ≤ k − 1. As such,(n
k

)k
≤

n
k
·

n − 1
k − 1

· · ·
n − i
k − i

· · ·
n − k + 1

1
=

n!
(n − k)!k!

=

(
n
k

)
.

As for the other direction, we have (
n
k

)
≤

nk

k!
≤

nk(
k
e

)k =

(ne
k

)k
,

by (iii). �

4.2. Occupancy Problems
Problem 4.2.1. We are throwing m balls into n bins randomly (i.e., for every ball we randomly and uniformly
pick a bin from the n available bins, and place the ball in the bin picked). There are many natural questions one
can ask here:

(A) What is the maximum number of balls in any bin?
(B) What is the number of bins which are empty?
(C) How many balls do we have to throw, such that all the bins are non-empty, with reasonable probability?

Let Xi be the number of balls in the ith bins, when we throw n balls into n bins (i.e., m = n). Clearly,

E
[
Xi

]
=

n∑
j=1

Pr
[
The jth ball fall in ith bin

]
= n ·

1
n
= 1,

by linearity of expectation. The probability that the first bin has exactly i balls is(
n
i

) (
1
n

)i(
1 −

1
n

)n−i

≤

(
n
i

) (
1
n

)i

≤

(ne
i

)i
(
1
n

)i

=

(e
i

)i
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This follows by Lemma 4.1.8 (iv).
Let C j(k) be the event that the jth bin has k or more balls in it. Then,

Pr
[
C1(k)

]
≤

n∑
i=k

(e
i

)i
≤

(e
k

)k
(
1 +

e
k
+

e2

k2 + . . .

)
=

(e
k

)k 1
1 − e/k

.

Let k∗ = d(3 ln n)/ ln ln ne. Then,

Pr
[
C1(k∗)

]
≤

( e
k∗

)k∗ 1
1 − e/k∗

≤ 2
(

e
(3 ln n)/ ln ln n

)k∗

= 2
(
exp

(
1 − ln 3 − ln ln n + ln ln ln n

))k∗

≤ 2
(
exp(− ln ln n + ln ln ln n)

)k∗

≤ 2 exp
(
−3 ln n + 6 ln n

ln ln ln n
ln ln n

)
≤ 2 exp(−2.5 ln n) ≤

1
n2 ,

for n large enough. We conclude, that since there are n bins and they have identical distributions that

Pr
[
any bin contains more than k∗ balls

]
≤

n∑
i=1

Ci(k∗) ≤
1
n
.

Theorem 4.2.2. With probability at least 1 − 1/n, no bin has more than k∗ =
⌈

3 ln n
ln ln n

⌉
balls in it.

Exercise 4.2.3. Show that for m = n ln n, with probability 1 − o(1), every bin has O(log n) balls.

It is interesting to note, that if at each iteration we randomly pick d bins, and throw the ball into the bin with
the smallest number of balls, then one can do much better. We currently do not have the machinery to prove
the following theorem, but hopefully we would prove it later in the course.

Theorem 4.2.4. Suppose that n balls are sequentially places into n bins in the following manner. For each
ball, d ≥ 2 bins are chosen independently and uniformly at random (with replacement). Each ball is placed in
the least full of the d bins at the time of placement, with ties broken randomly. After all the balls are places, the
maximum load of any bin is at most ln ln n/(ln d) + O(1), with probability at least 1 − o(1/n).

Note, even by setting d = 2, we get considerable improvement. A proof of this theorem can be found in the
work by Azar et al. [ABKU00].

4.2.1. The Probability of all bins to have exactly one ball
Next, we are interested in the probability that all m balls fall in distinct bins. Let Xi be the event that the ith ball
fell in a distinct bin from the first i − 1 balls. We have:

Pr
 m⋂

i=2

Xi

 = Pr[X2]
m∏

i=3

Pr

Xi

∣∣∣∣∣∣∣
i−1⋂
j=2

X j

 ≤ m∏
i=2

(
n − i + 1

n

)
≤

m∏
i=2

(
1 −

i − 1
n

)

≤

m∏
i=2

e−(i−1)/n ≤ exp
(
−

m(m − 1)
2n

)
,

thus for m =
⌈√

2n + 1
⌉
, the probability that all the m balls fall in different bins is smaller than 1/e.

This is sometime referred to as the birthday paradox. You have m = 30 people in the room, and you ask
them for the date (day and month) of their birthday (i.e., n = 365). The above shows that the probability of
all birthdays to be distinct is exp(−30 · 29/730) ≤ 1/e. Namely, there is more than 50% chance for a birthday
collision, a simple but counterintuitive phenomena.
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4.3. The Markov and Chebyshev’s inequalities
We remind the reader that for a random variable X assuming real values, its expectation is E[Y] =

∑
y y ·

Pr
[
Y = y

]
. Similarly, for a function f (·), we have E

[
f (Y)

]
=

∑
y f (y) · Pr

[
Y = y

]
.

Theorem 4.3.1 (Markov’s Inequality). Let Y be a random variable assuming only non-negative values. Then
for all t > 0, we have

Pr
[
Y ≥ t

]
≤

E
[
Y
]

t

Proof: Indeed,

E
[
Y
]
=

∑
y≥t

y Pr
[
Y = y

]
+

∑
y<t

y Pr
[
Y = y

]
≥

∑
y≥t

y Pr
[
Y = y

]
≥

∑
y≥t

t Pr
[
Y = y

]
= t Pr

[
Y ≥ t

]
. �

Markov inequality is tight, as the following exercise testifies.

Exercise 4.3.2. For any (integer) k > 1, define a random positive variable Xk such that Pr[Xk ≥ k E[Xk]] =
1
k

.

Theorem 4.3.3 (Chebyshev’s inequality). Pr
[
|X − µX | ≥ tσX

]
≤

1
t2 , where µX = E

[
X
]

and σX =
√

V
[
X
]
.

Proof: Note that

Pr
[
|X − µX | ≥ tσX

]
= Pr

[
(X − µX)2

≥ t2σ2
X

]
.

Set Y = (X − µX)2. Clearly, E
[
Y
]
= σ2

X. Now, apply Markov’s inequality to Y . �

4.4. The Coupon Collector’s Problem
There are n types of coupons, and at each trial one coupon is picked in random. How many trials one has to
perform before picking all coupons? Let m be the number of trials performed. We would like to bound the
probability that m exceeds a certain number, and we still did not pick all coupons.

Let Ci ∈
{
1, . . . , n

}
be the coupon picked in the ith trial. The jth trial is a success, if C j was not picked

before in the first j − 1 trials. Let Xi denote the number of trials from the ith success, till after the (i + 1)th
success. Clearly, the number of trials performed is

X =
n−1∑
i=0

Xi.

Now, the probability of Xi to succeed in a trial is pi = (n − i)/n, and Xi has the geometric distribution with
probability pi. As such E

[
Xi

]
= 1/pi, and V

[
Xi

]
= q/p2 = (1 − pi)/p2

i .
Thus,

E
[
X
]
=

n−1∑
i=0

E
[
Xi

]
=

n−1∑
i=0

n
n − i

= nHn = n(ln n + Θ(1)) = n ln n + O(n),
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where Hn =
∑n

i=1 1/i is the nth Harmonic number.
As for variance, using the independence of X0, . . . , Xn−1, we have

V
[
X
]
=

n−1∑
i=0

V
[
Xi

]
=

n−1∑
i=0

1 − pi

p2
i

=

n−1∑
i=0

1 − (n − i)/n(
n−i
n

)2 =

n−1∑
i=0

i/n(
n−i
n

)2 =

n−1∑
i=0

i
n

( n
n − i

)2

= n
n−1∑
i=0

i
(n − i)2 = n

n∑
i=1

n − i
i2 = n

 n∑
i=1

n
i2 −

n∑
i=1

1
i

 = n2
n∑

i=1

1
i2 − nHn.

Since, limn→∞
∑n

i=1
1
i2 = π

2/6, we have lim
n→∞

V[X]
n2 =

π2

6
.

Corollary 4.4.1. Let X be the number of rounds till we collection all n coupons. Then, V
[
X
]
≈

(
π2

6

)
n2 and its

standard deviation is σX ≈
π
√

6
n.

This implies a weak bound on the concentration of X, using Chebyshev inequality, but this is going to be
quite weaker than what we implied we can do. Indeed, we have

Pr
[
X ≥ n log n + n + t · n

π
√

6

]
≤ Pr

[∣∣∣∣X − E[X]
∣∣∣∣ ≥ tσX

]
≤

1
t2 ,

Note, that this is somewhat approximate, and hold for n sufficiently large.

4.5. Notes
The material in this note covers parts of [MR95, sections 3.1,3.2,3.6]
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Chapter 5

Sampling, Estimation, and More on the Coupon’s
Collector Problems II
By Sariel Har-Peled, December 30, 2015¬

There is not much talking now. A silence falls upon them all. This is no time to talk of hedges and fields, or the
beauties of any country. Sadness and fear and hate, how they well up in the heart and mind, whenever one opens the
pages of these messengers of doom. Cry for the broken tribe, for the law and custom that is gone. Aye, and cry aloud
for the man who is dead, for the woman and children bereaved. Cry, the beloved country, these things are not yet at an
end. The sun pours down on the earth, on the lovely land that man cannot enjoy. He knows only the fear of his heart.

– Alan Paton, Cry, the beloved country.

5.1. Randomized selection – Using sampling to learn the world

5.1.1. Sampling
One of the big advantages of randomized algorithms, is that they sample the world; that is, learn how the input
looks like without reading all the input. For example, consider the following problem: We are given a set of U
of n objects u1, . . . , un. and we want to compute the number of elements of U that have some property. Assume,
that one can check if this property holds, in constant time, for a single object, and let ψ(u) be the function that
returns 1 if the property holds for the element u. and zero otherwise. Now, let α be the number of objects in U
that have this property. We want to reliably estimate α without computing the property for all the elements of
U.

A natural approach, would be to pick a random sample R of m objects, r1, . . . , rm from U (with repetition),
and compute Y =

∑m
i=1 ψ(r1), and our estimate for α is β = (n/m)Y . It is natural to ask how far is β from the

true estimate.

Lemma 5.1.1. Let U be a set of n elements, with α of them having a certain property ψ. Let R be a uniform
random sample from U (with repetition), and let Y be the number of elements in R that have the property ψ,
and let Z = (n/m)Y be the estimate for α. Then, for any t ≥ 1, we have that

Pr
[
α − t

n
2
√

m
≤ Z ≤ α + t

n
2
√

m

]
≥ 1 −

1
t2 .

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Similarly, we have that Pr
[
E[Y] − t

√
m/2 ≤ Y ≤ E[Y] + t

√
m/2

]
≥ 1 −

1
t2 .

Proof: Let Yi = ψ(ri) be an indicator variable that is 1 if the ith sample ri has the property ψ. Now, Y =
∑

i Yi is
a binomial distribution with probability p = α/n, and m samples; that is, Y ∼ Bin(m, p). We saw in the previous
lecture that, E[Y] = mp, V[Y] = mp(1 − p), and its standard deviation is as such σY =

√
mp(1 − p) ≤

√
m/2,

as
√

p(1 − p) is maximized for p = 1/2. We have ∆ =
tσYn

m
≤ t
√

mn
2m

= t
n

2
√

m
, since

√
(α/n)(1 − (α/n)) is

maximized for α = n/2. As such,

Pr
[∣∣∣Z − α∣∣∣ ≥ t

n
2
√

m

]
≤ Pr

[∣∣∣Z − α∣∣∣ ≥ ∆] = Pr
[∣∣∣∣∣ n

m
Y − α

∣∣∣∣∣ ≥ ∆] = Pr
[∣∣∣∣∣Y − m

n
α

∣∣∣∣∣ ≥ m
n
∆

]
= Pr

[∣∣∣∣Y − E[Y]
∣∣∣∣ ≥ tσY

]
≤

1
t2 ,

by Chebychev’s inequality. �

5.1.1.1. Inverse estimation

We are given a set U = {u1, . . . , un} of n distinct numbers. Let si denote the ith smallest number in U – that is
si is the number of rank i in U. We are interested in estimating sk quickly. So, let us take a sample R of size
m. Let R≤sk be the set of all the numbers in R that are ≤ sk. For Y =

∣∣∣R≤sk

∣∣∣, we have that µ = E[Y] = km/n.

Furthermore, for any t ≥ 1, Lemma 5.1.1 implies that Pr
[
µ − t

√
m/2 ≤ Y ≤ µ + t

√
m/2

]
≥ 1−

1
t2 . In particular,

with probability ≥ 1 − 1/t2 the number r− of rank `− =
⌊
µ − t

√
m/2

⌋
− 1 in R is smaller than sk, and similarly,

the number r+ of rank `+ =
⌈
µ + t

√
m/2

⌉
+ 1 in R is larger than sk.

One can conceptually think about the interval I(k) =
[
r−, r+

]
as confidence interval – we know that sk ∈ I(k)

with probability ≥ 1−1/t2. But how big is this interval? Namely, how many elements are there in I(k)∩S ample?
To this end, consider the interval of ranks in the sample that might contain the kth element. By the above,

this is

I(k, t) = k
n
m
+

[
−t
√

m/2 − 1, t
√

m/2 + 1
]
.

In particular, consider the maximum ν ≤ k, such that I(ν, t) and I(k, t) are disjoint. We have the condition that

ν
n
m
+ t
√

m/2 + 1 ≤ k
n
m
− t
√

m/2 − 1 =⇒ ν ≤ k − t
m3/2

n
− 1.

Setting g = k − t m3/2

n − 1 and h = k + t m3/2

n + 1, we have that I(g, t) and I(k, t) and I(h, t) are all disjoint with
probability ≥ 1 − 3/t2.

To this end, let g = k −
⌈
2
(
t n

2
√

m

)⌉
and h = k +

⌈
2
(
t n

2
√

m

)⌉
. It is easy to verify (using the same argumentation

as above) that with probability at least 1 − 3/t3, the three confidence I(g), I(k) and I(h) do not intersect. As
such, we have ∣∣∣∣I(k) ∩ R

∣∣∣∣ ≤ h − g ≤ 4
(
t

n
2
√

m

)
.

We thus get the following.
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Func LazySelect( S , k )
Input: S - set of n elements, k - index of element to be output.

begin
repeat

R←
{
Sample with replacement of n3/4 elements from S

}
∪ {−∞,+∞}.

Sort R.
l← max

(
1,

⌊
kn−1/4 −

√
n
⌋)

, h← min
(
n3/4,

⌊
kn−1/4 +

√
n
⌋)

a← R(l), b← R(h).
Compute the ranks rS (a) and rS (b) of b in S
/* using 2n comparisons */

P←
{
y ∈ S

∣∣∣ a ≤ y ≤ b
}

/* done when computing the rank of a and b */
Until (rS (a) ≤ k ≤ rS (b)) and

(
|P| ≤ 8n3/4 + 2

)
Sort P in O(n3/4 log n) time.
return Pk−rS (a)+1

end LazySelect

Figure 5.1: The LazySelect algorithm.

Lemma 5.1.2. Given a set U of n numbers, a number k, and parameters t and m, one can compute, in
O(m log m) time, two numbers r−, r+ ∈ U, such that:

(A) The number of rank k in U is in the interval I
[
r−, r+

]
.

(B) There are at most O
(
tn/
√

m
)

numbers of U in I.
The algorithm succeeds with probability ≥ 1 − 3/t3.

Proof: Compute the sample in O(m) time (assuming the input numbers are in an array, say. Next sort the num-
bers of R in O(n log n) time, and return the two elements of rank `− and `+ in the sorted set, as the boundaries
of the interval. The correctness follows from the above discussion. �

We next use the above observation to get a fast algorithm for selection.

5.1.2. Randomized selection
We are given a set S of n distinct elements, with an associated ordering. For t ∈ S , let rS (t) denote the rank of
t (the smallest element in S has rank 1). Let S (i) denote the ith element in the sorted list of S .

Given k, we would like to compute S k (i.e., select the kth element). The code of LazySelect is depicted in
Figure 5.1.

Exercise 5.1.3. Show how to compute the ranks of rS (a) and rS (b), such that the expected number of compar-
isons performed is 1.5n.

Consider the element S (k) and where it is mapped to in the random sample R. Consider the interval of values

I( j) =
[
R(α( j)),R(β( j))

]
=

{
R(k)

∣∣∣α( j) ≤ k ≤ β( j)
}
,

where α( j) = j · n−1/4 −
√

n and β( j) = j · n−1/4 +
√

n.
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Lemma 5.1.4. For a fixed j, we have that Pr
[
S ( j) ∈ I( j)

]
≥ 1 − 1/(4n1/4).

Proof: There are two possible bad events: (i) S ( j) < Rα( j) and (ii) Rβ( j) < S ( j). Let Xi be an indicator variable
which is 1 if the ith sample is smaller equal to S ( j), otherwise 0. We have p = Pr[Xi]] = j/n and q = 1 − j/n.
The random variable X =

∑n3/4

i=1 Xi is the rank of S ( j) in the random sample. Clearly, X ∼ B
(

3/4, j/n
)

(i.e., X has
a binomial distribution with p = j/n, and n3/4 trials). As such, we have E[X] = pn3/4 and V[X] = n3/4 pq.

Now, by Chebyshev inequality

Pr
[∣∣∣X − pn3/4

∣∣∣ ≥ t
√

n3/4 pq
]
≤

1
t2 .

Since pn3/4 = jn−1/4 and
√

n3/4( j/n)(1 − j/n) ≤ n3/8/2, we have that the probability of a > S ( j) or b > S ( j) is

Pr
[
S ( j) < Rα( j) or Rβ( j) < S ( j)

]
= Pr

[
X < ( jn−1/4 −

√
n) or X > ( jn−1/4 +

√
n)

]
= Pr

[
|X − jn−1/4| ≥ 2n1/8 ·

n3/8

2

]
≤

1(
2n1/8)2 =

1
4n1/4 . �

Lemma 5.1.5. LazySelect succeeds with probability ≥ 1 −O(n−1/4) in the first iteration. And it performs only
2n + o(n) comparisons.

Proof: By Lemma 5.1.4, we know that S (k) ∈ I(k) with probability ≥ 1 − 1/(4n1/4). This in turn implies that
S (k) ∈ P. Thus, the only possible bad event is that the set P is too large. To this end, set k− = k − 3n3/4 and
k+ = k + 3n3/4, and observe that, by definition, it holds I(k−) ∩ I(k) = ∅ and I(k) ∩ I(k+) = ∅. As such, we
know by Lemma 5.1.4, that S (k−) ∈ I(k−) and S (k+) ∈ I(k+), and this holds with probability ≥ 1 − 2

4n1/4 . As such,
the set P, which is by definition contained in the range I(k), has only elements that are larger than S (k−) and
smaller than S (k+). As such, the size of P is bounded by k+ − k− = 6n3/4. Thus, the algorithm succeeds in the
first iteration, with probability ≥ 1 − 3

4n1/4 .
As for the number of comparisons, an iteration requires

O(n3/4 log n) + 2n + O(n3/4 log n) = 2n + o(n)

comparisons �

Any deterministic selection algorithm requires 2n comparisons, and LazySelect can be changed to require
only 1.5n + o(n) comparisons (expected).

5.2. The Coupon Collector’s Problem Revisited

5.2.1. Some technical lemmas

Unfortunately, in Randomized Algorithms, many of the calculations are awful­. As such, one has to be dexter-
ous in approximating such calculations. We present quickly a few of these estimates.

­"In space travel," repeated Slartibartfast, "all the numbers are awful." – Life, the Universe, and Everything Else, Douglas Adams.
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Lemma 5.2.1. For x ≥ 0, we have 1 − x ≤ exp(−x) and 1 + x ≤ ex. Namely, for all x, we have 1 + x ≤ ex.

Proof: For x = 0 we have equality. Next, computing the derivative on both sides, we have that we need to
prove that −1 ≤ − exp(−x) ⇐⇒ 1 ≥ exp(−x) ⇐⇒ ex ≥ 1, which clearly holds for x ≥ 0.

A similar argument works for the second inequality. �

Lemma 5.2.2. For any y ≥ 1, and |x| ≤ 1, we have
(
1 − x2

)y
≥ 1 − yx2.

Proof: Observe that the inequality holds with equality for x = 0. So compute the derivative of x of both sides
of the inequality. We need to prove that

y(−2x)
(
1 − x2

)y−1
≥ −2yx ⇐⇒

(
1 − x2

)y−1
≤ 1,

which holds since 1 − x2 ≤ 1, and y − 1 ≥ 0. �

Lemma 5.2.3. For any y ≥ 1, and |x| ≤ 1, we have
(
1 − x2y

)
exy ≤ (1 + x)y

≤ exy.

Proof: The right side of the inequality is standard by now. As for the left side. Observe that

(1 − x2)ex ≤ 1 + x,

since dividing both sides by (1 + x)ex, we get 1 − x ≤ e−x, which we know holds for any x. By Lemma 5.2.2,
we have (

1 − x2y
)
exy ≤

(
1 − x2

)y
exy =

((
1 − x2

)
ex

)y
≤

(
1 + x

)y
≤ exy. �

5.2.2. Back to the coupon collector’s problem
There are n types of coupons, and at each trial one coupon is picked in random. How many trials one has to
perform before picking all coupons? Let m be the number of trials performed. We would like to bound the
probability that m exceeds a certain number, and we still did not pick all coupons.

In the previous lecture, we showed that

Pr
[
# of trials ≥ n log n + n + t · n

π
√

6

]
≤

1
t2 ,

for any t.
A stronger bound, follows from the following observation. Let Zr

i denote the event that the ith coupon was
not picked in the first r trials. Clearly,

Pr
[
Zr

i

]
=

(
1 −

1
n

)r

≤ exp
(
−

r
n

)
.

Thus, for r = βn log n, we have Pr
[
Zr

i

]
≤ exp

(
−
βn log n

n

)
= n−β. Thus,

Pr
[
X > βn log n

]
≤ Pr

⋃
i

Zβn log n
i

 ≤ n · Pr
[
Z1

]
≤ n−β+1.
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Lemma 5.2.4. Let the random variable X denote the number of trials for collecting each of the n types of
coupons. Then, we have Pr

[
X > n ln n + cn

]
≤ e−c.

Proof: The probability we fail to pick the first type of coupon is α = (1 − 1/n)m ≤ exp
(
−n ln n+cn

n

)
= exp(−c)/n.

As such, using the union bound, the probability we fail to pick all n types of coupons is bounded by nα =
exp(−c), as claimed. �

In the following, we show a slightly stronger bound on the probability, which is 1 − exp(−e−c). To see that
it is indeed stronger, observe that e−c ≥ 1 − exp

(
−e−c).

5.2.3. An asymptotically tight bound
Lemma 5.2.5. Let c > 0 be a constant, m = n ln n + cn for a positive integer n. Then for any constant k, we

have lim
n→∞

(
n
k

)(
1 −

k
n

)m

=
exp(−ck)

k!
.

Proof: By Lemma 5.2.3, we have(
1 −

k2m
n2

)
exp

(
−

km
n

)
≤

(
1 −

k
n

)m

≤ exp
(
−

km
n

)
.

Observe also that lim
n→∞

(
1 −

k2m
n2

)
= 1, and exp

(
−

km
n

)
= n−k exp(−ck). Also,

lim
n→∞

(
n
k

)
k!
nk = lim

n→∞

n(n − 1) · · · (n − k + 1)
nk = 1.

Thus, lim
n→∞

(
n
k

)(
1 −

k
n

)m

= lim
n→∞

nk

k!
exp

(
−

km
n

)
= lim

n→∞

nk

k!
n−k exp(−ck) =

exp(−ck)
k!

. �

Theorem 5.2.6. Let the random variable X denote the number of trials for collecting each of the n types of
coupons. Then, for any constant c ∈ R, and m = n ln n + cn, we have limn→∞ Pr

[
X > m

]
= 1 − exp

(
−e−c

)
.

Before dwelling into the proof, observe that 1 − exp(−e−c) ≈ 1 − (1 − e−c) = e−c. Namely, in the limit, the
upper bound of Lemma 5.2.4 is tight.

Proof: We have Pr
[
X > m

]
= Pr

[
∪iZm

i

]
. By inclusion-exclusion, we have

Pr
⋃

i

Zm
i

 = n∑
i=1

(−1)i+1Pn
i ,

where Pn
j =

∑
1≤i1<i2<...<i j≤n

Pr

 j⋂
v=1

Zm
iv

 . Let S n
k =

∑k
i=1(−1)i+1Pn

i . We know that S n
2k ≤ Pr

[⋃
i Zm

i

]
≤ S n

2k+1.

By symmetry,

Pn
k =

(
n
k

)
Pr

 k⋂
v=1

Zm
v

 = (
n
k

)(
1 −

k
n

)m

,
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Thus, Pk = limn→∞ Pn
k = exp(−ck)/k!, by Lemma 5.2.5. Thus, we have

S k =

k∑
j=1

(−1) j+1P j =

k∑
j=1

(−1) j+1 ·
exp(−c j)

j!
.

Observe that limk→∞ S k = 1 − exp(−e−c) by the Taylor expansion of exp(x) (for x = −e−c). Indeed,

exp
(
x
)
=

∞∑
j=0

x j

j!
=

∞∑
j=0

(−e−c) j

j!
= 1 +

∞∑
j=1

(−1) jexp(−c j)
j!

.

Clearly, limn→∞ S n
k = S k and limk→∞ S k = 1 − exp(−e−c). Thus, (using fluffy math), we have

lim
n→∞

Pr
[
X > m

]
= lim

n→∞
Pr

[
∪n

i=1Zm
i

]
= lim

n→∞
lim
k→∞

S n
k = lim

k→∞
S k = 1 − exp

(
−e−c). �
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Chapter 6

Sampling and other Stuff
By Sariel Har-Peled, December 30, 2015¬

6.1. Two-Point Sampling

Definition 6.1.1. A collection of random variables X1, . . . , Xn is pairwise-independent, if for any pair of vari-
ables Xi and X j, and any pair of values α and β we have that Pr

[
Xi = α ∩ X j = β

]
= Pr
[
Xi = α

]
Pr
[
X j = β

]
.

Similarly, this collection is k-wise independent, if for any t ≤ k variables Xi1 , . . . , Xit in this collection, and
any set of t values, α1, . . . , α

′
t we have that

Pr
[(

Xi1 = α1
)
∩ . . . ∩

(
Xit = αt

)]
=

t∏
j=1

Pr
[
Xi j = α j

]
.

Namely, pairwise independent variables behaves like independent random variables as long as you look
only in pairs.

Example 6.1.2. Consider the probability space show on the right, where the triple of variables
X,Y,Z can be assigned any of the rows with equal probability (i.e., 1/4).

Clearly, for any α, β ∈ {0, 1} we have Pr
[
(X = α) ∩ (Y = β)

]
= Pr[(X = α)] Pr

[
(Y = β)

]
=

1/4 (this also holds for X,Z and Y,Z). Namely, X,Y,Z are all pairwise independent.
However, they are not 3-wise independent (or just independent). Indeed, we have
Pr[(X = 1) ∩ (Y = 1) ∩ (Z = 1)] = 0, while it should have been 1/8 if they were truly in-
dependent, or even just 3-wise independent.

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

6.1.1. About Modulo Rings and Pairwise Independence

Let p be a prime number, and let ZZp =
{
0, 1, . . . , p − 1

}
denote the ring of integers modules p. Two integers x

and y are equivalent modulo p, if x ≡ y mod p; namely, the reminder of dividing x and y by p is the same.

Lemma 6.1.3. Given y, i ∈ ZZp, and choosing a and b randomly, independently and uniformly from ZZp, the
probability of y ≡ ai + b (mod p) is 1/p.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Proof: Imagine that we first choose a, then the required probability, is that we choose b such that y − ai ≡
b (mod p). And the probability for that is 1/p, as we choose b uniformly. �

Lemma 6.1.4. Let p be a prime, and fix a ∈ {1, . . . , p − 1}. Then,
{
ai (mod p)

∣∣∣ i = 0, . . . , p − 1
}
= ZZp.

Putting it differently, for any non-zero a ∈ ZZp, there is a unique inverse b ∈ ZZp such that ab (mod p) = 1.

Proof: Assume, for the sake of contradiction, that the claim is false. Then, by the pigeon hole principle, there
must exists 1 ≤ j < i ≤ p − 1 such that ai (mod p) = a j (mod p). Namely, there are k′, k, u such that

ai = u + kp and a j = u + k′p.

(Here, we know that 0 ≤ k < p, 0 ≤ k′ < p and 0 ≤ u < p.) Since i > j it must be that k > k′. Subtracting the
two equalities, we get that a(i − j) = (k − k′)p > 0. Now, i − j must be larger than one, since if i − j = 1 then
a = p, which is impossible. Similarly, i − j < p. Also, i − j can not divide p, since p is a prime. Thus, it must
be that i − j must divide k − k′. So, let us set β = (k − k′)/(i − j) ≥ 1. This implies that a = βp ≥ p, which is
impossible. Thus, our assumption is false. �

Lemma 6.1.5. Given y, z, x,w ∈ ZZp, such that x , w, and choosing a and b randomly and uniformly from ZZp,
the probability that y ≡ ax + b (mod p) and z = aw + b (mod p) is 1/p2.

Proof: This equivalent to claiming that the system of equalities y ≡ ax + b (mod p) and z = aw + b have a
unique solution in a and b.

To see why this is true, subtract one equation from the other. We get y − z ≡ a(x − w) (mod p). Since
x−w . 0 (mod p), it must be that there is a unique value of a such that the equation holds. This in turns, imply
a specific value for b. The probability that a and b get those two specific values is 1/p2. �

Lemma 6.1.6. Let i and j be two distinct elements of ZZp. And choose a and b randomly and independently
from ZZp. Then, the two random variables Yi = ai+b (mod p) and Y j = a j+b (mod p) are uniformly distributed
on ZZp, and are pairwise independent.

Proof: The claim about the uniform distribution follows from Lemma 6.1.3, as Pr[Yi = α] = 1/p, for any
α ∈ ZZp. As for being pairwise independent, observe that

Pr
[
Yi = α

∣∣∣Y j = β
]
=

Pr
[
Yi = α ∩ Y j = β

]
Pr
[
Y j = β

] =
1/n2

1/n
=

1
n
= Pr
[
Yi = α

]
,

by Lemma 6.1.3 and Lemma 6.1.5. Thus, Yi and Y j are pairwise independent. �

Remark 6.1.7. It is important to understand what independence between random variables mean: having in-
formation about the value of X, gives you no information about Y . But this is only pairwise independence.
Indeed, consider the variables Y1,Y2,Y3,Y4 defined above. Every pair of them are pairwise independent. But,
given the values of Y1 and Y2, one can compute the value of Y3 and Y4 immediately. Indeed, giving the value of
Y1 and Y2 is enough to figure out the value of a and b. Once we know a and b, we immediately can compute all
the Yis.

Thus, the notion of independence can be extended to k-pairwise independence of n random variables, where
only if you know the value of k variables, you can compute the value of all the other variables. More on that
later in the course.

Lemma 6.1.8. If X and Y are pairwise independent then E
[
XY
]
= E
[
X
]

E
[
Y
]
.

2



Proof: By definition, E
[
XY
]
=
∑

x,y xy Pr
[
(X = x) ∩ (Y = y)

]
=
∑

x,y xy Pr
[
X = x

]
Pr
[
Y = y

]
=
∑

x x Pr[X = x]∑
y y Pr

[
Y = y

]
= (
∑

x x Pr[X = x])
(∑

y y Pr
[
Y = y

])
= E
[
X
]

E
[
Y
]
. �

Lemma 6.1.9. Let X1, X2, . . . , Xn be pairwise independent random variables, and X =
∑n

i=1 Xi. Then V
[
X
]
=∑n

i=1 V
[
Xi

]
.

Proof: Observe, that V
[
X
]
= E
[
(X − E[X])2

]
= E
[
X2
]
−
(
E
[
X
])2
. Let X and Y be pairwise independent vari-

ables. Observe that E
[
XY
]
= E
[
X
]
E
[
Y
]
, as can be easily verified. Thus,

V
[
X + Y

]
= E
[
(X + Y − E[X] − E[Y])2

]
= E
[(

X + Y
)2
− 2
(
X + Y

)(
E[X] + E[Y]

)
+
(
E[X] + E[Y]

)2]
= E
[
(X + Y)2

]
−
(
E
[
X
]
+ E
[
Y
])2

= E
[
X2 + 2XY + Y2

]
−
(
E
[
X
])2
− 2 E

[
X
]

E
[
Y
]
− (E[Y])2

=

(
E
[
X2
]
−
(
E
[
X
])2)
+

(
E
[
Y2
]
−
(
E
[
Y
])2)
+ 2 E

[
XY
]
− 2 E

[
X
]

E
[
Y
]

= V
[
X
]
+ V
[
Y
]
+ 2 E

[
X
]

E
[
Y
]
− 2 E

[
X
]

E
[
Y
]

= V
[
X
]
+ V
[
Y
]
,

by Lemma 6.1.8. Using the above argumentation for several variables, instead of just two, implies the lemma.
�

6.1.1.1. Generating k-wise independent variable

Consider the polynomial f (x) =
∑k−1

i=0 αixi evaluated modulo p, where the coefficients α0, . . . , αk−1 are taken
from ZZp. We claim that f (0), f (1), . . . , f (p−1) are k-wise independent. Indeed, for any k indices i1, . . . , ik ∈ ZZp,
and k values v1, . . . , vk ∈ ZZp, we have that β = Pr

[
f (i1) = v1 and . . . and f (ik) = vk

]
happens only for one

specific choice of the αs, which implies that this probability is 1/pk, which is what we need.

6.1.2. Application: Using less randomization for a randomized algorithm
We can consider a randomized algorithm, to be a deterministic algorithm Alg(x, r) that receives together with
the input x, a random string r of bits, that it uses to read random bits from. Let us redefine RP:

Definition 6.1.10. The class RP (for Randomized Polynomial time) consists of all languages L that have a
deterministic algorithm Alg(x, r) with worst case polynomial running time such that for any input x ∈ Σ∗,
• x ∈ L =⇒ Alg(x, r) = 1 for half the possible values of r.
• x < L =⇒ Alg(x, r) = 0 for all values of r.

Let assume that we now want to minimize the number of random bits we use in the execution of the algo-
rithm (Why?). If we run the algorithm t times, we have confidence 2−t in our result, while using t log n random
bits (assuming our random algorithm needs only log n bits in each execution). Similarly, let us choose two
random numbers from ZZn, and run Alg(x, a) and Alg(x, b), gaining us only confidence 1/4 in the correctness
of our results, while requiring 2 log n bits.
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Can we do better? Let us define ri = ai + b mod n, where a, b are random values as above (note, that
we assume that n is prime), for i = 1, . . . , t. Thus Y =

∑t
i=1 Alg(x, ri) is a sum of random variables which

are pairwise independent, as the ri are pairwise independent. Assume, that x ∈ L, then we have E[Y] = t/2,
and σ2

Y = V[Y] =
∑t

i=1 V
[
Alg(x, ri)

]
≤ t/4, and σY ≤

√
t/2. The probability that all those executions failed,

corresponds to the event that Y = 0, and

Pr
[
Y = 0

]
≤ Pr
[∣∣∣Y − E[Y]

∣∣∣ ≥ t
2

]
= Pr
[∣∣∣Y − E[Y]

∣∣∣ ≥ √t
2
·
√

t
]
≤

1
t
,

by the Chebyshev inequality. Thus we were able to “extract” from our random bits, much more than one would
naturally suspect is possible. We thus get the following result.

Lemma 6.1.11. Given an algorithm Alg in RP that uses lg n random bits, one can run it t times, such that the
runs results in a new algorithm that fails with probability at most 1/t.

6.2. QuickSort is quick via direct argumentation
Consider a specific element α in the input array of n elements that is being sorted by QuickSort, and let Xi be
the size of the recursive subproblem in the ith level of the recursion that contains x. If x thus not participate in
such a subproblem in this level, that Xi = 0. It is easy to verify that

X0 = n and E
[
Xi

∣∣∣ Xi−1

]
≤

1
2
·

3
4

Xi−1 +
1
2

Xi−1 ≤
7
8

Xi−1.

As such, E
[
Xi
]
= E
[
E
[
Xi
]]
= (7/8)in. In particular, we have by Markov’s inequality that

Pr
[
α participates in more than
c ln n levels of the recursion

]
= Pr[Xc ln n ≥ 1] ≤ E[Xc ln n]

1
≤ (7/8)c ln nn ≤

1
nβ+1 ,

if
(
c ln(8/7)

)
ln n ≥ β ln n ⇐⇒ c ≥ β/ ln(8/7). We conclude the following.

Theorem 6.2.1. For any β ≥ 1, we have that the running time of QuickSort sorting n elements is O
(
βn log n

)
,

with probability ≥ 1 − 1/nβ.

Proof: For c = β/ ln(8/7), the probability that an element participates in at most c ln n levels of the recursion
is at most 1/nβ+1. Since there are n elements, by the union bound, this bounds the probability that any input
number would participate in more than c ln n recursive calls. But that implies that the recursion depth of
QuickSort is ≤ c ln n, which immediately implies the claim. �

What the above proof shows is that an element can not be too unlucky – if it participates in enough rounds,
then, with high probability, the subproblem containing it would shrink significantly. This fairness of luck is
one of the most important principles in randomized algorithms, and we next formalize it by proving a rather
general theorem on the “concentration” of luck.
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Chapter 7

Concentration of Random Variables – Chernoff’s
Inequality
By Sariel Har-Peled, April 14, 2016¬

7.1. Concentration of mass and Chernoff’s inequality

7.1.1. Example: Binomial distribution
Consider the binomial distribution Bin(n, 1/2) for various values of n as depicted in Figure 7.1 – here we
think about the value of the variable as the number of heads in flipping a fair coin n times. Clearly, as the
value of n increases the probability of getting a number of heads that is significantly smaller or larger than
n/2 is tiny. Here we are interested in quantifying exactly how far can we divert from this expected value.
Specifically, if X ∼ Bin(n, 1/2), then we would be interested in bounding the probability Pr[X > n/2 + ∆],
where ∆ = tσX = t

√
n/2 (i.e., we are t standard deviations away from the expectation). For t > 2, this

probability is roughly 2−t, which is what we prove here.
More surprisingly, if you look only on the middle of the distribution, it looks the same after clipping

away the uninteresting tails, see Figure 7.2; that is, it looks more and more like the normal distribution. This
is a universal phenomena known the central limit theorem – every sum of nicely behaved random variables
behaves like the normal distribution. We unfortunately need a more precise quantification of this behavior, thus
the following.

7.1.2. A restricted case of Chernoff inequality via games

7.1.2.1. Chernoff games

7.1.2.1.1. The game. Consider the game where a player starts with Y0 = 1 dollars. At every round, the player
can bet a certain amount x (fractions are fine). With probability half she loses her bet, and with probability half
she gains an amount equal to her bet. The player is not allowed to go all in – because if she looses then the
game is over. So it is natural to ask what her optimal betting strategy is, such that in the end of the game she
has as much money as possible.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


0
0.05
0.1

0.15
0.2

0.25
0.3

0 1 2 3 4 5 6 7 8

0
0.05
0.1

0.15
0.2

0 2 4 6 8 10 12 14 16

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 5 10 15 20 25 30

0
0.02
0.04
0.06
0.08
0.1

0 10 20 30 40 50 60

n = 8 n = 16 n = 32 n = 64

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 20 40 60 80 100
120

0
0.01
0.02
0.03
0.04
0.05

0 50 100

150

200

250

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 100

200

300

400

500

0
0.002
0.004
0.006
0.008
0.01

0 1000
2000
3000
4000
5000
6000
7000
8000

n = 128 n = 256 n = 512 n = 8192

Figure 7.1: The binomial distribution for different values of n. It pretty quickly concentrates around its expec-
tation.

0
0.05
0.1

0.15
0.2

0 2 4 6 8 10 12 14 16

00.020.040.060.080.10.120.140.16

5 10 15 20 25

0
0.02
0.04
0.06
0.08
0.1

20 25 30 35 40 45

00.010.020.030.040.050.060.070.08

45 50 55 60 65 70 75 80 85

n = 16 n = 32 n = 64 n = 128

0
0.01
0.02
0.03
0.04
0.05

10
0

11
0

12
0

13
0

14
0

15
0

16
0

00.0050.010.0150.020.0250.030.0350.04

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

0
0.005
0.01

0.015
0.02

0.025

46
0

48
0

50
0

52
0

54
0

56
0

0
0.002
0.004
0.006
0.008
0.01

39
50

40
00

40
50

41
00

41
50

42
00

42
50

n = 256 n = 512 n = 1024 n = 8192

Figure 7.2: The “middle” of the binomial distribution for different values of n. It very quickly converges to the
normal distribution (under appropriate rescaling and translation.
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Values Probabilities Inequality Ref

−1,+1 Pr[Xi = −1] = Pr
[
Y ≥ ∆

]
≤ exp

(
−∆2/2n

)
Theorem 7.1.7p6

Pr[Xi = 1] = 1/2 Pr
[
Y ≤ −∆

]
≤ exp

(
−∆2/2n

)
Theorem 7.1.7p6

Pr
[
|Y | ≥ ∆

]
≤ 2 exp

(
−∆2/2n

)
Corollary 7.1.8p7

0, 1
Pr[Xi = 0] =

Pr[Xi = 1] = 1/2
Pr

[∣∣∣Y − n
2

∣∣∣ ≥ ∆
]
≤ 2 exp

(
−2∆2/n

)
Corollary 7.1.9p7

0,1
Pr[Xi = 0] = 1 − pi

Pr[Xi = 1] = pi
Pr

[
Y > (1 + δ)µ

]
<

(
eδ

(1+δ)1+δ

)µ
Theorem 7.3.2p12

For δ ≤ 2e − 1 Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
Theorem 7.3.2p12

δ ≥ 2e − 1 Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ)

δ ≥ e2 Pr
[
Y > (1 + δ)µ

]
< exp

(
−(µδ/2) ln δ

)
For δ ≥ 0 Pr

[
Y < (1 − δ)µ

]
< exp

(
−µδ2/2

)
Theorem 7.3.5p13

Xi ∈ [0, 1]
Xis have arbitrary inde-
pendent distributions.

Pr
[
Y − µ ≥ εµ

]
≤ exp

(
−ε2µ/4

)
Pr

[
Y − µ ≤ −εµ

]
≤ exp

(
−ε2µ/2

)
.

Theorem 7.4.5p15

Xi ∈
[
ai, bi

] Xis have arbitrary inde-
pendent distributions. Pr

[∣∣∣∣Y − µ∣∣∣∣ ≥ η
]
≤ 2 exp

(
−

2 η2∑n
i=1(bi − ai)2

)
Theorem 7.5.3p18

Table 7.1: Summary of Chernoff type inequalities covered. Here we have n independent random variables
X1, . . . , Xn, Y =

∑
i Xi and µ = E[Y].
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7.1.2.1.2. Is the game pointless? So, let Yi−1 be the money the player has in the end of the (i − 1)th round,
and she bets an amount ψi ≤ Yi−1 in the ith round. As such, in the end of the ith round, she has

Yi =

Yi−1 − ψi lose: probability half
Yi−1 + ψi win: probability half

dollars. This game, in expectation, does not change the amount of money the player has. Indeed, we have

E
[
Yi

∣∣∣ Yi−1

]
=

1
2

(Yi−1 − ψi) +
1
2

(Yi−1 + ψi) = Yi−1.

And as such, we have that E
[
Yi

]
= E

[
E
[
Yi

∣∣∣Yi−1

]]
= E

[
Yi−1

]
= · · · = E

[
Y0

]
= 1. In particular, E[Yn] = 1 –

namely, on average, independent of the player strategy she is not going to make any money in this game (and
she is allowed to change her bets after every round). Unless, she is lucky­...

7.1.2.1.3. What about a lucky player? The player believes she will get lucky and wants to develop a strategy
to take advantage of it. Formally, she believes that she can win, say, at least (1+δ)/2 fraction of her bets (instead
of the predicted 1/2) – for example, if the bets are in the stock market, she can improve her chances by doing
more research on the companies she is investing in®. Unfortunately, the player does not know which rounds
she is going to be lucky in – so she still needs to be careful.

7.1.2.1.4. In a search of a good strategy. Of course, there are many safe strategies the player can use, from
not playing at all, to risking only a tiny fraction of her money at each round. In other words, our quest here is
to find the best strategy that extracts the maximum benefit for the player out of her inherent luck.

Here, we restrict ourselves to a simple strategy – at every round, the player would bet β fraction of her
money, where β is a parameter to be determined. Specifically, in the end of the ith round, the player would have

Yi =

(1 − β)Yi−1 lose

(1 + β)Yi−1 win.

By our assumption, the player is going to win in at least M = (1 + δ)n/2 rounds. Our purpose here is to figure
out what the value of β should be so that player gets as rich as possible¯. Now, if the player is successful in
≥ M rounds, out of the n rounds of the game, then the amount of money the player has, in the end of the game,
is

Yn ≥ (1 − β)n−M(1 + β)M = (1 − β)n/2−(δ/2)n(1 + β)n/2+(δ/2)n =
(
(1 − β)(1 + β)

)n/2−(δ/2)n
(1 + β)δn

=
(
1 − β2

)n/2−(δ/2)n
(1 + β)δn ≥ exp

(
−2β2

)n/2−(δ/2)n
exp(β/2)δn = exp

((
−β2 + β2δ + βδ/2

)
n
)
.

To maximize this quantity, we choose β = δ/4 (there is a better choice, see Lemma 7.1.6, but we use this value

for the simplicity of exposition). Thus, we have that Yn ≥ exp
((
−
δ2

16
+
δ3

16
+
δ2

8

)
n
)
≥ exp

(
δ2

16
n
)
, proving the

following.

Lemma 7.1.1. Consider a Chernoff game with n rounds, starting with one dollar, where the player wins in
≥ (1 + δ)n/2 of the rounds. If the player bets δ/4 fraction of her current money, at all rounds, then in the end
of the game the player would have at least exp

(
nδ2/16

)
dollars.

­“I would rather have a general who was lucky than one who was good.” – Napoleon Bonaparte.
®“I am a great believer in luck, and I find the harder I work, the more I have of it.” – Thomas Jefferson.
¯This optimal choice is known as Kelly criterion, see Remark 7.1.3.
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Remark 7.1.2. Note, that Lemma 7.1.1 holds if the player wins any ≥ (1 + δ)n/2 rounds. In particular, the
statement does not require randomness by itself – for our application, however, it is more natural and interesting
to think about the player wins as being randomly distributed.

Remark 7.1.3. Interestingly, the idea of choosing the best fraction to bet is an old and natural question arising
in investments strategies, and the right fraction to use is known as Kelly criterion, going back to Kelly’s work
from 1956 [Kel56].

7.1.2.2. Chernoff’s inequality

The above implies that if a player is lucky, then she is going to become filthy rich°. Intuitively, this should be
a pretty rare event – because if the player is rich, then (on average) many other people have to be poor. We are
thus ready for the kill.

Theorem 7.1.4 (Chernoff’s inequality). Let X1, . . . , Xn be n independent random variables, where Xi = 0 or
Xi = 1 with equal probability. Then, for any δ ∈ (0, 1/2), we have that

Pr
∑

i

Xi ≥ (1 + δ)
n
2

 ≤ exp
(
−
δ2

16
n
)
.

Proof: Imagine that we are playing the Chernoff game above, with β = δ/4, starting with 1 dollar, and let Yi be
the amount of money in the end of the ith round. Here Xi = 1 indicates that the player won the ith round. We
have, by Lemma 7.1.1 and Markov’s inequality, that

Pr
∑

i

Xi ≥ (1 + δ)
n
2

 ≤ Pr
[
Yn ≥ exp

(
nδ2

16

)]
≤

E[Yn]
exp

(
nδ2/16

) =
1

exp
(
nδ2/16

) = exp
(
−
δ2

16
n
)
,

as claimed. �

7.1.2.2.1. This is crazy – so intuition maybe? If the player is (1 + δ)/2-lucky then she can make a lot of
money; specifically, at least f (δ) = exp

(
nδ2/16

)
dollars by the end of the game. Namely, beating the odds has

significant monetary value, and this value grows quickly with δ. Since we are in a “zero-sum” game settings,
this event should be very rare indeed. Under this interpretation, of course, the player needs to know in advance
the value of δ – so imagine that she guesses it somehow in advance, or she plays the game in parallel with all
the possible values of δ, and she settles on the instance that maximizes her profit.

7.1.2.2.2. Can one do better? No, not really. Chernoff inequality is tight (this is a challenging homework
exercise) up to the constant in the exponent. The best bound I know for this version of the inequality has 1/2
instead of 1/16 in the exponent. Note, however, that no real effort was taken to optimize the constants – this is
not the purpose of this write-up.

7.1.2.3. Some low level boring calculations

Above, we used the following well known facts.

°Not that there is anything wrong with that – many of my friends are filthy,
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Lemma 7.1.5. (A) Markov’s inequality. For any positive random variable X and t > 0, we have Pr[X ≥ t] ≤
E[X] /t.

(B) For any two random variables X and Y, we have that E
[
X
]

= E
[
E
[
X

∣∣∣Y ]]
.

(C) For x ∈ (0, 1), 1 + x ≥ ex/2.
(D) For x ∈ (0, 1/2), 1 − x ≥ e−2x.

Lemma 7.1.6. The quantity exp
((
−β2 + β2δ + βδ/2

)
n
)

is maximal for β = δ
4(1−δ) .

Proof: We have to maximize f (β) = −β2 + β2δ + βδ/2 by choosing the correct value of β (as a function of δ,
naturally). f ′(β) = −2β + 2βδ + δ/2 = 0 ⇐⇒ 2(δ − 1)β = −δ/2 ⇐⇒ β = δ

4(1−δ) . �

7.1.3. Chernoff Inequality - A Special Case – the classical proof

Theorem 7.1.7. Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] = 1
2 ,

for i = 1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

Pr
[
Y ≥ ∆

]
≤ exp

(
−∆2/2n

)
.

Proof: Clearly, for an arbitrary t, to specified shortly, we have

Pr[Y ≥ ∆] = Pr
[
exp(tY) ≥ exp(t∆)

]
≤

E
[
exp(tY)

]
exp(t∆)

,

the first part follows by the fact that exp(·) preserve ordering, and the second part follows by the Markov
inequality.

Observe that

E
[
exp(tXi)

]
=

1
2

et +
1
2

e−t =
et + e−t

2

=
1
2

(
1 +

t
1!

+
t2

2!
+

t3

3!
+ · · ·

)
+

1
2

(
1 −

t
1!

+
t2

2!
−

t3

3!
+ · · ·

)
=

(
1 + +

t2

2!
+ + · · · +

t2k

(2k)!
+ · · ·

)
,

by the Taylor expansion of exp(·). Note, that (2k)! ≥ (k!)2k, and thus

E
[
exp(tXi)

]
=

∞∑
i=0

t2i

(2i)!
≤

∞∑
i=0

t2i

2i(i!)
=

∞∑
i=0

1
i!

(
t2

2

)i

= exp
(
t2/2

)
,

again, by the Taylor expansion of exp(·). Next, by the independence of the Xis, we have

E
[
exp(tY)

]
= E

exp

∑
i

tXi

 = E

∏
i

exp(tXi)

 =

n∏
i=1

E
[
exp(tXi)

]
≤

n∏
i=1

et2/2 = ent2/2.

We have Pr[Y ≥ ∆] ≤
exp

(
nt2/2

)
exp(t∆)

= exp
(
nt2/2 − t∆

)
.

Next, by minimizing the above quantity for t, we set t = ∆/n. We conclude,

Pr[Y ≥ ∆] ≤ exp
n
2

(
∆

n

)2

−
∆

n
∆

 = exp
(
−

∆2

2n

)
. �
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By the symmetry of Y , we get the following:

Corollary 7.1.8. Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] = 1
2 ,

for i = 1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

Pr[|Y | ≥ ∆] ≤ 2e−∆2/2n.

Corollary 7.1.9. Let X1, . . . , Xn be n independent coin flips, such that Pr[Xi = 0] = Pr[Xi = 1] = 1
2 , for i =

1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

Pr
[∣∣∣∣∣Y − n

2

∣∣∣∣∣ ≥ ∆

]
≤ 2e−2∆2/n.

Remark 7.1.10. Before going any further, it is might be instrumental to understand what this inequalities
imply. Consider then case where Xi is either zero or one with probability half. In this case µ = E[Y] = n/2. Set
δ = t

√
n (
√
µ is approximately the standard deviation of X if pi = 1/2). We have by

Pr
[∣∣∣∣∣Y − n

2

∣∣∣∣∣ ≥ ∆

]
≤ 2 exp

(
−2∆2/n

)
= 2 exp

(
−2(t

√
n)2/n

)
= 2 exp

(
−2t2

)
.

Thus, Chernoff inequality implies exponential decay (i.e., ≤ 2−t) with t standard deviations, instead of just
polynomial (i.e., ≤ 1/t2) by the Chebychev’s inequality.

7.2. Applications of Chernoff’s inequality
There is a zoo of Chernoff type inequalities, and prove some of them later on the chapter – while being very
useful and technically interesting, they tend to numb to reader into boredom and submission. As such, we
discuss applications of Chernoff’s inequality here, and the interested reader can read the proofs of the more
general forms only if they are interested in them.

7.2.1. QuickSort is Quick
We revisit QuickSort. We remind the reader that the running time of QuickSort is proportional to the number
of comparisons performed by the algorithm. Next, consider an arbitrary element u being sorted. Consider
the ith level recursive subproblem that contains u, and let S i be the set of elements in this subproblems. We
consider u to be successful in the ith level, if |S i+1| ≤ |S i| /2. Namely, if u is successful, then the next level in
the recursion involving u would include a considerably smaller subproblem. Let Xi be the indicator variable
which is 1 if u is successful.

We first observe that if QuickSort is applied to an array with n elements, then u can be successful at most
T =

⌈
lg n

⌉
times, before the subproblem it participates in is of size one, and the recursion stops. Thus, consider

the indicator variable Xi which is 1 if u is successful in the ith level, and zero otherwise. Note that the Xis are
independent, and Pr[Xi = 1] = 1/2.

If u participates in v levels, then we have the random variables X1, X2, . . . , Xv. To make things simpler, we
will extend this series by adding independent random variables, such that Pr[‘] Xi = 1 = 1/2, for i ≥ v. Thus,
we have an infinite sequence of independent random variables, that are 0/1 and get 1 with probability 1/2. The
question is how many elements in the sequence we need to read, till we get T ones.
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Lemma 7.2.1. Let X1, X2, . . . be an infinite sequence of independent random 0/1 variables. Let M be an
arbitrary parameter. Then the probability that we need to read more than 2M + 4t

√
M variables of this

sequence till we collect M ones is at most 2 exp
(
−t2

)
, for t ≤

√
M. If t ≥

√
M then this probability is at most

2 exp
(
−t
√

M
)
.

Proof: Consider the random variable Y =
∑L

i=1 Xi, where L = 2M + 4t
√

M. Its expectation is L/2, and using
the Chernoff inequality, we get

α = Pr
[
Y ≤ M

]
≤ Pr

[∣∣∣∣∣Y − L
2

∣∣∣∣∣ ≥ L
2
− M

]
≤ 2 exp

(
−

2
L

(L
2
− M

)2)
≤ 2 exp

(
−

2
L

(
M + 2t

√
M − M

)2
)
≤ 2 exp

(
−

2
L

(
2t
√

M
)2
)

= 2 exp
(
−

8t2M
L

)
,

by Corollary 7.1.9. For t ≤
√

M we have that L = 2M + 4t
√

M ≤ 8M, as such in this case Pr[Y ≤ M] ≤
2 exp

(
−t2

)
.

If t ≥
√

M, then α = 2 exp
(
−

8t2M

2M + 4t
√

M

)
≤ 2 exp

(
−

8t2M

6t
√

M

)
≤ 2 exp

(
−t
√

M
)
. �

Going back to the QuickSort problem, we have that if we sort n elements, the probability that u will
participate in more than L = (4 + c)

⌈
lg n

⌉
= 2

⌈
lg n

⌉
+ 4c

√
lg n

√
lg n, is smaller than 2 exp

(
−c

√
lg n

√
lg n

)
≤

1/nc, by Lemma 7.2.1. There are n elements being sorted, and as such the probability that any element would
participate in more than (4 + c + 1)

⌈
lg n

⌉
recursive calls is smaller than 1/nc.

Lemma 7.2.2. For any c > 0, the probability that QuickSort performs more than (6 + c)n lg n, is smaller than
1/nc.

7.2.2. How many times can the minimum change?
Let Π = π1 . . . πn be a random permutation of {1, . . . , n}. Let Ei be the event that πi is the minimum number
seen so far as we read Π; that is, Ei is the event that πi = mini

k=1 πk. Let Xi be the indicator variable that is one
if Ei happens. We already seen, and it is easy to verify, that E[Xi] = 1/i. We are interested in how many times
the minimum might change±; that is Z =

∑
i Xi, and how concentrated is the distribution of Z. The following is

maybe surprising.

Lemma 7.2.3. The events E1, . . . ,En are independent (as such, variables X1, . . . , Xn are independent).

Proof: The trick is to think about the sampling process in a different way, and then the result readily follows.
Indeed, we randomly pick a permutation of the given numbers, and set the first number to be πn. We then,
again, pick a random permutation of the remaining numbers and set the first number as the penultimate number
(i.e., πn−1) in the output permutation. We repeat this process till we generate the whole permutation.

Now, consider 1 ≤ i1 < i2 < . . . < ik ≤ n, and observe that Pr
[
Eik

∣∣∣Ei1 ∩ . . . ∩ Eik−1

]
= Pr

[
Eik

]
, since by

our thought experiment, Eik is determined before all the other variables Eik−1 , . . . ,Ei1 , and these variables are
inherently not effected by this event happening or not. As such, we have

Pr
[
Ei1 ∩ Ei2 ∩ . . . ∩ Eik

]
= Pr

[
Eik

∣∣∣Ei1 ∩ . . . ∩ Eik−1

]
Pr

[
Ei1 ∩ . . . ∩ Eik−1

]
= Pr

[
Eik

]
Pr

[
Ei1 ∩ Ei2 ∩ . . . ∩ Eik−1

]
=

k∏
j=1

Pr
[
Ei j

]
=

k∏
j=1

1
i j
,

by induction. �
±The answer, my friend, is blowing in the permutation.
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Theorem 7.2.4. Let Π = π1 . . . πn be a random permutation of 1, . . . , n, and let Z be the number of times, that
πi is the smallest number among π1, . . . , πi, for i = 1, . . . , n. Then, we have that for t ≥ 2e that Pr[Z > t ln n] ≤
1/nt ln 2, and for t ∈

[
1, 2e

]
, we have that Pr

[
Z > t ln n

]
≤ 1/n(t−1)2/4.

Proof: Follows readily from Chernoff’s inequality, as Z =
∑

i Xi is a sum of independent indicator variables,
and, since by linearity of expectations, we have

µ = E
[
Z
]

=
∑

i

E
[
Xi

]
=

n∑
i=1

1
i
≥

∫ n+1

x=1

1
x

dx = ln(n + 1) ≥ ln n.

Next, we set δ = t − 1, and use Theorem 7.3.2p12. �

7.2.3. Routing in a Parallel Computer
Let G be a graph of a network, where every node is a processor. The processor communicate by sending
packets on the edges. Let

[
0, . . . ,N − 1

]
denote be vertices (i.e., processors) of G, where N = 2n, and G is

the hypercube. As such, each processes is identified with a binary string b1b2 . . . bn ∈ {0, 1}n. Two nodes are
connected if their binary string differs only in a single bit. Namely, G is the binary hypercube over n bits.

We want to investigate the best routing strategy for this topology of network. We assume that every proces-
sor need to send a message to a single other processor. This is represented by a permutation π, and we would like
to figure out how to send the messages encoded by the permutation while create minimum delay/congestion.

Specifically, in our model, every edge has a FIFO queue² of the packets it has to transmit. At every clock
tick, one message get sent. All the processors start sending the packets in their permutation in the same time.

A routing scheme is oblivious if every node that has to forward a packet, inspect the packet, and depending
only on the content of the packet decides how to forward it. That is, such a routing scheme is local in nature, and
does not take into account other considerations. Oblivious routing is of course a bad idea – it ignores congestion
in the network, and might insist routing things through regions of the hypercube that are “gridlocked”.

Theorem 7.2.5 ([KKT91]). For any deterministic oblivious permutation routing algorithm on a network of N
nodes each of out-degree n, there is a permutation for which the routing of the permutation takes Ω

(√
N/n

)
units of time (i.e., ticks).

Proof: (Sketch.) The above is implied by a nice averaging argument – construct, for every possible destination,
the routing tree of all packets to this specific node. Argue that there must be many edges in this tree that are
highly congested in this tree (which is NOT the permutation routing we are looking for!). Now, by averaging,
there must be a single edge that is congested in “many” of these trees. Pick a source-destination pair from each
one of these trees that uses this edge, and complete it into a full permutation in the natural way. Clearly, the
congestion of the resulting permutation is high. For the exact details see [KKT91]. �

7.2.3.0.1. How do we send a packet? We use bit fixing. Namely, the packet from the i node, always go to
the current adjacent node that have the first different bit as we scan the destination string d(i). For example,
packet from (0000) going to (1101), would pass through (1000), (1100), (1101).

7.2.3.0.2. The routing algorithm. We assume each edge have a FIFO queue. The routing algorithm is
depicted in Figure 7.3.

²First in, first out queue. I sure hope you already knew that.
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RandomRoute( v0, . . . , vN−1)
// vi: Packet at node i to be routed to node d(i).

(i) Pick a random intermediate destination σ(i) from [1, . . . ,N]. Packet vi travels to σ(i).
// Here random sampling is done with replacement.
// Several packets might travel to the same destination.

(ii) Wait till all the packets arrive to their intermediate destination.
(iii) Packet vi travels from σ(i) to its destination d(i).

Figure 7.3: The routing algorithm

7.2.3.1. Analysis

We analyze only (i) as (iii) follows from the same analysis. In the following, let ρi denote the route taken by vi

in (i).

Exercise 7.2.6. Once a packet v j that travel along a path ρ j can not leave a path ρi, and then join it again later.
Namely, ρi ∩ ρ j is (maybe an empty) path.

Lemma 7.2.7. Let the route of a message c follow the sequence of edges π = (e1, e2, . . . , ek). Let S be the set
of packets whose routes pass through at least one of (e1, . . . , ek). Then, the delay incurred by c is at most |S |.

Proof: A packet in S is said to leave π at that time step at which it traverses an edge of π for the last time. If a
packet is ready to follow edge e j at time t, we define its lag at time t to be t− j. The lag of c is initially zero, and
the delay incurred by c is its lag when it traverse ek. We will show that each step at which the lag of c increases
by one can be charged to a distinct member of S .

We argue that if the lag of c reaches `+ 1, some packet in S leaves π with lag `. When the lag of c increases
from ` to ` + 1, there must be at least one packet (from S ) that wishes to traverse the same edge as c at that
time step, since otherwise c would be permitted to traverse this edge and its lag would not increase. Thus, S
contains at least one packet whose lag reach the value `.

Let τ be the last time step at which any packet in S has lag `. Thus there is a packet d ready to follow edge
eµ at τ, such that τ− µ = `. We argue that some packet of S leaves π at τ; this establishes the lemma since once
a packet leaves π, it would never join it again and as such will never again delay c.

Since d is ready to follow eµ at τ, some packet ω (which may be d itself) in S follows eµ at time τ. Now ω
leaves π at time τ; if not, some packet will follow eµ+1 at step µ + 1 with lag still at `, violating the maximality
of τ. We charge to ω the increase in the lag of c from ` to `+ 1; since ω leaves π, it will never be charged again.
Thus, each member of S whose route intersects π is charge for at most one delay, establishing the lemma. �

Let Hi j be an indicator variable that is 1 if ρi and ρ j share an edge, and 0 otherwise. The total delay for vi is
at most ≤

∑
j Hi j.

Crucially, for a fixed i, the variables Hi1, . . . ,HiN are independent. Indeed, imagine first picking the desti-
nation of vi, and let the associated path be ρi. Now, pick the destinations of all the other packets in the network.
Since the sampling of destinations is done with replacements, whether or not, the path of v j intersects ρi or
not, is independent of whether vk intersects ρi. Of course, the probabilities Pr

[
Hi j = 1

]
and Pr

[
Hik = 1

]
are

probably different. Confusingly, however, H11, . . . ,HNN are not independent. Indeed, imagine k and j being
close vertices on the hypercube. If Hi j = 1 then intuitively it means that ρi is traveling close to the vertex v j,
and as such there is a higher probability that Hik = 1.
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Let ρi = (e1, . . . , ek), and let T (e) be the number of packets (i.e., paths) that pass through e. We have that

N∑
j=1

Hi j ≤

k∑
j=1

T (e j) and thus E

 N∑
j=1

Hi j

 ≤ E

 k∑
j=1

T (e j)

 .
Because of symmetry, the variables T (e) have the same distribution for all the edges of G. On the other hand,
the expected length of a path is n/2, there are N packets, and there are Nn/2 edges. We conclude E[T (e)] = 1.
Thus

µ = E

 N∑
j=1

Hi j

 ≤ E

 k∑
j=1

T (e j)

 = E
[
|ρi|

]
≤

n
2
.

By the Chernoff inequality, we have

Pr

∑
j

Hi j > 7n

 ≤ Pr

∑
j

Hi j > (1 + 13)µ

 < 2−13µ ≤ 2−6n.

Since there are N = 2n packets, we know that with probability ≤ 2−5n all packets arrive to their temporary
destination in a delay of most 7n.

Theorem 7.2.8. Each packet arrives to its destination in ≤ 14n stages, in probability at least 1 − 1/N (note
that this is very conservative).

7.2.4. Faraway Strings
Consider the Hamming distance between binary strings. It is natural to ask how many strings of length n can
one have, such that any pair of them, is of Hamming distance at least t from each other. Consider two random
strings, generated by picking at each bit randomly and independently. Thus, E

[
dH(x, y)

]
= n/2, where dH(x, y)

denote the hamming distance between x and y. In particular, using the Chernoff inequality, we have that

Pr
[
dH(x, y) ≤ n/2 − ∆

]
≤ exp

(
−2∆2/n

)
.

Next, consider generating M such string, where the value of M would be determined shortly. Clearly, the
probability that any pair of strings are at distance at most n/2 − ∆, is

α ≤

(
M
2

)
exp

(
−2∆2/n

)
< M2 exp

(
−2∆2/n

)
.

If this probability is smaller than one, then there is some probability that all the M strings are of distance at
least n/2 − ∆ from each other. Namely, there exists a set of M strings such that every pair of them is far. We
used here the fact that if an event has probability larger than zero, then it exists. Thus, set ∆ = n/4, and observe
that

α < M2 exp
(
−2n2/16n

)
= M2 exp(−n/8).

Thus, for M = exp(n/16), we have that α < 1. We conclude:

Lemma 7.2.9. There exists a set of exp(n/16) binary strings of length n, such that any pair of them is at
Hamming distance at least n/4 from each other.
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This is our first introduction to the beautiful technique known as the probabilistic method — we will hear
more about it later in the course.

This result has also interesting interpretation in the Euclidean setting. Indeed, consider the sphere S of
radius

√
n/2 centered at (1/2, 1/2, . . . , 1/2) ∈ Rn. Clearly, all the vertices of the binary hypercube {0, 1}n lie on

this sphere. As such, let P be the set of points on S that exists according to Lemma 7.2.9. A pair p, q of points
of P have Euclidean distance at least

√
dH(p, q) =

√
n4 =

√
n/2 from each other. We conclude:

Lemma 7.2.10. Consider the unit hypersphere S in Rn. The sphere S contains a set Q of points, such that each
pair of points is at (Euclidean) distance at least one from each other, and |Q| ≥ exp(n/16).

7.3. The Chernoff Bound — General Case
Here we present the Chernoff bound in a more general settings.

Question 7.3.1. Let X1, . . . , Xn be n independent Bernoulli trials, where

Pr
[
Xi = 1

]
= pi, and Pr

[
Xi = 0

]
= qi = 1 − pi.

(Each Xi is known as a Poisson trials.) And let X =
∑b

i=1 Xi. µ = E
[
X
]

=
∑

i pi. We are interested in the question
of what is the probability that X > (1 + δ)µ?

Theorem 7.3.2. For any δ > 0, we have Pr
[
X > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, we have:

δ ≤ 2e − 1 Pr
[
X > (1 + δ)µ

]
< exp

(
−µδ2/4

)
, (7.1)

δ > 2e − 1 Pr
[
X > (1 + δ)µ

]
< 2−µ(1+δ), (7.2)

and δ ≥ e2 Pr
[
X > (1 + δ)µ

]
< exp

(
−
µδ ln δ

2

)
. (7.3)

Proof: We have Pr
[
X > (1 + δ)µ

]
= Pr

[
etX > et(1+δ)µ

]
. By the Markov inequality, we have:

Pr
[
X > (1 + δ)µ

]
<

E
[
etX

]
et(1+δ)µ

On the other hand,

E
[
etX

]
= E

[
et(X1+X2...+Xn)

]
= E

[
etX1

]
· · ·E

[
etXn

]
.

Namely,

Pr
[
X > (1 + δ)µ

]
<

∏n
i=1 E

[
etXi

]
et(1+δ)µ =

∏n
i=1

(
(1 − pi)e0 + piet

)
et(1+δ)µ =

∏n
i=1

(
1 + pi(et − 1)

)
et(1+δ)µ .

Let y = pi(et − 1). We know that 1 + y < ey (since y > 0). Thus,

Pr
[
X > (1 + δ)µ

]
<

∏n
i=1 exp(pi(et − 1))

et(1+δ)µ =
exp

(∑n
i=1 pi(et − 1)

)
et(1+δ)µ

=
exp

(
(et − 1)

∑n
i=1 pi

)
et(1+δ)µ =

exp
(
(et − 1)µ

)
et(1+δ)µ =

(
exp

(
et − 1

)
et(1+δ)

)µ
=

(
exp(δ)

(1 + δ)(1+δ)

)µ
,
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if we set t = log(1 + δ).
For the proof of the simplified form, see Section 7.3.1. �

Definition 7.3.3. F+(µ, δ) =

[
eδ

(1 + δ)(1+δ)

]µ
.

Example 7.3.4. Arkansas Aardvarks win a game with probability 1/3. What is their probability to have a
winning season with n games. By Chernoff inequality, this probability is smaller than

F+(n/3, 1/2) =

[
e1/2

1.51.5

]n/3

=
(
0.89745

)n/3
= 0.964577n.

For n = 40, this probability is smaller than 0.236307. For n = 100 this is less than 0.027145. For n = 1000,
this is smaller than 2.17221 · 10−16 (which is pretty slim and shady). Namely, as the number of experiments is
increases, the distribution converges to its expectation, and this converge is exponential.

Theorem 7.3.5. Under the same assumptions as Theorem 7.3.2, we have: Pr
[
X < (1 − δ)µ

]
< exp

(
−µδ2/2

)
.

Definition 7.3.6. Let F−(µ, δ) = e−µδ
2/2, and let ∆−(µ, ε) denote the quantity, which is what should be the value

of δ, so that the probability is smaller than ε. We have that

∆−(µ, ε) =

√
2 log 1/ε

µ
.

And for large δ we have ∆+(µ, ε) <
log2 (1/ε)

µ
− 1.

7.3.1. A More Convenient Form
Proof: (of simplified form of Theorem 7.3.2p12) Eq. (7.2) is easy. Indeed, we have[ e

1 + δ

](1+δ)µ
≤

[ e
1 + 2e − 1

](1+δ)µ
≤ 2−(1+δ)µ,

since δ > 2e − 1. For the stronger version, Eq. (7.3), observe that

Pr
[
X > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
= exp

(
µδ − µ(1 + δ) ln(1 + δ)

)
. (7.4)

As such, we have

Pr
[
X > (1 + δ)µ

]
< exp

(
−µ(1 + δ)

(
ln(1 + δ) − 1

))
≤ exp

(
−µδln

1 + δ

e

)
≤ exp

(
−
µδ ln δ

2

)
,

since for x ≥ e2 we have that
1 + x

e
≥
√

x ⇐⇒ ln
1 + x

e
≥

ln x
2
.

As for Eq. (7.1), we prove this only for δ ≤ 1/2. For details about the case 1/2 ≤ δ ≤ 2e − 1, see [MR95].
The Taylor expansion of ln(1 + δ) is

δ −
δ2

2
+
δ3

3
−
δ4

4
+ · ≥ δ −

δ2

2
,
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for δ ≤ 1. Thus, plugging into Eq. (7.4), we have

Pr
[
X > (1 + δ)µ

]
< exp

(
µ
[
δ − (1 + δ)

(
δ − δ2/2

)])
= exp

(
µ
(
δ − δ + δ2/2 − δ2 + δ3/2

))
≤ exp

(
µ
(
−δ2/2 + δ3/2

))
≤ exp

(
−µδ2/4

)
,

for δ ≤ 1/2. �

7.4. A special case of Hoeffding’s inequality

In this section, we prove yet another version of Chernoff inequality, where each variable is randomly picked
according to its own distribution in the range [0, 1]. We prove a more general version of this inequality in
Section 7.5, but the version presented here does not follow from this generalization.

Theorem 7.4.1. Let X1, . . . , Xn ∈ [0, 1] be n independent random variables, let X =
∑n

i=1 Xi, and let µ = E[X].

We have that Pr
[
X − µ ≥ η

]
≤

(
µ

µ + η

)µ+η( n − µ
n − µ − η

)n−µ−η

.

Proof: Let s ≥ 1 be some arbitrary parameter. By the standard arguments, we have

γ = Pr
[
X ≥ µ + η

]
= Pr

[
sX ≥ sµ+η

]
≤

E
[
sX

]
sµ+η

= s−µ−η
n∏

i=1

E
[
sXi

]
.

By calculations, see Lemma 7.4.6 below, one can show that E
[
sX1

]
≤ 1+ (s−1) E[Xi]. As such, by the AM-GM

inequality³, we have that

n∏
i=1

E
[
sXi

]
≤

n∏
i=1

(
1 + (s − 1) E[Xi]

)
≤

1
n

n∑
i=1

(
1 + (s − 1) E[Xi]

)n

=

(
1 + (s − 1)

µ

n

)n
.

Setting s =
(µ + η)(n − µ)
µ(n − µ − η)

=
µn − µ2 + ηn − ηµ
µn − µ2 − ηµ

we have that

1 + (s − 1)
µ

n
= 1 +

ηn
µn − µ2 − ηµ

·
µ

n
= 1 +

η

n − µ − η
=

n − µ
n − µ − η

.

As such, we have that

γ ≤ s−µ−η
n∏

i=1

E
[
sXi

]
=

(
µ(n − µ − η)

(µ + η)(n − µ)

)µ+η( n − µ
n − µ − η

)n

=

(
µ

(µ + η)

)µ+η( n − µ
n − µ − η

)n−µ−η

. �

Remark 7.4.2. Setting s = (µ + η)/µ in the proof of Theorem 7.4.1, we have

Pr
[
X − µ ≥ η

]
≤

(
µ

µ+η

)µ+η(
1 +

(
µ+η

µ
− 1

)
µ

n

)n
=

(
µ

µ+η

)µ+η(
1 +

η

n

)n
.

³The inequality between arithmetic and geometric means: (
∑n

i=1 xi)/n ≥ n
√

x1 · · · xn.
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Corollary 7.4.3. Let X1, . . . , Xn ∈ [0, 1] be n independent random variables, let X =
∑n

i=1 Xi/n, p = E
[
X
]

=

µ/n and q = 1 − p. Then, we have that Pr
[

X − p ≥ t
]
≤ exp

(
n f (t)

)
, for

f (t) = (p + t) ln
p

p + t
+ (q − t) ln

q
q − t

. (7.5)

Theorem 7.4.4. Let X1, . . . , Xn ∈ [0, 1] be n independent random variables, let X = (
∑n

i=1 Xi)/n, and let p =

E[X]. We have that Pr
[

X − p ≥ t
]
≤ exp

(
−2nt2

)
and Pr

[
X − p ≤ −t

]
≤ exp

(
−2nt2

)
.

Proof: Let p = µ/n, q = 1 − p, and let f (t) be the function from Eq. (7.5), for t ∈ (−p, q). Now, we have that

f ′(t) = ln
p

p + t
+ (p + t)

p + t
p

(
−

p
(p + t)2

)
− ln

q
q − t

− (q − t)
q − t

q
q

(q − t)2 = ln
p

p + t
− ln

q
q − t

= ln
p(q − t)
q(p + t)

.

As for the second derivative, we have

f ′′(t) =
qXXXX(p + t)
p(q − t)

·
p
q
·

(p + t)(−1) − (q − t)

(p + t)A2
. =
−p − t − q + t
(q − t)(p + t)

= −
1

(q − t)(p + t)
≤ −4.

Indeed, t ∈ (−p, q) and the denominator is minimized for t = (q − p)/2, and as such (q − t)(p + t) ≤(
2q − (q − p)

)(
2p + (q − p)

)
/4 = (p + q)2/4 = 1/4.

Now, f (0) = 0 and f ′(0) = 0, and by Taylor’s expansion, we have that f (t) = f (0)+ f ′(0)t+
f ′′(x)

2
t2 ≤ −2t2,

where x is between 0 and t.
The first bound now readily follows from plugging this bound into Corollary 7.4.3. The second bound

follows by considering the random variants Yi = 1 − Xi, for all i, and plugging this into the first bound. Indeed,
for Y = 1 − X, we have that q = E

[
Y
]
, and then X − p ≤ −t ⇐⇒ t ≤ p − X ⇐⇒ t ≤ 1 − q − (1 − Y) = Y − q.

Thus, Pr
[
X − p ≤ −t

]
= Pr

[
Y − q ≥ t

]
≤ exp

(
−2nt2

)
. �

Theorem 7.4.5. Let X1, . . . , Xn ∈ [0, 1] be n independent random variables, let X = (
∑n

i=1 Xi), and let µ = E[X].
We have that Pr

[
X − µ ≥ εµ

]
≤ exp

(
−ε2µ/4

)
and Pr

[
X − µ ≤ −εµ

]
≤ exp

(
−ε2µ/2

)
.

Proof: Let p = µ/n, and let g(x) = f (px), for x ∈ [0, 1] and xp < q. As before, computing the derivative of g,
we have

g′(x) = p f ′(xp) = p ln
p(q − xp)
q(p + xp)

= p ln
q − xp

q(1 + x)
≤ p ln

1
1 + x

≤ −
px
2
,

since (q − xp)/q is maximized for x = 0, andln 1
1+x ≤ −x/2, for x ∈ [0, 1], as can be easily verified´. Now,

g(0) = f (0) = 0, and by integration, we have that g(x) =
∫ x

y=0
g′(y)dy ≤

∫ x

y=0
(−py/2)dy = −px2/4. Now,

plugging into Corollary 7.4.3, we get that the desired probability Pr
[
X − µ ≥ εµ

]
is

Pr
[
X − p ≥ εp

]
≤ exp

(
n f (εp)

)
= exp

(
ng(ε)

)
≤ exp

(
−pnε2/4

)
= exp

(
−µε2/4

)
.

´Indeed, this is equivalent to 1
1+x ≤ e−x/2 ⇐⇒ ex/2 ≤ 1 + x, which readily holds for x ∈ [0, 1].
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As for the other inequality, set h(x) = g(−x) = f (−xp). Then

h′(x) = −p f ′(−xp) = −p ln
p(q + xp)
q(p − xp)

= p ln
q(1 − x)
q + xp

= p ln
q − xq
q + xp

= p ln
(
1 − x

p + q
q + xp

)
= p ln

(
1 − x

1
q + xp

)
≤ p ln(1 − x) ≤ −px,

since 1 − x ≤ e−x. By integration, as before, we conclude that h(x) ≤ −px2/2. Now, plugging into Corol-
lary 7.4.3, we get Pr

[
X − µ ≤ −εµ

]
= Pr

[
X − p ≤ −εp

]
≤ exp

(
n f (−εp)

)
≤ exp

(
nh(ε)

)
≤ exp

(
−npε2/2

)
≤

exp
(
−µε2/2

)
. �

7.4.1. Some technical lemmas

Lemma 7.4.6. Let X ∈ [0, 1] be a random variable, and let s ≥ 1. Then E
[
sX

]
≤ 1 + (s − 1) E[X].

Proof: For the sake of simplicity of exposition, assume that X is a discrete random variable, and that there
is a value α ∈ (0, 1/2), such that β = Pr[X = α] > 0. Consider the modified random variable X′, such that
Pr[X′ = 0] = Pr[X = 0] + β/2, and Pr[X′ = 2α] = Pr[X = α] + β/2. Clearly, E[X] = E[X′]. Next, observe
that E

[
sX′

]
− E

[
sX

]
= (β/2)(s2α + s0) − βsα ≥ 0, by the convexity of sx. We conclude that E

[
sX

]
achieves its

maximum if takes only the values 0 and 1. But then, we have that E
[
sX

]
= Pr[X = 0] s0 + Pr[X = 1] s1 =

(1 − E[X]) + E[X] s = 1 + (s − 1) E[X] , as claimed. �

7.5. Hoeffding’s inequality
In this section, we prove a generalization of Chernoff’s inequality. The proof is considerably more tedious, and
it is included here for the sake of completeness.

Lemma 7.5.1. Let X be a random variable. If E[X] = 0 and a ≤ X ≤ b, then for any s > 0, we have
E
[
esX

]
≤ exp

(
s2(b − a)2/8

)
.

Proof: Let a ≤ x ≤ b and observe that x can be written as a convex combination of a and b. In particular, we
have

x = λa + (1 − λ)b for λ =
b − x
b − a

∈ [0, 1] .

Since s > 0, the function exp(sx) is convex, and as such

esx ≤
b − x
b − a

esa +
x − a
b − a

esb,

since we have that f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) if f (·) is a convex function. Thus, for a random
variable X, by linearity of expectation, we have

E
[
esX

]
≤ E

[
b − X
b − a

esa +
X − a
b − a

esb

]
=

b − E[X]
b − a

esa +
E[X] − a

b − a
esb

=
b

b − a
esa −

a
b − a

esb,
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since E[X] = 0.

Next, set p = −
a

b − a
and observe that 1 − p = 1 +

a
b − a

=
b

b − a
and

−ps(b − a) = −

(
−

a
b − a

)
s(b − a) = sa.

As such, we have

E
[
esX

]
≤ (1 − p)esa + pesb = (1 − p + pes(b−a))esa

= (1 − p + pes(b−a))e−ps(b−a)

= exp
(
−ps(b − a) + ln

(
1 − p + pes(b−a)

))
= exp(−pu + ln(1 − p + peu)),

for u = s(b − a). Setting

φ(u) = −pu + ln(1 − p + peu),

we thus have E
[
esX

]
≤ exp(φ(u)). To prove the claim, we will show that φ(u) ≤ u2/8 = s2(b − a)2/8.

To see that, expand φ(u) about zero using Taylor’s expansion. We have

φ(u) = φ(0) + uφ′(0) +
1
2

u2φ′′(θ) (7.6)

where θ ∈ [0, u], and notice that φ(0) = 0. Furthermore, we have

φ′(u) = −p +
peu

1 − p + peu ,

and as such φ′(0) = −p +
p

1−p+p = 0. Now,

φ′′(u) =
(1 − p + peu)peu − (peu)2

(1 − p + peu)2 =
(1 − p)peu

(1 − p + peu)2 .

For any x, y ≥ 0, we have (x + y)2 ≥ 4xy as this is equivalent to (x − y)2 ≥ 0. Setting x = 1 − p and y = peu, we
have that

φ′′(u) =
(1 − p)peu

(1 − p + peu)2 ≤
(1 − p)peu

4(1 − p)peu =
1
4
.

Plugging this into Eq. (7.6), we get that

φ(u) ≤
1
8

u2 =
1
8

(s(b − a))2 and E
[
esX

]
≤ exp(φ(u)) ≤ exp

(
1
8

(s(b − a))2
)
,

as claimed. �

Lemma 7.5.2. Let X be a random variable. If E[X] = 0 and a ≤ X ≤ b, then for any s > 0, we have

Pr[X > t] ≤
exp

(
s2(b−a)2

8

)
est .

Proof: Using the same technique we used in proving Chernoff’s inequality, we have that

Pr[X > t] = Pr
[
esX > est

]
≤

E
[
esX

]
est ≤

exp
(

s2(b−a)2

8

)
est . �
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Theorem 7.5.3 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables, where Xi ∈ [ai, bi],
for i = 1, . . . , n. Then, for the random variable S = X1 + · · · + Xn and any η > 0, we have

Pr
[∣∣∣∣S − E[S ]

∣∣∣∣ ≥ η] ≤ 2 exp
(
−

2 η2∑n
i=1(bi − ai)2

)
.

Proof: Let Zi = Xi − E[Xi], for i = 1, . . . , n. Set Z =
∑n

i=1 Zi, and observe that

Pr
[
Z ≥ η

]
= Pr

[
esZ ≥ esη

]
≤

E
[
exp(sZ)

]
exp(sη)

,

by Markov’s inequality. Arguing as in the proof of Chernoff’s inequality, we have

E
[
exp(sZ)

]
= E

 n∏
i=1

exp(sZi)

 =

n∏
i=1

E
[
exp(sZi)

]
≤

n∏
i=1

exp
(

s2(bi − ai)2

8

)
,

since the Zis are independent and by Lemma 7.5.1. This implies that

Pr
[
Z ≥ η

]
≤ exp(−sη)

n∏
i=1

es2(bi−ai)2/8 = exp

 s2

8

n∑
i=1

(bi − ai)2 − sη

.
The upper bound is minimized for s = 4η/

(∑
i(bi − ai)2

)
, implying

Pr
[
Z ≥ η

]
≤ exp

(
−

2η2∑
(bi − ai)2

)
.

The claim now follows by the symmetry of the upper bound (i.e., apply the same proof to −Z). �

7.6. Bibliographical notes
Some of the exposition here follows more or less the exposition in [MR95]. Exercise 7.7.1 (without the hint)
is from [Mat99]. McDiarmid [McD89] provides a survey of Chernoff type inequalities, and Theorem 7.4.5 and
Section 7.4 is taken from there (our proof has somewhat weaker constants).

Section 7.2.3 is based on Section 4.2 in [MR95]. A similar result to Theorem 7.2.8 is known for the case
of the wrapped butterfly topology (which is similar to the hypercube topology but every node has a constant
degree, and there is no clear symmetry). The interested reader is referred to [MU05].

A more general treatment of such inequalities and tools is provided by Dubhashi and Panconesi [DP09].

7.7. Exercises

Exercise 7.7.1 (Chernoff inequality is tight.). Let S =
∑n

i=1 S i be a sum of n independent random variables
each attaining values +1 and −1 with equal probability. Let P(n,∆) = Pr[S > ∆]. Prove that for ∆ ≤ n/C,

P(n,∆) ≥
1
C

exp
(
−

∆2

Cn

)
,

where C is a suitable constant. That is, the well-known Chernoff bound P(n,∆) ≤ exp(−∆2/2n)) is close to the
truth.
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Exercise 7.7.2 (Chernoff inequality is tight by direct calculations.). For this question use only basic argumen-
tation – do not use Stirling’s formula, Chernoff inequality or any similar “heavy” machinery.

(A) Prove that
n−k∑
i=0

(
2n
i

)
≤

n
4k2 22n.

Hint: Consider flipping a coin 2n times. Write down explicitly the probability of this coin to have at
most n − k heads, and use Chebyshev inequality.

(B) Using (A), prove that
(

2n
n

)
≥ 22n/4

√
n (which is a pretty good estimate).

(C) Prove that
(

2n
n + i + 1

)
=

(
1 −

2i + 1
n + i + 1

)(
2n

n + i

)
.

(D) Prove that
(

2n
n + i

)
≤ exp

(
−i(i − 1)

2n

)(
2n
n

)
.

(E) Prove that
(

2n
n + i

)
≥ exp

(
−

8i2

n

)(
2n
n

)
.

(F) Using the above, prove that
(
2n
n

)
≤ c

22n

√
n

for some constant c (I got c = 0.824... but any reasonable

constant will do).
(G) Using the above, prove that

(t+1)
√

n∑
i=t
√

n+1

(
2n

n − i

)
≤ c22n exp

(
−t2/2

)
.

In particular, conclude that when flipping fair coin 2n times, the probability to get less than n − t
√

n
heads (for t an integer) is smaller than c′ exp

(
−t2/2

)
, for some constant c′.

(H) Let X be the number of heads in 2n coin flips. Prove that for any integer t > 0 and any δ > 0 sufficiently
small, it holds that Pr[X < (1 − δ)n] ≥ exp

(
−c′′δ2n

)
, where c′′ is some constant. Namely, the Chernoff

inequality is tight in the worst case.

Exercise 7.7.3 (More binary strings. More!). To some extent, Lemma 7.2.9 is somewhat silly, as one can
prove a better bound by direct argumentation. Indeed, for a fixed binary string x of length n, show a bound on
the number of strings in the Hamming ball around x of radius n/4 (i.e., binary strings of distance at most n/4
from x). (Hint: interpret the special case of the Chernoff inequality as an inequality over binomial coefficients.)

Next, argue that the greedy algorithm which repeatedly pick a string which is in distance ≥ n/4 from all
strings picked so far, stops after picking at least exp(n/8) strings.

Exercise 7.7.4 (Tail inequality for geometric variables). Let X1, . . . , Xm be m independent random variables
with geometric distribution with probability p (i.e., Pr

[
Xi = j

]
= (1 − p) j−1 p). Let Y =

∑
i Xi, and let µ =

E[Y] = m/p. Prove that Pr
[
Y ≥ (1 + δ)µ

]
≤ exp

(
−mδ2/8

)
.
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Chapter 8

Martingales
By Sariel Har-Peled, December 30, 2015¬

‘After that he always chose out a “dog command” and sent them ahead. It had the task of informing the
inhabitants in the village where we were going to stay overnight that no dog must be allowed to bark in the
night otherwise it would be liquidated. I was also on one of those commands and when we came to a village
in the region of Milevsko I got mixed up and told the mayor that every dog-owner whose dog barked in the
night would be liquidated for strategic reasons. The mayor got frightened, immediately harnessed his horses
and rode to headquarters to beg mercy for the whole village. They didn’t let him in, the sentries nearly shot
him and so he returned home, but before we got to the village everybody on his advice had tied rags round
the dogs muzzles with the result that three of them went mad.’

– The good soldier Svejk, Jaroslav Hasek

8.1. Martingales

8.1.1. Preliminaries

Let X and Y be two random variables. Let ρ(x, y) = Pr
[
(X = x) ∩ (Y = y)

]
. Then,

Pr
[
X = x

∣∣∣ Y = y
]
=
ρ(x, y)

Pr
[
Y = y

] = ρ(x, y)∑
z ρ(z, y)

and E
[
X

∣∣∣ Y = y
]
=

∑
x

x Pr
[
X = x

∣∣∣ Y = y
]
=

∑
x xρ(x, y)∑
z ρ(z, y)

=

∑
x xρ(x, y)

Pr
[
Y = y

] .
Definition 8.1.1. The conditional expectation of X given Y , is the random variable E

[
X

∣∣∣ Y ]
is the random

variable f (y) = E
[
X

∣∣∣ Y = y
]
.

Lemma 8.1.2. For any two random variables X and Y, we have E
[
E
[
X

∣∣∣ Y ]]
= E

[
X
]
.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Proof: E
[
E
[
X

∣∣∣ Y ]]
= EY

[
E
[
X

∣∣∣ Y = y
]]
=

∑
y Pr

[
Y = y

]
E
[
X

∣∣∣ Y = y
]

=
∑

y

Pr
[
Y = y

] ∑
x x Pr

[
X = x ∩ Y = y

]
Pr

[
Y = y

]
=

∑
y

∑
x

x Pr
[
X = x ∩ Y = y

]
=

∑
x

x
∑

y

Pr
[
X = x ∩ Y = y

]
=

∑
x

x Pr
[
X = x

]
= E

[
X
]
. �

Lemma 8.1.3. For any two random variables X and Y, we have E
[
Y · E

[
X

∣∣∣Y]]
= E

[
XY

]
.

Proof: We have that E
[
Y · E

[
X

∣∣∣ Y ]]
=

∑
y

Pr
[
Y = y

]
· y · E

[
X

∣∣∣ Y = y
]

=
∑

y

Pr
[
Y = y

]
· y ·

∑
x x Pr

[
X = x ∩ Y = y

]
Pr

[
Y = y

] =
∑

x

∑
y

xy · Pr
[
X = x ∩ Y = y

]
= E

[
XY

]
. �

8.1.2. Martingales

Intuitively, martingales are a sequence of random variables describing a process, where the only thing that
matters at the beginning of the ith step is where the process was in the end of the (i − 1)th step. That is, it does
not matter how the process arrived to a certain state, only that it is currently at this state.

Definition 8.1.4. A sequence of random variables X0, X1, . . . , is said to be a martingale sequence if for all i > 0,
we have E

[
Xi

∣∣∣ X0, . . . , Xi−1

]
= Xi−1.

Lemma 8.1.5. Let X0, X1, . . . , be a martingale sequence. Then, for all i ≥ 0, we have E
[
Xi

]
= E

[
X0

]
.

8.1.2.1. Examples of martingales

Example 8.1.6. An example of martingales is the sum of money after participating in a sequence of fair bets.
That is, let Xi be the amount of money a gambler has after playing i rounds. In each round it either gains one
dollar, or loses one dollar. Clearly, we have E

[
Xi

∣∣∣ X0, . . . , Xi−1

]
= E

[
Xi

∣∣∣ Xi−1

]
= Xi.

Example 8.1.7. Let Yi = X2
i − i, where Xi is as defined in the above example. We claim that Y0,Y1, . . . is a

martingale. Let us verify that this is true. Given Yi−1, we have Yi−1 = X2
i−1 − (i − 1). We have that

E
[
Yi

∣∣∣ Yi−1

]
= E

[
X2

i − i
∣∣∣ X2

i−1 − (i − 1)
]
=

1
2

(
(Xi−1 + 1)2

− i)
)
+

1
2

(
(Xi−1 − 1)2

− i
)

= X2
i−1 + 1 − i = X2

i−1 − (i − 1) = Yi−1,

which implies that indeed it is a martingale.
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Example 8.1.8. Let U be a urn with b black balls, and w white balls. We repeatedly select a ball and replace
it by c balls having the same color. Let Xi be the fraction of black balls after the first i trials. We claim that the
sequence X0, X1, . . . is a martingale.

Indeed, let ni = b + w + i(c − 1) be the number of balls in the urn after the ith trial. Clearly,

E
[
Xi

∣∣∣ Xi−1, . . . , X0

]
= Xi−1 ·

(c − 1) + Xi−1ni−1

ni
+ (1 − Xi−1) ·

Xi−1ni−1

ni

=
Xi−1(c − 1) + Xi−1ni−1

ni
= Xi−1

c − 1 + ni−1

ni
= Xi−1

ni

ni
= Xi−1.

Example 8.1.9. Let G be a random graph on the vertex set V = {1, . . . , n} obtained by independently choosing
to include each possible edge with probability p. The underlying probability space is called Gn,p. Arbitrarily
label the m = n(n−1)/2 possible edges with the sequence 1, . . . ,m. For 1 ≤ j ≤ m, define the indicator random
variable I j, which takes values 1 if the edge j is present in G, and has value 0 otherwise. These indicator
variables are independent and each takes value 1 with probability p.

Consider any real valued function f defined over the space of all graphs, e.g., the clique number, which is
defined as being the size of the largest complete subgraph. The edge exposure martingale is defined to be the
sequence of random variables X0, . . . , Xm such that

Xi = E
[
f (G)

∣∣∣ I1, . . . , Ii

]
,

while X0 = E
[
f (G)

]
and Xm = f (G). This sequence of random variable begin a martingale follows immediately

from a theorem that would be described in the next lecture.
One can define similarly a vertex exposure martingale, where the graph Gi is the graph induced on the first

i vertices of the random graph G.

Example 8.1.10 (The sheep of Mabinogion). The following is taken from medieval Welsh manuscript based
on Celtic mythology:

“And he came towards a valley, through which ran a river; and the borders of the valley were
wooded, and on each side of the river were level meadows. And on one side of the river he saw a
flock of white sheep, and on the other a flock of black sheep. And whenever one of the white sheep
bleated, one of the black sheep would cross over and become white; and when one of the black
sheep bleated, one of the white sheep would cross over and become black.” – Peredur the son of
Evrawk, from the Mabinogion.

More concretely, we start at time 0 with w0 white sheep, and b0 black sheep. At every iteration, a random
sheep is picked, it bleats, and a sheep of the other color turns to this color. the game stops as soon as all the
sheep have the same color. No sheep dies or get born during the game. Let Xi be the expected number of black
sheep in the end of the game, after the ith iteration. For reasons that we would see later on, this sequence is a
martingale.

The original question is somewhat more interesting – if we are allowed to take a way sheep in the end of
each iteration, what is the optimal strategy to maximize Xi?

8.1.2.2. Azuma’s inequality

A sequence of random variables X0, X1, . . . has bounded differences if |Xi − Xi−1| ≤ ∆, for some fixed ∆.

Theorem 8.1.11 (Azuma’s Inequality.). Let X0, . . . , Xm be a martingale with X0 = 0, and |Xi+1 − Xi| ≤ 1 for

all 0 ≤ i < m. Let λ > 0 be arbitrary. Then Pr
[
Xm > λ

√
m
]
< exp

(
−λ2/2

)
.
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Proof: Let α = λ/
√

m. Let Yi = Xi − Xi−1, so that |Yi| ≤ 1 and E
[
Yi

∣∣∣ X0, . . . , Xi−1

]
= 0.

We are interested in bounding E
[
eαYi

∣∣∣ X0, . . . , Xi−1

]
. Note that, for −1 ≤ x ≤ 1, we have

eαx ≤ h(x) =
eα + e−α

2
+

eα − e−α

2
x,

as eαx is a convex function, h(−1) = e−α, h(1) = eα, and h(x) is a linear function. Thus,

E
[
eαYi

∣∣∣ X0, . . . , Xi−1

]
≤ E

[
h(Yi)

∣∣∣ X0, . . . , Xi−1

]
= h

(
E
[
Yi

∣∣∣ X0, . . . , Xi−1

])
= h

(
0
)
=

eα + e−α

2

=
(1 + α + α

2

2! +
α3

3! + · · · ) + (1 − α + α
2

2! −
α3

3! + · · · )
2

= 1 +
α2

2
+
α4

4!
+
α6

6!
+ · · ·

≤ 1 +
1
1!

(
α2

2

)
+

1
2!

(
α2

2

)2

+
1
3!

(
α2

2

)3

+ · · · = exp
(
α2/2

)
,

as (2i)! ≥ 2ii!.
Hence, by Lemma 8.1.3, we have that

E
[
eαXm

]
= E

 m∏
i=1

eαYi

 = E

m−1∏
i=1

eαYi

eαYm


= E

m−1∏
i=1

eαYi

 E
[
eαYm

∣∣∣ X0, . . . , Xm−1

] ≤ eα
2/2 E

m−1∏
i=1

eαYi


≤ exp

(
mα2/2

)
.

Therefore, by Markov’s inequality, we have

Pr
[
Xm > λ

√
m
]
= Pr

[
eαXm > eαλ

√
m
]
=

E
[
eαXm

]
eαλ

√
m
= emα2/2−αλ

√
m

= exp
(
m(λ/

√
m)2/2 − (λ/

√
m)λ
√

m
)
= e−λ

2/2,

implying the result. �

Here is an alternative form.

Theorem 8.1.12 (Azuma’s Inequality). Let X0, . . . , Xm be a martingale sequence such that and |Xi+1−Xi| ≤ 1

for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then Pr
[
|Xm − X0| > λ

√
m
]
< 2 exp

(
−λ2/2

)
.

Example 8.1.13. Let χ(H) be the chromatic number of a graph H. What is chromatic number of a random
graph? How does this random variable behaves?

Consider the vertex exposure martingale, and let Xi = E
[
χ(G)

∣∣∣Gi

]
. Again, without proving it, we claim that

X0, . . . , Xn = X is a martingale, and as such, we have: Pr
[
|Xn − X0| > λ

√
n
]
≤ e−λ

2/2. However, X0 = E
[
χ(G)

]
,

and Xn = E
[
χ(G)

∣∣∣Gn

]
= χ(G). Thus,

Pr
[∣∣∣χ(G) − E

[
χ(G)

]∣∣∣ > λ√n
]
≤ e−λ

2/2.

Namely, the chromatic number of a random graph is highly concentrated! And we do not even know what is
the expectation of this variable!
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Chapter 9

Martingales II
By Sariel Har-Peled, December 30, 2015¬

“The Electric Monk was a labor-saving device, like a dishwasher or a video recorder. Dishwashers washed tedious
dishes for you, thus saving you the bother of washing them yourself, video recorders watched tedious television for
you, thus saving you the bother of looking at it yourself; Electric Monks believed things for you, thus saving you what
was becoming an increasingly onerous task, that of believing all the things the world expected you to believe.”

– — Dirk Gently’s Holistic Detective Agency, Douglas Adams..

9.1. Filters and Martingales
Definition 9.1.1. A σ-field (Ω,F ) consists of a sample space Ω (i.e., the atomic events) and a collection of
subsets F satisfying the following conditions:

(A) ∅ ∈ F .
(B) C ∈ F ⇒ C ∈ F .
(C) C1,C2, . . . ∈ F ⇒ C1 ∪C2 . . . ∈ F .

Definition 9.1.2. Given a σ-field (Ω,F ), a probability measure Pr : F → R+ is a function that satisfies the
following conditions.

(A) ∀A ∈ F , 0 ≤ Pr[A] ≤ 1.
(B) Pr

[
Ω
]
= 1.

(C) For mutually disjoint events C1,C2, . . . , we have Pr
[
∪iCi

]
=

∑
i Pr

[
Ci

]
.

Definition 9.1.3. A probability space (Ω,F ,Pr) consists of a σ-field (Ω,F ) with a probability measure Pr
defined on it.

Definition 9.1.4. Given a σ-field (Ω,F ) with F = 2Ω, a filter (also filtration) is a nested sequence F0 ⊆ F1 ⊆

· · · ⊆ Fn of subsets of 2Ω, such that:
(A) F0 = {∅,Ω}.
(B) Fn = 2Ω.
(C) For 0 ≤ i ≤ n, (Ω,Fi) is a σ-field.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Definition 9.1.5. An elementary event or atomic event is a subset of a sample space that contains only one
element of Ω.

Intuitively, when we consider a probability space, we usually consider a random variable X. The value of
X is a function of the elementary event that happens in the probability space. Formally, a random variable is a
mapping X : Ω → R. Thus, each Fi defines a partition of Ω into atomic events. This partition is getting more
and more refined as we progress down the filter.

Example 9.1.6. Consider an algorithm Alg that uses n random bits. As such, the underlying sample space is
Ω =

{
b1b2 . . . bn

∣∣∣ b1, . . . , bn ∈ {0, 1}
}
; that is, the set of all binary strings of length n. Next, let Fi be the σ-field

generated by the partition of Ω into the atomic events Bw, where w ∈ {0, 1}i; here w is the string encoding the
first i random bits used by the algorithm. Specifically,

Bw =
{
wx

∣∣∣ x ∈ {0, 1}n−i
}
,

and the set of atomic events in Fi is
{
Bw

∣∣∣ w ∈ {0, 1}i }. The set Fi is the closure of this set of atomic events
under complement and union. In particular, we conclude that F0,F1, . . . ,Fn form a filter.

Definition 9.1.7. A random variable X is said to be Fi-measurable if for each x ∈ R, the event X ≤ x is in Fi;
that is, the set

{
ω ∈ Ω

∣∣∣ X(ω) ≤ x
}

is in Fi.

Example 9.1.8. Let F0, . . . ,Fn be the filter defined in Example 9.1.6. Let X be the parity of the n bits. Clearly,
X = 1 is a valid event only in Fn (why?). Namely, it is only measurable in Fn, but not in Fi, for i < n.

As such, a random variable X is Fi-measurable, only if it is a constant on the elementary events of Fi. This
gives us a new interpretation of what a filter is – its a sequence of refinements of the underlying probability
space, that is achieved by splitting the atomic events of Fi into smaller atomic events in Fi+1. Putting it
explicitly, an atomic event E of Fi, is a subset of 2Σ. As we move to Fi+1 the event E might now be split
into several atomic (and disjoint events) E1, . . . ,Ek. Now, naturally, the atomic event that really happens is an
atomic event of Fn. As we progress down the filter, we “zoom” into this event.

Definition 9.1.9 (Conditional expectation in a filter). Let (Ω,F ) be any σ-field, and Y any random variable
that takes on distinct values on the elementary events in F . Then E

[
X| F

]
= E

[
X |Y

]
.

9.2. Martingales

Definition 9.2.1. A sequence of random variables Y1,Y2, . . . , is said to be a martingale difference sequence if

for all i ≥ 0, we have E
[
Yi

∣∣∣ Y1, . . . , Yi−1

]
= 0.

Clearly, X1, . . . , is a martingale sequence if and only if Y1,Y2, . . . , is a martingale difference sequence where
Yi = Xi − Xi−1.

Definition 9.2.2. A sequence of random variables Y1,Y2, . . . , is

a super martingale sequence if ∀i E
[
Yi

∣∣∣ Y1, . . . , Yi−1

]
≤ Yi−1,

and a sub martingale sequence if ∀i E
[
Yi

∣∣∣ Y1, . . . , Yi−1

]
≥ Yi−1.
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9.2.1. Martingales – an alternative definition
Definition 9.2.3. Let (Ω,F ,Pr) be a probability space with a filter F0,F1, . . . . Suppose that X0, X1, . . ., are
random variables such that, for all i ≥ 0, Xi is Fi-measurable. The sequence X0, . . . , Xn is a martingale provided
that, for all i ≥ 0, we have E

[
Xi+1 | Fi

]
= Xi.

Lemma 9.2.4. Let (Ω,F ) and (Ω,G) be two σ-fields such that F ⊆ G. Then, for any random variable X,

E
[
E
[
X

∣∣∣G] ∣∣∣∣F ]
= E

[
X

∣∣∣F ]
.

Proof: E
[
E
[
X

∣∣∣G] ∣∣∣F ]
= E

[
E
[
X

∣∣∣G = g
] ∣∣∣ F = f

]
= E

[∑
x x Pr

[
X = x ∩G = g

]
Pr

[
G = g

] ∣∣∣ F = f
]
=

∑
g∈G

∑
x x Pr

[
X=x∩G=g

]
Pr

[
G=g

] · Pr
[
G = g ∩ F = f

]
Pr

[
F = f

]
=

∑
g∈G,g⊆ f

∑
x x Pr

[
X=x∩G=g

]
Pr

[
G=g

] · Pr
[
G = g ∩ F = f

]
Pr

[
F = f

] =
∑

g∈G,g⊆ f

∑
x x Pr

[
X=x∩G=g

]
Pr

[
G=g

] · Pr
[
G = g

]
Pr

[
F = f

]
=

∑
g∈G,g⊆ f

∑
x x Pr

[
X = x ∩G = g

]
Pr

[
F = f

] =

∑
x x

(∑
g∈G,g⊆ f Pr

[
X = x ∩G = g

])
Pr

[
F = f

]
=

∑
x x Pr

[
X = x ∩ F = f

]
Pr

[
F = f

] = E
[
X

∣∣∣F ]
. �

Theorem 9.2.5. Let (Ω,F ,Pr) be a probability space, and let F0, . . . ,Fn be a filter with respect to it. Let X be
any random variable over this probability space and define Xi = E

[
X

∣∣∣Fi

]
then, the sequence X0, . . . , Xn is a

martingale.

Proof: We need to show that E
[
Xi+1

∣∣∣Fi

]
= Xi. Namely,

E
[
Xi+1

∣∣∣Fi

]
= E

[
E
[
X

∣∣∣Fi+1

] ∣∣∣Fi

]
= E

[
X

∣∣∣Fi

]
= Xi,

by Lemma 9.2.4 and by definition of Xi. �

Definition 9.2.6. Let f : D1 × · · · ×Dn → R be a real-valued function with a arguments from possibly distinct
domains. The function f is said to satisfy the Lipschitz condition if for any x1 ∈ D1, . . . , xn ∈ Dn, and
i ∈ {1, . . . , n} and any yi ∈ Di,∣∣∣∣ f (x1, . . . , xi−1, xi, xi+1, . . . , xn) − f (x1, . . . , xi−1, yi, xi+1, . . . , xn)

∣∣∣∣ ≤ 1.

Specifically, a function is c-Lipschitz, if the inequality holds with a constant c (instead of 1).

Definition 9.2.7. Let X1, . . . , Xn be a sequence of independent random variables, and a function f (X1, . . . , Xn)
defined over them that such that f satisfies the Lipschitz condition. The Doob martingale sequence Y0, . . . , Ym

is defined by Y0 = E
[
f (X1, . . . , Xn)

]
and Yi = E

[
f (X1, . . . , Xn)

∣∣∣ X1, . . . , Xi

]
, for i = 1, . . . , n.

Clearly, a Doob martingale Y0, . . . , Yn is a martingale, by Theorem 9.2.5. Furthermore, if |Xi − Xi−1| ≤ 1,
for i = 1, . . . , n, then |Xi − Xi−1| ≤ 1. and we can use Azuma’s inequality on such a sequence.
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9.3. Occupancy Revisited
We have m balls thrown independently and uniformly into n bins. Let Z denote the number of bins that remains
empty in the end of the process. Let Xi be the bin chosen in the ith trial, and let Z = F(X1, . . . , Xm), where
F returns the number of empty bins given that m balls had thrown into bins X1, . . . , Xm. Clearly, we have by
Azuma’s inequality that Pr

[∣∣∣Z − E[Z]
∣∣∣ > λ√m

]
≤ 2e−λ

2/2.
The following is an extension of Azuma’s inequality shown in class. We do not provide a proof but it is

similar to what we saw.

Theorem 9.3.1 (Azuma’s Inequality - Stronger Form). Let X0, X1, . . . , be a martingale sequence such that

for each k, |Xk − Xk−1| ≤ ck, where ck may depend on k. Then, for all t ≥ 0, and any λ > 0,

Pr
[
|Xt − X0| ≥ λ

]
≤ 2 exp

(
−

λ2

2
∑t

k=1 c2
k

)
.

Theorem 9.3.2. Let r = m/n, and Zend be the number of empty bins when m balls are thrown randomly into n

bins. Then µ = E
[
Zend

]
= n

(
1 − 1

n

)m
≈ ne−r, and for any λ > 0, we have

Pr
[∣∣∣Zend − µ

∣∣∣ ≥ λ] ≤ 2 exp
(
−
λ2(n − 1/2)

n2 − µ2

)
.

Proof: Let z(Y, t) be the expected number of empty bins, if there are Y empty bins in time t. Clearly,

z(Y, t) = Y
(
1 −

1
n

)m−t

.

In particular, µ = z(n, 0) = n
(
1 − 1

n

)m
.

Let Ft be the σ-field generated by the bins chosen in the first t steps. Let Zend be the number of empty bins
at time m, and let Zt = E

[
Zend

∣∣∣Ft

]
. Namely, Zt is the expected number of empty bins after we know where

the first t balls had been placed. The random variables Z0,Z1, . . . , Zm form a martingale. Let Yt be the number
of empty bins after t balls where thrown. We have Zt−1 = z(Yt−1, t − 1). Consider the ball thrown in the t-step.
Clearly:
(A) With probability 1 − Yt−1/n the ball falls into a non-empty bin. Then Yt = Yt−1, and Zt = z(Yt−1, t). Thus,

∆t = Zt − Zt−1 = z(Yt−1, t) − z(Yt−1, t − 1) = Yt−1

(1 − 1
n

)m−t

−

(
1 −

1
n

)m−t+1 = Yt−1

n

(
1 −

1
n

)m−t

≤

(
1 −

1
n

)m−t

.

(B) Otherwise, with probability Yt−1/n the ball falls into an empty bin, and Yt = Yt−1 − 1. Namely, Zt =

z(Yt − 1, t). And we have that

∆t = Zt − Zt−1 = z(Yt−1 − 1, t) − z(Yt−1, t − 1) = (Yt−1 − 1)
(
1 −

1
n

)m−t

− Yt−1

(
1 −

1
n

)m−t+1

=

(
1 −

1
n

)m−t(
Yt−1 − 1 − Yt−1

(
1 −

1
n

))
=

(
1 −

1
n

)m−t(
−1 +

Yt−1

n

)
= −

(
1 −

1
n

)m−t(
1 −

Yt−1

n

)
≥ −

(
1 −

1
n

)m−t

.
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Thus, Z0, . . . , Zm is a martingale sequence, where |Zt − Zt−1| ≤ |∆t| ≤ ct, where ct =
(
1 − 1

n

)m−t
. We have

n∑
t=1

c2
t =

1 − (1 − 1/n)2m

1 − (1 − 1/n)2 =
n2

(
1 − (1 − 1/n)2m

)
2n − 1

=
n2 − µ2

2n − 1
.

Now, deploying Azuma’s inequality, yield the result. �

9.3.1. Lets verify this is indeed an improvement

Consider the case where m = n ln n. Then, µ = n
(
1 − 1

n

)m
≤ 1. And using the “weak” Azuma’s inequality

implies that

Pr
[∣∣∣Zend − µ

∣∣∣ ≥ λ√n
]
= Pr

[∣∣∣Zend − µ
∣∣∣ ≥ λ√ n

m
√

m
]
≤ 2 exp

(
−
λ2n
2m

)
= 2 exp

(
−
λ2

2 ln n

)
,

which is interesting only if λ >
√

2 ln n. On the other hand, Theorem 9.3.2 implies that

Pr
[∣∣∣Zend − µ

∣∣∣ ≥ λ√n
]
≤ 2 exp

(
−
λ2n(n − 1/2)

n2 − µ2

)
≤ 2 exp

(
−λ2

)
,

which is interesting for any λ ≥ 1 (say).

9.4. Some useful estimates
Lemma 9.4.1. For any n ≥ 2, and m ≥ 1, we have that (1 − 1/n)m ≥ 1 − m/n.

Proof: Follows by induction. Indeed, for m = 1 the claim is immediate. For m ≥ 2, we have(
1 −

1
n

)m

=

(
1 −

1
n

)(
1 −

1
n

)m−1

≥

(
1 −

1
n

)(
1 −

m − 1
n

)
≥ 1 −

m
n
. �

This implies the following.

Lemma 9.4.2. For any m ≤ n, we have that 1 − m/n ≤ (1 − 1/n)m ≤ exp(−m/n).
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Chapter 10

The Probabilistic Method
By Sariel Har-Peled, December 30, 2015¬

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible discovered
Gustible’s planet. The discovery turned out to be a tragic mistake.

Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They
immediately mind-read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by making
up an opera concerning his recent divorce.”

– – From Gustible’s Planet, Cordwainer Smith.

10.1. Introduction

The probabilistic method is a combinatorial technique to use probabilistic algorithms to create objects having
desirable properties, and furthermore, prove that such objects exist. The basic technique is based on two basic
observations:

1. If E[X] = µ, then there exists a value x of X, such that x ≥ E[X].

2. If the probability of event E is larger than zero, then E exists and it is not empty.

The surprising thing is that despite the elementary nature of those two observations, they lead to a powerful
technique that leads to numerous nice and strong results. Including some elementary proofs of theorems that
previously had very complicated and involved proofs.

The main proponent of the probabilistic method, was Paul Erdős. An excellent text on the topic is the book
by Noga Alon and Joel Spencer [AS00].

This topic is worthy of its own course. The interested student is refereed to the course “Math 475 — The
Probabilistic Method”.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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10.1.1. Examples
Theorem 10.1.1. For any undirected graph G(V, E) with n vertices and m edges, there is a partition of the
vertex set V into two sets A and B such that∣∣∣∣{uv ∈ E

∣∣∣ u ∈ A and v ∈ B
}∣∣∣∣ ≥ m

2
.

Proof: Consider the following experiment: randomly assign each vertex to A or B, independently and equal
probability.

For an edge e = uv, the probability that one endpoint is in A, and the other in B is 1/2, and let Xe be the
indicator variable with value 1 if this happens. Clearly,

E
[∣∣∣∣{uv ∈ E

∣∣∣ (u, v) ∈ (A × B) ∪ (B × A)
}∣∣∣∣] = ∑

e∈E(G)

E[Xe] =
∑

e∈E(G)

1
2
=

m
2
.

Thus, there must be a partition of V that satisfies the theorem. �

Definition 10.1.2. For a vector v = (v1, . . . , vn) ∈ Rn, ‖v‖∞ = max
i
|vi|.

Theorem 10.1.3. Let M be an n × n binary matrix (i.e., each entry is either 0 or 1), then there always exists a
vector b ∈ {−1,+1}n such that ‖Mb‖∞ ≤ 4

√
n log n.

Proof: Let v = (v1, . . . , vn) be a row of M. Chose a random b = (b1, . . . , bn) ∈ {−1,+1}n. Let i1, . . . , im be the
indices such that vi j = 1, and let

Y = 〈v, b〉 =
n∑

i=1

vibi =

m∑
j=1

vi jbi j =

m∑
j=1

bi j .

As such Y is the sum of m independent random variables that accept values in {−1,+1}. Clearly,

E[Y] = E[〈v, b〉] = E

∑
i

vibi

 =∑
i

E[vibi] =
∑

i

vi E[bi] = 0.

By Chernoff inequality (Theorem 10.3.1) and the symmetry of Y , we have that, for ∆ = 4
√

n ln n, it holds

Pr[|Y | ≥ ∆] = 2 Pr[v · b ≥ ∆] = 2 Pr

 m∑
j=1

bi j ≥ ∆

 ≤ 2 exp
(
−
∆2

2m

)
= 2 exp

(
−8

n ln n
m

)
≤

2
n8 .

Thus, the probability that any entry in Mb exceeds 4
√

n ln n is smaller than 2/n7. Thus, with probability at least
1 − 2/n7, all the entries of Mb have value smaller than 4

√
n ln n.

In particular, there exists a vector b ∈ {−1,+1}n such that ‖Mb ‖∞ ≤ 4
√

n ln n. �

10.2. Maximum Satisfiability
In the MAX-SAT problem, we are given a binary formula F in [CNF] (Conjunctive normal form), and we would
like to find an assignment that satisfies as many clauses as possible of F, for example F = (x ∨ y) ∧ (x ∨ z).
Of course, an assignment satisfying all the clauses of the formula, and thus F itself, would be even better – but
this problem is of course NPC. As such, we are looking for how well can be we do when we relax the problem
to maximizing the number of clauses to be satisfied..
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Theorem 10.2.1. For any set of m clauses, there is a truth assignment of variables that satisfies at least m/2
clauses.

Proof: Assign every variable a random value. Clearly, a clause with k variables, has probability 1 − 2−k to be
satisfied. Using linearity of expectation, and the fact that every clause has at least one variable, it follows, that
E[X] = m/2, where X is the random variable counting the number of clauses being satisfied. In particular, there
exists an assignment for which X ≥ m/2. �

For an instant I, let mopt(I), denote the maximum number of clauses that can be satisfied by the “best”
assignment. For an algorithm Alg, let mAlg(I) denote the number of clauses satisfied computed by the algorithm
Alg. The approximation factor of Alg, is mAlg(I)/mopt(I). Clearly, the algorithm of Theorem 10.2.1 provides
us with 1/2-approximation algorithm.

For every clause, C j in the given instance, let z j ∈ {0, 1} be a variable indicating whether C j is satisfied or
not. Similarly, let xi = 1 if the ith variable is being assigned the value TRUE. Let C+j be indices of the variables
that appear in C j in the positive, and C−j the indices of the variables that appear in the negative. Clearly, to solve
MAX-SAT, we need to solve:

maximize
m∑

j=1

z j

sub ject to xi, z j ∈ {0, 1} for all i, j∑
i∈C+j

xi +
∑
i∈C−j

(1 − xi) ≥ z j for all j.

We relax this into the following linear program:

maximize
m∑

j=1

z j

sub ject to 0 ≤ yi, z j ≤ 1 for all i, j∑
i∈C+j

yi +
∑
i∈C−j

(1 − yi) ≥ z j for all j.

Which can be solved in polynomial time. Let t̂ denote the values assigned to the variable t by the linear-
programming solution. Clearly,

∑m
j=1 ẑ j is an upper bound on the number of clauses of I that can be satisfied.

We set the variable yi to 1 with probability ŷi. This is randomized rounding.

Lemma 10.2.2. Let C j be a clause with k literals. The probability that it is satisfied by randomized rounding
is at least βkẑ j ≥ (1 − 1/e)ẑ j, where

βk = 1 −
(
1 −

1
k

)k

.
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Proof: Assume C j = y1 ∨ v2 . . . ∨ vk. By the LP, we have ŷ1 + · · · + ŷk ≥ ẑ j. Furthermore, the probability
that C j is not satisfied is

∏k
i=1

(
1 − ŷi

)
. Note that 1 −

∏k
i=1

(
1 − ŷi

)
is minimized when all the ŷi’s are equal (by

symmetry). Namely, when ŷi = ẑ j/k. Consider the function f (x) = 1 − (1 − x/k)k. This is a concave function,
which is larger than g(x) = βkx for all 0 ≤ x ≤ 1, as can be easily verified, by checking the inequality at x = 0
and x = 1.

Thus,

Pr
[
C j is satisfied

]
= 1 −

k∏
i=1

(
1 − ŷi

)
≥ f

(
ẑ j

)
≥ βkẑ j.

The second part of the inequality, follows from the fact that βk ≥ 1 − 1/e, for all k ≥ 0. Indeed, for k = 1, 2
the claim trivially holds. Furthermore,

1 −
(
1 −

1
k

)k

≥ 1 −
1
e
⇔

(
1 −

1
k

)k

≤
1
e
,

but this holds since 1 − x ≤ e−x implies that 1 − 1
k ≤ e−1/k, and as such

(
1 − 1

k

)k
≤ e−k/k = 1/e. �

Theorem 10.2.3. Given an instance I of MAX-SAT, the expected number of clauses satisfied by linear pro-
gramming and randomized rounding is at least (1− 1/e) ≈ 0.632mopt(I), where mopt(I) is the maximum number
of clauses that can be satisfied on that instance.

Theorem 10.2.4. Given an instance I of MAX-SAT, let n1 be the expected number of clauses satisfied by
randomized assignment, and let n2 be the expected number of clauses satisfied by linear programming followed
by randomized rounding. Then, max(n1, n2) ≥ (3/4)

∑
j ẑ j ≥ (3/4)mopt(I).

Proof: It is enough to show that (n1 + n2)/2 ≥ 3
4

∑
j ẑ j. Let S k denote the set of clauses that contain k literals.

We know that

n1 =
∑

k

∑
C j∈S k

(
1 − 2−k

)
≥

∑
k

∑
C j∈S k

(
1 − 2−k

)
ẑ j.

By Lemma 10.2.2 we have n2 ≥
∑

k
∑

C j∈S k
βkẑ j. Thus,

n1 + n2

2
≥

∑
k

∑
C j∈S k

1 − 2−k + βk

2
ẑ j.

One can verify that
(
1 − 2−k

)
+ βk ≥ 3/2, for all k. ­ Thus, we have

n1 + n2

2
≥

3
4

∑
k

∑
C j∈S k

ẑ j =
3
4

∑
j

ẑ j. �

­Indeed, by the proof of Lemma 10.2.2, we have that βk ≥ 1 − 1/e. Thus,
(
1 − 2−k

)
+ βk ≥ 2 − 1/e − 2−k ≥ 3/2 for k ≥ 3. Thus,

we only need to check the inequality for k = 1 and k = 2, which can be done directly.
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10.3. From previous lectures

Theorem 10.3.1. Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] = 1
2 ,

for i = 1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

Pr
[
Y ≥ ∆

]
≤ exp

(
−∆2/2n

)
.
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Chapter 11

The Probabilistic Method II
By Sariel Har-Peled, December 30, 2015¬

“Today I know that everything watches, that nothing goes unseen, and that even wallpaper has a better memory than
ours. It isn’t God in His heaven that sees all. A kitchen chair, a coat-hanger a half-filled ash tray, or the wood replica
of a woman name Niobe, can perfectly well serve as an unforgetting witness to every one of our acts.”

– Gunter Grass, The tin drum.

11.1. Expanding Graphs

In this lecture, we are going to discuss expanding graphs.

Definition 11.1.1. An (n, d, α, c) OR-concentrator is a bipartite multigraph G(L,R, E), with the independent
sets of vertices L and R each of cardinality n, such that

(i) Every vertex in L has degree at most d.
(ii) Any subset S of vertices of L, with |S | ≤ αn has at least c |S | neighbors in R.

A good (n, d, α, c) OR-concentrator should have d as small as possible­, and c as large as possible.

Theorem 11.1.2. There is an integer n0, such that for all n ≥ n0, there is an (n, 18, 1/3, 2) OR-concentrator.

Proof: Let every vertex of L choose neighbors by sampling (with replacement) d vertices independently and
uniformly from R. We discard multiple parallel edges in the resulting graph.

Let Es be the event that a subset of s vertices of L has fewer than cs neighbors in R. Clearly,

Pr
[
Es

]
≤

(
n
s

) (
n
cs

)(cs
n

)ds
≤

(ne
s

)s(ne
cs

)cs(cs
n

)ds
=

(( s
n

)d−c−1
exp(1 + c)cd−c

)s

,

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

­Or smaller!
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since
(

n
k

)
≤

(
ne
k

)k
. Setting α = 1/3 using s ≤ αn, and c = 2, we have

Pr
[
Es

]
≤

(1
3

)d−c−1

e1+ccd−c

s

≤

(1
3

)d

31+ce1+ccd−c

s

≤

(1
3

)d

31+ce1+ccd

s

≤

((c
3

)d
(3e)1+c

)s

≤

(2
3

)18

(3e)1+2

s

≤
(
0.4

)s
,

as c = 2 and d = 18. Thus, ∑
s≥1

Pr
[
Es

]
≤

∑
s≥1

(0.4)s < 1.

It thus follows that the random graph we generated has the required properties with positive probability. �

11.2. Probability Amplification
Let Alg be an algorithm in RP, such that given x, Alg picks a random number r from the range ZZn =

{0, . . . , n − 1}, for a suitable choice of a prime n, and computes a binary value Alg(x, r) with the following
properties:

(A) If x ∈ L, then Alg(x, r) = 1 for at least half the possible values of r.
(B) If x < L, then Alg(x, r) = 0 for all possible choices of r.

Next, we show that using lg2 n bits® one can achieve 1/nlg n confidence, compared with the naive 1/n, and
the 1/t confidence achieved by t (dependent) executions of the algorithm using two-point sampling.

Theorem 11.2.1. For n large enough, there exists a bipartite graph G(V,R, E) with |V | = n, |R| = 2lg2 n such
that:

(i) Every subset of n/2 vertices of V has at least 2lg2 n − n neighbors in R.
(ii) No vertex of R has more than 12 lg2 n neighbors.

Proof: Each vertex of R chooses d = 2lg2 n(4 lg2 n)/n neighbors independently in R. We show that the resulting
graph violate the required properties with probability less than half.¯

The probability for a set of n/2 vertices on the left to fail to have enough neighbors, is

τ ≤

(
n

n/2

) (
2lg2 n

n

)(
1 −

n

2lg2 n

)dn/2

≤ 2n

2lg2 ne
n

n

exp
(
−

dn
2

n

2lg2 n

)

≤ 2n

2lg2 ne
n

n

︸    ︷︷    ︸
∗

exp
−2lg2 n(4 lg2 n)/n

2
n2

2lg2 n

 ≤ exp

n + n ln
2lg2 ne

n︸      ︷︷      ︸
∗

−2n lg2 n

,
since

(
n

n/2

)
≤ 2n and

(
2lg2 n

2lg2 n−n

)
=

(
2lg2 n

n

)
, and

(
x
y

)
≤

(
xe
y

)y
°. Now, we have

ρ = n ln
2lg2 ne

n
= n

(
ln 2lg2 n + ln e − ln n

)
≤ (ln 2)n lg2 n ≤ 0.7n lg2 n,

®Everybody knows that lg n = log2 n. Everybody knows that the captain lied.
¯Here, we keep parallel edges if they happen – which is unlikely. The reader can ignore this minor technicality, on her way to

ignore this whole write-up.
°The reader might want to verify that one can use significantly weaker upper bounds and the result still follows – we are using

the tighter bounds here for educational reasons, and because we can.
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for n ≥ 3. As such, we have τ ≤ exp
(
n + (0.7 − 2)n lg2 n

)
� 1/4.

As for the second property, note that the expected number of neighbors of a vertex v ∈ R is 4 lg2 n. Indeed,
the probability of a vertex on R to become adjacent to a random edge is ρ = 1/|R|, and this “experiment” is
repeated independently dn times. As such, the expected degree of a vertex is µE

[
Y
]
= dn/|R| = 4 lg2 n. The

Chernoff bound (Theorem 11.4.1p4) implies that

α = Pr
[
Y > 12 lg2 n

]
= Pr

[
Y > (1 + 2)µ

]
< exp

(
−µ22/4

)
= exp

(
−4 lg2 n

)
.

Since there are 2lg2 n vertices in R, we have that the probability that any vertex in R has a degree that exceeds
12 lg2 n, is, by the union bound, at most |R|α ≤ 2lg2 n exp

(
−4 lg2 n

)
≤ exp

(
−3 lg2 n

)
� 1/4, concluding our

tedious calculations±.
Thus, with constant positive probability, the random graph has the required property, as the union of the

two bad events has probability� 1/2. �

We assume that given a vertex (of the above graph) we can compute its neighbors, without computing the
whole graph.

So, we are given an input x. Use lg2 n bits to pick a vertex v ∈ R. We next identify the neighbors of v in V:
r1, . . . , rk. We then compute Alg(x, ri), for i = 1, . . . k. Note that k = O

(
lg2 n

)
. If all k calls return 0, then we

return that Alg is not in the language. Otherwise, we return that x belongs to V .
If x is in the language, then consider the subset U ⊆ V , such that running Alg on any of the strings of U

returns TRUE. We know that |U | ≥ n/2. The set U is connected to all the vertices of R except for at most
|R| −

(
2lg2 n − n

)
= n of them. As such, the probability of a failure in this case, is

Pr
[
x ∈ L but r1, r2, . . . , rk < U

]
= Pr

[
v not connected to U

]
≤

n
|R|
≤

n

2lg2 n
.

We summarize the result.

Lemma 11.2.2. Given an algorithm Alg in RP that uses lg n random bits, and an access explicit access to the
graph of Theorem 11.2.1, one can decide if an input word is in the language of Alg using lg2 n bits, and the
probability of failure is at most n

2lg2 n
.

Let us compare the various results we now have about running an algorithm in RP using lg2 n bits. We have
three options:

(A) Randomly run the algorithm lg n times independently. The probability of failure is at most 1/2lg n =

1/n.
(B) Lemma 11.2.2, which as probability of failure at most 1/2lg n = 1/n.
(C) The third option is to use pairwise independent sampling (see Lemma 11.4.2p4). While it is not

directly comparable to the above two options, it is clearly inferior, and is thus less useful.

Unfortunately, there is no explicit construction of the expanders used here. However, there are alternative
techniques that achieve a similar result.

±Once again, our verbosity in applying the Chernoff inequality is for educational reasons – usually such calculations would be
swept under the rag. No wonder than that everybody is afraid to look under the rag.
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11.3. Oblivious routing revisited
Theorem 11.3.1. Consider any randomized oblivious algorithm for permutation routing on the hypercube with
N = 2n nodes. If this algorithm uses k random bits, then its expected running time is Ω

(
2−k
√

N/n
)
.

Corollary 11.3.2. Any randomized oblivious algorithm for permutation routing on the hypercube with N = 2n

nodes must use Ω(n) random bits in order to achieve expected running time O(n).

Theorem 11.3.3. For every n, there exists a randomized oblivious scheme for permutation routing on a hyper-
cube with n = 2n nodes that uses 3n random bits and runs in expected time at most 15n.

11.4. From previous lectures

Theorem 11.4.1. For any δ > 0, we have Pr
[
X > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, we have:

δ ≤ 2e − 1 Pr
[
X > (1 + δ)µ

]
< exp

(
−µδ2/4

)
, (11.1)

δ > 2e − 1 Pr
[
X > (1 + δ)µ

]
< 2−µ(1+δ), (11.2)

and δ ≥ e2 Pr
[
X > (1 + δ)µ

]
< exp

(
−
µδ ln δ

2

)
. (11.3)

Lemma 11.4.2. Given an algorithm Alg in RP that uses lg n random bits, one can run it t times, such that the
runs results in a new algorithm that fails with probability at most 1/t.
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Chapter 12

The Probabilistic Method III
By Sariel Har-Peled, December 30, 2015¬

At other times you seemed to me either pitiable or contemptible, eunuchs, artificially confined to an eternal childhood,
childlike and childish in your cool, tightly fenced, neatly tidied playground and kindergarten, where every nose is
carefully wiped and every troublesome emotion is soothed, every dangerous thought repressed, where everyone plays
nice, safe, bloodless games for a lifetime and every jagged stirring of life, every strong feeling, every genuine passion,
every rapture is promptly checked, deflected and neutralized by meditation therapy.

– – The Glass Bead Game, Hermann Hesse .

12.1. The Lovász Local Lemma

Lemma 12.1.1. (i) Pr
[
A

∣∣∣ B ∩C
]
=

Pr
[
A ∩ B

∣∣∣C ]
Pr

[
B

∣∣∣C ]
(ii) Let η1, . . . , ηn be n events which are not necessarily independent. Then,

Pr
[
∩n

i=1ηi

]
= Pr

[
η1

]
∗ Pr

[
η2

∣∣∣ η1

]
Pr

[
η3

∣∣∣ η1 ∩ η2

]
∗ . . . ∗ Pr

[
ηn

∣∣∣ η1 ∩ . . . ∩ ηn−1

]
.

Proof: (i) We have that

Pr
[
A ∩ B

∣∣∣C ]
Pr

[
B

∣∣∣C ] =
Pr[A ∩ B ∩C]

Pr[C]

/
Pr[B ∩C]

Pr[C]
=

Pr[A ∩ B ∩C]
Pr[B ∩C]

= Pr
[
A

∣∣∣ B ∩C
]
.

As for (ii), we already saw it and used it in the minimum cut algorithm lecture. �

Definition 12.1.2. An event E is mutually independent of a set of events C, if for any subset U ⊆ C, we have
that Pr

[
E ∩

(⋂
E′∈U E

′
)]
= Pr[E] Pr

[⋂
E′∈U E

′
]
.

Let E1, . . . ,En be events. A dependency graph for these events is a directed graph G = (V,E), where
{1, . . . , n}, such that Ei is mutually independent of all the events in

{
E j

∣∣∣ (i, j) < E
}
.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Intuitively, an edge (i, j) in a dependency graph indicates that Ei and E j have (maybe) some dependency
between them. We are interested in settings where this dependency is limited enough, that we can claim
something about the probability of all these events happening simultaneously.

Lemma 12.1.3 (Lovász Local Lemma). Let G(V,E) be a dependency graph for events E1, . . . ,En. Suppose

that there exist xi ∈ [0, 1], for 1 ≤ i ≤ n such that Pr[Ei] ≤ xi

∏
(i, j)∈E

(
1 − x j

)
. Then Pr

[
∩n

i=1Ei

]
≥

n∏
i=1

(1 − xi).

We need the following technical lemma.

Lemma 12.1.4. Let G(V,E) be a dependency graph for events E1, . . . ,En. Suppose that there exist xi ∈ [0, 1],
for 1 ≤ i ≤ n such that Pr[Ei] ≤ xi

∏
(i, j)∈E

(
1 − x j

)
. Now, let S be a subset of the vertices from {1, . . . , n}, and let i

be an index not in S . We have that

Pr
[
Ei

∣∣∣∣∩ j∈SE j

]
≤ xi. (12.1)

Proof: The proof is by induction on k = |S |.

For k = 0, we have by assumption that Pr
[
Ei

∣∣∣∣∩ j∈SE j

]
= Pr[Ei] ≤ xi

∏
(i, j)∈E

(
1 − x j

)
≤ xi.

Thus, let N =
{
j ∈ S

∣∣∣ (i, j) ∈ E
}
, and let R = S \ N. If N = ∅, then we have that Ei is mutually independent

of the events of C(R) =
{
E j

∣∣∣ j ∈ R
}
. Thus, Pr

[
Ei

∣∣∣∣∩ j∈SE j

]
= Pr

[
Ei

∣∣∣∣∩ j∈RE j

]
= Pr[Ei] ≤ xi, by arguing as

above.
By Lemma 12.1.1 (i), we have that

Pr

Ei

∣∣∣∣∣∣∣⋂j∈S E j

 = Pr
[
Ei ∩

(
∩ j∈NE j

) ∣∣∣∣∩m∈REm

]
Pr

[
∩ j∈NE j

∣∣∣∣∩m∈REm

] .

We bound the numerator by

Pr
[
Ei ∩

(
∩ j∈NE j

) ∣∣∣∣∩m∈REm

]
≤ Pr

[
Ei

∣∣∣∣∩m∈REm

]
= Pr[Ei] ≤ xi

∏
(i, j)∈E

(
1 − x j

)
,

since Ei is mutually independent of C(R). As for the denominator, let N = { j1, . . . , jr}. We have, by Lemma 12.1.1
(ii), that

Pr
[
E j1 ∩ . . . ∩ E jr

∣∣∣∣∩m∈REm

]
= Pr

[
E j1

∣∣∣∣∩m∈REm

]
Pr

[
E j2

∣∣∣∣E j1 ∩
(
∩m∈REm

)]
· · ·Pr

[
E jr

∣∣∣∣E j1 ∩ . . . ∩ E jr−1 ∩
(
∩m∈REm

)]
=

(
1 − Pr

[
E j1

∣∣∣∣∩m∈REm

]) (
1 − Pr

[
E j2

∣∣∣∣E j1 ∩
(
∩m∈REm

)])
· · ·

(
1 − Pr

[
E jr

∣∣∣∣E j1 ∩ . . . ∩ E jr−1 ∩
(
∩m∈REm

)] )
≥

(
1 − x j1

)
· · ·

(
1 − x jr

)
≥

∏
(i, j)∈E

(
1 − x j

)
,

by Eq. (12.1) and induction, as every probability term in the above expression has less than |S | items involved.

It thus follows, that Pr
[
Ei

∣∣∣∣ ⋂ j∈S E j

]
≤ xi. �
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Proof of Lovász local lemma (Lemma 12.1.3): Using Lemma 12.1.4, we have that

Pr
[
∩n

i=1Ei

]
= (1 − Pr[E1])

(
1 − Pr

[
E2

∣∣∣∣E1

])
· · ·

(
1 − Pr

[
En

∣∣∣∣∩n−1
i=1 Ei

])
≥

n∏
i=1

(1 − xi).

�

Corollary 12.1.5. Let E1, . . . ,En be events, with Pr[Ei] ≤ p for all i. If each event is mutually independent of
all other events except for at most d, and if ep(d + 1) ≤ 1, then Pr

[
∩n

i=1Ei

]
> 0.

Proof: If d = 0 the result is trivial, as the events are independent. Otherwise, there is a dependency graph, with
every vertex having degree at most d. Apply Lemma 12.1.3 with xi =

1
d+1 . Observe that

xi(1 − xi)d =
1

d + 1

(
1 −

1
d + 1

)d

>
1

d + 1
·

1
e
≥ p,

by assumption and the since
(
1 − 1

d+1

)d
> 1/e, see Lemma 12.1.6 below. �

The following is standard by now, and we include it only for the sake of completeness.

Lemma 12.1.6. For any n ≥ 1, we have
(
1 −

1
n + 1

)n

>
1
e

.

Proof: This is equivalent to
(

n
n+1

)n
> 1

e . Namely, we need to prove e >
(

n+1
n

)n
. But this obvious, since(

n+1
n

)n
=

(
1 + 1

n

)n
< exp(n(1/n)) = e. �

12.2. Application to k-SAT
We are given a instance I of k-SAT, where every clause contains k literals, there are m clauses, and every one
of the n variables, appears in at most 2k/50 clauses.

Consider a random assignment, and let Ei be the event that the ith clause was not satisfied. We know
that p = Pr[Ei] = 2−k, and furthermore, Ei depends on at most d = k2k/50 other events. Since ep(d + 1) =
e
(
k · 2k/50 + 1

)
2−k < 1, for k ≥ 4, we conclude that by Corollary 12.1.5, that

Pr
[
I have a satisfying assignment

]
= Pr

[
∪iEi

]
> 0.

12.2.1. An efficient algorithm
The above just proves that a satisfying assignment exists. We next show a polynomial algorithm (in m) for the
computation of such an assignment (the algorithm will not be polynomial in k).

Let G be the dependency graph for I, where the vertices are the clauses of I, and two clauses are connected
if they share a variable. In the first stage of the algorithm, we assign values to the variables one by one, in an
arbitrary order. In the beginning of this process all variables are unspecified, at each step, we randomly assign
a variable either 0 or 1 with equal probability.

Definition 12.2.1. A clause Ei is dangerous if both the following conditions hold:
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(i) k/2 literals of Ei have been fixed.

(ii) Ei is still unsatisfied.

After assigning each value, we discover all the dangerous clauses, and we defer (“freeze”) all the unassigned
variables participating in such a clause. We continue in this fashion till all the unspecified variables are frozen.
This completes the first stage of the algorithm.

At the second stage of the algorithm, we will compute a satisfying assignment to the variables using brute
force. This would be done by taking the surviving formula I′ and breaking it into fragments, so that each
fragment does not share any variable with any other fragment (naively, it might be that all of I′ is one fragment).
We can find a satisfying assignment to each fragment separately, and if each such fragment is “small” the
resulting algorithm would be “fast”.

We need to show that I′ has a satisfying assignment and that the fragments are indeed small.

12.2.1.1. Analysis

A clause had survived if it is not satisfied by the variables fixed in the first stage. Note, that a clause that
survived must have a dangerous clause as a neighbor in the dependency graph G. Not that I′, the instance
remaining from I after the first stage, has at least k/2 unspecified variables in each clause. Furthermore, every
clause of I′ has at most d = k2k/50 neighbors in G′, where G′ is the dependency graph for I′. It follows, that
again, we can apply Lovász local lemma to conclude that I′ has a satisfying assignment.

Definition 12.2.2. Two connected graphs G1 = (V1, E1) and G2 = (V2, E2), where V1,V2 ⊆ {1, . . . , n} are
unique if V1 , V2.

Lemma 12.2.3. Let G be a graph with degree at most d and with n vertices. Then, the number of unique
subgraphs of G having r vertices is at most nd2r.

Proof: Consider a unique subgraph Ĝ of G, which by definition is connected. Let H be a connected subtree of
G spanning Ĝ. Duplicate every edge of H, and let H′ denote the resulting graph. Clearly, H′ is Eulerian, and as
such posses a Eulerian path π of length at most 2(r − 1), which can be specified, by picking a starting vertex v,
and writing down for the i-th vertex of π which of the d possible neighbors, is the next vertex in π. Thus, there
are st most nd2(r−1) ways of specifying π, and thus, there are at most nd2(r−1) unique subgraphs in G of size r.�

Lemma 12.2.4. With probability 1 − o(1), all connected components of G′ have size at most O(log m), where
G′ denote the dependency graph for I′.

Proof: Let G4 be a graph formed from G by connecting any pair of vertices of G of distance exactly 4 from
each other. The degree of a vertex of G4 is at most O(d4).

Let U be a set of r vertices of G, such that every pair is in distance at least 4 from each other in G. We are
interested in bounding the probability that all the clauses of U survive the first stage.

The probability of a clause to be dangerous is at most 2−k/2, as we assign (random) values to half of the
variables of this clause. Now, a clause survive only if it is dangerous or one of its neighbors is dangerous. Thus,
the probability that a clause survive is bounded by 2−k/2(d + 1).

Furthermore, the survival of two clauses Ei and E j in U is an independent event, as no neighbor of Ei shares
a variable with a neighbor of E j (because of the distance 4 requirement). We conclude, that the probability that
all the vertices of U to appear in G′ is bounded by(

2−k/2(d + 1)
)r
.

4



In fact, we are interested in sets U that induce a connected subgraphs of G4. The number of unique such
sets of size r is bounded by the number of unique subgraphs of G4 of size r, which is bounded by md8r, by
Lemma 12.2.3. Thus, the probability of any connected subgraph of G4 of size r = log2 m to survive in G′ is
smaller than

md8r
(
2−k/2(d + 1)

)r
= m

(
k2k/50

)8r(
2−k/2(k2k/50 + 1)

)r
≤ m2kr/5 · 2−kr/4 = m2−kr/20 = o(1),

since k ≥ 50. (Here, a subgraph survive of G4 survive, if all its vertices appear in G′.) Note, however, that if a
connected component of G′ has more than L vertices, than there must be a connected component having L/d3

vertices in G4 that had survived in G′. We conclude, that with probability o(1), no connected component of G′

has more than O(d3 log m) = O(log m) vertices (note, that we consider k to be a constant, and thus, also d). �

Thus, after the first stage, we are left with fragments of (k/2)-SAT, where every fragment has size at most
O(log m), and thus having at most O(log m) variables. Thus, we can by brute force find the satisfying assign-
ment to each such fragment in time polynomial in m. We conclude:

Theorem 12.2.5. The above algorithm finds a satisfying truth assignment for any instance of k-SAT containing
m clauses, which each variable is contained in at most 2k/50 clauses, in expected time polynomial in m.
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Chapter 13

The Probabilistic Method IV
By Sariel Har-Peled, December 30, 2015¬

Once I sat on the steps by a gate of David’s Tower, I placed my two heavy baskets at my side. A group of tourists was
standing around their guide and I became their target marker. “You see that man with the baskets? Just right of his
head there’s an arch from the Roman period. Just right of his head.” “But he’s moving, he’s moving!” I said to myself:
redemption will come only if their guide tells them, “You see that arch from the Roman period? It’s not important: but
next to it, left and down a bit, there sits a man who’s bought fruit and vegetables for his family.”

– — Yehuda Amichai, Tourists .

13.1. The Method of Conditional Probabilities
In previous lectures, we encountered the following problem.

Problem 13.1.1 (Set Balancing). Given a binary matrix A of size n × n, find a vector v ∈ {−1,+1}n, such that
‖Av‖∞ is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists v, such that ‖Av‖∞ ≤
4
√

n ln n. Can we derandomize this algorithm? Namely, can we come up with an efficient deterministic algo-
rithm that has low discrepancy?

To derandomize our algorithm, construct a computation tree of depth n, where in the ith level we expose
the ith coordinate of v. This tree T has depth n. The root represents all possible random choices, while a
node at depth i, represents all computations when the first i bits are fixed. For a node v ∈ T , let P(v) be the
probability that a random computation starting from v succeeds. Let vl and vr be the two children of v. Clearly,
P(v) = (P(vl) + P(vr))/2. In particular, max(P(vl), P(vr)) ≥ P(v). Thus, if we could compute P(·) quickly (and
deterministically), then we could derandomize the algorithm.

Let C+m be the bad event that rm ·v > 4
√

n log n, where rm is the mth row of A. Similarly, C−m is the bad event
that rm · v < −4

√
n log n, and let Cm = C+m ∪C−m. Consider the probability, Pr

[
C+m

∣∣∣ v1, . . . , vk

]
(namely, the first

k coordinates of v are specified). Let rm = (α1, . . . , αn). We have that

Pr
[
C+m

∣∣∣ v1, . . . , vk

]
= Pr

 n∑
i=k+1

viαi > 4
√

n log n −
k∑

i=1

viαi

 = Pr

 ∑
i≥k+1,αi,0

viαi > L

 = Pr

 ∑
i≥k+1,αi=1

vi > L

 ,
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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where L = 4
√

n log n −
∑k

i=1 viαi is a known quantity (since v1, . . . , vk are known). Let V =
∑

i≥k+1,αi=1 1. We
have,

Pr
[
C+i

∣∣∣ v1, . . . , vk

]
= Pr


∑

i≥k+1
αi=1

(vi + 1) > L + V

 = Pr


∑

i≥k+1
αi=1

vi + 1
2
>

L + V
2

 ,
The last probability, is the probability that in V flips of a fair coin we will get more than (L+V)/2 heads. Thus,

P+m = Pr
[
C+m

∣∣∣ v1, . . . , vk

]
=

V∑
i=d(L+V)/2e

(
V
i

)
1
2n =

1
2n

 V∑
i=d(L+V)/2e

(
V
i

).
This implies, that we can compute P+m in polynomial time! Indeed, we are adding V ≤ n numbers, each one of
them is a binomial coefficient that has polynomial size representation in n, and can be computed in polynomial
time (why?). One can define in similar fashion P−m, and let Pm = P+m + P−m. Clearly, Pm can be computed in
polynomial time, by applying a similar argument to the computation of P−m = Pr

[
C−m

∣∣∣ v1, . . . , vk

]
.

For a node v ∈ T , let vv denote the portion of v that was fixed when traversing from the root of T to v. Let
P(v) =

∑n
m=1 Pr

[
Cm

∣∣∣ vv

]
. By the above discussion P(v) can be computed in polynomial time. Furthermore, we

know, by the previous result on set balancing that P(r) < 1 (that was the bound used to show that there exist a
good assignment).

As before, for any v ∈ T , we have P(v) ≥ min(P(vl), P(vr)). Thus, we have a polynomial deterministic
algorithm for computing a set balancing with discrepancy smaller than 4

√
n log n. Indeed, set v = root(T ).

And start traversing down the tree. At each stage, compute P(vl) and P(vr) (in polynomial time), and set v to
the child with lower value of P(·). Clearly, after n steps, we reach a leaf, that corresponds to a vector v′ such
that ‖Av′‖∞ ≤ 4

√
n log n.

Theorem 13.1.2. Using the method of conditional probabilities, one can compute in polynomial time in n, a
vector v ∈ {−1, 1}n, such that ‖Av‖∞ ≤ 4

√
n log n.

Note, that this method might fail to find the best assignment.

13.2. A Short Excursion into Combinatorics via the Probabilistic Method

In this section, we provide some additional examples of the Probabilistic Method to prove some results in
combinatorics and discrete geometry. While the results are not directly related to our main course, their beauty,
hopefully, will speak for itself.

13.2.1. High Girth and High Chromatic Number

Definition 13.2.1. For a graph G, let α(G) be the cardinality of the largest independent set in G, χ(G) denote
the chromatic number of G, and let girth(G) denote the length of the shortest circle in G.

Theorem 13.2.2. For all K, L there exists a graph G with girth(G) > L and χ(G) > K.
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Proof: Fix µ < 1/L, and let G ≈ G(n, p) with p = nµ−1; namely, G is a random graph on n vertices chosen by
picking each pair of vertices to be an edge in G, randomly and independently with probability p. Let X be the
number of cycles of size at most L. Then

E[X] =
L∑

i=3

n!
(n − i)!

·
1
2i
· pi ≤

L∑
i=3

ni

2i
·
(
nµ−1

)i
≤

L∑
i=3

nµi

2i
= o(n),

as µL < 1, and since the number of different sequence of i vertices is n!
(n−i)! , and every cycle is being counted in

this sequence 2i times.
In particular, Pr[X ≥ n/2] = o(1).
Let x =

⌈
3
p ln n

⌉
+ 1. We remind the reader that α(G) denotes the size of the largest independent set in G.

We have that

Pr
[
α(G) ≥ x

]
≤

(
n
x

)
(1 − p)

(
x
2

)
<

(
n exp

(
−

p(x − 1)
2

))x

<

(
n exp

(
−

3
2

ln n
))x

<
(
o(1)

)x
= o(1).

Let n be sufficiently large so that both these events have probability less than 1/2. Then there is a specific G
with less than n/2 cycles of length at most L and with α(G) < 3n1−µ ln n + 1.

Remove from G a vertex from each cycle of length at most L. This gives a graph G∗ with at least n/2
vertices. G∗ has girth greater than L and α(G∗) ≤ α(G) (any independent set in G∗ is also an independent set in
G). Thus

χ(G∗) ≥
|V(G∗)|
α(G∗)

≥
n/2

3n1−µ ln n
≥

nµ

12 ln n
.

To complete the proof, let n be sufficiently large so that this is greater than K. �

13.2.2. Crossing Numbers and Incidences
The following problem has a long and very painful history. It is truly amazing that it can be solved by such a
short and elegant proof.

And embedding of a graph G = (V,E) in the plane is a planar representation of it, where each vertex is rep-
resented by a point in the plane, and each edge uv is represented by a curve connecting the points corresponding
to the vertices u and v. The crossing number of such an embedding is the number of pairs of intersecting curves
that correspond to pairs of edges with no common endpoints. The crossing number cr(G) of G is the minimum
possible crossing number in an embedding of it in the plane.

Theorem 13.2.3. The crossing number of any simple graph G = (V,E) with |E| ≥ 4 |V| is ≥
|E|3

64 |V|2
.

Proof: By Euler’s formula any simple planar graph with n vertices has at most 3n−6 edges. (Indeed, f−e+v = 2
in the case with maximum number of edges, we have that every face, has 3 edges around it. Namely, 3 f = 2e.
Thus, (2/3)e− e+ v = 2 in this case. Namely, e = 3v− 6.) This implies that the crossing number of any simple
graph with n vertices and m edges is at least m − 3n + 6 > m − 3n. Let G = (V,E) be a graph with |E| ≥ 4 |V|
embedded in the plane with t = cr(G) crossings. Let H be the random induced subgraph of G obtained by
picking each vertex of G randomly and independently, to be a vertex of H with probabilistic p (where P will
be specified shortly). The expected number of vertices of H is p |V|, the expected number of its edges is p2 |E|,
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and the expected number of crossings in the given embedding is p4t, implying that the expected value of its
crossing number is at most p4t. Therefore, we have p4t ≥ p2 |E| − 3p |V|, implying that

cr(G) ≥
|E|
p2 −

3 |V|
p3 ,

let p = 4 |V| / |E| < 1, and we have cr(G) ≥ (1/16 − 3/64) |E|3 / |V|2 = |E|3 /(64 |V|2). �

Theorem 13.2.4. Let P be a set of n distinct points in the plane, and let L be a set of m distinct lines. Then, the
number of incidences between the points of P and the lines of L (that is, the number of pairs (p, `) with p ∈ P,
` ∈ L, and p ∈ `) is at most c

(
m2/3n2/3 + m + n

)
, for some absolute constant c.

Proof: Let I denote the number of such incidences. Let G = (V,E) be the graph whose vertices are all the
points of P, where two are adjacent if and only if they are consecutive points of P on some line in L. Clearly
|V| = n, and |E| = I −m. Note that G is already given embedded in the plane, where the edges are presented by
segments of the corresponding lines of L.

Either, we can not apply Theorem 13.2.3, implying that I − m = |E| < 4 |V| = 4n. Namely, I ≤ m + 4n. Or
alliteratively,

|E|3

64 |V|2
=

(I − m)3

64n2 ≤ cr(G) ≤
(
m
2

)
≤

m2

2
.

Implying that I ≤ (32)1/3m2/3n2/3 + m. In both cases, I ≤ 4(m2/3n2/3 + m + n). �

This technique has interesting and surprising results, as the following theorem shows.

Theorem 13.2.5. For any three sets A, B and C of s real numbers each, we have

|A · B +C| =
∣∣∣∣{ab + c

∣∣∣ a ∈ A, b ∈ B,mc ∈ C
}∣∣∣∣ ≥ Ω(

s3/2
)
.

Proof: Let R = A · B +C, |R| = r and define P =
{
(a, t)

∣∣∣ a ∈ A, t ∈ R
}
, and L =

{
y = bx + c

∣∣∣ b ∈ B, c ∈ C
}
.

Clearly n = |P| = sr, and m = |L| = s2. Furthermore, a line y = bx + c of L is incident with s points
of R, namely with

{
(a, t)

∣∣∣ a ∈ A, t = ab + c
}
. Thus, the overall number of incidences is at least s3. By Theo-

rem 13.2.4, we have

s3 ≤ 4
(
m2/3n2/3 + m + n

)
= 4

((
s2
)2/3

(sr)2/3 + s2 + sr
)
= 4

(
s2r2/3 + s2 + sr

)
.

For r < s3, we have that sr ≤ s2r2/3. Thus, for r < s3, we have s3 ≤ 12s2r2/3, implying that s3/2 ≤ 12r. Namely,
|R| = Ω(s3/2), as claimed. �

Among other things, the crossing number technique implies a better bounds for k-sets in the plane than
what was previously known. The k-set problem had attracted a lot of research, and remains till this day one of
the major open problems in discrete geometry.

13.2.3. Bounding the at most k-level
Let L be a set of n lines in the plane. Assume, without loss of generality, that no three lines of L pass through a
common point, and none of them is vertical. The complement of union of lines L break the plane into regions
known as faces. An intersection of two lines, is a vertex, and the maximum interval on a line between two
vertices is am edge. The whole structure of vertices, edges and faces induced by L is known as arrangement of
L, denoted by A(L).

Let L be a set of n lines in the plane. A point p ∈
⋃
`∈L ` is of level k if there are k lines of L strictly below

it. The k-level is the closure of the set of points of level k. Namely, the k-level is an x-monotone curve along
the lines of L.t
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3-level

0-level
1-level

The 0-level is the boundary of the “bottom” face of the arrangement of L (i.e.,
the face containing the negative y-axis). It is easy to verify that the 0-level has
at most n − 1 vertices, as each line might contribute at most one segment to the
0-level (which is an unbounded convex polygon).

It is natural to ask what the number of vertices at the k-level is (i.e., what the
combinatorial complexity of the polygonal chain forming the k-level is). This is
a surprisingly hard question, but the same question on the complexity of the at
most k-level is considerably easier.

Theorem 13.2.6. The number of vertices of level at most k in an arrangement of n lines in the plane is O(nk).

Proof: Pick a random sample R of L, by picking each line to be in the sample with probability 1/k. Observe
that

E[|R|] =
n
k
.

Let L≤k = L≤k(L) be the set of all vertices of A(L) of level at most k, for k > 1. For a vertex p ∈ L≤k, let Xp

be an indicator variable which is 1 if p is a vertex of the 0-level of A(R). The probability that p is in the 0-level
of A(R) is the probability that none of the j lines below it are picked to be in the sample, and the two lines that
define it do get selected to be in the sample. Namely,

Pr
[
Xp = 1

]
=

(
1 −

1
k

) j(1
k

)2

≥

(
1 −

1
k

)k 1
k2 ≥ exp

(
−2

k
k

)
1
k2 =

1
e2k2

since j ≤ k and 1 − x ≥ e−2x, for 0 < x ≤ 1/2.
On the other hand, the number of vertices on the 0-level of R is at most |R| − 1. As such,∑

p∈L≤k

Xp ≤ |R| − 1.

Moreover this, of course, also holds in expectation, implying

E

 ∑
p∈L≤k

Xp

 ≤ E
[
|R| − 1

]
≤

n
k
.

On the other hand, by linearity of expectation, we have

E

 ∑
p∈L≤k

Xp

 = ∑
p∈L≤k

E
[
Xp

]
≥
|L≤k|

e2k2 .

Putting these two inequalities together, we get that
|L≤k|

e2k2 ≤
n
k

. Namely, |L≤k| ≤ e2nk. �

5



Chapter 14

Random Walks I
By Sariel Har-Peled, December 30, 2015¬

“A drunk man will find his way home; a drunk bird may wander forever.”
– Anonymous.

14.1. Definitions

Let G = G(V,E) be an undirected connected graph. For v ∈ V, let Γ(v) denote the set of neighbors of v in G;
that is, Γ(v) =

{
u

∣∣∣ vu ∈ E(G)
}
. A random walk on G is the following process: Starting from a vertex v0, we

randomly choose one of the neighbors of v0, and set it to be v1. We continue in this fashion, in the ith step
choosing vi, such that vi ∈ Γ(vi−1). It would be interesting to investigate the random walk process. Questions of
interest include:

(A) How long does it take to arrive from a vertex v to a vertex u in G?
(B) How long does it take to visit all the vertices in the graph.
(C) If we start from an arbitrary vertex v0, how long the random walk has to be such that the location of the

random walk in the ith step is uniformly (or near uniformly) distributed on V(G)?

Example 14.1.1. In the complete graph Kn, visiting all the vertices takes in expectation O(n log n) time, as this
is the coupon collector problem with n − 1 coupons. Indeed, the probability we did not visit a specific vertex v
by the ith step of the random walk is ≤ (1 − 1/n)i−1 ≤ e−(i−1)/n ≤ 1/n10, for i = Ω(n log n). As such, with high
probability, the random walk visited all the vertex of Kn. Similarly, arriving from u to v, takes in expectation
n − 1 steps of a random walk, as the probability of visiting v at every step of the walk is p = 1/(n − 1), and the
length of the walk till we visit v is a geometric random variable with expectation 1/p.

14.1.1. Walking on grids and lines

Lemma 14.1.2 (Stirling’s formula). For any integer n ≥ 1, it holds n! ≈
√

2πn (n/e)n.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
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14.1.1.1. Walking on the line

Lemma 14.1.3. Consider the infinite random walk on the integer line, starting from 0. Here, the vertices are
the integer numbers, and from a vertex k, one walks with probability 1/2 either to k − 1 or k + 1. The expected
number of times that such a walk visits 0 is unbounded.

Proof: The probability that in the 2ith step we visit 0 is 1
22i

(
2i
i

)
, As such, the expected number of times we visit

the origin is

∞∑
i=1

1
22i

(
2i
i

)
≥

∞∑
i=1

1

2
√

i
= ∞,

since
22i

2
√

i
≤

(
2i
i

)
≤

22i

√
2i

[MN98, p. 84]. This can also be verified using the Stirling formula, and the resulting

sequence diverges. �

14.1.1.2. Walking on two dimensional grid

A random walk on the integer grid ZZd, starts from a point of this integer grid, and at each step if it is at
point (i1, i2, . . . , id), it chooses a coordinate and either increases it by one, or decreases it by one, with equal
probability.

Lemma 14.1.4. Consider the infinite random walk on the two dimensional integer grid ZZ2, starting from (0, 0).
The expected number of times that such a walk visits the origin is unbounded.

Proof: Rotate the grid by 45 degrees, and consider the two new axises X′ and Y ′. Let xi be the projection
of the location of the ith step of the random walk on the X′-axis, and define yi in a similar fashion. Clearly,
xi are of the form j/

√
2, where j is an integer. By scaling by a factor of

√
2, consider the resulting random

walks x′i =
√

2xi and y′i =
√

2yi. Clearly, xi and yi are random walks on the integer grid, and furthermore,
they are independent. As such, the probability that we visit the origin at the 2ith step is Pr

[
x′2i = 0 ∩ y′2i = 0

]
=

Pr
[
x′2i = 0

]2
=

(
1

22i

(
2i
i

))2
≥ 1/4i. We conclude, that the infinite random walk on the grid ZZ2 visits the origin in

expectation

∞∑
i=0

Pr
[
x′i = 0 ∩ y′i = 0

]
≥

∞∑
i=0

1
4i
= ∞,

as this sequence diverges. �

14.1.1.3. Walking on three dimensional grid

In the following, let
(

i
a b c

)
=

i!
a! b! c!

.

Lemma 14.1.5. Consider the infinite random walk on the three dimensional integer grid ZZ3, starting from
(0, 0, 0). The expected number of times that such a walk visits the origin is bounded.

Proof: The probability of a neighbor of a point (x, y, z) to be the next point in the walk is 1/6. Assume that
we performed a walk for 2i steps, and decided to perform 2a steps parallel to the x-axis, 2b steps parallel to
the y-axis, and 2c steps parallel to the z-axis, where a + b + c = i. Furthermore, the walk on each dimension is

2



balanced, that is we perform a steps to the left on the x-axis, and a steps to the right on the x-axis. Clearly, this
corresponds to the only walks in 2i steps that arrives to the origin.

Next, the number of different ways we can perform such a walk is (2i)!
a!a!b!b!c!c! , and the probability to perform

such a walk, summing over all possible values of a, b and c, is

αi =
∑

a+b+c=i
a,b,c≥0

(2i)!
a!a!b!b!c!c!

1
62i =

(
2i
i

)
1

22i

∑
a+b+c=i
a,b,c≥0

(
i!

a! b! c!

)2(1
3

)2i

=

(
2i
i

)
1

22i

∑
a+b+c=i
a,b,c≥0

 ( i
a b c

)(
1
3

)i 2

Consider the case where i = 3m. We have that
(

i
a b c

)
≤

(
i

m m m

)
. As such,

αi ≤

(
2i
i

)
1

22i

(
1
3

)i( i
m m m

) ∑
a+b+c=i
a,b,c≥0

(
i

a b c

)(
1
3

)i

=

(
2i
i

)
1

22i

(
1
3

)i( i
m m m

)
.

By the Stirling formula, we have (
i

m m m

)
≈

√
2πi(i/e)i(√

2πi/3
(

i
3e

)i/3
)3 = c

3i

i
,

for some constant c. As such, αi = O
 1
√

i

(
1
3

)i 3i

i

 = O
(

1
i3/2

)
. Thus,

∞∑
m=1

α6m =
∑

i

O
(

1
i3/2

)
= O(1).

Finally, observe that α6m ≥ (1/6)2α6m−2 and α6m ≥ (1/6)4α6m−4. Thus,

∞∑
m=1

αm = O(1). �

Notes
The presentation here follows [Nor98].

Bibliography
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Chapter 15

Random Walks II
By Sariel Har-Peled, December 30, 2015¬

“Then you must begin a reading program immediately so that you man understand the crises of our age," Ignatius said
solemnly. "Begin with the late Romans, including Boethius, of course. Then you should dip rather extensively into
early Medieval. You may skip the Renaissance and the Enlightenment. That is mostly dangerous propaganda. Now,
that I think about of it, you had better skip the Romantics and the Victorians, too. For the contemporary period, you
should study some selected comic books.”

“You’re fantastic.”
“I recommend Batman especially, for he tends to transcend the abysmal society in which he’s found himself. His

morality is rather rigid, also. I rather respect Batman.”
– John Kennedy Toole, A confederacy of Dunces.

15.1. The 2SAT example
Let G = G(V, E) be a undirected connected graph. For v ∈ V , let Γ(v) denote the neighbors of v in G. A random
walk on G is the following process: Starting from a vertex v0, we randomly choose one of the neighbors of v0,
and set it to be v1. We continue in this fashion, such that vi ∈ Γ(vi−1). It would be interesting to investigate the
process of the random walk. For example, questions like: (i) how long does it take to arrive from a vertex v to
a vertex u in G? and (ii) how long does it take to visit all the vertices in the graph.

15.1.1. Solving 2SAT
Consider a 2SAT formula F with m clauses defined over n variables. Start from an arbitrary assignment to the
variables, and consider a non-satisfied clause in F. Randomly pick one of the clause variables, and change its
value. Repeat this till you arrive to a satisfying assignment.

Consider the random variable Xi, which is the number of variables assigned the correct value (according to
the satisfying assignment) in the current assignment. Clearly, with probability (at least) half Xi = Xi−1 + 1.

Thus, we can think about this algorithm as performing a random walk on the numbers 0, 1, . . . , n, where at
each step, we go to the right probability at least half. The question is, how long does it take to arrive to n in
such a settings.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


Theorem 15.1.1. The expected number of steps to arrive to a satisfying assignment is O(n2).

Proof: Consider the random walk on the integer line, starting from zero, where we go to the left with probabil-
ity 1/2, and to the right probability 1/2. Let Yi be the location of the walk at the i step. Clearly, E[Yi] ≥ E[Xi].
In fact, by defining the random walk on the integer line more carefully, one can ensure that Yi ≤ Xi. Thus, the
expected number of steps till Yi is equal to n is an upper bound on the required quantity.

To this end, observe that the probability that in the ith step we have Yi ≥ n is

i/2∑
k=n/2

1
2i

(
i

i/2 + k

)
> 1/3,

by Lemma 15.1.2 below. Here we need that k =
√

i/6, and k ≥ n/2. That is, we need that
√

i/6 ≥ n/2, which
in turns implies that this holds for i > µ = 9n2. To see that, observe that if we get i/2 + k times +1, and
i − (i/2 + k) = i/2 − k times −1, then we have that Yi = (i/2 + k) − ((i/k) − m) = 2k ≥ n.

Next, if Xi fails to arrive to n at the first µ steps, we will reset Yµ = Xµ and continue the random walk,
repeating this process as many phases as necessary. The probability that the number of phases exceeds i is
≤ (2/3)i. As such, the expected number of steps in the walk is at most

∑
i

c′n2i
(
2
3

)i

= O(n2),

as claimed. �

Lemma 15.1.2. We have
2i∑

k=i+
√

i/6

1
22i

(
2i
k

)
≥

1
3

.

Proof: It is known­ that
(

2i
i

)
≤ 22i/

√
i (better constants are known). As such, since

(
2i
i

)
≥

(
2i
m

)
, for all m, we

have by symmetry that

2i∑
k=i+

√
i/6

1
22i

(
2i
k

)
≥

2i∑
k=i+1

1
22i

(
2i
k

)
−
√

i/6
1

22i

(
2i
i

)
≥

1
2
−
√

i/6
1

22i ·
22i

√
i
=

1
3
. �

15.2. Markov Chains
Let S denote a state space, which is either finite or countable. A Markov chain is at one state at any given
time. There is a transition probability Pi j, which is the probability to move to the state j, if the Markov chain is
currently at state i. As such,

∑
j Pi j = 1 and ∀i, j we have 0 ≤ Pi j ≤ 1. The matrix P =

{
Pi j

}
i j

is the transition
probabilities matrix.

The Markov chain start at an initial state X0, and at each point in time moves according to the transition
probabilities. This form a sequence of states {Xt}. We have a distribution over those sequences. Such a sequence
would be referred to as a history.

­Probably because you got it as a homework problem, if not wikipedia knows, and if you are bored you can try and prove it
yourself.
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Similar to Martingales, the behavior of a Markov chain in the future, depends only on its location Xt at time
t, and does not depends on the earlier stages that the Markov chain went through. This is the memorylessness
property of the Markov chain, and it follows as Pi j is independent of time. Formally, the memorylessness
property is

Pr
[
Xt+1 = j

∣∣∣ X0 = i0, X1 = i1, . . . , Xt−1 = it−1, Xt = i
]
= Pr

[
Xt+1 = j

∣∣∣ Xt = i
]
= Pi j.

The initial state of the Markov chain might also be chosen randomly.
For states i, j ∈ S, the t-step transition probability is P(t)

i j = Pr
[
Xt = j

∣∣∣ X0 = i
]
. The probability that we visit

j for the first time, starting from i after t steps, is denoted by

r
(t)
i j = Pr

[
Xt = j and X1 , j, X2 , j, . . . , Xt−1 , j

∣∣∣ X0 = i
]
.

Let fi j =
∑

t>0 r
(t)
i j denote the probability that the Markov chain visits state j, at any point in time, starting from

state i. The expected number of steps to arrive to state j starting from i is

hi j =
∑
t>0

t · r(t)
i j .

Of course, if fi j < 1, then there is a positive probability that the Markov chain never arrives to j, and as such
hi j = ∞ in this case.

Definition 15.2.1. A state i ∈ S for which fii < 1 (i.e., the chain has positive probability of never visiting i
again), is a transient state. If fii = 1 then the state is persistent.

A state i that is persistent but hii = ∞ is null persistent. A state i that is persistent and hii , ∞ is non null
persistent.

Example 15.2.2. Consider the state 0 in the random walk on the integers. We already know that in expectation
the random walk visits the origin infinite number of times, so this hints that this is a persistent state. Let figure
out the probability r(2n)

00 . To this end, consider a walk X0, X1, . . . , X2n that starts at 0 and return to 0 only in the
2n step. Let S i = Xi − Xi−1, for all i. Clearly, we have S i ∈ −1,+1 (i.e., move left or move right). Assume
the walk starts by S 1 = +1 (the case −1 is handled similarly). Clearly, the walk S 2, . . . , S 2n−1 must be prefix
balanced; that is, the number of 1s is always bigger (or equal) for any prefix of this sequence.

Strings with this property are known as Dyck words, and the number of such words of length 2m is the
Catalan number Cm =

1
m+1

(
2m
m

)
. As such, the probability of the random walk to visit 0 for the first time (starting

from 0 after 2n steps, is

r
(2n)
00 = 2

1
n

(
2n − 2
n − 1

)
1

22n = Θ

(
1
n
·

1
√

n

)
= Θ

(
1

n3/2

)
.

(the 2 here is because the other option is that the sequence starts with −1), using that
(

2n
n

)
= Θ

(
22n/
√

n
)
.

It is not hard to show that f00 = 1 (this requires a trick). On the other hand, we have that

h00 =
∑
t>0

t · r(t)
00 ≥

∞∑
n=1

2nr(2n)
00 =

∞∑
n=1

Θ
(
1/
√

n
)
= ∞.

Namely, 0 (and in fact all integers) are null persistent.

In finite Markov chains there are no null persistent states (this requires a proof, which is left as an exercise).
There is a natural directed graph associated with a Markov chain. The states are the vertices, and the transition
probability Pi j is the weight assigned to the edge (i→ j). Note that we include only edges with Pi j > 0.
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Definition 15.2.3. A strong component (or a strong connected component) of a directed graph G is a maximal
subgraph C of G such that for any pair of vertices i and j in the vertex set of C, there is a directed path from i
to j, as well as a directed path from j to i.

Definition 15.2.4. A strong component C is said to be a final strong component if there is no edge going from
a vertex in C to a vertex that is not in C.

In a finite Markov chain, there is positive probability to arrive from any vertex on C to any other vertex of C
in a finite number of steps. If C is a final strong component, then this probability is 1, since the Markov chain
can never leave C once it enters it®. It follows that a state is persistent if and only if it lies in a final strong
component.

Definition 15.2.5. A Markov chain is irreducible if its underlying graph consists of a single strong component.

Clearly, if a Markov chain is irreducible, then all states are persistent.

Definition 15.2.6. Let q(t) =
(
q(t)

1 , q
(t)
2 , . . . , q

(t)
n

)
be the state probability vector (also called the distribution of

the chain at time t), to be the row vector whose ith component is the probability that the chain is in state i at
time t.

The key observation is that

q(t) = q(t−1)P = q(0)Pt.

Namely, a Markov chain is fully defined by q(0) and P.

Definition 15.2.7. A stationary distribution for a Markov chain with the transition matrix P is a probability
distribution π such that π = πP.

In general, stationary distribution does not necessarily exist. We will mostly be interested in Markov chains
that have stationary distribution. Intuitively it is clear that if a stationary distribution exists, then the Markov
chain, given enough time, will converge to the stationary distribution.

Definition 15.2.8. The periodicity of a state i is the maximum integer T for which there exists an initial distri-
bution q(0) and positive integer a such that, for all t if at time t we have q(t)

i > 0 then t belongs to the arithmetic
progression

{
a + ti

∣∣∣ i ≥ 0
}
. A state is said to be periodic if it has periodicity greater than 1, and is aperiodic

otherwise. A Markov chain in which every state is aperiodic is aperiodic.

Example 15.2.9. The easiest example maybe of a periodic Markov chain is a directed cycle.

v1

v2

v3

For example, the Markov chain on the right, has periodicity of three. In particular, the initial
state probability vector q(0) = (1, 0, 0) leads to the following sequence of state probability vectors

q(0) = (1, 0, 0) =⇒ q(1) = (0, 1, 0) =⇒ q(2) = (0, 0, 1) =⇒ q(3) = (1, 0, 0) =⇒ . . . .

Note, that this chain still has a stationary distribution, that is (1/3, 1/3, 1/3), but unless you start from this
distribution, you are going to converge to it.

®Think about it as hotel California.
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A neat trick that forces a Markov chain to be aperiodic, is to shrink all the probabilities by a factor of 2, and
make every state to have a transition probability to itself equal to 1/2. Clearly, the resulting Markov chain is
aperiodic.

Definition 15.2.10. An ergodic state is aperiodic and (non-null) persistent.
An ergodic Markov chain is one in which all states are ergodic.

The following theorem is the fundamental fact about Markov chains that we will need. The interested
reader, should check the proof in [Nor98] (the proof is not hard).

Theorem 15.2.11 (Fundamental theorem of Markov chains). Any irreducible, finite, and aperiodic Markov
chain has the following properties.

(i) All states are ergodic.
(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, we have πi > 0.

(iii) For 1 ≤ i ≤ n, we have fii = 1 and hii = 1/πi.
(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t
= πi.

Namely, independent of the starting distribution, the process converges to the stationary distribution.
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Chapter 16

Random Walks III
By Sariel Har-Peled, December 30, 2015¬

“I gave the girl my protection, offering in my equivocal way to be her father. But I came too late, after she had
ceased to believe in fathers. I wanted to do what was right, I wanted to make reparation: I will not deny this decent
impulse, however mixed with more questionable motives: there must always be a place for penance and reparation.
Nevertheless, I should never have allowed the gates of the town to be opened to people who assert that there are higher
considerations that those of decency. They exposed her father to her naked and made him gibber with pain, they hurt
her and he could not stop them (on a day I spent occupied with the ledgers in my office). Thereafter she was no longer
fully human, sister to all of us. Certain sympathies died, certain movements of the heart became no longer possible
to her. I too, if I live longer enough in this cell with its ghost not only of the father and the daughter but of the man
who even by lamplight did not remove the black discs from his eyes and the subordinate whose work it was to keep
the brazier fed, will be touched with the contagion and turned into a create that believes in nothing.”

– J. M. Coetzee, Waiting for the Barbarians.

16.1. Random Walks on Graphs
Let G = (V,E) be a connected, non-bipartite, undirected graph, with n vertices. We define the natural Markov
chain on G, where the transition probability is

Puv =

 1
d(u) if uv ∈ E

0 otherwise,

where d(w) is the degree of vertex w. Clearly, the resulting Markov chain MG is irreducible. Note, that the
graph must have an odd cycle, and it has a cycle of length 2. Thus, the gcd of the lengths of its cycles is 1.
Namely, MG is aperiodic. Now, by the Fundamental theorem of Markov chains, MG has a unique stationary
distribution π.

Lemma 16.1.1. For all v ∈ V, we have πv = d(v)/2m.

Proof: Since π is stationary, and the definition of Puv, we get

πv =
[
πP

]
v =

∑
uv

πuPuv,

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
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and this holds for all v. We only need to verify the claimed solution, since there is a unique stationary distribu-
tion. Indeed,

d(v)
2m
= πv = [πP]v =

∑
uv

d(u)
2m

1
d(u)

=
d(v)
2m
,

as claimed. �

Lemma 16.1.2. For all v ∈ V, we have hvv = 1/πv = 2m/d(v).

Definition 16.1.3. The hitting time huv is the expected number of steps in a random walk that starts at u and
ends upon first reaching v.

The commute time between u and v is denoted by CTuv = huv + hvu.
Let Cu(G) denote the expected length of a walk that starts at u and ends upon visiting every vertex in G at

least once. The cover time of G denotes by C(G) is defined by C(G) = maxu Cu(G).

Example 16.1.4 (Lollipop). Let L2n be the 2n-vertex lollipop graph, this graph consists
of a clique on n vertices, and a path on the remaining n vertices. There is a vertex u in the
clique which is where the path is attached to it. Let v denote the end of the path, see figure
on the right.

Taking a random walk from u to v requires in expectation O(n2) steps, as we already
saw in class. This ignores the probability of escape – that is, with probability (n − 1)/n
when at u we enter the clique Kn (instead of the path). As such, it turns out that huv =

Θ(n3), and hvu = Θ(n2). (Thus, hitting times are not symmetric!)
Note, that the cover time is not monotone decreasing with the number of edges. In-

deed, the path of length n, has cover time O(n2), but the larger graph Ln has cover time
Ω(n3).

u

x1
x2

v = xn

n vertices

Example 16.1.5 (More on walking on the Lollipop). To see why huv = Θ
(
n3

)
, number the vertices on the stem

x1, . . . , xn. Let Ti be the expected time to arrive to the vertex xi when starting a walk from u. Observe, that
surprisingly, T1 = Θ(n2). Indeed, the walk has to visit the vertex u about n times in expectation, till the walk
would decide to go to x1 instead of falling back into the clique. The time between visits to u is in expectation
O(n) (assuming the walk is inside the clique).

Now, observe that T2i = Ti + Θ(i2) + 1
2T2i. Indeed, starting with xi, it takes in expectation Θ(i2) steps of

the walk to either arrive (with equal probability) at x2i (good), or to get back to u (oopsi). In the later case, the
game begins from scratch. As such, we have that

T2i = 2Ti + Θ
(
i2
)
= 2

(
2Ti/2 + Θ

(
(i/2)2

))
+ Θ

(
i2
)
= · · · = 2iT1 + Θ

(
i2
)
,

assuming i is a power of two (why not?). As such, Tn = nT1+Θ(n2). Since T1 = Θ(n2), we have that Tn = Θ(n3).

Definition 16.1.6. A n × n matrix M is stochastic if all its entries are non-negative and for each row i, it holds∑
k Mik = 1. It is doubly stochastic if in addition, for any i, it holds

∑
k Mki = 1.

Lemma 16.1.7. Let MC be a Markov chain, such that transition probability matrix P is doubly stochastic.
Then, the distribution u = (1/n, 1/n, . . . , 1/n) is stationary for MC.

Proof: [uP]i =

n∑
k=1

Pki

n
=

1
n

. �
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Lemma 16.1.8. For any edge (u→ v) ∈ E, we have huv + hvu ≤ 2m.

(Note, that (u→ v) being an edge in the graph is crucial. Indeed, without it a significantly worst case bound
holds, see Theorem 16.2.1.)

Proof: Consider a new Markov chain defined by the edges of the graph (where every edge is taken twice as
two directed edges), where the current state is the last (directed) edge visited. There are 2m edges in the new
Markov chain, and the new transition matrix, has Q(u→v),(v→w) = Pvw =

1
d(v) . This matrix is doubly stochastic,

meaning that not only do the rows sum to one, but the columns sum to one as well. Indeed, for the (v→ w) we
have ∑

x∈V,y∈Γ(x)

Q(x→y),(v→w) =
∑

u∈Γ(v)

Q(u→v),(v→w) =
∑

u∈Γ(v)

Pvw = d(v) ×
1

d(v)
= 1.

Thus, the stationary distribution for this Markov chain is uniform, by Lemma 16.1.7. Namely, the stationary
distribution of e = (u→ v) is hee = πe = 1/(2m). Thus, the expected time between successive traversals of e is
1/πe = 2m, by Theorem 16.3.1 (iii).

Consider huv + hvu and interpret this as the time to go from u to v and then return to u. Conditioned on the
event that the initial entry into u was via the (v→ u) , we conclude that the expected time to go from there to v
and then finally use (v→ u) is 2m. The memorylessness property of a Markov chains now allows us to remove
the conditioning: since how we arrived to u is not relevant. Thus, the expected time to travel from u to v and
back is at most 2m. �

16.2. Electrical networks and random walks

A resistive electrical network is an undirected graph; each edge has branch resistance associated with it. The
electrical flow is determined by two laws: Kirchhoff’s law (preservation of flow - all the flow coming into a
node, leaves it) and Ohm’s law (the voltage across a resistor equals the product of the resistance times the
current through it). Explicitly, Ohm’s law states

voltage = resistance ∗ current.

The effective resistance between nodes u and v is the voltage difference between u and v when one ampere
is injected into u and removed from v (or injected into v and removed from u). The effective resistance is always
bounded by the branch resistance, but it can be much lower.

Given an undirected graph G, let N(G) be the electrical network defined over G, associating one ohm
resistance on the edges of N(G).

You might now see the connection between a random walk on a graph and electrical network. Intuitively
(used in the most unscientific way possible), the electricity, is made out of electrons each one of them is doing
a random walk on the electric network. The resistance of an edge, corresponds to the probability of taking the
edge. The higher the resistance, the lower the probability that we will travel on this edge. Thus, if the effective
resistance Ruv between u and v is low, then there is a good probability that travel from u to v in a random walk,
and huv would be small.

Theorem 16.2.1. For any two vertices u and v in G, the commute time CTuv = 2mRuv, where Ruv is the effective
resistance between u and v.
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Proof: Let φuv denote the voltage at u in N(G) with respected to v, where d(x) amperes of current are injected
into each node x ∈ V, and 2m amperes are removed from v. We claim that

huv = φuv.

Note, that the voltage on an edge xy is φxy = φxv −φyv. Thus, using Kirchhoff’s Law and Ohm’s Law, we obtain
that

x ∈ V \ {v} d(x) =
∑

w∈Γ(x)

current(xw) =
∑

w∈Γ(x)

φxw

resistance(xw)
=

∑
w∈Γ(x)

(φxv − φwv), (16.1)

since the resistance of every edge is 1 ohm. (We also have the “trivial” equality that φvv = 0.) Furthermore, we
have only n variables in this system; that is, for every x ∈ V, we have the variable φxv.

Now, for the random walk interpretation – by the definition of expectation, we have

x ∈ V \ {v} hxv =
1

d(x)

∑
w∈Γ(x)

(1 + hwv) ⇐⇒ d(x) hxv =
∑

w∈Γ(x)

1 +
∑

w∈Γ(x)

hwv

⇐⇒
∑

w∈Γ(x)

1 = d(x) hxv −
∑

w∈Γ(x)

hwv =
∑

w∈Γ(x)

(hxv − hwv).

Since d(x) =
∑

w∈Γ(x) 1, this is equivalent to

x ∈ V \ {v} d(x) =
∑

w∈Γ(x)

(hxv − hwv). (16.2)

Again, we also have the trivial equality hvv = 0.­ Note, that this system also has n equalities and n variables.
Eq. (16.1) and Eq. (16.2) show two systems of linear equalities. Furthermore, if we identify huv with φxv

then they are exactly the same system of equalities. Furthermore, since Eq. (16.1) represents a physical system,
we know that it has a unique solution. This implies that φxv = hxv, for all x ∈ V.

Imagine the network where u is injected with 2m amperes, and for all nodes w remove d(w) units from w.
In this new network, hvu = −φ

′
vu = φ

′
uv. Now, since flows behaves linearly, we can superimpose them (i.e., add

them up). We have that in this new network 2m unites are being injected at u, and 2m units are being extracted
at v, all other nodes the charge cancel itself out. The voltage difference between u and v in the new network is
φ̂ = φuv + φ

′
uv = huv + hvu = CTuv. Now, in the new network there are 2m amperes going from u to v, and by

Ohm’s law, we have

φ̂ = voltage = resistance ∗ current = 2mRuv,

as claimed. �

Example 16.2.2. Recall the lollipop Ln from Exercise 16.1.4. Let u be the connecting vertex between the
clique and the stem (i.e., the path). We inject d(x) units of flow for each vertex x of Ln, and collect 2m units at
u. Next, let u = x0, x1, . . . , xn = v be the vertices of the stem. Clearly, there are 2(n − i) − 1 units of electricity
flowing on the edge (xi+1 → xi). Thus, the voltage on this edge is 2(n − i), by Ohm’s law (every edge has
resistance one). The effective resistance from v to u is as such Θ(n2), which implies that hvu = Θ(n2).

Similarly, it is easy to show huv = Θ(n3).
A similar analysis works for the random walk on the integer line in the range 1 to n.

Lemma 16.2.3. For any n vertex connected graph G, and for all u, v ∈ V(G), we have CTuv < n3.

Proof: The effective resistance between any two nodes in the network is bounded by the length of the shortest
path between the two nodes, which is at most n − 1. As such, plugging this into Theorem 16.2.1, yields the
bound, since m < n2. �

­In previous lectures, we interpreted hvv as the expected length of a walk starting at v and coming back to v.
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16.3. Tools from previous lecture
Theorem 16.3.1 (Fundamental theorem of Markov chains). Any irreducible, finite, and aperiodic Markov
chain has the following properties.

(i) All states are ergodic.
(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, we have πi > 0.

(iii) For 1 ≤ i ≤ n, we have fii = 1 and hii = 1/πi.
(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t
= πi.

Namely, independent of the starting distribution, the process converges to the stationary distribution.

16.4. Bibliographical Notes
A nice survey of the material covered here, is available online at http://arxiv.org/abs/math.PR/0001057
[DS00].
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[DS00] P. G. Doyle and J. L. Snell. Random walks and electric networks. ArXiv Mathematics e-prints, 2000.
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Chapter 17

Random Walks IV
By Sariel Har-Peled, December 30, 2015¬

“Do not imagine, comrades, that leadership is a pleasure! On the contrary, it is a deep and heavy responsibility. No
one believes more firmly than Comrade Napoleon that all animals are equal. He would be only too happy to let you
make your decisions for yourselves. But sometimes you might make the wrong decisions, comrades, and then where
should we be? Suppose you had decided to follow Snowball, with his moonshine of windmills-Snowball, who, as we
now know, was no better than a criminal?”

– Animal Farm, George Orwell.

17.1. Cover times
We remind the reader that the cover time of a graph is the expected time to visit all the vertices in the graph,
starting from an arbitrary vertex (i.e., worst vertex). The cover time is denoted by C(G).

Theorem 17.1.1. Let G be an undirected connected graph, then C(G) ≤ 2m(n − 1), where n = |V(G)| and
m = |E(G)|.

Proof: (Sketch.) Construct a spanning tree T of G, and consider the time to walk around T . The expected time
to travel on this edge on both directions is CTuv = huv + hvu, which is smaller than 2m, by Lemma 17.5.1. Now,
just connect up those bounds, to get the expected time to travel around the spanning tree. Note, that the bound
is independent of the starting vertex. �

Definition 17.1.2. The resistance of G is R(G) = maxu,v∈V(G) Ruv; namely, it is the maximum effective resis-
tance in G.

Theorem 17.1.3. mR(G) ≤ C(G) ≤ 2e3mR(G) ln n + 2n.

Proof: Consider the vertices u and v realizing R(G), and observe that max(huv, hvu) ≥ CTuv/2, and CTuv =

2mRuv by Theorem 17.5.2. Thus, C(G) ≥ CTuv/2 ≥ mR(G).
As for the upper bound. Consider a random walk, and divide it into epochs, where a epoch is a random

walk of length 2e3mR(G). For any vertex v, the expected time to hit u is hvu ≤ 2mR(G), by Theorem 17.5.2.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Thus, the probability that u is not visited in a epoch is 1/e3 by the Markov inequality. Consider a random walk
with ln n epochs. We have that the probability of not visiting u is ≤ (1/e3)ln n ≤ 1/n3. Thus, all vertices are
visited after ln n epochs, with probability ≥ 1 − 1/n3. Otherwise, after this walk, we perform a random walk
till we visit all vertices. The length of this (fix-up) random walk is ≤ 2n3, by Theorem 17.1.1. Thus, expected
length of the walk is ≤ 2e3mR(G) ln n + 2n3(1/n2). �

17.1.1. Rayleigh’s Short-cut Principle.
Observe that effective resistance is never raised by lowering the resistance on an edge, and it is never lowered
by raising the resistance on an edge. Similarly, resistance is never lowered by removing a vertex.

Interestingly, effective resistance comply with the triangle inequality.

Observation 17.1.4. For a graph with minimum degree d, we have R(G) ≥ 1/d (collapse all vertices except
the minimum-degree vertex into a single vertex).

Lemma 17.1.5. Suppose that G contains p edge-disjoint paths of length at most ` from s to t. Then Rst ≤ `/p.

17.2. Graph Connectivity

Definition 17.2.1. A probabilistic log-space Turing machine for a language L is a Turing machine using space
O(log n) and running in time O(poly(n)), where n is the input size. A problem A is in RLP, if there exists a
probabilistic log-space Turing machine M such that M accepts x ∈ L(A) with probability larger than 1/2, and
if x < L(A) then M(x) always reject.

Theorem 17.2.2. Let USTCON denote the problem of deciding if a vertex s is connected to a vertex t in an
undirected graph. Then USTCON ∈ RLP.

Proof: Perform a random walk of length 2n3 in the input graph G, starting from s. Stop as soon as the random
walk hit t. If u and v are in the same connected component, then hst ≤ n3. Thus, by the Markov inequality, the
algorithm works. It is easy to verify that it can be implemented in O(log n) space. �

Definition 17.2.3. A graph is d-regular, if all its vertices are of degree d.
A d-regular graph is labeled if at each vertex of the graph, each of the d edges incident on that vertex has a

unique label in {1, . . . , d}.
Any sequence of symbols σ = (σ1, σ2, . . .) from {1, . . . , d} together with a starting vertex s in a labeled

graph describes a walk in the graph. For our purposes, such a walk would almost always be finite.
A sequence σ is said to traverse a labeled graph if the walk visits every vertex of G regardless of the starting

vertex. A sequence σ is said to be a universal traversal sequence of a labeled graph if it traverses all the graphs
in this class.

Given such a universal traversal sequence, we can construct (a non-uniform) Turing machine that can solve
USTCON for such d-regular graphs, by encoding the sequence in the machine.

Let F denote a family of graphs, and let U(F ) denote the length of the shortest universal traversal sequence
for all the labeled graphs in F . Let R(F ) denote the maximum resistance of graphs in this family.

Theorem 17.2.4. U(F ) ≤ 5mR(F ) lg(n |F |).
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Proof: Same old, same old. Break the string into epochs, each of length L = 2mR(G). Now, start random
walks from all the possible vertices, from all possible graphs. Continue the walks till all vertices are being
visited. Initially, there are n2 |F | vertices that need to visited. In expectation, in each epoch half the vertices
get visited. As such, after 1 + lg2(n |F |) epochs, the expected number of vertices still need visiting is ≤ 1/2.
Namely, with constant probability we are done. �

Let U(d, n) denote the length of the shortest universal traversal sequence of connected, labeled n-vertex,
d-regular graphs.

Lemma 17.2.5. The number of labeled n-vertex graphs that are d-regular is (nd)O(nd).

Proof: Such a graph has dn/2 edges overall. Specifically, we encode this by listing for every vertex its d
neighbors – there are

(
n−1

d

)
≤ nd possibilities. As such, there are at most nnd choices for edges in the graph­

Every vertex has d! possible labeling of the edges adjacent to it, thus there are (d!)n ≤ dnd possible labelings.�

Lemma 17.2.6. U(d, n) = O
(
n3d log n

)
.

Proof: The diameter of every connected n-vertex, d-regular graph is O(n/d). Indeed, consider the path realizing
the diameter of the graph, and assume it has t vertices. Number the vertices along the path consecutively, and
consider all the vertices that their number is a multiple of three. There are α ≥ bt/3c such vertices. No pair
of these vertices can share a neighbor, and as such, the graph has at least (d + 1)α vertices. We conclude that
n ≥ (d + 1)α = (d + 1)(t/3 − 1). We conclude that t ≤ 3

d+1 (n + 1) ≤ 3n/d.
And so, this also bounds the resistance of such a graph. The number of edges is m = nd/2. Now, combine

Lemma 17.2.5 and Theorem 17.2.4. �

This is, as mentioned before, not uniform solution. There is by now a known log-space deterministic
algorithm for this problem, which is uniform.

17.2.1. Directed graphs

Theorem 17.2.7. One can solve the
−−−−−−→
STCON problem with a log-space randomized algorithm, that always

output NO if there is no path from s to t, and output YES with probability at least 1/2 if there is a path from s
to t.

17.3. Graphs and Eigenvalues
Consider an undirected graph G = G(V, E) with n vertices. The adjacency matrix M(G) of G is the n × n
symmetric matrix where Mi j = M ji is the number of edges between the vertices vi and v j. If G is bipartite, we
assume that V is made out of two independent sets X and Y . In this case the matrix M(G) can be written in
block form.

Since M(G) is symmetric, all its eigenvalues exists λ1 ≥ λ2 · · · ≥ λn, and their corresponding orthonormal
basis vectors are e1, . . . , en. We will need the following theorem.

Theorem 17.3.1 (Fundamental theorem of algebraic graph theory.). Let G = G(V, E) be an n-vertex, undi-
rected (multi)graph with maximum degree d. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M(G) and the
corresponding orthonormal eigenvectors are e1, . . . , en. The following holds.

­This is a callous upper bound – better analysis is possible. But never analyze things better than you have to - it usually a waste
of time.
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(i) If G is connected then λ2 < λ1.
(ii) For i = 1, . . . , n, we have |λi| ≤ d.

(iii) d is an eigenvalue if and only if G is regular.
(iv) If G is d-regular then the eigenvalue λ1 = d has the eigenvector e1 =

1
√

n (1, 1, 1, . . . , 1).
(v) The graph G is bipartite if and only if for every eigenvalue λ there is an eigenvalue −λ of the same

multiplicity.
(vi) Suppose that G is connected. Then G is bipartite if and only if −λ1 is an eigenvalue.

(vii) If G is d-regular and bipartite, then λn = d and en =
1
√

n (1, 1, . . . , 1,−1, . . . ,−1), where there are equal
numbers of 1s and −1s in en.

17.4. Bibliographical Notes
A nice survey of algebraic graph theory appears in [Wes01] and in [Bol98].

17.5. Tools from previous lecture
Lemma 17.5.1. For any edge (u→ v) ∈ E, huv + hvu ≤ 2m.

Theorem 17.5.2. For any two vertices u and v in G, the commute time CTuv = 2mRuv.

Bibliography
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Chapter 18

Random Walks V
By Sariel Har-Peled, December 30, 2015¬

“Is there anything in the Geneva Convention about the rules of war in peacetime?” Stanko wanted to know, crawling
back toward the truck. “Absolutely nothing,” Caulec assured him. “The rules of war apply only in wartime. In
peacetime, anything goes.”

– Romain Gary, Gasp.

18.1. Rapid mixing for expanders
We remind the reader of the following definition of expander.

Definition 18.1.1. Let G = (V, E) be an undirected d-regular graph. The graph G is a (n, d, c)-expander (or
just c-expander), for every set S ⊆ V of size at most |V | /2, there are at least cd |S | edges connecting S and
S = V \ S ; that is e

(
S , S

)
≥ cd |S |,

Guaranteeing aperiodicity Let G be a (n, d, c)-expander. We would like to perform a random walk on G.
The graph G is connected, but it might be periodic (i.e., bipartite). To overcome this, consider the random walk
on G that either stay in the current state with probability 1/2 or traverse one of the edges. Clearly, the resulting
Markov Chain (MC) is aperiodic. The resulting transition matrix is

Q = M/2d + I/2,

where M is the adjacency matrix of G and I is the identity n × n matrix. Clearly Q is doubly stochastic.
Furthermore, if λ̂i is an eigenvalue of M, with eigenvector vi, then

Qvi =
1
2

(
M
d
+ I

)
vi =

1
2

 λ̂i

d
+ 1

vi.

As such,
(
λ̂λi/d + 1

)
/2 is an eigenvalue of Q. Namely, if there is a spectral gap in the graph G, there would also

be a similar spectral gap in the resulting MC. This MC can be generated by adding to each vertex d self loops,
ending up with a 2d-regular graph. Clearly, this graph is still an expander if the original graph is an expander,
and the random walk on it is aperiodic.

From this point on, we would just assume our expander is aperiodic.
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
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18.1.1. Bounding the mixing time
For a MC with n states, we denote by π =

(
π1, . . . , πn

)
its stationary distribution. We consider only nicely

behave MC that fall under Theorem 18.4.1p6. As such, no state in the MC has zero stationary probability.

Definition 18.1.2. Let q(t) denote the state probability vector of a Markov chain defined by a transition matrix
Q at time t ≥ 0, given an initial distribution q(0). The relative pairwise distance of the Markov chain at time t is

∆(t) = max
i

∣∣∣q(t)
i − πi

∣∣∣
πi

.

Namely, if ∆(t) approaches zero then q(t) approaches π.

We remind the reader that we saw a construction of a constant degree expander with constant expansion. In
its transition matrix Q, we have that λ̂1 = 1, and −1 ≤ λ̂2 < 1, and furthermore the spectral gap λ̂1 − λ̂2 was a
constant (the two properties are equivalent, but we proved only one direction of this).

We need a slightly stronger property (that does hold for our expander construction). We have that λ̂2 ≥

maxn
i=2

∣∣∣∣λ̂i

∣∣∣∣.
Theorem 18.1.3. Let Q be the transition matrix of an aperiodic (n, d, c)-expander. Then, for any initial distri-
bution q(0), we have that

∆(t) ≤ n3/2
(
λ̂2

)t
.

Namely, since λ̂2 is a constant smaller than 1, the distance ∆(t) drops exponentially with t.

Proof: We have that q(t) = q(0)Qt. Let B(Q) = 〈v1, . . . , vn〉 denote the orthonormal eigenvector basis of Q (see
Definition 18.4.2p6), and write q(0) =

∑n
i=1 αivi. Since λ̂1 = 1, we have that

q(t) = q(0)Qt =

n∑
i=1

αi

(
viQ t

)
=

n∑
i=1

αi

(
λ̂i

)t
vi = α1v1 +

n∑
i=2

αi

(
λ̂i

)t
vi.

Since v1 =
(
1/
√

n, 1/
√

n, . . . , 1/
√

n
)
, and

∣∣∣∣λ̂i

∣∣∣∣ ≤ λ̂2 < 1, for i > 1, we have that limt→∞

(
λ̂i

)t
= 0, and thus

π = lim
t→∞

q(t) = α1v1 +

n∑
i=2

αi

(
lim
t→∞

(
λ̂i

)t
)
vi = α1v1.

Now, since v1, . . . , vn is an orthonormal basis, and q(0) =

n∑
i=1

αivi, we have that
∥∥∥q(0)

∥∥∥
2
=

√√
n∑

i=1

α2
i . Thus implies

that ∥∥∥q(t) − π
∥∥∥

1
=

∥∥∥q(t) − α1v1

∥∥∥
1
=

∥∥∥∥∥∥∥
n∑

i=2

αi

(
λ̂i

)t
vi

∥∥∥∥∥∥∥
1

≤
√

n

∥∥∥∥∥∥∥
n∑

i=2

αi

(
λ̂i

)t
vi

∥∥∥∥∥∥∥
2

=
√

n

√√
n∑

i=2

(
αi

(
λ̂i

)t
)2

≤
√

n
(
λ̂2

)t

√√
n∑

i=2

(αi)2
≤
√

n
(
λ̂2

)t ∥∥∥q(0)
∥∥∥

2
≤
√

n
(
λ̂2

)t ∥∥∥q(0)
∥∥∥

1
=
√

n
(
λ̂2

)t
,

since q(0) is a distribution. Now, since πi = 1/n, we have

∆(t) = max
i

∣∣∣q(t)
i − πi

∣∣∣
πi

= max
i

n
∣∣∣q(t)

i − πi

∣∣∣ ≤ n max
i

∥∥∥q(t) − π
∥∥∥

1
≤ n
√

n
(
λ̂2

)t
. �
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18.2. Probability amplification by random walks on expanders
We are interested in performing probability amplification for an algorithm that is a BPP algorithm (see Defini-
tion 18.4.3). It would be convenient to work with an algorithm which is already somewhat amplified. That is,
we assume that we are given a BPP algorithm Alg for a language L, such that

(A) If x ∈ L then Pr
[
Alg(x) accepts

]
≥ 199/200.

(B) If x < L then Pr
[
Alg(x) accepts

]
≤ 1/200.

We assume that Alg requires a random bit string of length n. So, we have a constant degree expander G
(say of degree d) that has at least 200 · 2n vertices. In particular, let

U = |V(G)| ,

and since our expander construction grow exponentially in size (but the base of the exponent is a constant),
we have that U = O(2n). (Translation: We can not quite get an expander with a specific number of vertices.
Rather, we can guarantee an expander that has more vertices than we need, but not many more.)

We label the vertices of G with all the binary strings of length n, in a round robin fashion (thus, each binary
string of length n appears either

⌈
|V(G)| /2n

⌉
or

⌊
|V(G)| /2n

⌋
times). For a vertex v ∈ V(G), let s(v) denote the

binary string associated with v.
Consider a string x that we would like to decide if it is in L or not. We know that at least 99/100U vertices

of G are labeled with “random” strings that would yield the right result if we feed them into Alg (the constant
here deteriorated from 199/200 to 99/100 because the number of times a string appears is not identically the
same for all strings).

The algorithm. We perform a random walk of length µ = αβk on G, where α and β are constants to be
determined shortly, and k is a parameter. To this end, we randomly choose a starting vertex X0 (this would
require n + O(1) bits). Every step in the random walk, would require O(1) random bits, as the expander is a
constant degree expander, and as such overall, this would require n + O(k) random bits.

Now, lets X0, X1, . . . , Xµ be the resulting random walk. We compute the result of

Yi = Alg(x, ri), for i = 0, . . . , ν, and ν = αk,

where ri = s
(
Xi·β

)
. Specifically, we use the strings associated with nodes that are in distance β from each other

along the path of the random walk. We return the majority of the bits Y0, . . . , Yαk as the decision of whether
x ∈ L or not.

We assume here that we have a fully explicit construction of an expander. That is, given a vertex of an
expander, we can compute all its neighbors in polynomial time (in the length of the index of the vertex). While
the construction of expander shown is only explicit it can be made fully explicit with more effort.

18.2.1. The analysis
Intuition. Skipping every β nodes in the random walk corresponds to performing a random walk on the
graph Gβ; that is, we raise the graph to power k. This new graph is a much better expander (but the degree had
deteriorated). Now, consider a specific input x, and mark the bad vertices for it in the graph G. Clearly, we
mark at most 1/100 fraction of the vertices. Conceptually, think about these vertices as being uniformly spread
in the graph and far apart. From the execution of the algorithm to fail, the random walk needs to visit αk/2
bad vertices in the random walk in Gk. However, the probability for that is extremely small - why would the
random walk keep stumbling into bad vertices, when they are so infrequent?
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The real thing. Let Q be the transition matrix of G. We assume, as usual, that the random walk on G is
aperiodic (if not, we can easily fix it using standard tricks), and thus ergodic. Let B = Qβ be the transition
matrix of the random walk of the states we use in the algorithm. Note, that the eigenvalues (except the first
one) of B “shrink”. In particular, by picking β to be a sufficiently large constant, we have that

λ̂1

(
B
)
= 1 and

∣∣∣∣λ̂i

(
B
)∣∣∣∣ ≤ 1

10
, for i = 2, . . . ,U.

For the input string x, let W be the matrix that has 1 in the diagonal entry Wii, if and only Alg(x, s(i)) returns
the right answer, for i = 1, . . . ,U. (We remind the reader that s(i) is the string associated with the ith vertex,
and U = |V(G)|.) The matrix W is zero everywhere else. Similarly, let W = I−W be the “complement” matrix
having 1 at Wii iff Alg(x, s(i)) is incorrect. We know that W is a U ×U matrix, that has at least (99/100)U ones
on its diagonal.

Lemma 18.2.1. Let Q be a symmetric transition matrix, then all its eigenvalues of Q are in the range [−1, 1].

Proof: Let p ∈ Rn be an eigenvector with eigenvalue λ. Let pi be the coordinate with the maximum absolute
value in p. We have that

∣∣∣λpi

∣∣∣ = ∣∣∣∣(pQ
)

i

∣∣∣∣ =
∣∣∣∣∣∣∣

U∑
j=1

p jQ ji

∣∣∣∣∣∣∣ ≤
U∑
j=1

∣∣∣p j

∣∣∣ ∣∣∣Q ji

∣∣∣ ≤ |pi|

U∑
j=1

∣∣∣Q ji

∣∣∣ = ∣∣∣pi

∣∣∣ .
This implies that |λ| ≤ 1.

(We used the symmetry of the matrix, in implying that Q eigenvalues are all real numbers.) �

Lemma 18.2.2. Let Q be a symmetric transition matrix, then for any p ∈ Rn, we have that ‖pQ‖2 ≤ ‖p‖2.

Proof: Let B(Q) = 〈v1, . . . , vn〉 denote the orthonormal eigenvector basis of Q, with eigenvalues 1 = λ1, . . . , λn.
Write p =

∑
i αivi, and observe that

∥∥∥pQ
∥∥∥

2
=

∥∥∥∥∥∥∥∑i

αiviQ

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∑i

αiλivi

∥∥∥∥∥∥∥
2

=

√∑
i

α2
i λ

2
i ≤

√∑
i

α2
i =

∥∥∥p
∥∥∥

2
,

since |λi| ≤ 1, for i = 1, . . . , n, by Lemma 18.2.1. �

Lemma 18.2.3. Let B = Qβ be the transition matrix of the graph Gβ. For all vectors p ∈ Rn, we have: (i)
‖pBW‖2 ≤ ‖p‖2, and (ii)

∥∥∥∥pBW
∥∥∥∥ ≤ ‖p‖ /5.

Proof: (i) Since multiplying a vector by W has the effect of zeroing out some coordinates, its clear that it can
not enlarge the norm of a matrix. As such, ‖pBW‖2 ≤ ‖pB‖2 ≤ ‖p‖2 by Lemma 18.2.2.

(ii) Write p =
∑

i αivi, where v1, . . . , vn is the orthonormal basis of Q (and thus also of B), with eigenvalues
1 = λ̂1, . . . , λ̂n. We remind the reader that v1 = (1, 1, . . . , 1)/

√
n. Since W zeroes out at least 99/100 of the

entries of a vectors it is multiplied by (and copy the rest as they are), we have that
∥∥∥∥v1W

∥∥∥∥ ≤ √
(n/100)(1/

√
n)2 ≤

1/10 = ‖v1‖ /10. Now, for any x ∈ RU , we have
∥∥∥∥xW

∥∥∥∥ ≤ ‖x‖. As such, we have that

∥∥∥∥pBW
∥∥∥∥

2
=

∥∥∥∥∥∥∥∑i

αiviBW

∥∥∥∥∥∥∥
2

≤

∥∥∥∥α1v1BW
∥∥∥∥ +

∥∥∥∥∥∥∥
U∑

i=2

αiviBW

∥∥∥∥∥∥∥
4



≤

∥∥∥∥α1v1W
∥∥∥∥ +

∥∥∥∥∥∥∥
 U∑

i=2

αiviλ̂i
β

W
∥∥∥∥∥∥∥ ≤ |α1|

10
+

∥∥∥∥∥∥∥
U∑

i=2

αiviλ̂i
β

∥∥∥∥∥∥∥
≤
|α1|

10
+

√√
U∑

i=2

(
αiλ̂i

β
)2
≤
|α1|

10
+

1
10

√√
U∑

i=2

α2
i ≤
‖p‖
10
+

1
10
‖p‖ ≤

‖p‖
5
,

since
∣∣∣λβi ∣∣∣ ≤ 1/10, for i = 2, . . . , n. �

Consider the strings r0, . . . , rν. For each one of these strings, we can write down whether its a “good”
string (i.e., Alg return the correct result), or a bad string. This results in a binary pattern b0, . . . , bk. Given a
distribution p ∈ RU on the states of the graph, its natural to ask what is the probability of being in a “good”
state. Clearly, this is the quantity ‖pW‖1. Thus, if we are interested in the probability of a specific pattern,
then we should start with the initial distribution p0, truncate away the coordinates that represent an invalid
state, apply the transition matrix, again truncate away forbidden coordinates, and repeat in this fashion till we
exhaust the pattern. Clearly, the `1-norm of the resulting vector is the probability of this pattern. To this end,
given a pattern b0, . . . , bk, let S = 〈S 0, . . . , S ν〉 denote the corresponding sequence of “truncating” matrices (i.e.,
S i is either W or W). Formally, we set S i = W if Alg(x, ri) returns the correct answer, and set S i = W otherwise.

The above argument implies the following lemma.

Lemma 18.2.4. For any fixed pattern b0, . . . , bν the probability of the random walk to generate this pattern of
random strings is

∥∥∥p(0)S 0BS 1 . . .BS ν
∥∥∥

1
, where S = 〈S 0, . . . , S ν〉 is the sequence of W and W encoded by this

pattern.

Theorem 18.2.5. The probability that the majority of the outputs Alg(x, r0),Alg(x, r1), . . . ,Alg(x, rk) is incor-
rect is at most 1/2k.

Proof: The majority is wrong, only if (at least) half the elements of the sequence S = 〈S 0, . . . , S ν〉 belong to
W. Fix such a “bad” sequence S, and observe that the distributions we work with are vectors in RU . As such, if
p0 is the initial distribution, then we have that

Pr
[
S
]
=

∥∥∥p(0)S 0BS 1 . . .BS ν
∥∥∥

1 ≤
√

U
∥∥∥p(0)S 0BS 1 . . .BS ν

∥∥∥
2 ≤
√

U
1

5ν/2
∥∥∥p(0)

∥∥∥
2
,

by Lemma 18.3.1 below (i.e., Cauchy-Schwarz inequality) and by repeatedly applying Lemma 18.2.3, since
half of the sequence S are W, and the rest are W. The distribution p(0) was uniform, which implies that∥∥∥p(0)

∥∥∥
2
= 1/

√
U. As such, let S be the set of all bad patterns (there are 2ν−1 such “bad” patterns). We have

Pr
[

majority is bad
]
≤ 2k
√

U
1

5ν/2
∥∥∥p(0)

∥∥∥
2
= (4/5)ν/2 = (4/5)αk/2 ≤

1
2k ,

for α = 7. �

18.3. Some standard inequalities

Lemma 18.3.1. For any vector v = (v1, . . . , vd) ∈ Rd, we have that ‖v‖1 ≤
√

d ‖v‖2.

Proof: We can safely assume all the coordinates of v are positive. Now,

‖v‖1 =
d∑

i=1

vi =

d∑
i=1

vi · 1 = |v · (1, 1, . . . , 1)| ≤

√√
d∑

i=1

v2
i

√√
d∑

i=1

12 =
√

d
∥∥∥v

∥∥∥ ,
by the Cauchy-Schwarz inequality. �
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18.4. Tools from previous lecture
Theorem 18.4.1 (Fundamental theorem of Markov chains). Any irreducible, finite, and aperiodic Markov
chain has the following properties.

(i) All states are ergodic.
(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, we have πi > 0.

(iii) For 1 ≤ i ≤ n, we have fii = 1 and hii = 1/πi.
(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t
= πi.

Namely, independent of the starting distribution, the process converges to the stationary distribution.

Definition 18.4.2. Given a random walk matrix Q associated with a d-regular graph, let B(Q) = 〈v1, . . . , vn〉

denote the orthonormal eigenvector basis defined by Q. That is, v1, . . . , vn is an orthonormal basis for Rn,
where all these vectors are eigenvectors of Q and v1 = 1n/

√
n. Furthermore, let λ̂i denote the ith eigenvalue of

Q, associated with the eigenvector vi, such that λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n.

Definition 18.4.3. The class BPP (for Bounded-error Probabilistic Polynomial time) is the class of languages
that have a randomized algorithm Alg with worst case polynomial running time such that for any input x ∈ Σ∗,
we have

(i) If x ∈ L then Pr
[
Alg(x) accepts

]
≥ 3/4.

(ii) If x < L then Pr
[
Alg(x) accepts

]
≤ 1/4.
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Chapter 19

The Johnson-Lindenstrauss Lemma
By Sariel Har-Peled, December 30, 2015¬

Dixon was alive again. Consciousness was upon him before he could get out of the way; not for him the slow, gracious
wandering from the halls of sleep, but a summary, forcible ejection. He lay sprawled, too wicked to move, spewed up
like a broken spider-crab on the tarry shingle of the morning. The light did him harm, but not as much as looking at
things did; he resolved, having done it once, never to move his eyeballs again. A dusty thudding in his head made the
scene before him beat like a pulse. His mouth had been used as a latrine by some small creature of the night, and then
as its mausoleum. During the night, too, he’d somehow been on a cross-country run and then been expertly beaten up
by secret police. He felt bad.

– Lucky Jim, Kingsley Amis.

In this chapter, we will prove that given a set P of n points in Rd, one can reduce the dimension of the points
to k = O(ε−2 log n) such that distances are 1 ± ε preserved. Surprisingly, this reduction is done by randomly
picking a subspace of k dimensions and projecting the points into this random subspace. One way of thinking
about this result is that we are “compressing” the input of size nd (i.e., n points with d coordinates) into size
O(nε−2 log n), while (approximately) preserving distances.

19.1. The Brunn-Minkowski inequality

For a set A ⊆ Rd, an a point p ∈ Rd, let A+p denote the translation of A by p. Formally, A+p =
{
q + p

∣∣∣ q ∈ A
}
.

Definition 19.1.1. For two sets A and B in Rn, let A+ B denote the
Minkowski sum of A and B. Formally,

A + B =
{
a + b

∣∣∣ a ∈ A, b ∈ B
}
=

⋃
p∈A

(p + B).
+ =

Remark 19.1.2. It is easy to verify that if A′ and B′ are translated copies of A and B (that is, A′ = A + p and
B = B + q, for some points p, q ∈ Rd), respectively, then A′ + B′ is a translated copy of A + B. In particular,
since volume is preserved under translation, we have that vol

(
A′ + B′

)
= vol

(
(A + B) + p + q

)
= vol

(
A + B

)
,

where vol(X) is the volume (i.e., measure) of the set X.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Our purpose here is to prove the following theorem.

Theorem 19.1.3 (Brunn-Minkowski inequality). Let A and B be two non-empty compact sets in Rn. Then

vol
(
A + B

)1/n
≥ vol

(
A
)1/n
+ vol

(
B
)1/n

.

Definition 19.1.4. A set A ⊆ Rn is a brick set if it is the union of finitely many (close) axis parallel boxes with
disjoint interiors.

It is intuitively clear, by limit arguments, that proving Theorem 19.1.3 for brick sets will imply it for the
general case.

Lemma 19.1.5 (Brunn-Minkowski inequality for Brick Sets). Let A and B be two non-empty brick sets in
Rn. Then (

vol
(
A + B

))1/n
≥ vol(A)1/n + vol(B)1/n.

Proof: By induction on the number k of bricks in A and B. If k = 2 then A and B are just bricks, with
dimensions a1, . . . , an and b1, . . . , bn, respectively. In this case, the dimensions of A+ B are a1 + b1, . . . , an + bn,

as can be easily verified. Thus, we need to prove that
(∏n

i=1 ai
)1/n
+

(∏n
i=1 bi

)1/n
≤

(∏n
i=1(ai + bi)

)1/n
.Dividing

the left side by the right side, we have n∏
i=1

ai

ai + bi

1/n

+

 n∏
i=1

bi

ai + bi

1/n

≤
1
n

n∑
i=1

ai

ai + bi
+

1
n

n∑
i=1

bi

ai + bi
= 1,

by the generalized arithmetic-geometric mean inequality­, and the claim follows for this case.
Now let k > 2 and suppose that the Brunn-Minkowski inequality holds for any pair of brick sets with fewer

than k bricks (together). Let A and B be a pair of sets having k bricks together, the A has at least two (disjoint)
bricks. However, this implies that there is an axis parallel hyperplane h that separates the interior of one brick
of A from the interior of another brick of A (the hyperplane h might intersect other bricks of A). Assume that h
is the hyperplane x1 = 0 (this can be achieved by translation and renaming of coordinates).

Let A+ = A ∩ h+ and A− = A ∩ h−, where h+ and h− are the two open half spaces induced by h. Let A+ and
A− be the closure of A+ and A−, respectively. Clearly, A+ and A− are both brick sets with (at least) one fewer
brick than A.

Next, observe that the claim is translation invariant (see Remark 19.1.2), and as such, let us translate B so
that its volume is split by h in the same ratio A’s volume is being split. Denote the two parts of B by B+ and B−,
respectively. Let ρ = vol(A+)/vol(A) = vol(B+)/vol(B) (if vol(A) = 0 or vol(B) = 0 the claim trivially holds).

Observe, that A++B+ ⊆ A+B, and it lies on one side of h (since h ≡ (x1 = 0)), and similarly A−+B− ⊆ A+B
and it lies on the other side of h. Thus, by induction and since A+ + B+ and A− + B− are interior disjoint, we
have

vol
(
A + B

)
≥ vol

(
A+ + B+

)
+ vol

(
A− + B−

)
≥

(
vol

(
A+

)1/n
+ vol

(
B+

)1/n
)n
+

(
vol

(
A−

)1/n
+ vol

(
B−

)1/n
)n

­Here is a proof of the generalized form: Let x1, . . . , xn be n positive real numbers. Consider the quantity R = x1x2 · · · xn. If we
fix the sum of the n numbers to be equal to α, then R is maximized when all the xis are equal. Thus, n

√
x1x2 · · · xn ≤

n√(α/n)n = α/n =
(x1 + · · · + xn)/n.
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=
[
ρ1/nvol(A)1/n + ρ1/nvol(B)1/n

]n[
(1 − ρ)1/nvol(A)1/n + (1 − ρ)1/nvol(B)1/n

]n

= (ρ + (1 − ρ))
[
vol(A)1/n + vol(B)1/n

]n

=
[
vol(A)1/n + vol(B)1/n

]n
,

establishing the claim. �

Proof of Theorem 19.1.3: Let A1 ⊆ A2 ⊆ · · · ⊆ Ai ⊆ · · · be a sequence of finite brick sets, such that
⋃

i Ai = A,
and similarly let B1 ⊆ B2 ⊆ · · · ⊆ Bi ⊆ · · · be a sequence of finite brick sets, such that

⋃
i Bi = B. By the

definition of volume®,we have that limi→∞ vol(Ai) = vol(A) and limi→∞ vol(Bi) = vol(B).
We claim that limi→∞ vol(Ai + Bi) = vol(A + B). Indeed, consider any point z ∈ A + B, and let u ∈ A and

v ∈ B be such that u+v = z. By definition, there exists an i, such that for all j > i we have u ∈ A j, v ∈ B j, and as
such z ∈ A j+B j. Thus, A+B ⊆ ∪ j(A j+B j) and ∪ j(A j+B j) ⊆ ∪ j(A+B) ⊆ A+B; namely, ∪ j(A j+B j) = A+B.

Furthermore, for any i > 0, since Ai and Bi are brick sets, we have

vol(Ai + Bi)1/n
≥ vol(Ai)1/n + vol(Bi)1/n,

by Lemma 19.1.5. Thus,

vol
(
A + B

)1/n
= lim

i→∞
vol(Ai + Bi)1/n

≥ lim
i→∞

(
vol(Ai)1/n + vol(Bi)1/n

)
= vol(A)1/n + vol(B)1/n.

�

Theorem 19.1.6 (Brunn-Minkowski for slice volumes.). Let P be a convex set in Rn+1, and let A = P∩ (x1 =

a), B = P ∩ (x1 = b) and C = P ∩ (x1 = c) be three slices of A, for a < b < c. We have vol(B) ≥
min(vol(A), vol(C)). Specifically, consider the function

v(t) =
(
vol

(
P ∩ (x1 = t)

))1/n

,

and let I =
[
tmin, tmax

]
be the interval where the hyperplane x1 = t intersects P. Then, v(t) is concave on I.

Proof: If a or c are outside I, then vol(A) = 0 or vol(C) = 0, respectively, and then the claim trivially holds.
Otherwise, let α = (b − a)/(c − a). We have that b = (1 − α) · a + α · c, and by the convexity of P, we have

(1 − α)A + αC ⊆ B. Thus, by Theorem 19.1.3 we have

v(b) = vol(B)1/n
≥ vol((1 − α)A + αC)1/n

≥ vol((1 − α)A)1/n + vol(αC)1/n

= ((1 − α)nvol(A))1/n + (αnvol(C))1/n

= (1 − α) · vol(A)1/n + α · vol(C)1/n

= (1 − α)v(a) + αv(c).

Namely, v(·) is concave on I, and in particular v(b) ≥ min(v(a), v(c)), which in turn implies that vol(B) =
v(b)n ≥ (min(v(a), v(c)))n = min(vol(A), vol(C)), as claimed. �

®This is the standard definition in measure theory of volume. The reader unfamiliar with this fanfare can either consult a standard
text on the topic, or take it for granted as this is intuitively clear.
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Corollary 19.1.7. For A and B compact sets in Rn, the following holds vol((A + B)/2) ≥
√

vol(A)vol(B).

Proof: We have that

vol
(
(A + B)/2

)1/n
= vol

(
A/2 + B/2

)1/n
≥ vol

(
A/2

)1/n
+ vol

(
B/2

)1/n
=

(
vol(A)1/n + vol(B)1/n

)
/2

≥

√
vol(A)1/nvol(B)1/n

by Theorem 19.1.3, and since (a + b)/2 ≥
√

ab for any a, b ≥ 0. The claim now follows by raising this
inequality to the power n. �

19.1.1. The Isoperimetric Inequality
The following is not used anywhere else and is provided because of its mathematical elegance. The skip-able
reader can thus employ their special gift and move on to Section 19.2.

The isoperimetric inequality states that among all convex bodies of a fixed surface area, the ball has the
largest volume (in particular, the unit circle is the largest area planar region with perimeter 2π). This problem
can be traced back to antiquity, in particular Zenodorus (200–140 BC) wrote a monograph (which was lost)
that seemed to have proved the claim in the plane for some special cases. The first formal proof for the planar
case was done by Steiner in 1841. Interestingly, the more general claim is an easy consequence of the Brunn-
Minkowski inequality.

Let K be a convex body in Rn and b be the n dimensional ball of radius one centered at the origin. Let S(X)
denote the surface area of a compact set X ⊆ Rn. The isoperimetric inequality states that(

vol(K)
vol(b)

)1/n

≤

(
S(K)
S(b)

)1/(n−1)

. (19.1)

Namely, the left side is the radius of a ball having the same volume as K, and the right side is the radius of
a sphere having the same surface area as K. In particular, if we scale K so that its surface area is the same as b,
then the above inequality implies that vol(K) ≤ vol(b).

To prove Eq. (19.1), observe that vol(b) = S(b)/n¯. Also, observe that K + εb is
the body K together with a small “atmosphere” around it of thickness ε. In particular,
the volume of this “atmosphere” is (roughly) εS(K) (in fact, Minkowski defined the
surface area of a convex body to be the limit stated next).

Formally, we have

S(K) = lim
ε→0+

vol(K + εb) − vol(K)
ε

≥ lim
ε→0+

(
vol(K)1/n + vol(εb)1/n

)n
− vol(K)

ε
,

by the Brunn-Minkowski inequality. Now vol(εb)1/n = εvol(b)1/n, and as such

S(K)≥ lim
ε→0+

vol(K) +
(

n
1

)
εvol(K)(n−1)/nvol(b)1/n +

(
n
2

)
ε2 〈· · ·〉 + · · · + εnvol(b) − vol(K)

ε

= lim
ε→0+

nεvol(K)(n−1)/nvol(b)1/n

ε
= nvol(K)(n−1)/nvol(b)1/n.

¯Indeed, vol(b) =
∫ 1

r=0 S(b)rn−1dr = S(b)/n.

4



Dividing both sides by S(b) = nvol(b), we have

S(K)
S(b)

≥
vol(K)(n−1)/n

vol(b)(n−1)/n =⇒

(
S(K)
S(b)

)1/(n−1)

≥

(
vol(K)
vol(b)

)1/n

,

establishing the isoperimetric inequality.

19.2. Measure Concentration on the Sphere

π

T

Let S(n−1) be the unit sphere in Rn. We assume there is a uniform probability
measure defined over S(n−1), such that its total measure is 1. Surprisingly, most
of the mass of this measure is near the equator. Indeed, consider an arbitrary
equator π on S(n−1) (that it, it is the intersection of the sphere with a hyperplane
passing through the center of ball inducing the sphere). Next, consider all the
points that are in distance ≈ `(n) = c/n1/3 from π. The question we are inter-
ested in is what fraction of the sphere is covered by this strip T (depicted on the
right).

Notice, that as the dimension increases the width `(n) of this strip decreases.
But surprisingly, despite its width becoming smaller, as the dimension increases, this strip contains a larger and
larger fraction of the sphere. In particular, the total fraction of the sphere not covered by this (shrinking!) strip
converges to zero.

Furthermore, counter intuitively, this is true for any equator. We are going to show that even a stronger
result holds: The mass of the sphere is concentrated close to the boundary of any set A ⊆ S(n−1) such that
Pr[A] = 1/2.

Before proving this somewhat surprising theorem, we will first try to get an intuition about the behavior of
the hypersphere in high dimensions.

19.2.1. The strange and curious life of the hypersphere
Consider the ball of radius r in Rn denoted by r bn, where bn is the unit radius ball centered at the origin.
Clearly, vol(r bn) = rnvol(bn). Now, even if r is very close to 1, the quantity rn might be very close to zero if n
is sufficiently large. Indeed, if r = 1 − δ, then rn = (1 − δ)n ≤ exp(−δn), which is very small if δ � 1/n. (Here,
we used the fact that 1 − x ≤ ex, for x ≥ 0.) Namely, for the ball in high dimensions, its mass is concentrated
in a very thin shell close to its surface.
The volume of a ball and the surface area of hypersphere. Let vol(rbn) denote the volume of the ball of
radius r in Rn, and Area

(
rS(n−1)

)
denote the surface area of its bounding sphere (i.e., the surface area of rS(n−1)).

It is known that

vol(rbn) =
πn/2rn

Γ(n/2 + 1)
and Area

(
rS(n−1)

)
=

2πn/2rn−1

Γ(n/2)
,

where the gamma function, Γ(·), is an extension of the factorial function. Specifically, if n is even then Γ(n/2+
1) = (n/2)!, and for n odd Γ(n/2 + 1) =

√
π(n!!)/2(n+1)/2, where n!! = 1 · 3 · 5 · · · n is the double factorial.

The most surprising implication of these two formulas is that, as n increases, the volume of the unit ball first
increases (till dimension 5 in fact) and then starts decreasing to zero.
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B̂
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B̂

Â+ B̂

A

Â

B

B̂

Â+ B̂

Â+B̂
2

A

Â

B

B̂

Â+ B̂

≤ 1− t2

8

Â+B̂
2

Figure 19.1: Illustration of the proof of Theorem 19.2.1.

1
xn 1

√ 1 −
x2

nSimilarly, the surface area of the unit sphere S(n−1) in Rn tends to zero as the
dimension increases. To see this, compute the volume of the unit ball using an
integral of its slice volume, when it is being sliced by a hyperplanes perpendicular
to the nth coordinate.

We have, see figure on the right, that

vol
(
bn

)
=

∫ 1

xn=−1
vol

(√
1 − x2

n bn−1
)
dxn = vol

(
bn−1

) ∫ 1

xn=−1

(
1 − x2

n

)(n−1)/2
dxn,

Now, the integral on the right side tends to zero as n increases. In fact, for n very large, the term
(
1 − x2

n

)(n−1)/2

is very close to 0 everywhere except for a small interval around 0. This implies that the main contribution of
the volume of the ball happens when we consider slices of the ball by hyperplanes of the form xn = δ, where δ
is small.

If one has to visualize how such a ball in high dimensions looks like, it might be best to think about it as a
star-like creature: It has very little mass close to the tips of any set of orthogonal directions we pick, and most
of its mass somehow lies on hyperplanes close to its center.°

°In short, it looks like a Boojum [Car76].
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19.2.2. Measure Concentration on the Sphere

Theorem 19.2.1 (Measure concentration on the sphere.). Let A ⊆ S(n−1) be a measurable set with Pr[A] ≥
1/2, and let At denote the set of points of S(n−1) in distance at most t from A, where t ≤ 2. Then 1 − Pr[At] ≤
2 exp

(
−nt2/2

)
.

Proof: We will prove a slightly weaker bound, with −nt2/4 in the exponent. Let Â = T (A), where

T (X) =
{
αx

∣∣∣ x ∈ X, α ∈ [0, 1]
}
⊆ bn,

and bn is the unit ball in Rn. We have that Pr[A] = µ
(
Â
)
, where µ

(
Â
)
= vol

(
Â
)
/vol(bn)±.

Let B = S(n−1) \ At and B̂ = T (B), see Figure 19.1. We have that ‖a − b‖ ≥ t for all a ∈ A and b ∈ B. By
Lemma 19.2.2 below, the set

(
Â + B̂

)
/2 is contained in the ball rbn centered at the origin, where r = 1 − t2/8.

Observe that µ(rbn) = vol(rbn)/vol(bn) = rn =
(
1 − t2/8

)n
. As such, applying the Brunn-Minkowski inequality

in the form of Corollary 19.1.7, we have(
1 −

t2

8

)n

= µ
(
rbn

)
≥ µ

 Â + B̂
2

 ≥ √
µ
(
Â
)
µ
(
B̂
)
=

√
Pr[A] Pr[B] ≥

√
Pr[B] /2 .

Thus, Pr[B] ≤ 2(1 − t2/8)2n ≤ 2 exp(−2nt2/8), since 1 − x ≤ exp(−x), for x ≥ 0. �

Lemma 19.2.2. For any â ∈ Â and b̂ ∈ B̂, we have

∥∥∥∥∥∥∥ â + b̂
2

∥∥∥∥∥∥∥ ≤ 1 −
t2

8
.

a

b
t/2
≤{

u

o
h

Proof: Let â = αa and b̂ = βb, where a ∈ A and b ∈ B. We have

‖u‖ =
∥∥∥∥∥a + b

2

∥∥∥∥∥ =
√

12 −

∥∥∥∥∥a − b
2

∥∥∥∥∥2

≤

√
1 −

t2

4
≤ 1 −

t2

8
, (19.2)

since ‖a − b‖ ≥ t. As for â and b̂, assume that α ≤ β, and observe that the quantity∥∥∥∥ â + b̂
∥∥∥∥ is maximized when β = 1. As such, by the triangle inequality, we have∥∥∥∥∥∥∥ â + b̂

2

∥∥∥∥∥∥∥ =
∥∥∥∥∥αa + b

2

∥∥∥∥∥ ≤ ∥∥∥∥∥α(a + b)
2

∥∥∥∥∥ + ∥∥∥∥∥(1 − α)
b
2

∥∥∥∥∥
≤ α

(
1 −

t2

8

)
+ (1 − α)

1
2
= τ,

by Eq. (19.2) and since ‖b‖ = 1. Now, τ is a convex combination of the two numbers 1/2 and 1 − t2/8. In
particular, we conclude that τ ≤ max(1/2, 1 − t2/8) ≤ 1 − t2/8, since t ≤ 2. �

±This is one of these “trivial” claims that might give the reader a pause, so here is a formal proof. Pick a random point p uniformly
inside the ball bn. Let ψ be the probability that p ∈ Â. Clearly, vol

(
Â
)
= ψvol(bn). So, consider the normalized point q = p/ ‖p‖.

Clearly, p ∈ Â if and only if q ∈ A, by the definition of Â. Thus, µ
(
Â
)
= vol

(
Â
)
/vol(bn) = ψ = Pr

[
p ∈ Â

]
= Pr[q ∈ A] = Pr[A], since

q has a uniform distribution on the hypersphere by assumption.
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19.3. Concentration of Lipschitz Functions

Consider a function f : S(n−1) → R, and imagine that we have a probability density function defined over the
sphere. Let Pr

[
f ≤ t

]
= Pr

[{
x ∈ S n−1

∣∣∣ f (x) ≤ t
}]

. We define the median of f , denoted by med( f ), to be the
sup t, such that Pr

[
f ≤ t

]
≤ 1/2.

We define Pr
[
f < med( f )

]
= supx<med( f ) Pr

[
f ≤ x

]
. The following is obvious but (in fact) requires a formal

proof.

Lemma 19.3.1. We have Pr
[
f < med( f )

]
≤ 1/2 and Pr

[
f > med( f )

]
≤ 1/2.

Proof: Since
⋃

k≥1(−∞,med( f ) − 1/k] = (−∞,med( f )), we have

Pr
[
f < med( f )

]
= sup

k≥1
Pr

[
f ≤ med( f ) −

1
k

]
≤ sup

k≥1

1
2
=

1
2
.

The second claim follows by a symmetric argument. �

Definition 19.3.2 (c-Lipschitz). A function f : A→ B is c-Lipschitz if, for any x, y ∈ A, we have ‖ f (x) − f (y)‖ ≤
c ‖x − y‖.

Theorem 19.3.3 (Lévy’s Lemma). Let f : S(n−1) → R be 1-Lipschitz. Then for all t ∈ [0, 1],

Pr
[
f > med( f ) + t

]
≤ 2 exp

(
−t2n/2

)
and Pr

[
f < med( f ) − t

]
≤ 2 exp

(
−t2n/2

)
.

Proof: We prove only the first inequality, the second follows by symmetry. Let

A =
{
x ∈ S(n−1)

∣∣∣ f (x) ≤ med( f )
}
.

By Lemma 19.3.1, we have Pr[A] ≥ 1/2. Consider a point x ∈ At, where At is as defined in Theorem 19.2.1.
Let nn(x) be the nearest point in A to x. We have by definition that ‖x − nn(x)‖ ≤ t. As such, since f is
1-Lipschitz and nn(x) ∈ A, we have that

f (x) ≤ f (nn(x)) + ‖nn(x) − x‖ ≤ med( f ) + t.

Thus, by Theorem 19.2.1, we get Pr
[
f > med( f ) + t

]
≤ 1 − Pr[At] ≤ 2 exp

(
−t2n/2

)
. �

19.4. The Johnson-Lindenstrauss Lemma

Lemma 19.4.1. For a unit vector x ∈ S(n−1), let

f (x) =
√

x2
1 + x2

2 + · · · + x2
k

be the length of the projection of x into the subspace formed by the first k coordinates. Let x be a vector
randomly chosen with uniform distribution from S(n−1). Then f (x) is sharply concentrated. Namely, there exists
m = m(n, k) such that

Pr
[
f (x) ≥ m + t

]
≤ 2 exp(−t2n/2) and Pr

[
f (x) ≤ m − t

]
≤ 2 exp(−t2n/2),

for any t ∈ [0, 1]. Furthermore, for k ≥ 10 ln n, we have m ≥ 1
2

√
k/n.
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Proof: The orthogonal projection p : Rn → Rk given by p(x1, . . . , xn) = (x1, . . . , xk) is 1-Lipschitz (since
projections can only shrink distances, see Exercise 19.6.4). As such, f (x) = ‖p(x)‖ is 1-Lipschitz, since for any
x, y we have

| f (x) − f (y)| = |‖p(x)‖ − ‖p(y)‖| ≤ ‖p(x) − p(y)‖ ≤ ‖x − y‖ ,

by the triangle inequality and since p is 1-Lipschitz. Theorem 19.3.3 (i.e., Lévy’s lemma) gives the required
tail estimate with m = med( f ).

Thus, we only need to prove the lower bound on m. For a random x = (x1, . . . , xn) ∈ S(n−1), we have
E
[
‖x‖2

]
= 1. By linearity of expectations, and symmetry, we have 1 = E

[
‖x‖2

]
= E

[∑n
i=1 x2

i

]
=

∑n
i=1 E

[
x2

i

]
=

n E
[
x2

j

]
, for any 1 ≤ j ≤ n. Thus, E

[
x2

j

]
= 1/n, for j = 1, . . . , n. Thus,

E
[
( f (x))2

]
= E

 k∑
i=1

x2
i

 = k∑
i=1

E[xi] =
k
n
,

by linearity of expectation.
We next use that f is concentrated, to show that f 2 is also relatively concentrated. For any t ≥ 0, we have

k
n
= E

[
f 2

]
≤ Pr

[
f ≤ m + t

]
(m + t)2 + Pr

[
f ≥ m + t

]
· 1 ≤ 1 · (m + t)2 + 2 exp(−t2n/2),

since f (x) ≤ 1, for any x ∈ S(n−1). Let t =
√

k/5n. Since k ≥ 10 ln n, we have that 2 exp(−t2n/2) ≤ 2/n. We get
that

k
n
≤

(
m +

√
k/5n

)2
+ 2/n.

Implying that
√

(k − 2)/n ≤ m +
√

k/5n, which in turn implies that m ≥
√

(k − 2)/n −
√

k/5n ≥ 1
2

√
k/n. �

Next, we would like to argue that given a fixed vector, projecting it down into a random k-dimensional
subspace results in a random vector such that its length is highly concentrated. This would imply that we can
do dimension reduction and still preserve distances between points that we care about.

To this end, we would like to flip Lemma 19.4.1 around. Instead of randomly picking a point and projecting
it down to the first k-dimensional space, we would like x to be fixed, and randomly pick the k-dimensional
subspace we project into. However, we need to pick this random k-dimensional space carefully. Indeed, if we
rotate this random subspace, by a transformation T , so that it occupies the first k dimensions, then the point
T (x) needs to be uniformly distributed on the hypersphere if we want to use Lemma 19.4.1.

As such, we would like to randomly pick a rotation of Rn. This maps the standard orthonormal basis into
a randomly rotated orthonormal space. Taking the subspace spanned by the first k vectors of the rotated basis
results in a k-dimensional random subspace. Such a rotation is an orthonormal matrix with determinant 1. We
can generate such a matrix, by randomly picking a vector e1 ∈ S

(n−1). Next, we set e1 as the first column of our
rotation matrix, and generate the other n − 1 columns, by generating recursively n − 1 orthonormal vectors in
the space orthogonal to e1.

Remark 19.4.2 (Generating a random point on the sphere.). At this point, the reader might wonder how do
we pick a point uniformly from the unit hypersphere. The idea is to pick a point from the multi-dimensional
normal distribution Nn(0, 1), and normalizing it to have length 1. Since the multi-dimensional normal distribu-
tion has the density function

(2π)−n/2 exp
(
−(x2

1 + x2
2 + · · · + x2

n)/2
)
,
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which is symmetric (i.e., all the points in distance r from the origin have the same distribution), it follows that
this indeed generates a point randomly and uniformly on S(n−1).

Generating a vector with multi-dimensional normal distribution, is no more than picking each coordinate
according to the normal distribution, see Lemma 19.7.1p13. Given a source of random numbers according to
the uniform distribution, this can be done using a O(1) computations per coordinate, using the Box-Muller
transformation [BM58]. Overall, each random vector can be generated in O(n) time.

Since projecting down n-dimensional normal distribution to the lower dimensional space yields a normal
distribution, it follows that generating a random projection, is no more than randomly picking n vectors ac-
cording to the multidimensional normal distribution v1, . . . , vn. Then, we orthonormalize them, using Graham-
Schmidt, where v̂1 = v1/ ‖v1‖, and v̂i is the normalized vector of vi − wi, where wi is the projection of vi to the
space spanned by v1, . . . , vi−1.

Taking those vectors as columns of a matrix, generates a matrix A, with determinant either 1 or −1. We
multiply one of the vectors by −1 if the determinant is −1. The resulting matrix is a random rotation matrix.

We can now restate Lemma 19.4.1 in the setting where the vector is fixed and the projection is into a random
subspace.

Lemma 19.4.3. Let x ∈ S(n−1) be an arbitrary unit vector, and consider a random k dimensional subspace F,
and let f (x) be the length of the projection of x into F. Then, there exists m = m(n, k) such that

Pr
[
f (x) ≥ m + t

]
≤ 2 exp(−t2n/2) and Pr

[
f (x) ≤ m − t

]
≤ 2 exp(−t2n/2),

for any t ∈ [0, 1]. Furthermore, for k ≥ 10 ln n, we have m ≥ 1
2

√
k/n.

Proof: Let vi be the ith orthonormal vector having 1 at the ith coordinate. Let M be a random translation
of space generated as described above. Clearly, for arbitrary fixed unit vector x, the vector Mx is distributed
uniformly on the sphere. Now, the ith column of the matrix M is the random vector ei, and MT vi = ei. As such,
we have

〈Mx, vi〉 = (Mx)T vi = xT MT vi = xT ei = 〈x, ei〉 .

In particular, treating Mx as a random vector, and projecting it on the first k coordinates, we have that

f (x) =

√√
k∑

i=1

〈Mx, vi〉
2 =

√√
k∑

i=1

〈x, ei〉
2.

But e1, . . . , ek is just an orthonormal basis of a random k-dimensional subspace. As such, the expression on
the right is the length of the projection of x into a k-dimensional random subspace. As such, the length of the
projection of x into a random k-dimensional subspace has exactly the same distribution as the length of the
projection of a random vector into the first k coordinates. The claim now follows by Lemma 19.4.1. �

Definition 19.4.4. The mapping f : Rn → Rk is called K-bi-Lipschitz for a subset X ⊆ Rn if there exists a
constant c > 0 such that

cK−1 · ‖p − q‖ ≤ ‖ f (p) − f (q)‖ ≤ c · ‖p − q‖ ,

for all p, q ∈ X.
The least K for which f is K-bi-Lipschitz is called the distortion of f , and is denoted dist( f ). We will refer

to f as a K-embedding of X.
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Remark 19.4.5. Let X ⊆ Rm be a set of n points, where m potentially might be much larger than n. Observe,
that in this case, since we only care about the inter-point distances of points in X, we can consider X to be a
set of points lying in the affine subspace F spanned by the points of X. Note, that this subspace has dimension
n− 1. As such, each point of X be interpreted as n− 1 dimensional point in F. Namely, we can assume, for our
purposes, that the set of n points in Euclidean space we care about lies in Rn (in fact, Rn−1).

Note, that if m < n we can always pad all the coordinates of the points of X by zeros, such that the resulting
point set lies in Rn.

Theorem 19.4.6 (Johnson-Lindenstrauss lemma.). Let X be an n-point set in a Euclidean space, and let
ε ∈ (0, 1] be given. Then there exists a (1 + ε)-embedding of X into Rk, where k = O(ε−2 log n).

Proof: By Remark 19.4.5, we can assume that X ⊆ Rn. Let k = 200ε−2 ln n. Assume k < n, and let F be a
random k-dimensional linear subspace of Rn. Let PF : Rn → F be the orthogonal projection operator of Rn into
F. Let m be the number around which ‖PF(x)‖ is concentrated, for x ∈ S(n−1), as in Lemma 19.4.3.

Fix two points x, y ∈ Rn, we prove that(
1 −

ε

3

)
m ‖x − y‖ ≤ ‖PF(x) − PF(y)‖ ≤

(
1 +

ε

3

)
m ‖x − y‖

holds with probability ≥ 1−n−2. Since there are
(

n
2

)
pairs of points in X, it follows that with constant probability

(say > 1/3) this holds for all pairs of points of X. In such a case, the mapping p is D-embedding of X into Rk

with D ≤ 1+ε/3
1−ε/3 ≤ 1 + ε, for ε ≤ 1.

Let u = x − y, we have PF(u) = PF(x) − PF(y) since PF(·) is a linear operator. Thus, the condition becomes(
1 − ε

3

)
m ‖u‖ ≤ ‖PF(u)‖ ≤

(
1 + ε

3

)
m ‖u‖. Again, since projection is a linear operator, for any α > 0, the

condition is equivalent to (
1 − ε

3

)
m ‖αu‖ ≤ ‖PF(αu)‖ ≤

(
1 + ε

3

)
m ‖αu‖ .

As such, we can assume that ‖u‖ = 1 by picking α = 1/ ‖u‖. Namely, we need to show that

|‖PF(u)‖ − m| ≤
ε

3
m.

Let f (u) = ‖PF(u)‖. By Lemma 19.4.1 (exchanging the random space with the random vector), for t = εm/3,
we have that the probability that this does not hold is bounded by

Pr
[
| f (u) − m| ≥ t

]
≤ 4 exp

(
−

t2n
2

)
= 4 exp

(
−ε2m2n

18

)
≤ 4 exp

(
−
ε2k
72

)
< n−2,

since m ≥ 1
2

√
k/n and k = 200ε−2 ln n. �

19.5. Bibliographical notes
Our presentation follows Matoušek [Mat02]. The Brunn-Minkowski inequality is a powerful inequality which
is widely used in mathematics. A nice survey of this inequality and its applications is provided by Gardner
[Gar02]. Gardner says: “In a sea of mathematics, the Brunn-Minkowski inequality appears like an octopus,
tentacles reaching far and wide, its shape and color changing as it roams from one area to the next.” However,
Gardner is careful in claiming that the Brunn-Minkowski inequality is one of the most powerful inequalities
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in mathematics since as a wit put it “the most powerful inequality is x2 ≥ 0, since all inequalities are in some
sense equivalent to it.”

A striking application of the Brunn-Minkowski inequality is the proof that in any partial ordering of n
elements, there is a single comparison that knowing its result, reduces the number of linear extensions that are
consistent with the partial ordering, by a constant fraction. This immediately implies (the uninteresting result)
that one can sort n elements in O(n log n) comparisons. More interestingly, it implies that if there are m linear
extensions of the current partial ordering, we can always sort it using O(log m) comparisons. A nice exposition
of this surprising result is provided by Matoušek [Mat02, Section 12.3].

There are several alternative proofs of the JL lemma, see [IM98] and [DG03]. Interestingly, it is enough to
pick each entry in the dimension reducing matrix randomly out of −1, 0, 1. This requires a more involved proof
[Ach01]. This is useful when one cares about storing this dimension reduction transformation efficiently.

Magen [Mag07] observed that the JL lemma preserves angles, and in fact can be used to preserve any “k
dimensional angle”, by projecting down to dimension O(kε−2 log n). In particular, Exercise 19.6.5 is taken from
there.

In fact, the random embedding preserves much more structure than just distances between points. It pre-
serves the structure and distances of surfaces as long as they are low dimensional and “well behaved”, see
[AHY07] for some results in this direction.

Dimension reduction is crucial in learning, AI, databases, etc. One common technique that is being used
in practice is to do PCA (i.e., principal component analysis) and take the first few main axes. Other techniques
include independent component analysis, and MDS (multidimensional scaling). MDS tries to embed points
from high dimensions into low dimension (d = 2 or 3), while preserving some properties. Theoretically,
dimension reduction into really low dimensions is hopeless, as the distortion in the worst case is Ω(n1/(k−1)), if
k is the target dimension [Mat90].

19.6. Exercises

Exercise 19.6.1 (Boxes can be separated.). (Easy.) Let A and B be two axis-parallel boxes that are interior
disjoint. Prove that there is always an axis-parallel hyperplane that separates the interior of the two boxes.

Exercise 19.6.2 (Brunn-Minkowski inequality slight extension.). Prove the following.

Corollary 19.6.3. For A and B compact sets in Rn, we have for any λ ∈ [0, 1] that
vol(λA + (1 − λ)B) ≥ vol(A)λvol(B)1−λ.

Exercise 19.6.4 (Projections are contractions.). (Easy.) Let F be a k-dimensional affine subspace, and let
PF : Rd → F be the projection that maps every point x ∈ Rd to its nearest neighbor on F. Prove that p is a
contraction (i.e., 1-Lipschitz). Namely, for any p, q ∈ Rd, it holds that ‖PF(p) − PF(q)‖ ≤ ‖ p − q ‖.

Exercise 19.6.5 (JL Lemma works for angles.). Show that the Johnson-Lindenstrauss lemma also (1 ± ε)-
preserves angles among triples of points of P (you might need to increase the target dimension however by a
constant factor). [For every angle, construct a equilateral triangle that its edges are being preserved by the
projection (add the vertices of those triangles [conceptually] to the point set being embedded). Argue, that this
implies that the angle is being preserved.]
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19.7. Miscellaneous
Lemma 19.7.1. (A) The multidimensional normal distribution is symmetric; that is, for any two points p, q ∈
Rd such that ‖p‖ = ‖q‖ we have that g(p) = g(q), where g(·) is the density function of the multidimensional
normal distribution Nd.

(B) The projection of the normal distribution on any direction is a one dimensional normal distribution.
(C) Picking d variables X1, . . . , Xd using one dimensional normal distribution N results in a point (X1, . . . , Xd)

that has multidimensional normal distribution Nd.
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Chapter 20

On Complexity, Sampling, and ε-Nets and
ε-Samples
By Sariel Har-Peled, December 30, 2015¬

“I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s all, though ten
is the age when the big guys come around teaching you all sorts to things. But happiness doesn’t mean much to me, I
still think life is better. Happiness is a mean son of a bitch and needs to be put in his place. Him and me aren’t on the
same team, and I’m cutting him dead. I’ve never gone in for politics, because somebody always stand to gain by it,
but happiness is an even crummier racket, and their ought to be laws to put it out of business.”

– Momo, Emile Ajar.

In this chapter we will try to quantify the notion of geometric complexity. It is intuitively clear that a a (i.e.,
disk) is a simpler shape than anc (i.e., ellipse), which is in turn simpler than a - (i.e., smiley). This becomes
even more important when we consider several such shapes and how they interact with each other. As these
examples might demonstrate, this notion of complexity is somewhat elusive.

To this end, we show that one can capture the structure of a distribution/point set by a small subset. The
size here would depend on the complexity of the shapes/ranges we care about, but surprisingly it would be
independent of the size of the point set.

20.1. VC dimension
Definition 20.1.1. A range space S is a pair (X,R), where X is a ground set (finite or infinite) and R is a (finite
or infinite) family of subsets of X. The elements of X are points and the elements of R are ranges.

Our interest is in the size/weight of the ranges in the range space. For technical reasons, it will be easier to
consider a finite subset x as the underlining ground set.

Definition 20.1.2. Let S = (X,R) be a range space, and let x be a finite (fixed) subset of X. For a range r ∈ R,
its measure is the quantity

m(r) =
|r ∩ x|
|x|
.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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While x is finite, it might be very large. As such, we are interested in getting a good estimate to m(r) by
using a more compact set to represent the range space.

Definition 20.1.3. Let S = (X,R) be a range space. For a subset N (which might be a multi-set) of x, its
estimate of the measure of m(r), for r ∈ R, is the quantity

s(r) =
|r ∩ N |
|N |

.

The main purpose of this chapter is to come up with methods to generate a sample N, such that m(r) ≈ s(r),
for all the ranges r ∈ R.

It is easy to see that in the worst case, no sample can capture the measure of all ranges. Indeed, given a
sample N, consider the range x \ N that is being completely missed by N. As such, we need to concentrate
on range spaces that are “low dimensional”, where not all subsets are allowable ranges. The notion of VC
dimension (named after Vapnik and Chervonenkis [VC71]) is one way to limit the complexity of a range space.

Definition 20.1.4. Let S = (X,R) be a range space. For Y ⊆ X, let

R|Y =
{
r ∩ Y

∣∣∣ r ∈ R }
(20.1)

denote the projection of R on Y . The range space S projected to Y is S|Y =
(
Y,R|Y

)
.

If R|Y contains all subsets of Y (i.e., if Y is finite, we have
∣∣∣R|Y ∣∣∣ = 2|Y |), then Y is shattered by R (or

equivalently Y is shattered by S).
The Vapnik-Chervonenkis dimension (or VC dimension) of S, denoted by dimVC(S ), is the maximum

cardinality of a shattered subset of X. If there are arbitrarily large shattered subsets, then dimVC(S ) = ∞.

20.1.1. Examples

1 2Intervals. Consider the set X to be the real line, and consider R to be the set of all intervals on
the real line. Consider the set Y = {1, 2}. Clearly, one can find four intervals that contain all
possible subsets of Y . Formally, the projection R|Y = {{ } , {1} , {2} , {1, 2}}. The intervals realizing each of these
subsets are depicted on the right.

p q sHowever, this is false for a set of three points B = {p, q, r}, since there is no interval that can
contain the two extreme points p and r without also containing q. Namely, the subset {p, r} is not realizable
for intervals, implying that the largest shattered set by the range space (real line, intervals) is of size two. We
conclude that the VC dimension of this space is two.

{p.q}

p

q

t

Disks. Let X = R2, and let R be the set of disks in the plane. Clearly, for any three
points in the plane (in general position), denoted by p, q, and r, one can find eight
disks that realize all possible 23 different subsets. See the figure on the right.

But can disks shatter a set with four points? Consider such a set P of four points.
If the convex hull of P has only three points on its boundary, then the subset X having
only those three vertices (i.e., it does not include the middle point) is impossible, by
convexity. Namely, there is no disk that contains only the points of X without the
middle point.
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d

a
c

b

Alternatively, if all four points are vertices of the convex hull and they are a, b, c, d
along the boundary of the convex hull, either the set {a, c} or the set {b, d} is not realizable.
Indeed, if both options are realizable, then consider the two disks D1 and D2 that realize
those assignments. Clearly, ∂D1 and ∂D2 must intersect in four points, but this is not
possible, since two circles have at most two intersection points. See the figure on the left.
Hence the VC dimension of this range space is 3.

CH(V)

Convex sets. Consider the range space S = (R2,R), where R is the set of all (closed)
convex sets in the plane. We claim that dimVC(S) = ∞. Indeed, consider a set U
of n points p1, . . . , pn all lying on the boundary of the unit circle in the plane. Let V
be any subset of U, and consider the convex hull CH(V). Clearly, CH(V) ∈ R, and
furthermore, CH(V) ∩ U = V . Namely, any subset of U is realizable by S. Thus, S can
shatter sets of arbitrary size, and its VC dimension is unbounded.
Complement. Consider the range space S = (X,R) with δ = dimVC(S). Next, consider the complement space,
S =

(
X,R

)
, where

R =
{
X \ r

∣∣∣ r ∈ R }
;

namely, the ranges of S are the complement of the ranges in S. What is the VC dimension of S? Well, a set
B ⊆ X is shattered by S if and only if it is shattered by S. Indeed, if S shatters B, then for any Z ⊆ B, we have
that (B \ Z) ∈ R|B, which implies that Z = B \ (B \ Z) ∈ R|B. Namely, R|B contains all the subsets of B, and S
shatters B. Thus, dimVC

(
S
)
= dimVC(S).

Lemma 20.1.5. For a range space S = (X,R) we have that dimVC(S) = dimVC

(
S
)

, where S is the complement
range space.

20.1.1.1. Halfspaces

Let S = (X,R), where X = Rd and R is the set of all (closed) halfspaces in Rd. We need the following technical
claim.

Claim 20.1.6. Let P = {p1, . . . , pd+2} be a set of d + 2 points in Rd. There are real numbers β1, . . . , βd+2, not
all of them zero, such that

∑
i βipi = 0 and

∑
i βi = 0.

Proof: Indeed, set qi = (pi, 1), for i = 1, . . . , d + 2. Now, the points q1, . . . , qd+2 ∈ R
d+1 are linearly dependent,

and there are coefficients β1, . . . , βd+2, not all of them zero, such that
∑d+2

i=1 βiqi = 0. Considering only the first
d coordinates of these points implies that

∑d+2
i=1 βipi = 0. Similarly, by considering only the (d + 1)st coordinate

of these points, we have that
∑d+2

i=1 βi = 0. �

To see what the VC dimension of halfspaces inRd is, we need the following result of Radon. (For a reminder
of the formal definition of convex hulls, see Definition 20.9.1p25.)

Theorem 20.1.7 (Radon’s theorem). Let P = {p1, . . . , pd+2} be a set of d + 2 points in Rd. Then, there exist
two disjoint subsets C and D of P, such that CH(C) ∩ CH(D) , ∅ and C ∪ D = P.

Proof: By Claim 20.1.6 there are real numbers β1, . . . , βd+2, not all of them zero, such that
∑

i βipi = 0 and∑
i βi = 0.
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Assume, for the sake of simplicity of exposition, that β1, . . . , βk ≥ 0 and βk+1, . . ., βd+2 < 0. Furthermore,
let µ =

∑k
i=1 βi = −

∑d+2
i=k+1 βi. We have that

k∑
i=1

βipi = −

d+2∑
i=k+1

βipi.

In particular, v =
∑k

i=1(βi/µ)pi is a point in CH({p1, . . . , pk}). Furthermore, for the same point v we have
v =

∑d+2
i=k+1 −(βi/µ)pi ∈ CH({pk+1, . . . , pd+2}). We conclude that v is in the intersection of the two convex hulls,

as required. �

The following is a trivial observation, and yet we provide a proof to demonstrate it is true.

Lemma 20.1.8. Let P ⊆ Rd be a finite set, let r be any point in CH(P), and let h+ be a halfspace of Rd

containing r. Then there exists a point of P contained inside h+.

Proof: The halfspace h+ can be written as h+ =
{
t ∈ Rd

∣∣∣ 〈t, v〉 ≤ c
}
. Now r ∈ CH(P) ∩ h+, and as such there

are numbers α1, . . . , αm ≥ 0 and points p1, . . . , pm ∈ P, such that
∑

i αi = 1 and
∑

i αipi = r. By the linearity of
the dot product, we have that

r ∈ h+ =⇒ 〈r, v〉 ≤ c =⇒
〈 m∑

i=1

αipi, v
〉
≤ c =⇒ β =

m∑
i=1

αi 〈pi, v〉 ≤ c.

Setting βi = 〈pi, v〉, for i = 1, . . . ,m, the above implies that β is a weighted average of β1, . . . , βm. In particular,
there must be a βi that is no larger than the average. That is βi ≤ c. This implies that 〈pi, v〉 ≤ c. Namely,
pi ∈ h+ as claimed. �

Let S be the range space having Rd as the ground set and all the close halfspaces as ranges. Radon’s theorem
implies that if a set Q of d + 2 points is being shattered by S, then we can partition this set Q into two disjoint
sets Y and Z such that CH(Y) ∩ CH(Z) , ∅. In particular, let r be a point in CH(Y) ∩ CH(Z). If a halfspace
h+ contains all the points of Y , then CH(Y) ⊆ h+, since a halfspace is a convex set. Thus, any halfspace h+

containing all the points of Y will contain the point r ∈ CH(Y). But r ∈ CH(Z) ∩ h+, and this implies that a
point of Z must lie in h+, by Lemma 20.1.8. Namely, the subset Y ⊆ Q cannot be realized by a halfspace, which
implies that Q cannot be shattered. Thus dimVC(S ) < d + 2. It is also easy to verify that the regular simplex
with d + 1 vertices is shattered by S. Thus, dimVC(S ) = d + 1.

20.2. Shattering dimension and the dual shattering dimension
The main property of a range space with bounded VC dimension is that the number of ranges for a set of n
elements grows polynomially in n (with the power being the dimension) instead of exponentially. Formally, let
the growth function be

Gδ(n) =
δ∑

i=0

(
n
i

)
≤

δ∑
i=0

ni

i!
≤ nδ, (20.2)

for δ > 1 (the cases where δ = 0 or δ = 1 are not interesting and we will just ignore them). Note that for all
n, δ ≥ 1, we have Gδ(n) = Gδ(n − 1) + Gδ−1(n − 1)­.

­Here is a cute (and standard) counting argument: Gδ(n) is just the number of different subsets of size at most δ out of n elements.
Now, we either decide to not include the first element in these subsets (i.e., Gδ(n− 1)) or, alternatively, we include the first element in
these subsets, but then there are only δ − 1 elements left to pick (i.e., Gδ−1(n − 1)).
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Lemma 20.2.1 (Sauer’s lemma). If (X,R) is a range space of VC dimension δ with |X| = n, then |R| ≤ Gδ(n).

Proof: The claim trivially holds for δ = 0 or n = 0.
Let x be any element of X, and consider the sets

Rx =
{
r \ {x}

∣∣∣ r ∪ {x} ∈ R and r \ {x} ∈ R
}

and R \ x =
{
r \ {x}

∣∣∣ r ∈ R }
.

Observe that |R| = |Rx| + |R \ x|. Indeed, we charge the elements of R to their corresponding element in R \ x.
The only bad case is when there is a range r such that both r ∪ {x} ∈ R and r \ {x} ∈ R, because then these two
distinct ranges get mapped to the same range in R \ x. But such ranges contribute exactly one element to Rx.
Similarly, every element of Rx corresponds to two such “twin” ranges in R.

Observe that (X \ {x} ,Rx) has VC dimension δ − 1, as the largest set that can be shattered is of size δ − 1.
Indeed, any set B ⊂ X \ {x} shattered by Rx implies that B ∪ {x} is shattered in R.

Thus, we have

|R| = |Rx| + |R \ x| ≤ Gδ−1(n − 1) + Gδ(n − 1) = Gδ(n),

by induction. �

Interestingly, Lemma 20.2.1 is tight. See Exercise 20.8.4.
Next, we show pretty tight bounds on Gδ(n). The proof is technical and not very interesting, and it is

delegated to Section 20.6.

Lemma 20.2.2. For n ≥ 2δ and δ ≥ 1, we have
(n
δ

)δ
≤ Gδ(n) ≤ 2

(ne
δ

)δ
, where Gδ(n) =

δ∑
i=0

(
n
i

)
.

Definition 20.2.3 (Shatter function). Given a range space S = (X,R), its shatter function πS(m) is the maxi-
mum number of sets that might be created by S when restricted to subsets of size m. Formally,

πS(m) = max
B⊂X
|B|=m

∣∣∣R|B∣∣∣ ;
see Eq. (20.1).

The shattering dimension of S is the smallest d such that πS(m) = O(md), for all m.

By applying Lemma 20.2.1 to a finite subset of X, we get:

Corollary 20.2.4. If S = (X,R) is a range space of VC dimension δ, then for every finite subset B of X, we have∣∣∣R|B∣∣∣ ≤ πS(|B|) ≤ Gδ(|B|). That is, the VC dimension of a range space always bounds its shattering dimension.

Proof: Let n = |B|, and observe that
∣∣∣R|B∣∣∣ ≤ Gδ(n) ≤ nδ, by Eq. (20.2). As such,

∣∣∣R|B∣∣∣ ≤ nδ, and, by definition,
the shattering dimension of S is at most δ; namely, the shattering dimension is bounded by the VC dimension.�

Our arch-nemesis in the following is the function x/ ln x. The following lemma states some properties of
this function, and its proof is delegated to Exercise 20.8.2.

Lemma 20.2.5. For the function f (x) = x/ ln x the following hold.
(A) f (x) is monotonically increasing for x ≥ e.
(B) f (x) ≥ e, for x > 1.
(C) For u ≥

√
e, if f (x) ≤ u, then x ≤ 2u ln u.
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(D) For u ≥
√

e, if x > 2u ln u, then f (x) > u.
(E) For u ≥ e, if f (x) ≥ u, then x ≥ u ln u.

The next lemma introduces a standard argument which is useful in bounding the VC dimension of a range
space by its shattering dimension. It is easy to see that the bound is tight in the worst case.

Lemma 20.2.6. If S = (X,R) is a range space with shattering dimension d, then its VC dimension is bounded
by O(d log d).

Proof: Let N ⊆ X be the largest set shattered by S, and let δ denote its cardinality. We have that 2δ =
∣∣∣R|N ∣∣∣ ≤

πS(|N|) ≤ cδ d, where c is a fixed constant. As such, we have that δ ≤ lg c + d lg δ, which in turn implies that
δ − lg c

lg δ
≤ d.® Assuming δ ≥ max

(
2, 2 lg c

)
, we have that

δ

2 lg δ
≤ d =⇒

δ

ln δ
≤

2d
ln 2
≤ 6d =⇒ δ ≤ 2(6d) ln(6d),

by Lemma 20.2.5(C). �

Disks revisited. To see why the shattering dimension is more convenient to work with than the VC dimension,
consider the range space S = (X,R), where X = R2 and R is the set of disks in the plane. We know that the VC
dimension of S is 3 (see Section 20.1.1).

We next use a standard continuous deformation argument to argue that the shattering dimension of this
range space is also 3.

Lemma 20.2.7. Consider the range space S = (X,R), where X = R2 and R is the set of disks in the plane. The
shattering dimension of S is 3.

Proof: Consider any set P of n points in the plane, and consider the set F = R|P. We claim that |F | ≤ 4n3.
The set F contains only n sets with a single point in them and only

(
n
2

)
sets with two points in them. So, fix

Q ∈ F such that |Q| ≥ 3.

D

=⇒

D′

D

p

=⇒

q

D′

D′′

p

®We remind the reader that lg = log2.
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⇓

q

s

D′′

D̂

p

There is a disk D that realizes this subset; that is, P ∩ D = Q. For the
sake of simplicity of exposition, assume that P is in general position. Shrink
D till its boundary passes through a point p of P.

Now, continue shrinking the new disk D′ in such a way that its boundary
passes through the point p (this can be done by moving the center of D′

towards p). Continue in this continuous deformation till the new boundary
hits another point q of P. Let D′′ denote this disk.

Next, we continuously deform D′′ so that it has both p ∈ Q and q ∈ Q on
its boundary. This can be done by moving the center of D′′ along the bisector
linear between p and q. Stop as soon as the boundary of the disk hits a third
point r ∈ P. (We have freedom in choosing in which direction to move the
center. As such, move in the direction that causes the disk boundary to hit a
new point r.) Let D̂ be the resulting disk. The boundary of D̂ is the unique circle passing through p, q, and r.
Furthermore, observe that

D ∩ (P \ {r}) = D̂ ∩ (P \ {r}).

That is, we can specify the point set P ∩ D by specifying the three points p, q, r (and thus specifying the disk
D̂) and the status of the three special points; that is, we specify for each point p, q, r whether or not it is inside
the generated subset.

As such, there are at most 8
(

n
3

)
different subsets in F containing more than three points, as each such subset

maps to a “canonical” disk, there are at most
(

n
3

)
different such disks, and each such disk defines at most eight

different subsets.
Similar argumentation implies that there are at most 4

(
n
2

)
subsets that are defined by a pair of points that

realizes the diameter of the resulting disk. Overall, we have that

|F | = 1 + n + 4
(
n
2

)
+ 8

(
n
3

)
≤ 4n3,

since there is one empty set in F , n sets of size 1, and the rest of the sets are counted as described above. �

The proof of Lemma 20.2.7 might not seem like a great simplification over the same bound we got by
arguing about the VC dimension. However, the above argumentation gives us a very powerful tool – the
shattering dimension of a range space defined by a family of shapes is always bounded by the number of points
that determine a shape in the family.

Thus, the shattering dimension of, say, arbitrarily oriented rectangles in the plane is
bounded by (and in this case, equal to) five, since such a rectangle is uniquely determined
by five points. To see that, observe that if a rectangle has only four points on its boundary,
then there is one degree of freedom left, since we can rotate the rectangle “around” these
points; see the figure on the right.

20.2.1. The dual shattering dimension
Given a range space S = (X,R), consider a point p ∈ X. There is a set of ranges of R associated with p, namely,
the set of all ranges of R that contains p which we denote by

Rp =
{
r

∣∣∣ r ∈ R, the range r contains p
}
.

This gives rise to a natural dual range space to S.
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Definition 20.2.8. The dual range space to a range space S = (X,R) is the space S? = (R,X?), where X? ={
Rp

∣∣∣ p ∈ X
}
.

(A) p1
p′1

D1 D2

D3

p2

p3

p4

p5

p6

(B)

p1 p′1 p2 p3 p4 p5 p6

D1 1 1 1 1 1 0 0
D2 1 1 0 0 1 1 1
D3 1 1 1 0 0 0 1

D1 D2 D3

p1 1 1 1
p′1 1 1 1
p2 1 0 1
p3 1 0 0
p4 1 1 0
p5 0 1 0
p6 0 1 1

(C)

Figure 20.1: (A) Rp1 = Rp′1
. (B) Writing the set system as an incidence matrix where a point is a column and a

set is a row. For example, D2 contains p4, and as such the column of p4 has a 1 in the row corresponding to D2.
(C) The dual set system is represented by a matrix which is the transpose of the original incidence matrix.

Naturally, the dual range space to S? is the original S, which is thus sometimes referred to as the primal
range space. (In other words, the dual to the dual is the primal.) The easiest way to see this, is to think about it
as an abstract set system realized as an incidence matrix, where each point is a column and a set is a row in the
matrix having 1 in an entry if and only if it contains the corresponding point; see Figure 20.1. Now, it is easy
to verify that the dual range space is the transposed matrix.

To understand what the dual space is, consider X to be the plane and R to be a set of m disks. Then, in the
dual range space S? = (R,X?), every point p in the plane has a set associated with it in X?, which is the set
of disks of R that contains p. In particular, if we consider the arrangement formed by the m disks of R, then
all the points lying inside a single face of this arrangement correspond to the same set of X?. The number of
ranges in X? is bounded by the complexity of the arrangement of these disks, which is O(m2); see Figure 20.1.

Let the dual shatter function of the range space S be π?S(m) = πS?(m), where S? is the dual range space to
S.

Definition 20.2.9. The dual shattering dimension of S is the shattering dimension of the dual range space S?.

Note that the dual shattering dimension might be smaller than the shattering dimension and hence also
smaller than the VC dimension of the range space. Indeed, in the case of disks in the plane, the dual shattering
dimension is just 2, while the VC dimension and the shattering dimension of this range space is 3. Note, also,
that in geometric settings bounding the dual shattering dimension is relatively easy, as all you have to do is
bound the complexity of the arrangement of m ranges of this space.

The following lemma shows a connection between the VC dimension of a space and its dual. The interested
reader¯ might find the proof amusing.

Lemma 20.2.10. Consider a range space S = (X,R) with VC dimension δ. The dual range space S? = (R,X?)
has VC dimension bounded by 2δ+1.

¯The author is quite aware that the interest of the reader in this issue might not be the result of free choice. Nevertheless, one
might draw some comfort from the realization that the existence of the interested reader is as much an illusion as the existence of free
choice. Both are convenient to assume, and both are probably false. Or maybe not.
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Proof: Assume that S? shatters a set F = {r1, . . . , rk} ⊆ R of k ranges. Then, there is a set P ⊆ X of m = 2k

points that shatters F . Formally, for every subset V ⊆ F , there exists a point p ∈ P, such that Fp = V .
So, consider the matrix M (of dimensions k × 2k) having the points p1, . . . , p2k of P as the columns, and

every row is a set of F , where the entry in the matrix corresponding to a point p ∈ P and a range r ∈ F is 1 if
and only if p ∈ r and zero otherwise. Since P shatters F , we know that this matrix has all possible 2k binary
vectors as columns.

M :

p1 p2 . . . p2k

r1 0 1 0
r2 1 1 1
...

...
...

...
...

rk−2 1 1 . . . 0
rk−1 0 0 . . . 1
rk 1 0 . . . 1

M′ :

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Next, let κ′ = 2
⌊
lg k

⌋
≤ k, and consider the matrix M′ of size

κ′ × lg κ′, where the ith row is the binary representation of the
number i−1 (formally, the jth entry in the ith row is 1 if the jth
bit in the binary representation of i−1 is 1), where i = 1, . . . , κ′.
See the figure on the right. Clearly, the lg κ′ columns of M′

are all different, and we can find lg κ′ columns of M that are
identical to the columns of M′ (in the first κ′ entries starting
from the top of the columns).

Each such column corresponds to a point p ∈ P, and let Q ⊂ P be this set of lg κ′ points. Note that for any
subset Z ⊆ Q, there is a row t in M′ that encodes this subset. Consider the corresponding row in M; that is, the
range rt ∈ F . Since M and M′ are identical (in the relevant lg κ′ columns of M) on the first κ′, we have that
rt ∩ Q = Z. Namely, the set of ranges F shatters Q. But since the original range space has VC dimension δ, it
follows that |Q| ≤ δ. Namely, |Q| = lg κ′ =

⌊
lg k

⌋
≤ δ, which implies that lg k ≤ δ + 1, which in turn implies

that k ≤ 2δ+1. �

Lemma 20.2.11. If a range space S = (X,R) has dual shattering dimension δ, then its VC dimension is
bounded by δO(δ).

Proof: The shattering dimension of the dual range space S? is bounded by δ, and as such, by Lemma 20.2.6, its
VC dimension is bounded by δ′ = O

(
δ log δ

)
. Since the dual range space to S? is S, we have by Lemma 20.2.10

that the VC dimension of S is bounded by 2δ
′+1 = δO(δ). �

The bound of Lemma 20.2.11 might not be pretty, but it is sufficient in a lot of cases to bound the VC
dimension when the shapes involved are simple.

Example 20.2.12. Consider the range space S =
(
R2,R

)
, where R is a set of shapes in the plane, so that the

boundary of any pair of them intersects at most s times. Then, the VC dimension of S is O(1). Indeed, the
dual shattering dimension of S is O(1), since the complexity of the arrangement of n such shapes is O(sn2). As
such, by Lemma 20.2.11, the VC dimension of S is O(1).

20.2.1.1. Mixing range spaces

Lemma 20.2.13. Let S = (X,R) and T = (X,R′) be two range spaces of VC dimension δ and δ′, respectively,
where δ, δ′ > 1. Let R̂ =

{
r ∪ r′

∣∣∣ r ∈ R, r′ ∈ R′ }. Then, for the range space Ŝ =
(
X, R̂

)
, we have that

dimVC

(
Ŝ

)
= O(δ + δ′).

Proof: As a warm-up exercise, we prove a somewhat weaker bound here of O((δ+δ′) log(δ + δ′)). The stronger
bound follows from Theorem 20.2.14 below. Let B be a set of n points in X that are shattered by Ŝ. There
are at most Gδ(n) and Gδ′(n) different ranges of B in the range sets R|B and R′

|B, respectively, by Lemma 20.2.1.
Every subset C of B realized by r̂ ∈ R̂ is a union of two subsets B ∩ r and B ∩ r′, where r ∈ R and r′ ∈ R′,
respectively. Thus, the number of different subsets of B realized by Ŝ is bounded by Gδ(n)Gδ′(n). Thus,
2n ≤ nδnδ

′

, for δ, δ′ > 1. We conclude that n ≤ (δ + δ′) lg n, which implies that n = O
(
(δ + δ′) log(δ + δ′)

)
, by

Lemma 20.2.5(C). �
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Interestingly, one can prove a considerably more general result with tighter bounds. The required compu-
tations are somewhat more painful.

Theorem 20.2.14. Let S1 =
(
X,R1

)
, . . . ,Sk =

(
X,Rk

)
be range spaces with VC dimension δ1, . . . , δk, respec-

tively. Next, let f (r1, . . . , rk) be a function that maps any k-tuple of sets r1 ∈ R
1, . . . , rk ∈ R

k into a subset of X.
Consider the range set

R′ =
{
f (r1, . . . , rk)

∣∣∣ r1 ∈ R1, . . . , rk ∈ Rk

}
and the associated range space T = (X,R′). Then, the VC dimension of T is bounded by O

(
kδ lg k

)
, where

δ = maxi δi.

Proof: Assume a set Y ⊆ X of size t is being shattered by R′, and observe that∣∣∣R′|Y ∣∣∣ ≤ ∣∣∣∣{(r1, . . . , rk)
∣∣∣ r1 ∈ R

1
|Y , . . . , rk ∈ R

k
|Y

}∣∣∣∣ ≤ ∣∣∣R1
|Y

∣∣∣ · · · ∣∣∣Rk
|Y

∣∣∣ ≤ Gδ1(t) · Gδ2(t) · · ·Gδk(t)

≤ (Gδ(t))k
≤

(
2
( te
δ

)δ)k

,

by Lemma 20.2.1 and Lemma 20.2.2. On the other hand, since Y is being shattered by R′, this implies that∣∣∣R′
|Y

∣∣∣ = 2t. Thus, we have the inequality 2t ≤
(
2(te/δ)δ

)k
, which implies t ≤ k

(
1 + δ lg(te/δ)

)
. Assume that

t ≥ e and δ lg(te/δ) ≥ 1 since otherwise the claim is trivial, and observe that t ≤ k
(
1 + δ lg(te/δ)

)
≤ 3kδ lg(t/δ).

Setting x = t/δ, we have

t
δ
≤ 3k

ln(t/δ)
ln 2

≤ 6k ln
t
δ
=⇒

x
ln x
≤ 6k =⇒ x ≤ 2 · 6k ln(6k) =⇒ x ≤ 12k ln(6k),

by Lemma 20.2.5(C). We conclude that t ≤ 12δk ln(6k), as claimed. �

Corollary 20.2.15. Let S = (X,R) and T = (X,R′) be two range spaces of VC dimension δ and δ′, respec-
tively, where δ, δ′ > 1. Let R̂ =

{
r ∩ r′

∣∣∣ r ∈ R, r′ ∈ R′ }. Then, for the range space Ŝ = (X, R̂), we have that

dimVC(Ŝ) = O(δ + δ′).

Corollary 20.2.16. Any finite sequence of combining range spaces with finite VC dimension (by intersecting,
complementing, or taking their union) results in a range space with a finite VC dimension.

20.3. On ε-nets and ε-sampling

20.3.1. ε-nets and ε-samples
Definition 20.3.1 (ε-sample). Let S = (X,R) be a range space, and let x be a finite subset of X. For 0 ≤ ε ≤ 1,
a subset C ⊆ x is an ε-sample for x if for any range r ∈ R, we have

| m(r) − s(r)| ≤ ε,

where m(r) = |x ∩ r| / |x| is the measure of r (see Definition 20.1.2) and s(r) = |C ∩ r| / |C| is the estimate of r
(see Definition 20.1.3). (Here C might be a multi-set, and as such |C ∩ r| is counted with multiplicity.)

10



As such, an ε-sample is a subset of the ground set x that “captures” the range space up to an error of ε.
Specifically, to estimate the fraction of the ground set covered by a range r, it is sufficient to count the points
of C that fall inside r.

If X is a finite set, we will abuse notation slightly and refer to C as an ε-sample for S.
To see the usage of such a sample, consider x = X to be, say, the population of a country (i.e., an element

of X is a citizen). A range in R is the set of all people in the country that answer yes to a question (i.e., would
you vote for party Y?, would you buy a bridge from me?, questions like that). An ε-sample of this range space
enables us to estimate reliably (up to an error of ε) the answers for all these questions, by just asking the people
in the sample.

The natural question of course is how to find such a subset of small (or minimal) size.

Theorem 20.3.2 (ε-sample theorem, [VC71]). There is a positive constant c such that if (X,R) is any range
space with VC dimension at most δ, x ⊆ X is a finite subset and ε, ϕ > 0, then a random subset C ⊆ x of
cardinality

s =
c
ε2

(
δ log

δ

ε
+ log

1
ϕ

)
is an ε-sample for x with probability at least 1 − ϕ.

(In the above theorem, if s > |x|, then we can just take all of x to be the ε-sample.)
For a strengthened version of the above theorem with slightly better bounds is known [Har11].

Sometimes it is sufficient to have (hopefully smaller) samples with a weaker property – if a range is “heavy”,
then there is an element in our sample that is in this range.

Definition 20.3.3 (ε-net). A set N ⊆ x is an ε-net for x if for any range r ∈ R, if m(r) ≥ ε (i.e., |r ∩ x| ≥ ε |x|),
then r contains at least one point of N (i.e., r ∩ N , ∅).

Theorem 20.3.4 (ε-net theorem, [HW87]). Let (X,R) be a range space of VC dimension δ, let x be a finite
subset of X, and suppose that 0 < ε ≤ 1 and ϕ < 1. Let N be a set obtained by m random independent draws
from x, where

m ≥ max
(

4
ε

lg
4
ϕ
,

8δ
ε

lg
16
ε

)
. (20.3)

Then N is an ε-net for x with probability at least 1 − ϕ.

(We remind the reader that lg = log2.)
The proofs of the above theorems are somewhat involved and we first turn our attention to some applications

before presenting the proofs.

Remark 20.3.5. The above two theorems also hold for spaces with shattering dimension at most δ, in which

case the sample size is slightly larger. Specifically, for Theorem 20.3.4, the sample size needed is O
(
1
ε

lg
1
ϕ
+
δ

ε
lg
δ

ε

)
.

20.3.2. Some applications
We mention two (easy) applications of these theorems, which (hopefully) demonstrate their power.
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20.3.2.1. Range searching

So, consider a (very large) set of points P in the plane. We would like to be able to quickly decide how
many points are included inside a query rectangle. Let us assume that we allow ourselves 1% error. What
Theorem 20.3.2 tells us is that there is a subset of constant size (that depends only on ε) that can be used to
perform this estimation, and it works for all query rectangles (we used here the fact that rectangles in the plane
have finite VC dimension). In fact, a random sample of this size works with constant probability.

Dunknown

20.3.2.2. Learning a concept

Assume that we have a function f defined in the plane that returns ‘1’ inside
an (unknown) disk Dunknown and ‘0’ outside it. There is some distribution D

defined over the plane, and we pick points from this distribution. Furthermore,
we can compute the function for these labels (i.e., we can compute f for certain
values, but it is expensive). For a mystery value ε > 0, to be explained shortly,
Theorem 20.3.4 tells us to pick (roughly) O((1/ε) log(1/ε)) random points in a
sample R from this distribution and to compute the labels for the samples. This
is demonstrated in the figure on the right, where black dots are the sample points
for which f (·) returned 1.

D

So, now we have positive examples and negative examples. We would like to
find a hypothesis that agrees with all the samples we have and that hopefully is
close to the true unknown disk underlying the function f . To this end, compute the
smallest disk D that contains the sample labeled by ‘1’ and does not contain any
of the ‘0’ points, and let g : R2 → {0, 1} be the function g that returns ‘1’ inside
the disk and ‘0’ otherwise. We claim that g classifies correctly all but an ε-fraction
of the points (i.e., the probability of misclassifying a point picked according to the
given distribution is smaller than ε); that is, Prp∈D

[
f (p) , g(p)

]
≤ ε.

D ⊕ Dunknown

D

DunknownGeometrically, the region where g and f disagree is all the points in the sym-
metric difference between the two disks. That is, E = D ⊕ Dunknown; see the figure
on the right.

Thus, consider the range space S having the plane as the ground set and the
symmetric difference between any two disks as its ranges. By Corollary 20.2.16,
this range space has finite VC dimension. Now, consider the (unknown) disk D′ that
induces f and the region r = Dunknown ⊕ D. Clearly, the learned classifier g returns
incorrect answers only for points picked inside r.

Thus, the probability of a mistake in the classification is the measure of r under the distribution D. So,
if PrD

[
r
]
> ε (i.e., the probability that a sample point falls inside r), then by the ε-net theorem (i.e., Theo-

rem 20.3.4) the set R is an ε-net for S (ignore for the time being the possibility that the random sample fails to
be an ε-net) and as such, R contains a point q inside r. But, it is not possible for g (which classifies correctly
all the sampled points of R) to make a mistake on q, a contradiction, because by construction, the range r is
where g misclassifies points. We conclude that PrD

[
r
]
≤ ε, as desired.

Little lies. The careful reader might be tearing his or her hair out because of the above description. First,
Theorem 20.3.4 might fail, and the above conclusion might not hold. This is of course true, and in real appli-
cations one might use a much larger sample to guarantee that the probability of failure is so small that it can be
practically ignored. A more serious issue is that Theorem 20.3.4 is defined only for finite sets. Nowhere does it
speak about a continuous distribution. Intuitively, one can approximate a continuous distribution to an arbitrary
precision using a huge sample and apply the theorem to this sample as our ground set. A formal proof is more
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tedious and requires extending the proof of Theorem 20.3.4 to continuous distributions. This is straightforward
and we will ignore this topic altogether.

20.3.2.3. A naive proof of the ε-sample theorem.

To demonstrate why the ε-sample/net theorems are interesting, let us try to prove the ε-sample theorem in the
natural naive way. Thus, consider a finite range space S = (x,R) with shattering dimension δ. Also, consider a
range r that contains, say, a p fraction of the points of x, where p ≥ ε. Consider a random sample R of r points
from x, picked with replacement.

Let pi be the ith sample point, and let Xi be an indicator variable which is one if and only if pi ∈ r. Clearly,
(
∑

i Xi)/r is an estimate for p = |r ∩ x| / |x|. We would like this estimate to be within ±ε of p and with confidence
≥ 1 − ϕ.

As such, the sample failed if
∣∣∣∑r

i=1 Xi − pr
∣∣∣ ≥ εr = (ε/p)pr. Set φ = ε/p and µ = E

[∑
i Xi

]
= pr. Using

Chernoff’s inequality (Theorem 20.9.2p26 and Theorem 20.9.2p26), we have

Pr

∣∣∣∣∣∣∣

r∑
i=1

Xi − pr

∣∣∣∣∣∣∣ ≥ (ε/p)pr

 = Pr

∣∣∣∣∣∣∣

r∑
i=1

Xi − µ

∣∣∣∣∣∣∣ ≥ φµ
 ≤ exp

(
−µφ2/2

)
+ exp

(
−µφ2/4

)
≤ 2 exp

(
−µφ2/4

)
= 2 exp

(
−
ε2

4p
r
)
≤ ϕ,

for r ≥
⌈

4
ε2 ln

2
ϕ

⌉
≥

⌈
4p
ε2 ln

2
ϕ

⌉
.

Viola! We proved the ε-sample theorem. Well, not quite. We proved that the sample works correctly for
a single range. Namely, we proved that for a specific range r ∈ R, we have that Pr

[
| m(r) − s(r)| > ε

]
≤ ϕ.

However, we need to prove that ∀r ∈ R, Pr
[
| m(r) − s(r)| > ε

]
≤ ϕ.

Now, naively, we can overcome this by using a union bound on the bad probability. Indeed, if there are k
different ranges under consideration, then we can use a sample that is large enough such that the probability
of it to fail for each range is at most ϕ/k. In particular, let Ei be the bad event that the sample fails for the ith
range. We have that Pr[Ei] ≤ ϕ/k, which implies that

Pr
[
sample fails for any range

]
≤ Pr

 k⋃
i=1

Ei

 ≤ k∑
i=1

Pr[Ei] ≤ k(ϕ/k) ≤ ϕ,

by the union bound; that is, the sample works for all ranges with good probability.
However, the number of ranges that we need to prove the theorem for is πS(|x|) (see Definition 20.2.3). In

particular, if we plug in confidence ϕ/πS(|x|) to the above analysis and use the union bound, we get that for

r ≥
⌈

4
ε2 ln

πS(|x|)
ϕ

⌉
the sample estimates correctly (up to ±ε) the size of all ranges with confidence ≥ 1 − ϕ. Bounding πS(|x|)
by O

(
|x|δ

)
(using Eq. (20.2)p4 for a space with VC dimension δ), we can bound the required size of r by

O
(
δε−2 log(|x| /ϕ)

)
. We summarize the result.

Lemma 20.3.6. Let (x,R) be a finite range space with VC dimension at most δ, and let ε, ϕ > 0 be parameters.
Then a random subset C ⊆ x of cardinality O

(
δε−2 log(|x| /ϕ)

)
is an ε-sample for x with probability at least

1 − ϕ.
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Namely, the “naive” argumentation gives us a sample bound which depends on the underlying size of the
ground set. However, the sample size in the ε-sample theorem (Theorem 20.3.2) is independent of the size of
the ground set. This is the magical property of the ε-sample theorem°.

Interestingly, using a chaining argument on Lemma 20.3.6, one can prove the ε-sample theorem for the
finite case; see Exercise 20.8.3. We provide a similar proof when using discrepancy, in Section 20.4. However,
the original proof uses a clever double sampling idea that is both interesting and insightful that makes the proof
work for the infinite case also.

20.3.3. A quicky proof of the ε-net theorem (Theorem 20.3.4)
Here we provide a sketchy proof of Theorem 20.3.4, which conveys the main ideas. The full proof in all its
glory and details is provided in Section 20.5.

Let N = (x1, . . . , xm) be the sample obtained by m independent samples from x (observe that N might
contain the same element several times, and as such it is a multi-set). Let E1 be the probability that N fails to
be an ε-net. Namely, for n = |x|, let

E1 =
{
∃r ∈ R

∣∣∣ |r ∩ x| ≥ εn and r ∩ N = ∅
}
.

To complete the proof, we must show that Pr[E1] ≤ ϕ.
Let T = (y1, . . . , ym) be another random sample generated in a similar fashion to N. It might be that N fails

for a certain range r, but then since T is an independent sample, we still expect that |r ∩ T | = εm. In particular,
the probability that Pr

[
|r ∩ T | ≥ εm2

]
is a large constant close to 1, regardless of how N performs. Indeed, if m

is sufficiently large, we expect the random variable |r ∩ T | to concentrate around εm, and one can argue this
formally using Chernoff’s inequality. Namely, intuitively, for a heavy range r we have that

Pr[r ∩ N = ∅] ≈ Pr
[
r ∩ N = ∅ and

(
|r ∩ T | ≥

εm
2

)]
.

Inspired by this, let E2 be the event that N fails for some range r but T “works” for r; formally

E2 =

{
∃r ∈ R

∣∣∣∣∣ |r ∩ x| ≥ εn, r ∩ N = ∅ and |r ∩ T | ≥
εm
2

}
.

Intuitively, since E[|r ∩ T |] ≥ εm, then for the range r that N fails for, we have with “good” probability that
|r ∩ T | ≥ εm/2. Namely, Pr[E1] ≈ Pr[E2].

Next, let

E′2 =

{
∃r ∈ R

∣∣∣∣∣ r ∩ N = ∅ and |r ∩ T | ≥
εm
2

}
.

Clearly, E2 ⊆ E
′
2 and as such Pr[E2] ≤ Pr

[
E′2

]
. Now, fix Z = N ∪ T , and observe that |Z| = 2m. Next, fix a

range r, and observe that the bad probability of E′2 is maximized if |r ∩ Z| = εm/2. Now, the probability that
all the elements of r ∩ Z fall only into the second half of the sample is at most 2−εm/2 as a careful calculation
shows. Now, there are at most

∣∣∣Z|R∣∣∣ ≤ Gd(2m) different ranges that one has to consider. As such, Pr[E1] ≈
Pr[E2] ≤ Pr

[
E′2

]
≤ Gd(2m)2−εm/2 and this is smaller than ϕ, as a careful calculation shows by just plugging the

value of m into the right-hand side; see Eq. (20.3)p11. �

°The notion of magic is used here in the sense of Arthur C. Clarke’s statement that “any sufficiently advanced technology is
indistinguishable from magic.”
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20.4. Discrepancy
The proof of the ε-sample/net theorem is somewhat complicated. It turns out that one can get a somewhat
similar result by attacking the problem from the other direction; namely, let us assume that we would like to
take a truly large sample of a finite range space S = (X,R) defined over n elements with m ranges. We would
like this sample to be as representative as possible as far as S is concerned. In fact, let us decide that we would
like to pick exactly half of the points of X in our sample (assume that n = |X| is even).

To this end, let us color half of the points of X by −1 (i.e., black) and the other half by 1 (i.e., white). If for
every range, r ∈ R, the number of black points inside it is equal to the number of white points, then doubling
the number of black points inside a range gives us the exact number of points inside the range. Of course, such
a perfect coloring is unachievable in almost all situations. To see this, consider the complete graph K3 – clearly,
in any coloring (by two colors) of its vertices, there must be an edge with two endpoints having the same color
(i.e., the edges are the ranges).

Formally, let χ : X→ {−1, 1} be a coloring. The discrepancy of χ over a range r is the amount of imbalance
in the coloring inside χ. Namely,

|χ(r)| =

∣∣∣∣∣∣∣∑p∈r χ(p)

∣∣∣∣∣∣∣ .
The overall discrepancy of χ is disc(χ) = maxr∈R |χ(r)|. The discrepancy of a (finite) range space S = (X,R) is
the discrepancy of the best possible coloring; namely,

disc(S) = min
χ:X→{−1,+1}

disc(χ).

The natural question is, of course, how to compute the coloring χ of minimum discrepancy. This seems like
a very challenging question, but when you do not know what to do, you might as well do something random.
So, let us pick a random coloring χ of X. To this end, let Π be an arbitrary partition of X into pairs (i.e., a
perfect matching). For a pair {p, q} ∈ Π, we will either color χ(p) = −1 and χ(q) = 1 or the other way around;
namely, χ(p) = 1 and χ(q) = −1. We will decide how to color this pair using a single coin flip. Thus, our
coloring would be induced by making such a decision for every pair of Π, and let χ be the resulting coloring.
We will refer to χ as compatible with the partition Π if, for all {p, q} ∈ Π, we have that χ({p, q}) = 0; namely,

r

crossing
pair

∀ {p, q} ∈ Π ( χ(p) = +1 and χ(q) = −1)
or ( χ(p) = −1 and χ(q) = +1).

.
Consider a range r and a coloring χ compatible with Π. If a pair {p, q} ∈ Π falls

completely inside r or completely outside r, then it does not contribute anything to the discrepancy of r. Thus,
the only pairs that contribute to the discrepancy of r are the ones that cross it. Namely, {p, q} ∩ r , ∅ and
{p, q} ∩ (X \ r) , ∅.

As such, let #r denote the crossing number of r, that is, the number of pairs that cross r. Next, let Xi ∈

{−1,+1} be the indicator variable which is the contribution of the ith crossing pair to the discrepancy of r. For
∆r =

√
2#r ln(4m), we have by Chernoff’s inequality (Theorem ??p??), that

Pr
[
|χ(r)| ≥ ∆r

]
= Pr

[
χ(r) ≥ ∆r

]
+ Pr

[
χ(r) ≤ −∆r

]
= 2 Pr

∑
i

Xi ≥ ∆r


≤ 2 exp

(
−
∆2

r

2#r

)
=

1
2m
.
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Since there are m ranges in R, it follows that with good probability (i.e., at least half) for all r ∈ R the
discrepancy of r is at most ∆r.

Theorem 20.4.1. Let S = (X,R) be a range space defined over n = |X| elements with m = |R| ranges. Consider
any partition Π of the elements of X into pairs. Then, with probability ≥ 1/2, for any range r ∈ R, a random
coloring χ : X→ {−1,+1} that is compatible with the partition Π has discrepancy at most

|χ(r)| < ∆r =
√

2#r ln(4m),

where #r denotes the number of pairs of Π that cross r. In particular, since #r ≤ |r|, we have |χ(r)| ≤
√

2 |r| ln(4m).

Observe that for every range r we have that #r ≤ n/2, since 2#r ≤ |X|. As such, we have:

Corollary 20.4.2. Let S = (X,R) be a range space defined over n elements with m ranges. Let Π be an arbi-
trary partition of X into pairs. Then a random coloring which is compatible with Π has disc(χ) <

√
n ln(4m),

with probability ≥ 1/2.

One can easily amplify the probability of success of the coloring by increasing the threshold. In particular,
for any constant c ≥ 1, one has that

∀r ∈ R |χ(r)| ≤
√

2c #r ln(4m),

with probability ≥ 1 −
2

(4m)c .

20.4.1. Building ε-sample via discrepancy
Let S = (X,R) be a range space with shattering dimension δ. Let P ⊆ X be a set of n points, and consider the
induced range space S|P =

(
P,R|P

)
; see Definition 20.1.4p2. Here, by the definition of shattering dimension, we

have that m =
∣∣∣R|P∣∣∣ = O

(
nδ

)
. Without loss of generality, we assume that n is a power of 2. Consider a coloring

χ of P with discrepancy bounded by Corollary 20.4.2. In particular, let Q be the points of P colored by, say,
−1. We know that |Q| = n/2, and for any range r ∈ R, we have that

χ(r) = ||(P \ Q) ∩ r| − |Q ∩ r|| <
√

n ln(4m) =
√

n ln O(nδ) ≤ c
√

n ln(nδ),

for some absolute constant c. Observe that |(P \ Q) ∩ r| = |P ∩ r| − |Q ∩ r|. In particular, we have that for any
range r,

||P ∩ r| − 2 |Q ∩ r|| ≤ c
√

n ln(nδ). (20.4)

Dividing both sides by n = |P| = 2 |Q|, we have that∣∣∣∣∣ |P ∩ r|
|P|

−
|Q ∩ r|
|Q|

∣∣∣∣∣ ≤ τ(n) for τ(n) = c

√
δ ln n

n
. (20.5)

Namely, a coloring with discrepancy bounded by Corollary 20.4.2 yields a τ(n)-sample. Intuitively, if n is very
large, then Q provides a good approximation to P. However, we want an ε-sample for a prespecified ε > 0.
Conceptually, ε is a fixed constant while τ(n) is considerably smaller. Namely, Q is a sample which is too tight
for our purposes (and thus too big). As such, we will coarsen (and shrink) Q till we get the desired ε-sample
by repeated application of Corollary 20.4.2. Specifically, we can “chain” together several approximations
generated by Corollary 20.4.2. This is sometime refereed to as the sketch property of samples. Informally, as
testified by the following lemma, a sketch of a sketch is a sketch±.

±Try saying this quickly 100 times.
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Lemma 20.4.3. Let Q ⊆ P be a ρ-sample for P (in some underlying range space S), and let R ⊆ Q be a
ρ′-sample for Q. Then R is a (ρ + ρ′)-sample for P.

Proof: By definition, we have that, for every r ∈ R,∣∣∣∣∣ |r ∩ P|
|P|

−
|r ∩ Q|
|Q|

∣∣∣∣∣ ≤ ρ and
∣∣∣∣∣ |r ∩ Q|
|Q|

−
|r ∩ R|
|R|

∣∣∣∣∣ ≤ ρ′.
By adding the two inequalities together, we get∣∣∣∣∣ |r ∩ P|

|P|
−
|r ∩ R|
|R|

∣∣∣∣∣ = ∣∣∣∣∣ |r ∩ P|
|P|

−
|r ∩ Q|
|Q|

+
|r ∩ Q|
|Q|

−
|r ∩ R|
|R|

∣∣∣∣∣ ≤ ρ + ρ′. �

Thus, let P0 = P and P1 = Q. Now, in the ith iteration, we will compute a coloring χi−1 of Pi−1 with low
discrepancy, as guaranteed by Corollary 20.4.2, and let Pi be the points of Pi−1 colored white by χi−1. Let
δi = τ(ni−1), where ni−1 = |Pi−1| = n/2i−1. By Lemma 20.4.3, we have that Pk is a (

∑k
i=1 δi)-sample for P. Since

we would like the smallest set in the sequence P1,P2, . . . that is still an ε-sample, we would like to find the
maximal k, such that (

∑k
i=1 δi) ≤ ε. Plugging in the value of δi and τ(·), see Eq. (20.5), it is sufficient for our

purposes that

k∑
i=1

δi =

k∑
i=1

τ(ni−1) =
k∑

i=1

c

√
δ ln(n/2i−1)

n/2i−1 ≤ c1

√
δ ln(n/2k−1)

n/2k−1 = c1

√
δ ln nk−1

nk−1
≤ ε,

since the above series behaves like a geometric series, and as such its total sum is proportional to its largest
element², where c1 is a sufficiently large constant. This holds for

c1

√
δ ln nk−1

nk−1
≤ ε ⇐⇒ c2

1
δ ln nk−1

nk−1
≤ ε2 ⇐⇒

c2
1δ

ε2 ≤
nk−1

ln nk−1
.

The last inequality holds for nk−1 ≥ 2
c2

1δ

ε2 ln
c2

1δ

ε2 , by Lemma 20.2.5(D). In particular, taking the largest k for

which this holds results in a set Pk of size O
(
(δ/ε2) ln(δ/ε)

)
which is an ε-sample for P.

Theorem 20.4.4 (ε-sample via discrepancy). For a range space (X,R) with shattering dimension at most δ
and B ⊆ X a finite subset and ε > 0, there exists a subset C ⊆ B, of cardinality O

(
(δ/ε2) ln(δ/ε)

)
, such that C

is an ε-sample for B.

Note that it is not obvious how to turn Theorem 20.4.4 into an efficient construction algorithm of such
an ε-sample. Nevertheless, this theorem can be turned into a relatively efficient deterministic algorithm using
conditional probabilities. In particular, there is a deterministic O

(
nδ+1

)
time algorithm for computing an ε-

sample for a range space of VC dimension δ and with n points in its ground set using the above approach (see
the bibliographical notes in Section 20.7 for details). Inherently, however, it is a far cry from the simplicity
of Theorem 20.3.2 that just requires us to take a random sample. Interestingly, there are cases where using
discrepancy leads to smaller ε-samples; again see bibliographical notes for details.

²Formally, one needs to show that the ratio between two consecutive elements in the series is larger than some constant, say 1.1.
This is easy but tedious, but the well-motivated reader (of little faith) might want to do this calculation.
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20.4.1.1. Faster deterministic construction of ε-samples.

One can speed up the deterministic construction mentioned above by using a sketch-and-merge approach. To
this end, we need the following merge property of ε-samples. (The proof of the following lemma is quite easy.
Nevertheless, we provide the proof in excruciating detail for the sake of completeness.)

Lemma 20.4.5. Consider the sets R ⊆ P and R′ ⊆ P′. Assume that P and P′ are disjoint, |P| = |P′|, and
|R| = |R′|. Then, if R is an ε-sample of P and R′ is an ε-sample of P′, then R ∪ R′ is an ε-sample of P ∪ P′.

Proof: We have for any range r that∣∣∣∣∣ |r ∩ (P ∪ P′)|
|P ∪ P′|

−
|r ∩ (R ∪ R′)|
|R ∪ R′|

∣∣∣∣∣ = ∣∣∣∣∣ |r ∩ P|
|P ∪ P′|

+
|r ∩ P′|
|P ∪ P′|

−
|r ∩ R|
|R ∪ R′|

−
|r ∩ R′|
|R ∪ R′|

∣∣∣∣∣
=

∣∣∣∣∣ |r ∩ P|
2 |P|

+
|r ∩ P′|
2 |P′|

−
|r ∩ R|
2 |R|

−
|r ∩ R′|
2 |R′|

∣∣∣∣∣
=

1
2

∣∣∣∣∣∣
(
|r ∩ P|
|P|

−
|r ∩ R|
|R|

)
+

(
|r ∩ P′|
|P′|

−
|r ∩ R′|
|R′|

)∣∣∣∣∣∣
≤

1
2

∣∣∣∣∣ |r ∩ P|
|P|

−
|r ∩ R|
|R|

∣∣∣∣∣ + 1
2

∣∣∣∣∣ |r ∩ P′|
|P′|

−
|r ∩ R′|
|R′|

∣∣∣∣∣
≤
ε

2
+
ε

2
= ε. �

Interestingly, by breaking the given ground sets into sets of equal size and building a balanced binary
tree over these sets, one can speed up the deterministic algorithm for building ε-samples. The idea is to
compute the sample bottom-up, where at every node we merge the samples provided by the children (i.e.,
using Lemma 20.4.5), and then we sketch the resulting set using Lemma 20.4.3. By carefully fine-tuning this
construction, one can get an algorithm for computing ε-samples in time which is near linear in n (assuming ε
and δ are small constants). We delegate the details of this construction to Exercise 20.8.6.

This algorithmic idea is quite useful and we will refer to it as sketch-and-merge.

20.4.2. Building ε-net via discrepancy
We are given range space (X,R) with shattering dimension d and ε > 0 and the target is to compute an ε-net
for this range space.

We need to be slightly more careful if we want to use discrepancy to build ε-nets, and we will use Theo-
rem 20.4.1 instead of Corollary 20.4.2 in the analysis.

The construction is as before – we set P0 = P, and Pi is all the points colored +1 in the coloring of Pi−1 by
Theorem 20.4.1. We repeat this till we get a set that is the required net.

To analyze this construction (and decide when it should stop), let r be a range in a given range space (X,R)
with shattering dimension d, and let

νi = |Pi ∩ r|

denote the size of the range r in the ith set Pi and let ni = |Pi|, for i ≥ 0. Observer that the number of points in
r colored by +1 and −1 when coloring Pi−1 is

αi = |Pi ∩ r| = νi and βi = |Pi−1 ∩ r| − |Pi ∩ r| = νi−1 − νi,
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respectively. As such, setting mi =
∣∣∣R|Pi

∣∣∣ = O
(
nd

i

)
, we have, by Theorem 20.4.1, that the discrepancy of r in this

coloring of Pi−1 is

|αi − βi| = |νi − 2νi−1| ≤
√

2νi−1 ln 4mi−1 ≤ c
√

dνi−1 ln ni−1

for some constant c, since the crossing number #r of a range r ∩ Pi−1 is always bounded by its size. This is
equivalent to ∣∣∣2i−1νi−1 − 2iνi

∣∣∣ ≤ c2i−1
√

dνi−1 ln ni−1. (20.6)

We need the following technical claim that states that the size of νk behaves as we expect; as long as the set
Pk is large enough, the size of νk is roughly ν0/2k.

Claim 20.4.6. There is a constant c4 (independent of d), such that for all k with ν0/2k ≥ c4d ln nk, (ν0/2k)/2 ≤
νk ≤ 2(ν0/2k).

Proof: The proof is by induction. For k = 0 the claim trivially holds. Assume that it holds for i < k. Adding
up the inequalities of Eq. (20.6), for i = 1, . . . , k, we have that∣∣∣ν0 − 2kνk

∣∣∣ ≤ k∑
i=1

c2i−1
√

dνi−1 ln ni−1 ≤

k∑
i=1

c2i−1

√
2d
ν0

2i−1 ln ni−1 ≤ c3 2k

√
d
ν0

2k ln nk,

for some constant c3 since this summation behaves like an increasing geometric series and the last term domi-
nates the summation. Thus,

ν0

2k − c3

√
d
ν0

2k ln nk ≤ νk ≤
ν0

2k + c3

√
d
ν0

2k ln nk.

By assumption, we have that
√
ν0

c42k ≥
√

d ln nk. This implies that

νk ≤
ν0

2k + c3

√
ν0

2k ·
ν0

c42k =
ν0

2k

(
1 +

c3
√

c4

)
≤ 2
ν0

2k ,

by selecting c4 ≥ 4c2
3 . Similarly, we have

νk ≥
ν0

2k

1 − c3
√

d ln nk√
ν0/2k

 ≥ ν0

2k

1 − c3

√
ν0/c42k√
ν0/2k

 = ν0

2k

(
1 −

c3
√

c4

)
≥
ν0

2k /2. �

So consider a “heavy” range r that contains at least ν0 ≥ εn points of P. To show that Pk is an ε-net, we
need to show that Pk ∩ r , ∅. To apply Claim 20.4.6, we need a k such that εn/2k ≥ c4d ln nk−1, or equivalently,
such that

2nk

ln(2nk)
≥

2c4d
ε
,

which holds for nk = Ω
(

d
ε

ln d
ε

)
, by Lemma 20.2.5(D). But then, by Claim 20.4.6, we have that

νk = |Pk ∩ r| ≥
|P ∩ r|
2 · 2k ≥

1
2
·
εn
2k =

ε

2
nk = Ω

(
d ln

d
ε

)
> 0.

We conclude that the set Pk, which is of size Ω
(

d
ε

ln d
ε

)
, is an ε-net for P.

Theorem 20.4.7 (ε-net via discrepancy). For any range space (X,R) with shattering dimension at most d, a
finite subset B ⊆ X, and ε > 0, there exists a subset C ⊆ B, of cardinality O((d/ε) ln(d/ε)), such that C is an
ε-net for B.
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20.5. Proof of the ε-net theorem
In this section, we finally prove Theorem 20.3.4.

Let (X,R) be a range space of VC dimension δ, and let x be a subset of X of cardinality n. Suppose that
m satisfies Eq. (20.3)p11. Let N = (x1, . . . , xm) be the sample obtained by m independent samples from x (the
elements of N are not necessarily distinct, and we treat N as an ordered set). Let E1 be the probability that N
fails to be an ε-net. Namely,

E1 =
{
∃r ∈ R

∣∣∣ |r ∩ x| ≥ εn and r ∩ N = ∅
}
.

(Namely, there exists a “heavy” range r that does not contain any point of N.) To complete the proof, we must
show that Pr[E1] ≤ ϕ. Let T = (y1, . . . , ym) be another random sample generated in a similar fashion to N. Let
E2 be the event that N fails but T “works”; formally

E2 =

{
∃r ∈ R

∣∣∣∣∣ |r ∩ x| ≥ εn, r ∩ N = ∅, and |r ∩ T | ≥
εm
2

}
.

Intuitively, since E
[
|r ∩ T |

]
≥ εm, we have that for the range r that N fails for, it follows with “good” probability

that |r ∩ T | ≥ εm/2. Namely, E1 and E2 have more or less the same probability.

Claim 20.5.1. Pr
[
E2

]
≤ Pr

[
E1

]
≤ 2 Pr

[
E2

]
.

Proof: Clearly, E2 ⊆ E1, and thus Pr
[
E2

]
≤ Pr

[
E1

]
. As for the other part, note that by the definition of

conditional probability, we have

Pr
[
E2

∣∣∣E1

]
= Pr

[
E2 ∩ E1

]
/Pr

[
E1

]
= Pr

[
E2

]
/Pr

[
E1

]
.

It is thus enough to show that Pr
[
E2

∣∣∣E1

]
≥ 1/2.

Assume that E1 occurs. There is r ∈ R, such that |r ∩ x| > εn and r ∩ N = ∅. The required probability is at
least the probability that for this specific r, we have |r ∩ T | ≥ εn2 . However, X = |r ∩ T | is a binomial variable
with expectation E

[
X
]
= pm, and variance V

[
X
]
= p(1 − p)m ≤ pm, where p = |r ∩ x| /n ≥ ε. Thus, by

Chebychev’s inequality (Theorem ??p??),

Pr
[
X <
εm
2

]
≤ Pr

[
X <

pm
2

]
≤ Pr

[
|X − pm| >

pm
2

]
= Pr

[
|X − pm| >

√
pm
2
√

pm
]
≤ Pr

[∣∣∣∣X − E[X]
∣∣∣∣ > √pm

2

√
V[X]

]
≤

(
2
√

pm

)2

≤
1
2
,

since m ≥ 8/ε ≥ 8/p; see Eq. (20.3)p11. Thus, for r ∈ E1, we have

Pr[E2]
Pr[E1]

≥ Pr
[
|r ∩ T | ≥ εm2

]
= 1 − Pr

[
|r ∩ T | <

εm
2

]
≥

1
2
. �

Claim 20.5.1 implies that to bound the probability of E1, it is enough to bound the probability of E2. Let

E′2 =

{
∃r ∈ R

∣∣∣∣∣ r ∩ N = ∅, |r ∩ T | ≥
εm
2

}
.

Clearly, E2 ⊆ E
′
2. Thus, bounding the probability of E′2 is enough to prove Theorem 20.3.4. Note, however,

that a shocking thing happened! We no longer have x participating in our event. Namely, we turned bounding
an event that depends on a global quantity (i.e., the ground set x) into bounding a quantity that depends only on
a local quantity/experiment (involving only N and T ). This is the crucial idea in this proof.
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Claim 20.5.2. Pr[E2] ≤ Pr
[
E′2

]
≤ Gd(2m)2−εm/2.

Proof: We imagine that we sample the elements of N ∪ T together, by picking Z = (z1, . . . , z2m) independently
from x. Next, we randomly decide the m elements of Z that go into N, and the remaining elements go into T .
Clearly,

Pr
[
E′2

]
=

∑
z∈x2m

Pr
[
E′2 ∩ (Z = z)

]
=

∑
z∈x2m

Pr
[
E′2 ∩ (Z = z)

]
Pr[Z = z]

· Pr[Z = z]

=
∑

z

Pr
[
E′2

∣∣∣ Z = z
]

Pr[Z = z] = E
[
Pr

[
E′2

∣∣∣ Z = z
]]
.

Thus, from this point on, we fix the set Z, and we bound Pr
[
E′2

∣∣∣ Z ]
. Note that Pr[E′2] is a weighted average of

Pr[E′2|Z = z], and as such a bound on this quantity would imply the same bound on Pr[E′2].
It is now enough to consider the ranges in the projection space (Z,R|Z) (which has VC dimension δ). By

Lemma 20.2.1, we have
∣∣∣R|Z ∣∣∣ ≤ Gδ(2m).

Let us fix any r ∈ R|Z, and consider the event

Er =

{
r ∩ N = ∅ and |r ∩ T | >

εm
2

}
.

We claim that Pr[Er] ≤ 2−εm/2. Observe that if k = |r ∩ (N ∪ T )| ≤ εm/2, then the event is empty, and this
claim trivially holds. Otherwise, Pr[Er] = Pr[r ∩ N = ∅]. To bound this probability, observe that we have the
2m elements of Z, and we can choose any m of them to be N, as long as none of them is one of the k “forbidden”
elements of r ∩ (N ∪ T ). The probability of that is

(
2m−k

m

)
/
(

2m
m

)
. We thus have

Pr[Er] ≤ Pr[r ∩ N = ∅] =

(
2m−k

m

)(
2m
m

) = (2m − k)(2m − k − 1) · · · (m − k + 1)
2m(2m − 1) · · · (m + 1)

=
m(m − 1) · · · (m − k + 1)

2m(2m − 1) · · · (2m − k + 1)
≤ 2−k ≤ 2−εm/2.

Thus,

Pr
[
E′2

∣∣∣ Z ]
= Pr

⋃
r∈R|Z

Er

 ≤ ∑
r∈R|Z

Pr[Er] ≤
∣∣∣R|Z ∣∣∣ 2−εm/2 ≤ Gδ(2m)2−εm/2,

implying that Pr
[
E′2

]
≤ Gδ(2m)2−εm/2. �

Proof of Theorem 20.3.4. By Claim 20.5.1 and Claim 20.5.2, we have that Pr[E1] ≤ 2Gδ(2m)2−εm/2. It thus
remains to verify that if m satisfies Eq. (20.3), then 2Gδ(2m)2−εm/2 ≤ ϕ.

Indeed, we know that 2m ≥ 8δ (by Eq. (20.3)p11) and by Lemma 20.2.2, Gδ(2m) ≤ 2(2em/δ)δ, for δ ≥ 1.
Thus, it is sufficient to show that the inequality 4(2em/δ)δ2−εm/2 ≤ ϕ holds. By rearranging and taking lg of
both sides, we have that this is equivalent to

2εm/2 ≥
4
ϕ

(
2em
δ

)δ
=⇒

εm
2
≥ δ lg

2em
δ
+ lg

4
ϕ
.
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By our choice of m (see Eq. (20.3)), we have that εm/4 ≥ lg(4/ϕ). Thus, we need to show that

εm
4
≥ δ lg

2em
δ
.

We verify this inequality for m =
8δ
ε

lg
16
ε

(this would also hold for bigger values, as can be easily verified).
Indeed

2δ lg
16
ε
≥ δ lg

(
16e
ε

lg
16
ε

)
.

This is equivalent to
(
16
ε

)2

≥
16e
ε

lg
16
ε

, which is equivalent to
16
e ε
≥ lg

16
ε

, which is certainly true for

0 < ε ≤ 1.
This completes the proof of the theorem. �

20.6. A better bound on the growth function

In this section, we prove Lemma 20.2.2p5. Since the proof is straightforward but tedious, the reader can safely
skip reading this section.

Lemma 20.6.1. For any positive integer n, the following hold.

(i) (1 + 1/n)n ≤ e. (ii) (1 − 1/n)n−1 ≥ e−1.

(iii) n! ≥ (n/e)n. (iv) For any k ≤ n, we have
(n
k

)k
≤

(
n
k

)
≤

(ne
k

)k
.

Proof: (i) Indeed, 1 + 1/n ≤ exp(1/n), since 1 + x ≤ ex, for x ≥ 0. As such (1 + 1/n)n ≤ exp(n(1/n)) = e.

(ii) Rewriting the inequality, we have that we need to prove
(

n−1
n

)n−1
≥ 1

e . This is equivalent to proving

e ≥
(

n
n−1

)n−1
=

(
1 + 1

n−1

)n−1
, which is our friend from (i).

(iii) Indeed,
nn

n!
≤

∞∑
i=0

ni

i!
= en,

by the Taylor expansion of ex =
∑∞

i=0
xi

i! . This implies that (n/e)n ≤ n!, as required.
(iv) Indeed, for any k ≤ n, we have n

k ≤
n−1
k−1 , as can be easily verified. As such, n

k ≤
n−i
k−i , for 1 ≤ i ≤ k − 1.

As such, (n
k

)k
≤

n
k
·

n − 1
k − 1

· · ·
n − k + 1

1
=

(
n
k

)
.

As for the other direction, by (iii), we have
(
n
k

)
≤

nk

k!
≤

nk(
k
e

)k =

(ne
k

)k
. �

Lemma 20.2.2 restated. For n ≥ 2δ and δ ≥ 1, we have
(n
δ

)δ
≤ Gδ(n) ≤ 2

(ne
δ

)δ
, where Gδ(n) =

δ∑
i=0

(
n
i

)
.
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Proof: Note that by Lemma 20.6.1(iv), we have Gδ(n) =
δ∑

i=0

(
n
i

)
≤ 1 +

δ∑
i=1

(ne
i

)i
. This series behaves like a

geometric series with constant larger than 2, since(ne
i

)i
/
( ne
i − 1

)i−1
=

ne
i

(
i − 1

i

)i−1

=
ne
i

(
1 −

1
i

)i−1

≥
ne
i

1
e
=

n
i
≥

n
δ
≥ 2,

by Lemma 20.6.1. As such, this series is bounded by twice the largest element in the series, implying the
claim. �

20.7. Bibliographical notes
The exposition of the ε-net and ε-sample theorems is roughly based on Alon and Spencer [AS00] and Komlós
et al. [KPW92]. In fact, Komlós et al. proved a somewhat stronger bound; that is, a random sample of size
(δ/ε) ln(1/ε) is an ε-net with constant probability. For a proof that shows that in general ε-nets cannot be
much smaller in the worst case, see [PA95]. The original proof of the ε-net theorem is due to Haussler and
Welzl [HW87]. The proof of the ε-sample theorem is due to Vapnik and Chervonenkis [VC71]. The bound in
Theorem 20.3.2 can be improved to O

(
δ
ε2
+ 1
ε2

log 1
ϕ

)
[AB99].

An alternative proof of the ε-net theorem proceeds by first computing an (ε/4)-sample of sufficient size,
using the ε-sample theorem (Theorem 20.3.2p11), and then computing and ε/4-net for this sample using a
direct sample of the right size. It is easy to verify the resulting set is an ε-net. Furthermore, using the “naive”
argument (see Section 20.3.2.3) then implies that this holds with the right probability, thus implying the ε-net
theorem (the resulting constants might be slightly worse). Exercise 20.8.3 deploys similar ideas.

The beautiful alternative proof of both theorems via the usage of discrepancy is due to Chazelle and Ma-
toušek [CM96]. The discrepancy method is a beautiful topic which is quite deep mathematically, and we have
just skimmed the thin layer of melted water on top of the tip of the iceberg³. Two nice books on the topic are
the books by Chazelle [Cha01] and Matoušek [Mat99]. The book by Chazelle [Cha01] is currently available
online for free from Chazelle’s webpage.

We will revisit discrepancy since in some geometric cases it yields better results than the ε-sample theorem.
In particular, the random coloring of Theorem 20.4.1 can be derandomized using conditional probabilities. One
can then use it to get an ε-sample/net by applying it repeatedly. A faster algorithm results from a careful imple-
mentation of the sketch-and-merge approach. The disappointing feature of all the deterministic constructions
of ε-samples/nets is that their running time is exponential in the dimension δ, since the number of ranges is
usually exponential in δ.

A similar result to the one derived by Haussler and Welzl [HW87], using a more geometric approach, was
done independently by Clarkson at the same time [Cla87], exposing the fact that VC dimension is not necessary
if we are interested only in geometric applications. This was later refined by Clarkson [Cla88], leading to a
general technique that, in geometric settings, yields stronger results than the ε-net theorem. This technique has
numerous applications in discrete and computational geometry and leads to several “proofs from the book” in
discrete geometry.

Exercise 20.8.5 is from Anthony and Bartlett [AB99].

20.7.1. Variants and extensions
A natural application of the ε-sample theorem is to use it to estimate the weights of ranges. In particular, given
a finite range space (X,R), we would like to build a data-structure such that we can decide quickly, given a

³The iceberg is melting because of global warming; so sorry, climate change.
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query range r, what the number of points of X inside r is. We could always use a sample of size (roughly)
O(ε−2) to get an estimate of the weight of a range, using the ε-sample theorem. The error of the estimate of the
size |r ∩ X| is ≤ εn, where n = |X|; namely, the error is additive. The natural question is whether one can get a
multiplicative estimate ρ, such that |r ∩ X| ≤ ρ ≤ (1 + ε) |r ∩ X|, where |r ∩ X|.

In particular, a subset A ⊂ X is a (relative) (ε, p)-sample if for each r ∈ R of weight ≥ pn,∣∣∣∣∣ |r ∩ A|
|A|

−
|r ∩ X|
|X|

∣∣∣∣∣ ≤ ε |r ∩ X|
|X|
.

Of course, one can simply generate an εp-sample of size (roughly) O(1/(εp)2) by the ε-sample theorem. This
is not very interesting when p = 1/

√
n. Interestingly, the dependency on p can be improved.

Theorem 20.7.1 ([LLS01]). Let (X,R) be a range space with shattering dimension d, where |X| = n, and
let 0 < ε < 1 and 0 < p < 1 be given parameters. Then, consider a random sample A ⊆ X of size

c
ε2 p

(
d log

1
p
+ log

1
ϕ

)
, where c is a constant. Then, it holds that for each range r ∈ R of at least pn points, we

have ∣∣∣∣∣ |r ∩ A|
|A|

−
|r ∩ X|
|X|

∣∣∣∣∣ ≤ ε |r ∩ X|
|X|
.

In other words, A is a (p, ε)-sample for (X,R). The probability of success is ≥ 1 − ϕ.

A similar result is achievable by using discrepancy; see Exercise 20.8.7.

20.8. Exercises

Exercise 20.8.1 (Compute clustering radius). Let C and P be two given sets of points in the plane, such that
k = |C| and n = |P|. Let r = maxp∈P minc∈C ‖c − p‖ be the covering radius of P by C (i.e., if we place a disk of
radius r centered at each point of C, all those disks cover the points of P).
(A) Give an O(n + k log n) expected time algorithm that outputs a number α, such that r ≤ α ≤ 10r.
(B) For ε > 0 a prescribed parameter, give an O(n+ kε−2 log n) expected time algorithm that outputs a number
α, such that r ≤ α ≤ (1 + ε)r.

Exercise 20.8.2 (Some calculus required). Prove Lemma 20.2.5.

Exercise 20.8.3 (A direct proof of the ε-sample theorem). For the case that the given range space is finite,
one can prove the ε-sample theorem (Theorem 20.3.2p11) directly. So, we are given a range space S = (x,R)
with VC dimension δ, where x is a finite set.
(A) Show that there exists an ε-sample of S of size O

(
δε−2 log log|x|

ε

)
by extracting an ε/3-sample from an

ε/9-sample of the original space (i.e., apply Lemma 20.3.6 twice and use Lemma 20.4.3).

(B) Show that for any k, there exists an ε-sample of S of size O
(
δε−2 log log(k) |x|

ε

)
.

(C) Show that there exists an ε-sample of S of size O
(
δε−2 log 1

ε

)
.

Exercise 20.8.4 (Sauer’s lemma is tight). Show that Sauer’s lemma (Lemma 20.2.1) is tight. Specifically,
provide a finite range space that has the number of ranges as claimed by Lemma 20.2.1.
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Exercise 20.8.5 (Flip and flop). (A) Let b1, . . . , b2m be m binary bits. Let Ψ be the set of all permutations of
1, . . . , 2m, such that for any σ ∈ Ψ, we have σ(i) = i or σ(i) = m + i, for 1 ≤ i ≤ m, and similarly,
σ(m + i) = i or σ(m + i) = m + i. Namely, σ ∈ Ψ either leaves the pair i, i + m in their positions or it
exchanges them, for 1 ≤ i ≤ m. As such |Ψ| = 2m.
Prove that for a random σ ∈ Ψ, we have

Pr
[∣∣∣∣∣∣
∑m

i=1 bσ(i)

m
−

∑m
i=1 bσ(i+m)

m

∣∣∣∣∣∣ ≥ ε
]
≤ 2e−ε

2m/2.

(B) Let Ψ′ be the set of all permutations of 1, . . . , 2m. Prove that for a random σ ∈ Ψ′, we have

Pr
[∣∣∣∣∣∣
∑m

i=1 bσ(i)

m
−

∑m
i=1 bσ(i+m)

m

∣∣∣∣∣∣ ≥ ε
]
≤ 2e−Cε2m/2,

where C is an appropriate constant. [Use (A), but be careful.]
(C) Prove Theorem 20.3.2 using (B).

Exercise 20.8.6 (Sketch and merge). Assume that you are given a deterministic algorithm that can compute
the discrepancy of Theorem 20.4.1 in O(nm) time, where n is the size of the ground set and m is the number
of induced ranges. We are assuming that the VC dimension δ of the given range space is small and that the
algorithm input is only the ground set X (i.e., the algorithm can figure out on its own what the relevant ranges
are).
(A) For a prespecified ε > 0, using the ideas described in Section 20.4.1.1, show how to compute a small
ε-sample of X quickly. The running time of your algorithm should be (roughly) O

(
n/εO(δ)polylog

)
. What

is the exact bound on the running time of your algorithm?
(B) One can slightly improve the running of the above algorithm by more aggressively sketching the sets used.

That is, one can add additional sketch layers in the tree. Show how by using such an approach one can
improve the running time of the above algorithm by a logarithmic factor.

Exercise 20.8.7 (Building relative approximations). Prove the following theorem using discrepancy.

Theorem 20.8.8. Let (X,R) be a range space with shattering dimension δ, where |X| = n,
and let 0 < ε < 1 and 0 < p < 1 be given parameters. Then one can construct a set
N ⊆ X of size O

(
δ
ε2 p ln δ

εp

)
, such that, for each range r ∈ R of at least pn points, we have∣∣∣∣∣ |r ∩ N|

|N|
−
|r ∩ X|
|X|

∣∣∣∣∣ ≤ ε |r ∩ X|
|X|
.

In other words, N is a relative (p, ε)-approximation for (X,R).

20.9. From previous lectures

Definition 20.9.1 (Convex hull). The convex hull of a set R ⊆ Rd is the set of all convex combinations of points
of R; that is,

CH(R) =

 m∑
i=0

αiri

∣∣∣∣∣∣∣∀i ri ∈ R, αi ≥ 0, and
m∑

j=1

αi = 1

 .
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Theorem 20.9.2. For any δ > 0, we have Pr
[
X > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, we have:

δ ≤ 2e − 1 Pr
[
X > (1 + δ)µ

]
< exp

(
−µδ2/4

)
, (20.7)

δ > 2e − 1 Pr
[
X > (1 + δ)µ

]
< 2−µ(1+δ), (20.8)

and δ ≥ e2 Pr
[
X > (1 + δ)µ

]
< exp

(
−
µδ ln δ

2

)
. (20.9)
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Chapter 21

Sampling and the Moments Technique
By Sariel Har-Peled, December 30, 2015¬

Sun and rain and bush had made the site look old, like the site of a dead civilization. The ruins, spreading over so
many acres, seemed to speak of a final catastrophe. But the civilization wasn’t dead. It was the civilization I existed in
and in fact was still working towards. And that could make for an odd feeling: to be among the ruins was to have your
time-sense unsettled. You felt like a ghost, not from the past, but from the future. You felt that your life and ambition
had already been lived out for you and you were looking at the relics of that life. You were in a place where the future
had come and gone.

– A bend in the river, V. S. Naipaul.

21.1. Vertical decomposition

edge

face

vertexGiven a set S of n segments in the plane, its arrangement, denoted by A
(
S
)
,

is the decomposition of the plane into faces, edges, and vertices. The vertices of
A

(
S
)

are the endpoints and the intersection points of the segments of S, the edges
are the maximal connected portions of the segments not containing any vertex, and
the faces are the connected components of the complement of the union of the
segments of S. These definitions are depicted on the right.

For numerical reasons (and also conceptually), a symbolic representation would
be better than a numerical one. Thus, an intersection vertex would be represented
by two pointers to the segments that their intersection is this vertex. Similarly, an edge would be represented
as a pointer to the segment that contains it, and two pointers to the vertices forming its endpoints.

Naturally, we are assuming here that we have geometric primitives that can resolve any decision problem
of interest that involve a few geometric entities. For example, for a given segment s and a point p, we would be
interested in deciding if p lies vertically below s. From a theoretical point of view, all these primitives require
a constant amount of computation, and are “easy”. In the real world, numerical issues and degeneracies make
implementing these primitives surprisingly challenging. We are going to ignore this major headache here, but
the reader should be aware of it.

We will be interested in computing the arrangement A
(
S
)

and a representation of it that makes it easy to
manipulate. In particular, we would like to be able to quickly resolve questions of the type (i) are two points in

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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the same face?, (ii) can one traverse from one point to the other without crossing any segment?, etc. The naive
representation of each face as polygons (potentially with holes) is not conducive to carrying out such tasks,
since a polygon might be arbitrarily complicated. Instead, we will prefer to break the arrangement into smaller
canonical tiles.

To this end, a vertical trapezoid is a quadrangle with two vertical sides. The breaking of the faces into such
trapezoids is the vertical decomposition of the arrangement A

(
S
)
.

σ

Formally, for a subset R ⊆ S, let A|
(
R
)

denote the vertical decomposition of the
plane formed by the arrangement A

(
R
)

of the segments of R. This is the partition of
the plane into interior disjoint vertical trapezoids formed by erecting vertical walls
through each vertex of A|

(
R
)
. Formally, a vertex of A|

(
R
)

is either an endpoint of a
segment of R or an intersection point of two of its segments. From each such vertex
we shoot up (similarly, down) a vertical ray till it hits a segment of R or it continues
all the way to infinity. See the figure on the right.

Note that a vertical trapezoid is defined by at most four segments: two segments defining its ceiling and
floor and two segments defining the two intersection points that induce the two vertical walls on its boundary.
Of course, a vertical trapezoid might be degenerate and thus be defined by fewer segments (i.e., an unbounded
vertical trapezoid or a triangle with a vertical segment as one of its sides).

Vertical decomposition breaks the faces of the arrangement that might be arbitrarily complicated into en-
tities (i.e., vertical trapezoids) of constant complexity. This makes handling arrangements (decomposed into
vertical trapezoid) much easier computationally.

In the following, we assume that the n segments of S have k pairwise intersection points overall, and we
want to compute the arrangement A = A

(
S
)
; namely, compute the edges, vertices, and faces of A

(
S
)
. One

possible way is the following: Compute a random permutation of the segments of S: S = 〈s1, . . . , sn〉. Let
Si = 〈s1, . . . , si〉 be the prefix of length i of S. Compute A|

(
Si

)
from A|

(
Si−1

)
, for i = 1, . . . , n. Clearly,

A|
(
S
)
= A|

(
Sn

)
, and we can extract A

(
S
)

from it. Namely, in the ith iteration, we insert the segment si into the
arrangement A|

(
Si−1

)
.

This technique of building the arrangement by inserting the segments one by one is called randomized
incremental construction.

Who need these pesky arrangements anyway? The reader might wonder who needs arrangements? As a
concrete examples, consider a situation where you are give several maps of a city containing different layers of
information (i.e., streets map, sewer map, electric lines map, train lines map, etc). We would like to compute
the overlay map formed by putting all these maps on top of each other. For example, we might be interested in
figuring out if there are any buildings lying on a planned train line, etc.

More generally, think about a set of general constraints in Rd. Each constraint is bounded by a surface, or a
patch of a surface. The decomposition of Rd formed by the arrangement of these surfaces gives us a description
of the parametric space in a way that is algorithmically useful. For example, finding if there is a point inside
all the constraints, when all the constraints are induced by linear inequalities, is linear programming. Namely,
arrangements are a useful way to think about any parametric space partitioned by various constraints.

21.1.1. Randomized incremental construction (RIC)

Imagine that we had computed the arrangement Bi−1 = A|
(
Si−1

)
. In the ith iteration we compute Bi by inserting

si into the arrangement Bi−1. This involves splitting some trapezoids (and merging some others).
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σ′′σ′

s

p

q

bt

As a concrete example, consider the figure on the right. Here we insert
s in the arrangement. To this end we split the “vertical trapezoids” 4pqt
and 4bqt, each into three trapezoids. The two trapezoids σ′ and σ′′ now
need to be merged together to form the new trapezoid which appears in
the vertical decomposition of the new arrangement. (Note that the figure
does not show all the trapezoids in the vertical decomposition.)

To facilitate this, we need to compute the trapezoids of Bi−1 that inter-
sect si. This is done by maintaining a conflict graph. Each trapezoid σ ∈ A|

(
Si−1

)
maintains a conflict list cl(σ)

of all the segments of S that intersect its interior. In particular, the conflict list of σ cannot contain any segment
of Si−1, and as such it contains only the segments of S\Si−1 that intersect its interior. We also maintain a similar
structure for each segment, listing all the trapezoids of A|

(
Si−1

)
that it currently intersects (in its interior). We

maintain those lists with cross pointers, so that given an entry (σ, s) in the conflict list of σ, we can find the
entry (s, σ) in the conflict list of s in constant time.

si

Thus, given si, we know what trapezoids need to be split (i.e., all the trapezoids in cl(si)).
Splitting a trapezoid σ by a segment si is the operation of computing a set of (at most) four
trapezoids that cover σ and have si on their boundary. We compute those new trapezoids, and
next we need to compute the conflict lists of the new trapezoids. This can be easily done by
taking the conflict list of a trapezoid σ ∈ cl(si) and distributing its segments among the O(1)
new trapezoids that cover σ. Using careful implementation, this requires a linear time in the
size of the conflict list of σ.

Note that only trapezoids that intersect si in their interior get split. Also, we need to update the conflict lists
for the segments (that were not inserted yet).

We next sketch the low-level details involved in maintaining these conflict lists. For a segment s that
intersects the interior of a trapezoid σ, we maintain the pair (s, σ). For every trapezoid σ, in the current
vertical decomposition, we maintain a doubly linked list of all such pairs that contain σ. Similarly, for each
segment s we maintain the doubly linked list of all such pairs that contain s. Finally, each such pair contains
two pointers to the location in the two respective lists where the pair is being stored.

It is now straightforward to verify that using this data-structure we can implement the required operations
in linear time in the size of the relevant conflict lists.

In the above description, we ignored the need to merge adjacent trapezoids if they have identical floor and
ceiling – this can be done by a somewhat straightforward and tedious implementation of the vertical decom-
position data-structure, by providing pointers between adjacent vertical trapezoids and maintaining the conflict
list sorted (or by using hashing) so that merge operations can be done quickly. In any case, this can be done in
linear time in the input/output size involved, as can be verified.

21.1.1.1. Analysis

Claim 21.1.1. The (amortized) running time of constructing Bi from Bi−1 is proportional to the size of the
conflict lists of the vertical trapezoids in Bi \Bi−1 (and the number of such new trapezoids).

Proof: Observe that we can charge all the work involved in the ith iteration to either the conflict lists of the
newly created trapezoids or the deleted conflict lists. Clearly, the running time of the algorithm in the ith
iteration is linear in the total size of these conflict lists. Observe that every conflict gets charged twice – when
it is being created and when it is being deleted. As such, the (amortized) running time in the ith iteration is
proportional to the total length of the newly created conflict lists. �

Thus, to bound the running time of the algorithm, it is enough to bound the expected size of the destroyed
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conflict lists in ith iteration (and sum this bound on the n iterations carried out by the algorithm). Or alterna-
tively, bound the expected size of the conflict lists created in the ith iteration.

Lemma 21.1.2. Let S be a set of n segments (in general position­) with k intersection points. Let Si be the first
i segments in a random permutation of S. The expected size of Bi = A|

(
Si

)
, denoted by τ(i) (i.e., the number

of trapezoids in Bi), is O
(
i + k(i/n)2

)
.

Proof: Consider® an intersection point p = s ∩ s′, where s, s′ ∈ S. The probability that p is present in A|
(
Si

)
is equivalent to the probability that both s and s′ are in Si. This probability is

α =

(
n−2
i−2

)(
n
i

) = (n − 2)!
(i − 2)! (n − i)!

·
i! (n − i)!

n!
=

i(i − 1)
n(n − 1)

.

For each intersection point p in A
(
S
)

define an indicator variable Xp, which is 1 if the two segments defining
p are in the random sample Si and 0 otherwise. We have that E

[
Xp

]
= α, and as such, by linearity of expectation,

the expected number of intersection points in the arrangement A(Si) is

E

∑
p∈V

Xp

 =∑
p∈V

E
[
Xp

]
=

∑
p∈V

α = kα,

where V is the set of k intersection points of A
(
S
)
. Also, every endpoint of a segment of Si contributed its two

endpoints to the arrangement A(Si). Thus, we have that the expected number of vertices in A(Si) is

2i +
i(i − 1)
n(n − 1)

k.

Now, the number of trapezoids in A|
(
Si

)
is proportional to the number of vertices of A(Si), which implies the

claim. �

21.1.2. Backward analysis
In the following, we would like to consider the total amount of work involved in the ith iteration of the algo-
rithm. The way to analyze these iterations is (conceptually) to run the algorithm for the first i iterations and
then run “backward” the last iteration.

So, imagine that the overall size of the conflict lists of the trapezoids of Bi is Wi and the total size of the
conflict lists created only in the ith iteration is Ci.

We are interested in bounding the expected size of Ci, since this is (essentially) the amount of work done by
the algorithm in this iteration. Observe that the structure of Bi is defined independently of the permutation Si

and depends only on the (unordered) set Si = {s1, . . . , si}. So, fix Si. What is the probability that si is a specific

­In this case, no two intersection points of input segments are the same, no two intersection points (or vertices) have the same
x-coordinate, no two segments lie on the same line, etc. Making the geometric algorithm work correctly for all degenerate inputs
is a huge task that can usually be handled by tedious and careful implementation. Thus, we will always assume general position
of the input. In other words, in theory all geometric inputs are inherently good, while in practice they are all evil (as anybody who
tried to implement geometric algorithms can testify). The reader is encouraged not to use this to draw any conclusions on the human
condition.

®The proof is provided in excruciating detail to get the reader used to this kind of argumentation. I would apologize for this pain,
but it is a minor trifle, not to be mentioned, when compared to the other offenses in this book.
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segment s of Si? Clearly, this is 1/i since this is the probability of s being the last element in a permutation of
the i elements of Si (i.e., we consider a random permutation of Si).

Now, consider a trapezoid σ ∈ Bi. If σ was created in the ith iteration, then si must be one of the (at most
four) segments that define it. Indeed, if si is not one of the segments that define σ, then σ existed in the vertical
decomposition before si was inserted. Since Bi is independent of the internal ordering of Si, it follows that
Pr[σ ∈ (Bi \Bi−1)] ≤ 4/i. In particular, the overall size of the conflict lists in the end of the ith iteration is

Wi =
∑
σ∈Bi

| cl(σ)|.

As such, the expected overall size of the conflict lists created in the ith iteration is

E
[
Ci

∣∣∣Bi

]
≤

∑
σ∈Bi

4
i
| cl(σ)| ≤

4
i
Wi.

By Lemma 21.1.2, the expected size of Bi is O
(
i + ki2/n2

)
. Let us guess (for the time being) that on average

the size of the conflict list of a trapezoid of Bi is about O(n/i). In particular, assume that we know that

E
[
Wi

]
= O

( (
i +

i2

n2 k
)
n
i

)
= O

(
n + k

i
n

)
,

by Lemma 21.1.2, implying

E
[
Ci

]
= E

[
E
[
Ci

∣∣∣Bi

]]
≤ E

[
4
i
Wi

]
=

4
i

E
[
Wi

]
= O

(
4
i

(
n +

ki
n

) )
= O

(
n
i
+

k
n

)
, (21.1)

using Lemma 21.7.2p16. In particular, the expected (amortized) amount of work in the ith iteration is propor-
tional to E

[
Ci

]
. Thus, the overall expected running time of the algorithm is

E

 n∑
i=1

Ci

 = n∑
i=1

O
(
n
i
+

k
n

)
= O

(
n log n + k

)
.

Theorem 21.1.3. Given a set S of n segments in the plane with k intersections, one can compute the vertical
decomposition of A

(
S
)

in expected O(n log n + k) time.

Intuition and discussion. What remains to be seen is how we came up with the guess that the average size of
a conflict list of a trapezoid of Bi is about O(n/i). Note that using ε-nets implies that the bound O((n/i) log i)
holds with constant probability (see Theorem 21.7.1p15) for all trapezoids in this arrangement. As such, this
result is only slightly surprising. To prove this, we present in the next section a “strengthening” of ε-nets to
geometric settings.

To get some intuition on how we came up with this guess, consider a set P of n points on the line and a
random sample R of i points from P. Let Î be the partition of the real line into (maximal) open intervals by the
endpoints of R, such that these intervals do not contain points of R in their interior.

Consider an interval (i.e., a one-dimensional trapezoid) of Î. It is intuitively clear that this interval (in
expectation) would contain O(n/i) points. Indeed, fix a point x on the real line, and imagine that we pick each
point with probability i/n to be in the random sample. The random variable which is the number of points of
P we have to scan starting from x and going to the right of x till we “hit” a point that is in the random sample
behaves like a geometric variable with probability i/n, and as such its expected value is n/i. The same argument
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works if we scan P to the left of x. We conclude that the number of points of P in the interval of Î that contains
x but does not contain any point of R is O(n/i) in expectation.

Of course, the vertical decomposition case is more involved, as each vertical trapezoid is defined by four
input segments. Furthermore, the number of possible vertical trapezoids is larger. Instead of proving the
required result for this special case, we will prove a more general result which can be applied in a lot of other
settings.

21.2. General settings

21.2.1. Notation
Let S be a set of objects. For a subset R ⊆ S, we define a collection of ‘regions’ called F (R). For the case of
vertical decomposition of segments (i.e., Theorem 21.1.3), the objects are segments, the regions are trapezoids,
and F (R) is the set of vertical trapezoids in A|

(
R
)
. Let

T = T (S) =
⋃
R⊆S

F (R)

σ

a

b

c

d

e

f

Figure 21.1: D(σ) = {b, c, d, e}
and K(σ) = { f }.

denote the set of all possible regions defined by subsets of S.
In the vertical trapezoids case, the set T is the set of all vertical trape-

zoids that can be defined by any subset of the given input segments.
We associate two subsets D(σ), K(σ) ⊆ S with each region σ ∈ T .
The defining set D(σ) of σ is the subset of S defining the region σ

(the precise requirements from this set are specified in the axioms below).
We assume that for every σ ∈ T , |D(σ)| ≤ d for a (small) constant d.
The constant d is sometime referred to as the combinatorial dimension. In
the case of Theorem 21.1.3, each trapezoid σ is defined by at most four
segments (or lines) of S that define the region covered by the trapezoid σ, and this set of segments is D(σ). See
Figure 21.1.

The stopping set K(σ) of σ is the set of objects of S such that including any object of K(σ) in R prevents σ
from appearing in F (R). In many applications K(σ) is just the set of objects intersecting the cell σ; this is also
the case in Theorem 21.1.3, where K(σ) is the set of segments of S intersecting the interior of the trapezoid
σ (see Figure 21.1). Thus, the stopping set of a region σ, in many cases, is just the conflict list of this region,
when it is being created by an RIC algorithm. The weight of σ is ω(σ) = |K(σ)|.

Axioms. Let S,F (R),D(σ), and K(σ) be such that for any subset R ⊆ S, the set F (R) satisfies the following
axioms:

(i) For any σ ∈ F (R), we have D(σ) ⊆ R and R ∩ K(σ) = ∅.
(ii) If D(σ) ⊆ R and K(σ) ∩ R = ∅, then σ ∈ F (R).

21.2.1.1. Examples of the general framework

(A) Vertical decomposition. Discussed above.
(B) Points on a line. Let S be a set of n points on the real line. For a set R ⊆ S, let F (R) be the set of atomic

intervals of the real lines formed by R; that is, the partition of the real line into maximal connected sets
(i.e., intervals and rays) that do not contain a point of R in their interior.
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Clearly, in this case, an interval I ∈ F (R) the defining set of I (i.e., D(I)) is the set containing the (one
or two) endpoints of I in R. The stopping set of an I is the set K(I), which is the set of all points of S
contained in I.

(C) Vertices of the convex-hull in 2d. Consider a set S of n points in the plane. A vertex on the convex hull
is defined by the point defining the vertex, and the two edges before and after it on the convex hull. To this
end, a certified vertex of the convex hull (say this vertex is q) is a triplet (p, q, r), such that p, q and r are
consecutive vertices of CH(S) (say, in clockwise order). Observe, that computing the convex-hull of S is
equivalent to computing the set of certified vertices of S.
For a set R ⊆ S, let F (R) denote the set of certified vertices of R (i.e., this is equivalent to the set of vertices
of the convex-hull of R. For a certified vertex σ ∈ F (R), its defining set is the set of three vertices p, q, r
that (surprise, surprise) define it. Its stopping set, is the set of all points in S, that either on the “wrong”
side of the line spanning pq, or on the “wrong” side of the line spanning qr. Equivalently, K(σ) is the set
of all points t ∈ S \ R, such that the convex-hull of p, q, r, and t does not form a convex quadrilateral.

(D) Edges of the convex-hull in 3d.
Let S be a set of points in three dimensions. An edge e of the convex-hull of a set R ⊆ Ob jS et of points
in R3 is defined by two vertices of S, and it can be certified as being on the convex hull CH(R), by the
two faces f, f′ adjacent to e. If all the points of R are on the “right” side of both these two faces then e
is an edge of the convex hull of R. Computing all the certified edges of S is equivalent to computing the
convex-hull of S.
In the following, assume that each face of any convex-hull of a subset of points of S is a triangle. As
such, a face of the convex-hull would be defined by three points. Formally, the butterfly of an edge e of
CH(R) is (e, p, q), where pnt, q ∈ R, and such that all the points of R are on the same side as q of the
plane spanned by e and p (we have symmetric condition requiring that all the points of S are on the same
as p of the plane spanned by e and q).
For a set R ⊆ P, let F (R) be its set of butterflies. Clearly, computing all the butterflies of S (i.e., F (S)) is
equivalent to computing the convex-hull of S.
For a butterfly σ = (e, p, q) ∈ F (R) its defining set (i.e., D(σ)) is a set of four points (i.e., the two points
defining its edge e, and the to additional vertices defining the two faces Face and f′ adjacent to it). Its
stopping set K(σ), is the set of all the points of S \ R that of different sides of the plane spanned by e and
p (resp. e and q) than q (resp. p) [here, the stopping set is the union of these two sets].

(E) Delaunay triangles in 2d.
For a set of S of n points in the plane. Consider a subset R ⊆ S. A Delaunay circle of R is a disc D that
has three points p1, p2, p3 of R on its boundary, and no points of R in its interior. Naturally, these three
points define a Delaunay triangle 4 = 4p1p2p3. The defining set is D(4) = {p1, p2, p3}, and the stopping
set K(4) is the set of all points in S that are contained in the interior of the disk D.

21.2.2. Analysis
In the following, S is a set of n objects complying with axioms (i) and (ii).

The challenge. What makes the analysis not easy is that there are dependencies between the defining set of a
region and its stopping set (i.e., conflict list). In particular, we have the following difficulties

(A) The defining set might be of different sizes depending on the region σ being considered.
(B) Even if all the regions have a defining set of the same size d (say, 4 as in the case of vertical trapezoids),

it is not true that every d objects define a valid region. For example, for the case of segments, the four
segments might be vertically separated from each other (i.e., think about them as being four disjoint
intervals on the real line), and they do not define a vertical trapezoid together. Thus, our analysis is
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going to be a bit loopy loop – we are going to assume we know how many regions exists (in expectation)
for a random sample of certain size, and use this to derive the desired bounds.

21.2.2.1. On the probability of a region to be created

Inherently, to analyze a randomized algorithm using this framework, we will be interested in the probability
that a certain region would be created. Thus, let

ρr,n(d, k)

denote the probability that a region σ ∈ T appears in F (R), where its defining set is of size d, its stopping set
is of size k, R is a random sample of size r from a set S, and n = |S|. Specifically, σ is a feasible region that
might be created by an algorithm computing F (R).

The sampling model. For describing algorithms it is usually easier to work with samples created by picking
a subset of a certain size (without repetition) from the original set of objects. Usually, in the algorithmic
applications this would be done by randomly permuting the objects and interpreting a prefix of this permutation
as a random sample. Insisting on analyzing this framework in the “right” sampling model creates some non-
trivial technical pain.

Lemma 21.2.1. We have that ρr,n(d, k) ≈
(
1 −

r
n

)k( r
n

)d
. Formally,

1
22d

(
1 − 4 ·

r
n

)k( r
n

)d
≤ ρr,n(d, k) ≤ 22d

(
1 −

1
2
·

r
n

)k ( r
n

)d
. (21.2)

Proof: Let σ be the region under consideration that is defined by d objects and having k stoppers (i.e.,
k = K(σ)). We are interested in the probability of σ being created when taking a sample of size r (with-
out repetition) from a set S of n objects. Clearly, this probability is ρr,n(d, k) =

(
n−d−k

r−d

)
/
(

n
r

)
, as we have to pick

the d defining objects into the random sample and avoid picking any of the k stoppers. A tedious but careful
calculation, delegated to Section 21.4, implies Eq. (21.2).

Instead, here is an elegant argument for why this estimate is correct in a slightly different sampling model.
We pick every element of S into the sample R with probability r/n, and this is done independently for each
object. In expectation, the random sample is of size r, and clearly the probability that σ is created is the
probability that we pick its d defining objects (that is, (r/n)d) multiplied by the probability that we did not pick
any of its k stoppers (that is, (1 − r/n)k). �

Remark 21.2.2. The bounds of Eq. (21.2) hold only when r, d, and k are in certain (reasonable) ranges. For
the sake of simplicity of exposition we ignore this minor issue. With care, all our arguments work when one
pays careful attention to this minor technicality.

21.2.2.2. On exponential decay

For any natural number r and a number t > 0, consider R to be a random sample of size r from S without
repetition. We will refer to a region σ ∈ F (R) as being t-heavy if ω(σ) ≥ t ·

n
r

. Let F≥t(R) denote all the t-heavy

regions of F (R).¯

¯These are the regions that are at least t times overweight. Speak about an obesity problem.
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Intuitively, and somewhat incorrectly, we expect the average weight of a region of F (R) to be roughly n/r.
We thus expect the size of this set to drop fast as t increases. Indeed, Lemma 21.2.1 tells us that a trapezoid of
weight t (n/r) has probability

ρr,n

(
d, t ·

n
r

)
≈

(
1 −

r
n

)t (n/r)( r
n

)d
≈ exp(−t) ·

( r
n

)d
≈ exp

(
−t + 1

)
·

(
1 −

r
n

)n/r( r
n

)d

≈ exp(−t + 1) · ρr,n(d, n/r)

to be created, since (1 − r/n)n/r ≈ 1/e. Namely, a t-heavy region has exponentially lower probability to be
created than a region of weight n/r. We next formalize this argument.

Lemma 21.2.3. Let r ≤ n and let t be parameters, such that 1 ≤ t ≤ r/d. Furthermore, let R be a sample of
size r, and let R′ be a sample of size r′ = br/tc, both from S. Let σ ∈ T be a region with weight ω(σ) ≥ t (n/r).

Then, Pr
[
σ ∈ F (R)

]
= O

(
exp

(
−

t
2

)
td Pr

[
σ ∈ F

(
R′

)])
.

Proof: For the sake of simplicity of exposition, assume that k = ω(σ) = t (n/r). By Lemma 21.2.1 (i.e.,
Eq. (21.2)) we have

Pr[σ ∈ F (R)]
Pr[σ ∈ F (R′)]

=
ρr,n(d, k)

ρ
r′,n

(d, k)
≤

22d
(
1 − 1

2 ·
r
n

)k ( r
n

)d

1
22d

(
1 − 4 r′

n

)k( r′
n

)d

≤ 24d exp
(
−

kr
2n

)(
1 + 8

r′

n

)k( r
r′

)d
≤ 24d exp

(
8

kr′

n
−

kr
2n

) ( r
r′

)d

= 24d exp
(
8

tn br/tc
nr

−
tnr
2nr

)(
r
br/tc

)d

= O
(
exp(−t/2)td

)
,

since 1/(1 − x) ≤ 1 + 2x for x ≤ 1/2 and 1 + y ≤ exp(y), for all y. (The constant in the above O(·) depends
exponentially on d.) �

Let

Ef (r) = E[|F (R)|] and Ef≥t(r) = E[|F≥t(R)|] ,

where the expectation is over random subsets R ⊆ S of size r. Note that Ef (r) = Ef≥0(r) is the expected
number of regions created by a random sample of size r. In words, Ef≥t(r) is the expected number of regions
in a structure created by a sample of r random objects, such that these regions have weight which is t times
larger than the “expected” weight (i.e., n/r). In the following, we assume that Ef (r) is a monotone increasing
function.

Lemma 21.2.4 (The exponential decay lemma). Given a set S of n objects and parameters r ≤ n and 1 ≤
t ≤ r/d, where d = maxσ∈T (S) |D(σ)|, if axioms (i) and (ii) above hold for any subset of S, then

Ef≥t(r) = O
(
td exp(−t/2) Ef (r)

)
. (21.3)

Proof: Let R be a random sample of size r from S and let R′ be a random sample of size r′ = br/tc from S.
Let H =

⋃
X⊆S,|X|=r F≥t(X) denote the set of all t-heavy regions that might be created by a sample of size r. In

the following, the expectation is taken over the content of the random samples R and R′.
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For a region σ, let Xσ be the indicator variable that is 1 if and only if σ ∈ F (R). By linearity of expectation
and since E[Xσ] = Pr[σ ∈ F (R)], we have

Ef≥t(r) = E
[
|F≥t(R)|

]
= E

∑
σ∈H

Xσ

 =∑
σ∈H

E[Xσ] =
∑
σ∈H

Pr[σ ∈ F (R)]

= O

td exp(−t/2)
∑
σ∈H

Pr
[
σ ∈ F

(
R′

)] = O

td exp(−t/2)
∑
σ∈T

Pr
[
σ ∈ F

(
R′

)]
= O

(
td exp(−t/2) Ef

(
r′
))
= O

(
td exp(−t/2) Ef (r)

)
,

by Lemma 21.2.3 and since Ef (r) is a monotone increasing function. �

21.2.2.3. Bounding the moments

Consider a different randomized algorithm that in a first round samples r objects, R ⊆ S (say, segments),
computes the arrangement induced by these r objects (i.e., A|

(
R
)
), and then inside each regionσ it computes the

arrangement of theω(σ) objects intersecting the interior of this region, using an algorithm that takes O((ω(σ))c)
time, where c > 0 is some fixed constant. The overall expected running time of this algorithm is

E

 ∑
σ∈F (R)

(
ω(σ)

)c
 .

We are now able to bound this quantity.

Theorem 21.2.5 (Bounded moments theorem). Let R ⊆ S be a random subset of size r. Let Ef (r) = E[|F (R)|]
and let c ≥ 1 be an arbitrary constant. Then,

E

 ∑
σ∈F (R)

(
ω(σ)

)c
 = O

(
Ef (r)

(n
r

)c )
.

Proof: Let R ⊆ S be a random sample of size r. Observe that all the regions with weight in the range[
(t − 1)n

r , t ·
n
r

)
are in the set F≥t−1(R) \ F≥t(R). As such, we have by Lemma 21.2.4 that

E

 ∑
σ∈F (R)

ω(σ)c

 ≤ E

∑
t≥1

(
t
n
r

)c
(|F≥t−1(R)| − |F≥t(R)| )

 ≤ E

∑
t≥1

(
t
n
r

)c
|F≥t−1(R)|


≤

(n
r

)c ∑
t≥0

(t + 1)c · E[|F≥t(R)| ]

=

(n
r

)c ∑
t≥0

(t + 1)c Ef≥t(r) =
(n

r

)c ∑
t≥0

O
(
(t + 1) c + d exp(−t/2) Ef (r)

)
= O

Ef (r)
(n

r

)c ∑
t≥0

(t + 1) c + d exp(−t/2)

 = O
(

Ef (r)
(n

r

)c )
,

since c and d are both constants. �
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21.3. Applications

21.3.1. Analyzing the RIC algorithm for vertical decomposition
We remind the reader that the input of the algorithm of Section 21.1.2 is a set S of n segments with k in-
tersections, and it uses randomized incremental construction to compute the vertical decomposition of the
arrangement A

(
S
)
.

Lemma 21.1.2 shows that the number of vertical trapezoids in the randomized incremental construction
is in expectation Ef (i) = O

(
i + k (i/n)2

)
. Thus, by Theorem 21.2.5 (used with c = 1), we have that the total

expected size of the conflict lists of the vertical decomposition computed in the ith step is

E[Wi] = E

∑
σ∈Bi

ω(σ)

 = O
(
Ef (i)

n
i

)
= O

(
n + k

i
n

)
.

This is the missing piece in the analysis of Section 21.1.2. Indeed, the amortized work in the ith step of the
algorithm is O(Wi/i) (see Eq. (21.1)p5), and as such, the expected running time of this algorithm is

E

O n∑
i=1

Wi

i

 = O

 n∑
i=1

1
i

(
n + k

i
n

) = O
(
n log n + k

)
.

This implies Theorem 21.1.3.

21.3.2. Cuttings
Let S be a set of n lines in the plane, and let r be an arbitrary parameter. A (1/r)-cutting of S is a partition of
the plane into constant complexity regions such that each region intersects at most n/r lines of S. It is natural
to try to minimize the number of regions in the cutting, as cuttings are a natural tool for performing “divide and
conquer”.

Consider the range space having S as its ground set and vertical trapezoids as its ranges (i.e., given a vertical
trapezoid σ, its corresponding range is the set of all lines of S that intersect the interior of σ). This range space
has a VC dimension which is a constant as can be easily verified. Let X ⊆ S be an ε-net for this range space,
for ε = 1/r. By Theorem 21.7.1p15 (ε-net theorem), there exists such an ε-net X of this range space, of size
O((1/ε) log(1/ε)) = O(r log r). In fact, Theorem 21.7.1p15 states that an appropriate random sample is an ε-net
with non-zero probability, which implies, by the probabilistic method, that such a net (of this size) exists.

Lemma 21.3.1. There exists a (1/r)-cutting of a set of lines S in the plane of size O
(
(r log r)2

)
.

Proof: Consider the vertical decomposition A|
(
X
)
, where X is as above. We claim that this collection of

trapezoids is the desired cutting.
The bound on the size is immediate, as the complexity of A|

(
X
)

is O
(
|X|2

)
and |X| = O(r log r).

As for correctness, consider a vertical trapezoid σ in the arrangement A|
(
X
)
. It does not intersect any of the

lines of X in its interior, since it is a trapezoid in the vertical decomposition A|
(
X
)
. Now, if σ intersected more

than n/r lines of S in its interior, where n = |S|, then it must be that the interior of σ intersects one of the lines
of X, since X is an ε-net for S, a contradiction.

It follows that σ intersects at most εn = n/r lines of S in its interior. �

Claim 21.3.2. Any (1/r)-cutting in the plane of n lines contains at least Ω
(
r2

)
regions.
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Proof: An arrangement of n lines (in general position) has M =
(

n
2

)
intersections. However, the number of

intersections of the lines intersecting a single region in the cutting is at most m =
(

n/r
2

)
. This implies that any

cutting must be of size at least M/m = Ω
(
n2/(n/r)2

)
= Ω

(
r2

)
. �

We can get cuttings of size matching the above lower bound using the moments technique.

Theorem 21.3.3. Let S be a set of n lines in the plane, and let r be a parameter. One can compute a (1/r)-
cutting of S of size O(r2).

Proof: Let R ⊆ S be a random sample of size r, and consider its vertical decomposition A|
(
R
)
. If a vertical

trapezoid σ ∈ A|
(
R
)

intersects at most n/r lines of S, then we can add it to the output cutting. The other
possibility is that a σ intersects t(n/r) lines of S, for some t > 1, and let cl(σ) ⊂ S be the conflict list of σ (i.e.,
the list of lines of S that intersect the interior of σ). Clearly, a (1/t)-cutting for the set cl(σ) forms a vertical
decomposition (clipped inside σ) such that each trapezoid in this cutting intersects at most n/r lines of S. Thus,
we compute such a cutting inside each such “heavy” trapezoid using the algorithm (implicit in the proof) of
Lemma 21.3.1, and these subtrapezoids to the resulting cutting. Clearly, the size of the resulting cutting inside
σ is O

(
t2 log2 t

)
= O

(
t4
)
. The resulting two-level partition is clearly the required cutting. By Theorem 21.2.5,

the expected size of the cutting is

O

Ef (r) + E

 ∑
σ∈F (R)

(
2
ω(σ)
n/r

)4

 = O

Ef (r) +
( r
n

)4

E

 ∑
σ∈F (R)

(ω(σ))4




= O
(
Ef (r) +

( r
n

)4
· Ef (r)

(n
r

)4
)
= O(Ef (r)) = O

(
r2

)
,

since Ef (r) is proportional to the complexity of A(R) which is O(r2). �

21.4. Bounds on the probability of a region to be created
Here we prove Lemma 21.2.1p8 in the “right” sampling model. The casual reader is encouraged to skip this
section, as it contains mostly tedious (and not very insightful) calculations.

Let S be a given set of n objects. Let ρr,n(d, k) be the probability that a region σ ∈ T whose defining set is
of size d and whose stopping set is of size k appears in F (R), where R is a random sample from S of size r
(without repetition).

Lemma 21.4.1. We have ρr,n(d, k) =

(
n−d−k

r−d

)(
n
r

) =

(
n−d−k

r−d

)(
n

r−d

) · (
r
d

)(
n−(r−d)

d

) = (
n−d−k

r−d

)(
n−d
r−d

) · (r
d

)(
n
d

) .

Proof: So, consider a region σ with d defining objects in D(σ) and k detractors in K(σ). We have to pick the d
defining objects of D(σ) to be in the random sample R of size r but avoid picking any of the k objects of K(σ)
to be in R.

The second part follows since
(
n
r

)
=

(
n

r − d

) (
n − (r − d)

d

)
/

(
r
d

)
. Indeed, for the right-hand side first pick a

sample of size r − d and then a sample of size d from the remaining objects. Merging the two random samples,
we get a random sample of size r. However, since we do not care if an object is in the first sample or second
sample, we observe that every such random sample is being counted

(
r
d

)
times.

The third part is easier, as it follows from
(

n
r − d

) (
n − (r − d)

d

)
=

(
n
d

) (
n − d
r − d

)
. The two sides count the

different ways to pick two subsets from a set of size n, the first one of size d and the second one of size r − d.�
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Lemma 21.4.2. For M ≥ m ≥ t ≥ 0, we have
( m − t

M − t

)t
≤

(
m
t

)(
M
t

) ≤ ( m
M

)t
.

Proof: We have that α =

(
m
t

)(
M
t

) = m!
(m − t)!t!

(M − t)!t!
M!

=
m
M
·

m − 1
M − 1

· · ·
m − t + 1
M − t + 1

. Now, since M ≥ m, we have

that
m − i
M − i

≤
m
M

, for all i ≥ 0. As such, the maximum (resp. minimum) fraction on the right-hand size is m/M

(resp. m−t+1
M−t+1 ). As such, we have

(
m−t
M−t

)t
≤

(
m−t+1
M−t+1

)t
≤ α ≤ (m/M)t. �

Lemma 21.4.3. Let 0 ≤ X,Y ≤ N. We have that
(
1 −

X
N

)Y

≤

(
1 −

Y
2N

)X

.

Proof: Since 1 − α ≤ exp(−α) ≤ (1 − α/2), for 0 ≤ α ≤ 1, it follows that(
1 −

X
N

)Y

≤ exp
(
−

XY
N

)
=

(
exp

(
−

Y
n

))X

≤

(
1 −

Y
2n

)X

. �

Lemma 21.4.4. For 2d ≤ r ≤ n/8 and k ≤ n/2, we have that

1
22d

(
1 − 4 ·

r
n

)k( r
n

)d
≤ ρr,n(d, k) ≤ 22d

(
1 −

1
2
·

r
n

)k ( r
n

)d
.

Proof: By Lemma 21.4.1, Lemma 21.4.2, and Lemma 21.4.3 we have

ρr,n(d, k) =

(
n−d−k

r−d

)(
n−d
r−d

) · (r
d

)(
n
d

) ≤ (
n − d − k

n − d

)r−d( r
n

)d
≤

(
1 −

k
n

)r−d( r
n

)d
≤ 2d

(
1 −

k
n

)r ( r
n

)d

≤ 2d
(
1 −

r
2n

)k ( r
n

)d
,

since k ≤ n/2. As for the other direction, by similar argumentation, we have

ρr,n(d, k) =

(
n−d−k

r−d

)(
n

r−d

) · (
r
d

)(
n−(r−d)

d

) ≥ (
n − d − k − (r − d)

n − (r − d)

)r−d( r − d
n − (r − d) − d

)d

=

(
1 −

d + k
n − (r − d)

)r−d(r − d
n − r

)d

≥

(
1 −

d + k
n/2

)r(r/2
n

)d

≥
1
2d

(
1 −

4r
n

)d+k( r
n

)d
≥

1
22d

(
1 −

4r
n

)k( r
n

)d
,

by Lemma 21.4.3 (setting N = n/4, X = r, and Y = d + k) and since r ≥ 2d and 4r/n ≤ 1/2. �

21.5. Bibliographical notes
The technique described in this chapter is generally attributed to the work by Clarkson and Shor [CS89], which
is historically inaccurate as the technique was developed by Clarkson [Cla88]. Instead of mildly confusing the
matter by referring to it as the Clarkson technique, we decided to make sure to really confuse the reader and
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refer to it as the moments technique. The Clarkson technique [Cla88] is in fact more general and implies a
connection between the number of “heavy” regions and “light” regions. The general framework can be traced
back to the earlier paper [Cla87]. This implies several beautiful results, some of which we cover later in the
book.

For the full details of the algorithm of Section 21.1, the interested reader is refereed to the books [dBCKO08,
BY98]. Interestingly, in some cases the merging stage can be skipped; see [Har00a].

Agarwal et al. [AMS98] presented a slightly stronger variant than the original version of Clarkson [Cla88]
that allows a region to disappear even if none of the members of its stopping set are in the random sample. This
stronger setting is used in computing the vertical decomposition of a single face in an arrangement (instead of
the whole arrangement). Here an insertion of a faraway segment of the random sample might cut off a portion
of the face of interest. In particular, in the settings of Agarwal et al. Axiom (ii) is replaced by the following:

(ii) If σ ∈ F (R) and R′ is a subset of R with D(σ) ⊆ R′, then σ ∈ F (R′).

Interestingly, Clarkson [Cla88] did not prove Theorem 21.2.5 using the exponential decay lemma but gave
a direct proof. In fact, his proof implicitly contains the exponential decay lemma. We chose the current
exposition since it is more modular and provides a better intuition of what is really going on and is hopefully
slightly simpler. In particular, Lemma 21.2.1 is inspired by the work of Sharir [Sha03].

The exponential decay lemma (Lemma 21.2.4) was proved by Chazelle and Friedman [CF90]. The work of
Agarwal et al. [AMS98] is a further extension of this result. Another analysis was provided by Clarkson et al.
[CMS93].

Another way to reach similar results is using the technique of Mulmuley [Mul94], which relies on a direct
analysis on ‘stoppers’ and ‘triggers’. This technique is somewhat less convenient to use but is applicable to
some settings where the moments technique does not apply directly. Also, his concept of the omega function
might explain why randomized incremental algorithms perform better in practice than their worst case analysis
[?].

Backwards analysis in geometric settings was first used by Chew [Che86] and was formalized by Seidel
[Sei93]. It is similar to the “leave one out” argument used in statistics for cross validation. The basic idea was
probably known to the Greeks (or Russians or French) at some point in time.

(Naturally, our summary of the development is cursory at best and not necessarily accurate, and all possible
disclaimers apply. A good summary is provided in the introduction of [Sei93].)
Sampling model. As a rule of thumb all the different sampling approaches are similar and yield similar results.
For example, we used such an alternative sampling approach in the “proof” of Lemma 21.2.1. It is a good idea
to use whichever sampling scheme is the easiest to analyze in figuring out what’s going on. Of course, a formal
proof requires analyzing the algorithm in the sampling model its uses.
Lazy randomized incremental construction. If one wants to compute a single face that contains a marking
point in an arrangement of curves, then the problem in using randomized incremental construction is that
as you add curves, the region of interest shrinks, and regions that were maintained should be ignored. One
option is to perform flooding in the vertical decomposition to figure out what trapezoids are still reachable
from the marking point and maintaining only these trapezoids in the conflict graph. Doing it in each iteration
is way too expensive, but luckily one can use a lazy strategy that performs this cleanup only a logarithmic
number of times (i.e., you perform a cleanup in an iteration if the iteration number is, say, a power of 2). This
strategy complicates the analysis a bit; see [dBDS95] for more details on this lazy randomized incremental
construction technique. An alternative technique was suggested by the author for the (more restricted) case of
planar arrangements; see [Har00b]. The idea is to compute only what the algorithm really needs to compute the
output, by computing the vertical decomposition in an exploratory online fashion. The details are unfortunately
overwhelming although the algorithm seems to perform quite well in practice.
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Cuttings. The concept of cuttings was introduced by Clarkson. The first optimal size cuttings were constructed
by Chazelle and Friedman [CF90], who proved the exponential decay lemma to this end. Our elegant proof
follows the presentation by de Berg and Schwarzkopf [dBS95]. The problem with this approach is that the
constant involved in the cutting size is awful°. Matoušek [Mat98] showed that there (1/r)-cuttings with 8r2 +

6r + 4 trapezoids, by using level approximation. A different approach was taken by the author [Har00a], who
showed how to get cuttings which seem to be quite small (i.e., constant-wise) in practice. The basic idea is
to do randomized incremental construction but at each iteration greedily add all the trapezoids with conflict
list small enough to the cutting being output. One can prove that this algorithm also generates O(r2) cuttings,
but the details are not trivial as the framework described in this chapter is not applicable for analyzing this
algorithm.

Cuttings also can be computed in higher dimensions for hyperplanes. In the plane, cuttings can also be
computed for well-behaved curves; see [SA95].

Another fascinating concept is shallow cuttings. These are cuttings covering only portions of the ar-
rangement that are in the “bottom” of the arrangement. Matoušek came up with the concept [Mat92]. See
[AES99, CCH09] for extensions and applications of shallow cuttings.
Even more on randomized algorithms in geometry. We have only scratched the surface of this fascinating
topic, which is one of the cornerstones of “modern” computational geometry. The interested reader should have
a look at the books by Mulmuley [Mul94], Sharir and Agarwal [SA95], Matoušek [Mat02], and Boissonnat
and Yvinec [BY98].

21.6. Exercises

Exercise 21.6.1 (Convex hulls incrementally). Let P be a set of n points in the plane.
(A) Describe a randomized incremental algorithm for computing the convex hull CH(P). Bound the expected

running time of your algorithm.
(B) Assume that for any subset of P, its convex hull has complexity t (i.e., the convex hull of the subset has t

edges). What is the expected running time of your algorithm in this case? If your algorithm is not faster
for this case (for example, think about the case where t = O(log n)), describe a variant of your algorithm
which is faster for this case.

Exercise 21.6.2 (Compressed quadtree made incremental). Given a set P of n points in Rd, describe a ran-
domized incremental algorithm for building a compressed quadtree for P that works in expected O(dn log n)
time. Prove the bound on the running time of your algorithm.

21.7. From previous lectures

Theorem 21.7.1 (ε-net theorem, [HW87]). Let (X,R) be a range space of VC dimension δ, let x be a finite
subset of X, and suppose that 0 < ε ≤ 1 and ϕ < 1. Let N be a set obtained by m random independent draws
from x, where

m ≥ max
(

4
ε

lg
4
ϕ
,

8δ
ε

lg
16
ε

)
. (21.4)

Then N is an ε-net for x with probability at least 1 − ϕ.
°This is why all computations related to cuttings should be done on a waiter’s bill pad. As Douglas Adams put it: “On a waiter’s

bill pad, reality and unreality collide on such a fundamental level that each becomes the other and anything is possible, within certain
parameters.”
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Lemma 21.7.2. For any two random variables X and Y, we have E
[
E
[
X

∣∣∣ Y ]]
= E

[
X
]
.
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Chapter 22

Primality testing
By Sariel Har-Peled, December 30, 2015¬

“The world is what it is; men who are nothing, who allow themselves to become nothing, have no
place in it.”

— Bend in the river, V.S. Naipaul

Introduction – how to read this write-up

In this note, we present a simple randomized algorithms for primality testing. The challenge is that it requires a
non-trivial amount of number theory, which is not the purpose of this course. Nevertheless, this note is more or
less self contained, and all necessary background is provided (assuming some basic mathematical familiarity
with groups, fields and modulo arithmetic). It is however not really necessary to understand all the number
theory material needed, and the reader can take it as given. In particular, I recommend to read the number
theory background part without reading all of the proofs (at least on first reading). Naturally, a complete and
total understanding of this material one needs to read everything carefully.

The description of the primality testing algorithm in this write-up is not minimal – there are shorter descrip-
tions out there. However, it is modular – assuming the number theory machinery used is correct, the algorithm
description is relatively straightforward.

22.1. Number theory background

22.1.1. Modulo arithmetic

22.1.1.1. Prime and coprime

For integer numbers x and y, let x | y denotes that x divides y. The greatest common divisor (gcd) of two
numbers x and y, denoted by gcd(x, y), is the largest integer that divides both x and y. The least common
multiple (lcm) of x and y, denoted by lcm(x, y) = xy/ gcd(x, y), is the smallest integer α, such that x | α and
y | α. An integer number p > 0 is prime if it is divisible only by 1 and itself (we will consider 1 not to be
prime).

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Some standard definitions:

x, y are coprime ⇐⇒ gcd(x, y) = 1,
quotient of x/y ⇐⇒ x div y = bx/yc ,

remainder of x/y ⇐⇒ x mod y = x − y bx/yc .

The remainder x mod y is sometimes referred to as residue.

22.1.1.2. Computing gcd

EuclidGCD(a, b):
if (b = 0)

return a
else

return EuclidGCD(b, a mod b)

Computing the gcd of two numbers is a classical algorithm,
see code on the right – proving that it indeed returns the right
result follows by an easy induction. It is easy to verify that
if the input is made out of log n bits, then this algorithm takes
O
(
poly(log n)

)
time (i.e., it is polynomial in the input size). In-

deed, doing basic operations on numbers (i.e., multiplication,
division, addition, subtraction, etc) with total of ` bits takes O

(
`2

)
time (naively – faster algorithms are known).

Exercise 22.1.1. Show that gcd(Fn, Fn−1) = 1, where Fi is the ith Fibonacci number. Argue that for two
consecutive Fibonacci numbers EuclidGCD(Fn, Fn−1) takes O(n) time, if every operation takes O(1) time.

Lemma 22.1.2. For all α, β > 0 integers, there are integer numbers x and y, such that gcd(α, β) = αx + βy,

which can be computed in polynomial time; that is, O
(
poly

(
logα + log β

))
.

Proof: If α = β then the claim trivially holds. Otherwise, assume that α > β (otherwise, swap them), and
observe that gcd(α, β) = gcd(α mod β, β). In particular, by induction, there are integers x′, y′, such that
gcd(α mod β, β) = x′(α mod β) + y′β. However, τ = α mod β = α − β bα/βc. As such, we have

gcd(α, β) = gcd(α mod β, β) = x′
(
α − β bα/βc

)
+ y′β = x′α +

(
y′ − β bα/βc

)
β,

as claimed. The running time follows immediately by modifying EuclidGCD to compute these numbers. �

We use α ≡ β (mod n) or α ≡n β to denote that α and β are congruent modulo n; that is α mod n =
β mod n. Or put differently, we have n | (α − β). The set ZZn =

{
0, . . . , n − 1

}
form a group under addition

modulo n (see Definition 22.1.9p4 for a formal definition of a group). The more interesting creature is ZZ∗n ={
x

∣∣∣ x ∈ {1, . . . , n} , x > 0, and gcd(x, n) = 1
}
, which is a group modulo n under multiplication.

Remark 22.1.3. Observe that ZZ∗1 = {1}, while for n > 1, ZZ∗n does not contain n.

Lemma 22.1.4. For any element α ∈ ZZ∗n, there exists a unique inverse element β = α−1 ∈ ZZ∗n such that
α ∗ β ≡n 1. Furthermore, the inverse can be computed in polynomial time­.

Proof: Since α ∈ ZZ∗n, we have that gcd(α, n) = 1. As such, by Lemma 22.1.2, there exists x and y integers,
such that xα + yn = 1. That is xα ≡ 1 (mod n), and clearly β := x mod n is the desired inverse, and it can be
computed in polynomial time by Lemma 22.1.2.

As for uniqueness, assume that there are two inverses β, β′ to α < n, such that β < β′ < n. But then
βα ≡n β

′α ≡n 1, which implies that n | (β′ − β)α, which implies that n | β′ − β, which is impossible as
0 < β′ − β < n. �

­Again, as is everywhere in this chapter, the polynomial time is in the number of bits needed to specify the input.
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It is now straightforward, but somewhat tedious, to verify the following (the interested reader that had not
encountered this stuff before can spend some time proving this).

Lemma 22.1.5. The set ZZn under the + operation modulo n is a group, as is ZZ∗n under multiplication mod-
ulo n. More importantly, for a prime number p, ZZp forms a field with the +, ∗ operations modulo p (see
Definition 22.1.17p6).

22.1.1.3. The Chinese remainder theorem

Theorem 22.1.6 (Chinese remainder theorem). Let n1, . . . , nk be coprime numbers, and let n = n1n2 · · · nk.
For any residues r1 ∈ ZZn1 , . . . , rk ∈ ZZnk , there is a unique r ∈ ZZn, which can be computed in polynomial time,
such that r ≡ ri (mod ni), for i = 1, . . . , k.

Proof: By the coprime property of the nis it follows that gcd(ni, n/ni) = 1. As such, n/ni ∈ ZZ∗ni
, and it has a

unique inverse mi modulo ni; that is (n/ni)mi ≡ 1 (mod ni). So set r =
∑

i rimin/ni. Observe that for i , j, we
have that n j | (n/ni), and as such rimin/ni (mod n j) ≡ 0 (mod n j). As such, we have

r mod n j =

∑
i

(
rimi

n
ni

mod n j

) mod n j =

(
r jm j

n
n j

mod n j

)
mod n j = r j ∗ 1 mod n j = r j.

As for uniqueness, if there is another such number r′, such that r < r′ < n, then r′ − r (mod ni) = 0 implying
that ni | r′ − r, for all i. Since all the nis are coprime, this implies that n | r′ − r, which is of course impossible.�

Lemma 22.1.7 (Fast exponentiation). Given numbers b, c, n, one can compute bc mod n in polynomial time.

Proof: The key property we need is that

xy mod n =
(
(x mod n) (y mod n)

)
mod n.

Now, if c is even, then we can compute

bc mod n =
(
bc/2

)2
mod n =

(
bc/2 mod n

)2
mod n.

Similarly, if c is odd, we have

bc mod n = (b mod n)
(
b(c−1)/2

)2
mod n = (b mod n)

(
b(c−1)/2 mod n

)2
mod n.

Namely, computing bc mod n can be reduced to recursively computing bbc/2c mod n, and a constant number of
operations (on numbers that are smaller than n). Clearly, the depth of the recursion is O(log c). �

22.1.1.4. Euler totient function

The Euler totient function φ(n) =
∣∣∣ZZ∗n∣∣∣ is the number of positive integer numbers that at most n and are coprime

with n. If n is prime then φ(n) = n − 1.

Lemma 22.1.8. Let n = pk1
1 · · · p

kt
t , where the pis are prime numbers and the kis are positive integers (this is

the prime factorization of n). Then φ(n) =
t∏

i=1

pki−1
i (pi − 1). and this quantity can be computed in polynomial

time if the factorization is given.
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Proof: Observe that φ(1) = 1 (see Remark 22.1.3), and for a prime number p, we have that φ(p) = p− 1. Now,
for k > 1, and p prime we have that φ(pk) = pk−1(p − 1), as a number x ≤ pk is coprime with pk, if and only if
x mod p , 0, and (p − 1)/p fraction of the numbers in this range have this property.

Now, if n and m are relative primes, then gcd(x, nm) = 1 ⇐⇒ gcd(x, n) = 1 and gcd(x,m) = 1. In
particular, there are φ(n)φ(m) pairs (α, β) ∈ ZZ∗n×ZZ∗m, such that gcd(α, n) = 1 and gcd(β,m) = 1. By the Chinese
remainder theorem (Theorem 22.1.6), each such pair represents a unique number in the range 1, . . . , nm, as
desired.

Now, the claim follows by easy induction on the prime factorization of the given number. �

22.1.2. Structure of the modulo group ZZn

22.1.2.1. Some basic group theory

Definition 22.1.9. A group is a set, G, together with an operation × that combines any two elements a and b
to form another element, denoted a × b or ab. To qualify as a group, the set and operation, (G,×), must satisfy
the following:

(A) (Closure) For all a, b ∈ G, the result of the operation, a × b ∈ G.
(B) (Associativity) For all a, b, c ∈ G, we have (a × b) × c = a × (b × c).
(C) (Identity element) There exists an element i ∈ G, called the identity element, such that for every

element a ∈ G, the equation i × a = a × i = a holds.
(D) (Inverse element) For each a ∈ G, there exists an element b ∈ G such that a × b = b × a = i.

A group is abelian (aka, commutative group) if for all a, b ∈ G, we have that a × b = b × a.

In the following we restrict our attention to abelian groups since it makes the discussion somewhat simpler.
In particular, some of the claims below holds even without the restriction to abelian groups.

The identity element is unique. Indeed, if both f , g ∈ G are identity elements, then f = f ×g = g. Similarly,
for every element x ∈ G there exists a unique inverse y = x−1. Indeed, if there was another inverse z, then
y = y × i = y × (x × z) = (y × x) × z = i × z = z.

22.1.2.2. Subgroups

For a group G, a subsetH ⊆ G that is also a group (under the same operation) is a subgroup.
For x, y ∈ G, let us define x ∼ y if x/y ∈ H . Here x/y = xy−1 and y−1 is the inverse of y in G. Observe

that (y/x)(x/y) =
(
yx−1

)(
xy−1

)
= i. That is y/x is the inverse of x/y, and it is in H . But that implies that

x ∼ y =⇒ y ∼ x. Now, if x ∼ y and y ∼ z, then x/y, y/z ∈ H . But then x/y × y/z ∈ H , and furthermore
x/y × y/z = xy−1yz−1 = xz−1 = x/z. that is x ∼ z. Together, this implies that ∼ is an equivalence relationship.

Furthermore, observe that if x/y = x/z then y−1 = x−1(x/y) = x−1(x/z) = z−1, that is y = z. In particular, the
equivalence class of x ∈ G, is [x] =

{
z ∈ G

∣∣∣ x ∼ z
}
. Observe that if x ∈ H then i/x = ix−1 = x−1 ∈ H , and thus

i ∼ x. That isH = [x]. The following is now easy.

Lemma 22.1.10. Let G be an abelian group, and let H ⊆ G be a subgroup. Consider the set G/H ={
[x]

∣∣∣ x ∈ G
}
. We claim that

∣∣∣[x]
∣∣∣ = ∣∣∣[y]

∣∣∣ for any x, y ∈ G. Furthermore G/H is a group (that is, the quo-
tient group), with [x] × [y] = [x × y].

Proof: Pick an element α ∈ [x], and β ∈ [y], and consider the mapping f (x) = xα−1β. We claim that f is one to
one and onto from [x] to [y]. For any γ ∈ [x], we have that γα−1 = γ/α ∈ H As such, f (γ) = γα−1β ∈ [β] = [y].
Now, for any γ, γ′ ∈ [x] such that γ , γ′, we have that if f (γ) = γα−1β = γ′α−1β = f (γ′), then by multiplying
by β−1α, we have that γ = γ′. That is, f is one to one, implying that

∣∣∣[x]
∣∣∣ = ∣∣∣[y]

∣∣∣.
4



The second claim follows by careful but tediously checking that the conditions in the definition of a group
holds. �

Lemma 22.1.11. For a finite abelian group G and a subgroupH ⊆ G, we have that |H| divides |G|.

Proof: By Lemma 22.1.10, we have that |G| = |H| · |G/H|, asH = [i]. �

22.1.2.3. Cyclic groups

Lemma 22.1.12. For a finite group G, and any element g ∈ G, the set 〈g〉 =
{
gi

∣∣∣ i ≥ 0
}

is a group.

Proof: Since G is finite, there are integers i > j ≥ 1, such that i , j and gi = g j, but then g j × gi− j = gi = g j.
That is gi− j = i and, by definition, we have gi− j ∈ 〈g〉. It is now straightforward to verify that the other properties
of a group hold for 〈g〉. �

In particular, for an element g ∈ G, we define its order as ord(g) =
∣∣∣〈g〉∣∣∣, which clearly is the minimum

positive integer m, such that gm = i. Indeed, for j > m, observe that g j = g j mod m ∈ X =
{
i, g, g2, . . . , gm−1

}
,

which implies that 〈g〉 = X.
A group G is cyclic, if there is an element g ∈ G, such that 〈g〉 = G. In such a case g is a generator of G.

Lemma 22.1.13. For any finite abelian group G, and any g ∈ G, we have that ord(g) divides |G|, and g|G| = i.

Proof: By Lemma 22.1.12, the set 〈g〉 is a subgroup of G. By Lemma 22.1.11, we have that ord(g) =
∣∣∣〈g〉∣∣∣ | |G|.

As such, g|G| =
(
gord(g)

)|G|/ ord(g)
=

(
i
)|G|/ ord(g)

= i. �

22.1.2.4. Modulo group

Lemma 22.1.14. For any integer n, consider the additive group ZZn. Then, for any x ∈ ZZn, we have that

x · ord(x) = lcm(x, n). In particular, ord(x) =
lcm(n, x)

x
=

n
gcd(n, x)

. If n is prime, and x , 0 then ord(x) =

|ZZn| = n, and ZZn is a cyclic group.

Proof: We are working modulo n here under additions, and the identity element is 0. As such, x · ord(x) ≡n 0,
which implies that n | x ord(x). By definition, ord(x) is the minimal number that has this property, implying

that ord(x) =
lcm(n, x)

x
. Now, lcm(n, x) = nx/ gcd(n, x). The second claim is now easy. �

Theorem 22.1.15. (Euler’s theorem) For all n and x ∈ ZZ∗n, we have xφ(n) ≡ 1 (mod n).
(Fermat’s theorem) If p is a prime then ∀x ∈ ZZ∗p xp−1 ≡ 1 (mod p).

Proof: The group ZZ∗n is abelian and has φ(n) elements, with 1 being the identity element (duh!). As such, by
Lemma 22.1.13, we have that xφ(n) = x

∣∣∣ZZ∗n∣∣∣ ≡ 1 (mod n), as claimed.
The second claim follows by setting n = p, and recalling that φ(p) = p − 1, if p is a prime. �

One might be tempted to think that Lemma 22.1.14 implies that if p is a prime then ZZ∗p is a cyclic group,
but this does not follow, as the cardinality of ZZ∗p is φ(p) = p − 1, which is not a prime number (for p > 2). To
prove that ZZ∗p is cyclic, let us go back shortly to the totient function.

Lemma 22.1.16. For any n > 0, we have
∑

d|n φ(d) = n.

Proof: For any g > 0, let Vg =
{
x

∣∣∣ x ∈ {1, . . . , n} and gcd(x, n) = g
}
. Now, x ∈ Vg ⇐⇒ gcd(x, n) = g

⇐⇒ gcd(x/g, n/g) = 1 ⇐⇒ x/g ∈ ZZ∗n/g. Since V1,V2, . . . ,Vn form a partition of {1, . . . , n}, it follows that

n =
∑

g

∣∣∣Vg

∣∣∣ =∑
g|n

∣∣∣ZZ∗n/g∣∣∣ =∑
g|n

φ(n/g) =
∑
d|n

φ(d). �
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22.1.2.5. Fields

Definition 22.1.17. A field is an algebraic structure 〈F,+, ∗, 0, 1〉 consisting of two abelian groups:
(A) F under +, with 0 being the identity element.
(B) F \ {0} under ∗, with 1 as the identity element (here 0 , 1).

Also, the following property (distributivity of multiplication over addition) holds:

∀a, b, c ∈ F a ∗ (b + c) = (a ∗ b) + (a ∗ c).

We need the following: A polynomial p of degree k over a field F has at most k roots. indeed, if p has the
root α then it can be written as p(x) = (x − α)q(x), where q(x) is a polynomial of one degree lower. To see
this, we divide p(x) by the polynomial (x − α), and observe that p(x) = (x − α)q(x) + β, but clearly β = 0 since
p(α) = 0. As such, if p had t roots α1, . . . , αt, then p(x) = q(x)

∏t
i=1(x − αi), which implies that p would have

degree at least t.

22.1.2.6. ZZ∗p is cyclic for prime numbers

For a prime number p, the group ZZ∗p has size φ(p) = p − 1, which is not a prime number for p > 2. As such,
Lemma 22.1.13 does not imply that there must be an element in ZZ∗p that has order p− 1 (and thus ZZ∗p is cyclic).
Instead, our argument is going to be more involved and less direct.

Lemma 22.1.18. For k < n, let Rk =
{
x ∈ ZZ∗p

∣∣∣ ord(x) = k
}

be the set of all numbers in ZZ∗p that are of order k.
We have that |Rk| ≤ φ(k).

Proof: Clearly, all the elements of Rk are roots of the polynomial xk − 1 = 0 (mod n). By the above, this
polynomial has at most k roots. Now, if Rk is not empty, then it contains an element x ∈ Rk of order k, which
implies that for all i < j ≤ k, we have that xi . x j (mod n), as the order of x is the size of 〈x〉, and the minimum
k such that xk ≡ 1 (mod n). In particular, we have that Rk ⊆ 〈x〉, as for y = x j, we have that yk ≡n x jk ≡n 1 j ≡n 1.

Observe that for y = xi, if g = gcd(k, i) > 1, then yk/g ≡n xi(k/g) ≡n xlcm(i,k) ≡n 1; that is, ord(y) ≤ k/g < k,
and y < Rk. As such, Rk contains only elements of xi such that gcd(i, k) = 1. That is Rk ⊆ ZZ∗k. The claim now
readily follows as

∣∣∣ZZ∗k∣∣∣ = φ(k). �

Lemma 22.1.19. For any prime p, the group ZZ∗p is cyclic.

Proof: For p = 2 the claim trivially holds, so assume p > 2. If the set Rp−1, from Lemma 22.1.18, is not empty,
then there is g ∈ Rp−1, it has order p − 1, and it is a generator of ZZ∗p, as

∣∣∣ZZ∗p∣∣∣ = p − 1, implying that ZZ∗p = 〈g〉
and this group is cyclic.

Now, by Lemma 22.1.13, we have that for any y ∈ ZZ∗p, we have that ord(y) | p− 1 =
∣∣∣ZZ∗p∣∣∣. This implies that

Rk is empty if k does not divides p − 1. On the other hand, R1, . . . ,Rp−1 form a partition of ZZ∗p. As such, we
have that

p − 1 =
∣∣∣ZZ∗p∣∣∣ = ∑

k|p−1

|Rk| ≤
∑
k|p−1

φ(k) = p − 1,

by Lemma 22.1.18 and Lemma 22.1.16p5, implying that the inequality in the above display is equality, and for
all k | p− 1, we have that |Rk| = φ(k). In particular,

∣∣∣Rp−1

∣∣∣ = φ(p− 1) > 0, and by the above the claim follows.�
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22.1.2.7. ZZ∗n is cyclic for powers of a prime

Lemma 22.1.20. Consider any odd prime p, and any integer c ≥ 1, then the group ZZ∗n is cyclic, where n = pc.

Proof: Let g be a generator of ZZ∗p. Observe that gp−1 ≡ 1 mod p. The number g < p, and as such p does
not divide g, and also p does not divide gp−2, and also p does not divide p − 1. As such, p2 does not divide
∆ = (p − 1)gp−2 p; that is, ∆ . 0 (mod p2). As such, we have that

(g + p)p−1 ≡ gp−1 +

(
p − 1

1

)
gp−2 p ≡ gp−1 + ∆ . gp−1 (mod p2)

=⇒ (g + p)p−1 . 1 (mod p2) or gp−1 . 1 (mod p2).

Renaming g + p to be g, if necessary, we have that gp−1 . 1 (mod p2), but by Theorem 22.1.15p5, gp−1 ≡ 1
(mod p). As such, gp−1 = 1 + βp, where p does not divide β. Now, we have

gp(p−1) = (1 + βp)p = 1 +
(
p
1

)
βp + βp3<whatever> = 1 + γ1 p2,

where γ1 is an integer (the p3 is not a typo – the binomial coefficient contributes at least one factor of p – here
we are using that p > 2). In particular, as p does not divides β, it follows that p does not divides γ1 either. Let
us apply this argumentation again to

gp2(p−1) =
(
1 + γ1 p2

)p
= 1 + γ1 p3 + p4<whatever> = 1 + γ2 p3,

where again p does not divides γ2. Repeating this argument, for i = 1, . . . , c − 2, we have

αi = gpi(p−1) =
(
gpi−1(p−1)

)p
=

(
1 + γi−1 pi

)p
= 1 + γi−1 pi+1 + pi+2<whatever> = 1 + γi pi+1,

where p does not divides γi. In particular, this implies that αc−2 = 1 + γc−2 pc−1 and p does not divides γc−2.
This in turn implies that αc−2 . 1 (mod pc).

Now, the order of g in ZZn, denoted by k, must divide
∣∣∣ZZ∗n∣∣∣ by Lemma 22.1.13p5. Now

∣∣∣ZZ∗n∣∣∣ = φ(n) =
pc−1(p − 1), see Lemma 22.1.8p3. So, k | pc−1(p − 1). Also, αc−2 . 1 (mod pc). implies that k does not divides
pc−2(p − 1). It follows that pc−1 | k. So, let us write k = pc−1k′, where k′ ≤ (p − 1). This, by definition, implies
that gk ≡ 1 (mod pc). Now, gp ≡ g (mod p), because g is a generator of ZZ∗p. As such, we have that

gk ≡p gpδk′ ≡p (gp)pδ−1k′
≡p (g)pδ−1k′

≡p . . . ≡p (g)k′
≡p

(
gk mod pc

)
mod p ≡p 1.

Namely, gk′ ≡ 1 (mod p), which implies, as g as a generator of ZZ∗p, that either k′ = 1 or k′ = p − 1. The
case k′ = 1 is impossible, as this implies that g = 1, and it can not be the generator of ZZ∗p. We conclude that
k = pc−1(p − 1); that is, ZZ∗n is cyclic. �

22.1.3. Quadratic residues

22.1.3.1. Quadratic residue

Definition 22.1.21. An integer α is a quadratic residue modulo a positive integer n, if gcd(α, n) = 1 and for
some integer β, we have α ≡ β2 (mod n).

Theorem 22.1.22 (Euler’s criterion). Let p be an odd prime, and α ∈ ZZ∗p. We have that
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(A) α(p−1)/2 ≡p ±1.
(B) If α is a quadratic residue, then α(p−1)/2 ≡p 1.
(C) If α is not a quadratic residue, then α(p−1)/2 ≡p −1.

Proof: (A) Let γ = α(p−1)/2, and observe that γ2 ≡p α
p−1 ≡ 1, by Fermat’s theorem (Theorem 22.1.15p5), which

implies that γ is either +1 or −1, as the polynomial x2 − 1 has at most two roots over a field.
(B) Let α ≡p β

2, and again by Fermat’s theorem, we have α(p−1)/2 ≡p β
p−1 ≡p 1.

(C) Let X be the set of elements in ZZ∗p that are not quadratic residues, and consider α ∈ X. Since ZZ∗p is
a group, for any x ∈ ZZ∗p there is a unique y ∈ ZZ∗p such that xy ≡p α. As such, we partition ZZ∗p into pairs
C =

{
{x, y}

∣∣∣ x, y ∈ ZZ∗p and xy ≡p α
}
. We have that

τ ≡p

∏
β∈ZZ∗p

β ≡p

∏
{x,y}∈C

xy ≡p

∏
{x,y}∈C

α ≡p α
(p−1)/2.

Let consider a similar set of pair, but this time for 1: D =
{
{x, y}

∣∣∣ x, y ∈ ZZ∗p, x , y and xy ≡p 1
}
. Clearly, D

does not contain −1 and 1, but all other elements in ZZ∗p are in D. As such,

τ ≡p

∏
β∈ZZ∗p

β ≡p (−1)1
∏
{x,y}∈D

xy ≡p

∏
{x,y}∈D

1 ≡p −1. �

22.1.3.2. Legendre symbol

For an odd prime p, and an integer a with gcd(a, n) = 1, the Legendre symbol (a | p) is one if a is a quadratic
residue modulo p, and −1 otherwise (if p | a, we define (a | p) = 0). Euler’s criterion (Theorem 22.1.22)
implies the following equivalent definition.

Definition 22.1.23. The Legendre symbol, for a prime number p, and a ∈ ZZ∗p, is

(a | p) = a(p−1)/2 (mod p).

The following is easy to verify.

Lemma 22.1.24. Let p be an odd prime, and let a, b be integer numbers. We have:
(i) (−1 | p) = (−1)(p−1)/2.

(ii) (a | p) (b | p) = (ab | p).
(iii) If a ≡p b then (a | p) = (b | p).

Lemma 22.1.25 (Gauss’ lemma). Let p be an odd prime and let a be an integer that is not divisible by p. Let
X =

{
α j = ja (mod p)

∣∣∣ j = 1, . . . , (p − 1)/2
}
, and L =

{
x ∈ X

∣∣∣ x > p/2
}
⊆ X. Then (a | p) = (−1)n, where

n = |L|.

Proof: Observe that for any distinct i, j, such that 1 ≤ i ≤ j ≤ (p− 1)/2, we have that ja ≡ ia (mod p) implies
that ( j − i)a ≡ 0 (mod p), which is impossible as j − i < p and gcd(a, p) = 1. As such, all the elements of
X are distinct, and |X| = (p − 1)/2. We have a somewhat stronger property: If ja ≡ p − ia (mod p) implies
( j + i)a ≡ 0 (mod p), which is impossible. That is, S = X \ L, and L =

{
p − `

∣∣∣ ` ∈ L
}

are disjoint, and

S ∪ L =
{
1, . . . , (p − 1)/2

}
. As such,(

p − 1
2

)
! ≡

∏
x∈S

x ·
∏
y∈L

(p − y) ≡ (−1)n
∏
x∈S

x ·
∏
y∈L

y ≡ (−1)n
(p−1)/2∏

j=1

ja ≡ (−1)na(p−1)/2
(

p − 1
2

)
! (mod p).

Dividing both sides by (−1)n((p − 1)/2)!, we have that (a | p) ≡ a(p−1)/2 ≡ (−1)n (mod p), as claimed. �
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Lemma 22.1.26. If p is an odd prime, and a > 2 and gcd(a, p) = 1 then (a | p) = (−1)∆, where ∆ =
(p−1)/2∑

j=1

b ja/pc. Furthermore, we have (2 | p) = (−1)(p2−1)/8.

Proof: Using the notation of Lemma 22.1.25, we have

(p−1)/2∑
j=1

ja =
(p−1)/2∑

j=1

(
b ja/pc p + ( ja mod p)

)
= ∆p +

∑
x∈S

x +
∑
y∈L

y = (∆ + n)p +
∑
x∈S

x −
∑
y∈L

y

= (∆ + n)p +
(p−1)/2∑

j=1

j − 2
∑
y∈L

y.

Rearranging, and observing that
∑(p−1)/2

j=1 j = p−1
2 ·

1
2

(
p−1

2 + 1
)
=

p2−1
8 .We have that

(a − 1)
p2 − 1

8
= (∆ + n)p − 2

∑
y∈L

y. =⇒ (a − 1)
p2 − 1

8
≡ (∆ + n)p (mod 2). (22.1)

Observe that p ≡ 1 (mod 2), and for any x we have that x ≡ −x (mod 2). As such, and if a is odd, then the
above implies that n ≡ ∆ (mod 2). Now the claim readily follows from Lemma 22.1.25.

As for (2 | p), setting a = 2, observe that b ja/pc = 0, for j = 0, . . . (p − 1)/2, and as such ∆ = 0. Now,
Eq. (22.1) implies that p2−1

8 ≡ n (mod 2), and the claim follows from Lemma 22.1.25. �

Theorem 22.1.27 (Law of quadratic reciprocity). If p and q are distinct odd primes, then

(p | q) = (−1)
p−1

2
q−1

2 (q | p) .

Proof: Let S =
{
(x, y)

∣∣∣ 1 ≤ x ≤ (p − 1)/2 and 1 ≤ y ≤ (q − 1)/2
}
. As lcm(p, q) = pq, it follows that there are

no (x, y) ∈ S , such that qx = py, as all such numbers are strict smaller than pq. Now, let

S 1 =
{
(x, y) ∈ S

∣∣∣ qx > py
}

and S 2 =
{
(x, y) ∈ S

∣∣∣ qx < py
}
.

Now, (x, y) ∈ S 1 ⇐⇒ 1 ≤ x ≤ (p − 1), and 1 ≤ y ≤ bqx/pc. As such, we have |S 1| =
∑(p−1)/2

x=1 bqx/pc, and
similarly |S 2| =

∑(q−1)/2
y=1 bpy/qc. We have

τ =
p − 1

2
·

q − 1
2
= |S | = |S 1| + |S 2| =

(p−1)/2∑
x=1

bqx/pc︸         ︷︷         ︸
τ1

+

(q−1)/2∑
y=1

bpy/qc︸         ︷︷         ︸
τ2

.

The claim now readily follows by Lemma 22.1.26, as (−1)τ = (−1)τ1(−1)τ2 = (p | q) (q | p). �

22.1.3.3. Jacobi symbol

Definition 22.1.28. For any integer a, and an odd number n with prime factorization n = pk1
1 · · · p

kt
t , its Jacobi

symbol is

~a | n� =
t∏

i=1

(a | pi)ki .

9



Claim 22.1.29. For odd integers n1, . . . , nk, we have that
∑k

i=1(ni − 1)/2 ≡
(∏k

i=1 ni − 1
)
/2 (mod 2).

Proof: We prove for two odd integers x and y, and apply this repeatedly to get the claim. Indeed, we have
x − 1

2
+

y − 1
2
≡

xy − 1
2

(mod 2) ⇐⇒ 0 ≡
xy − x + 1 − y + 1 − 1

2
(mod 2) ⇐⇒ 0 ≡

xy − x − y + 1
2

(mod 2) ⇐⇒ 0 ≡
(x − 1)(y − 1)

2
(mod 2), which is obviously true. �

Lemma 22.1.30 (Law of quadratic reciprocity). For n and m positive odd integers, we have that ~n | m� =
(−1)

n−1
2

m−1
2 ~m | n� .

Proof: Let n =
∏ν

i=1 pi and Let m =
∏µ

j=1 q j be the prime factorization of the two numbers (allowing repeated
factors). If they share a common factor p, then both ~n | m� and ~m | n� contain a zero term when expanded,
as (n | p) = (m | p) = 0. Otherwise, we have

~n | m� =
ν∏

i=1

µ∏
j=1

�
pi | q j

�
=

ν∏
i=1

µ∏
j=1

(
pi | q j

)
=

ν∏
i=1

µ∏
j=1

(−1)(q j−1)/2·(pi−1)/2
(
q j | pi

)
=

ν∏
i=1

µ∏
j=1

(−1)(q j−1)/2·(pi−1)/2

︸                          ︷︷                          ︸
s

·

 ν∏
i=1

µ∏
j=1

(
q j | pi

) = s ~m | n� .

by Theorem 22.1.27. As for the value of s, observe that

s =
ν∏

i=1

 µ∏
j=1

(−1)(q j−1)/2


(pi−1)/2

=

ν∏
i=1

(
(−1)(m−1)/2

)(pi−1)/2
=

 ν∏
i=1

(−1)(pi−1)/2

(m−1)/2

= (−1)(n−1)/2·(m−1)/2,

by repeated usage of Claim 22.1.29. �

Lemma 22.1.31. For odd integers n and m, we have that
n2 − 1

8
+

m2 − 1
8
≡

n2m2 − 1
8

(mod 2).

Proof: For an odd integer n, we have that either (i) 2 | n − 1 and 4 | n + 1, or (ii) 4 | n − 1 and 2 | n + 1. As
such, 8 | n2 − 1 = (n − 1)(n + 1). In particular, 64 |

(
n2 − 1

)(
m2 − 1

)
. We thus have that(

n2 − 1
)(

m2 − 1
)

8
≡ 0 (mod 2) ⇐⇒

n2m2 − n2 − m2 + 1
8

≡ 0 (mod 2)

⇐⇒
n2m2 − 1

8
≡

n2 − m2 − 2
8

(mod 2)

⇐⇒
n2 − 1

8
+

m2 − 1
8
≡

n2m2 − 1
8

(mod 2). �

Lemma 22.1.32. Let m, n be odd integers, and a, b be any integers. We have the following:
(A) ~ab | n� = ~a | n� ~b | n�.
(B) ~a | nm� = ~a | n� ~a | m�.
(C) If a ≡ b (mod n) then ~a | n� = ~b | n�.
(D) If gcd(a, n) > 1 then ~a | n� = 0.
(E) ~1 | n� = 1.
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(F) ~2 | n� = (−1)(n2−1)/8.
(G) ~n | m� = (−1)

n−1
2

m−1
2 ~m | n� .

Proof: (A) Follows immediately, as (ab | pi) = (a | pi) (b | pi), see Lemma 22.1.24p8.
(B) Immediate from definition.
(C) Follows readily from Lemma 22.1.24p8 (iii).
(D) Indeed, if p | gcd(a, n) and p > 1, then (a | p)k = (0 | p)k = 0 appears as a term in ~a | n�.
(E) Obvious by definition.
(F) By Lemma 22.1.26p9, for a prime p, we have (2 | p) = (−1)(p2−1)/8. As such, writing n =

∏t
i=1 pi as a

product of primes (allowing repeated primes), we have

~2 | n� =
t∏

i=1

(2 | pi) =
t∏

i=1

(−1)(p2
i −1)/8 = (−1)∆,

where ∆ =
∑t

i=1(p2
i − 1)/8. As such, we need to compute the ∆ (mod 2), which by Lemma 22.1.31, is

∆ ≡

t∑
i=1

p2
i − 1
8
≡

∏t
i=1 p2

i − 1
8

≡
n2 − 1

8
(mod 2),

and as such ~2 | n� = (−1)∆ = (−1)(n2−1)/8.
(G) This is Lemma 22.1.30. �

22.1.3.4. Jacobi(a, n): Computing the Jacobi symbol

Given a and n (n is an odd number), we are interested in computing (in polynomial time) the Jacobi symbol
~a | n�. The algorithm Jacobi(a, n) works as follows:

(A) If a = 0 then return 0 // Since ~0 | n� = 0.
(B) If a > n then return Jacobi(a (mod n), n) // Lemma 22.1.32 (C)
(C) If gcd(a, n) > 1 then return 0 // Lemma 22.1.32 (D)
(D) If a = 2 then

(I) Compute ∆ = n2 − 1 (mod 16),
(II) Return (−1)∆/8 (mod 2) // As (n2−1)/8 ≡ ∆/8 (mod 2), and by Lemma 22.1.32 (F)

(E) If 2 | a then return Jacobi(2, n) * Jacobi(a/2, n) // Lemma 22.1.32 (A)
// Must be that a and b are both odd, a < n, and they are coprime

(F) a′ := a (mod 4), n′ := n (mod 4), β = (a′ − 1)(n′ − 1)/4.
return (−1)β Jacobi(n, a) // By Lemma 22.1.32 (G)

Ignoring the recursive calls, all the operations takes polynomial time. Clearly, computing Jacobi(2, n)
takes polynomial time. Otherwise, observe that Jacobi reduces its input size by say, one bit, at least every two
recursive calls, and except the a = 2 case, it always perform only a single call. Thus, it follows that its running
time is polynomial. We thus get the following.

Lemma 22.1.33. Given integers a and n, where n is odd, then ~a | n� can be computed in polynomial time.

22.1.3.5. Subgroups induced by the Jacobi symbol

For an n, consider the set

Jn =
{
a ∈ ZZ∗n

∣∣∣ ~a | n� ≡ a(n−1)/2 mod n
}
. (22.2)
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Claim 22.1.34. The set Jn is a subgroup of ZZ∗n.

Proof: For a, b ∈ Jn, we have that ~ab | n� ≡ ~a | n� ~b | n� ≡ a(n−1)/2b(n−1)/2 ≡ (ab)(n−1)/2 mod n, implying that
ab ∈ Jn. Now, ~1 | n� = 1, so 1 ∈ Jn. Now, for a ∈ Jn, let a−1 the inverse of a (which is a number in ZZ∗n).
Observe that a(a−1) = kn + 1, for some k, and as such, we have

1 = ~1 | n� = ~kn + 1 | n� =
�
aa−1 | n

�
= ~kn + 1 | n� = ~a | n�

�
a−1 | n

�
.

And modulo n, we have

1 ≡ ~a | n�
�
a−1 | n

�
≡ a(n−1)/2

�
a−1 | n

�
mod n.

Which implies that
(
a−1

)(n−1)/2
≡

�
a−1 | n

�
mod n. That is a−1 ∈ Jn.

Namely, Jn contains the identity, it is closed under inverse and multiplication, and it is now easy to verify
that fulfill the other requirements to be a group. �

Lemma 22.1.35. Let n be an odd integer that is composite, then |Jn| ≤
∣∣∣ZZ∗n∣∣∣ /2.

Proof: Let has the prime factorization n =
∏t

i=1 pki
i . Let q = pk1

1 , and m = n/q. By Lemma 22.1.20p7, the group
ZZ∗q is cyclic, and let g be its generator. Consider the element a ∈ ZZ∗n such that

a ≡ g mod q and a ≡ 1 mod m.

Such a number a exists and its unique, by the Chinese remainder theorem (Theorem 22.1.6p3). In particular, let
m =

∏t
i=2 pki

i , and observe that, for all i, we have a ≡ 1 (mod pi), as pi | m. As such, writing the Jacobi symbol
explicitly, we have

~a | n� =
�
a | q

� t∏
i=2

(a | pi)ki =
�
a | q

� t∏
i=2

(1 | pi)ki =
�
a | q

� t∏
i=2

1 =
�
a | q

�
=

�
g | q

�
.

since a ≡ g (mod q), and Lemma 22.1.32p10 (C). At this point there are two possibilities:
(A) If k1 = 1, then q = p1, and

�
g | q

�
= (g | q) = g(q−1)/2 (mod q). But g is a generator of ZZ∗q, and its

order is q−1. As such g(q−1)/2 ≡ −1 (mod q), see Definition 22.1.23p8. We conclude that ~a | n� = −1.
If we assume that Jn = ZZ∗n, then ~a | n� ≡ a(n−1)/2 ≡ −1 (mod n). Now, as m | n, we have

a(n−1)/2 ≡m

(
a(n−1)/2 mod n

)
mod m ≡m −1.

But this contradicts the choice of a as a ≡ 1 (mod m).
(B) If k1 > 1 then q = pk1

1 . Arguing as above, we have that ~a | n� = (−1)k1 . Thus, if we assume that
Jn = ZZ∗n, then a(n−1)/2 ≡ −1 (mod n) or a(n−1)/2 ≡ 1 (mod n). This implies that an−1 ≡ 1 (mod n).
Thus, an−1 ≡ 1 (mod q).
Now a ≡ g mod q, and thus gn−1 ≡ 1 (mod q). This implies that the order of g in ZZ∗q must divide
n − 1. That is ord(g) = φ(q) | n − 1. Now, since k1 ≥ 2, we have that p1 | φ(q) =

(
pk1

1

)
(p1 − 1), see

Lemma 22.1.8p3. We conclude that p1 | n − 1 and p1 | n, which is of course impossible, as p1 > 1.

We conclude that Jn must be a proper subgroup of ZZ∗n, but, by Lemma 22.1.11p5, it must be that |Jn| |
∣∣∣ZZ∗n∣∣∣. But

this implies that |Jn| ≤
∣∣∣ZZ∗n∣∣∣ /2. �
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22.2. Primality testing

The primality test is now easy®. Indeed, given a number n, first check if it is even (duh!). Otherwise, randomly
pick a number r ∈ {2, . . . , n − 1}. If gcd(r, n) > 1 then the number is composite. Otherwise, check if r ∈ Jn (see
Eq. (22.2)p11), by computing x = ~r | n� in polynomial time, see Section 22.1.3.4p11, and x′ = a(n−1)/2 mod n.
(see Lemma 22.1.7p3). If x = x′ then the algorithm returns is prime, otherwise it returns it is composite.

Theorem 22.2.1. Given a number n, and a parameter δ > 0, there is a randomized algorithm that, decides if
the given number is prime or composite. The running time of the algorithm is O

((
log n

)c log(1/δ)
)
, where c is

some constant. If the algorithm returns that n is composite then it is. If the algorithm returns that n is prime,
then is wrong with probability at most δ.

Proof: Run the above algorithm m = O(log(1/δ)) times. If any of the runs returns that it is composite then the
algorithm return that n is composite, otherwise the algorithms returns that it is a prime.

If the algorithm fails, then n is a composite, and let r1, . . . , rm be the random numbers the algorithm picked.
The algorithm fails only if r1, . . . , rm ∈ Jn, but since |Jn| ≤

∣∣∣ZZ2
n

∣∣∣ /2, by Lemma 22.1.35p12, it follows that this
happens with probability at most

(
|Jn| /

∣∣∣ZZ2
n

∣∣∣)m
≤ 1/2m ≤ δ, as claimed. �

22.2.1. Distribution of primes
In the following, let π(n) denote the number of primes between 1 and n. Here, we prove that π(n) = Θ(n/ log n).

Lemma 22.2.2. Let ∆ be the product of all the prime numbers p, where m < p ≤ 2m. We have that ∆ ≤
(

2m
m

)
.

Proof: Let X be the product of the all composite numbers between m and 2m, we have(
2m
m

)
=

2m · (2m − 1) · · · (m + 2) · (m + 1)
m · (m − 1) · · · 2 · 1

=
X · ∆

m · (m − 1) · · · 2 · 1
.

Since none of the numbers between 2 and m divides any of the factors of ∆, it must be that the number X
m·(m−1)···2·1

is an integer number, as
(

2m
m

)
is an integer. Therefore,

(
2m
m

)
= c · ∆, for some integer c > 0, implying the claim.�

Lemma 22.2.3. The number of prime numbers between m and 2m is O(m/ ln m).

Proof: Let us denote all primes between m and 2m as p1 < p2 < · · · < pk. Since p1 ≥ m, it follows from
Lemma 22.2.2 that mk ≤

∏k
i=1 pi ≤

(
2m
m

)
≤ 22m. Now, taking log of both sides, we have k lg m ≤ 2m. Namely,

k ≤ 2m/ lg m. �

Lemma 22.2.4. π(n) = O(n/ ln n).

Proof: Let the number of primes less than n be Π(n), then by Lemma 22.2.3, there exist some positive constant
C, such that for all ∀n ≥ N, we have Π(2n) − Π(n) ≤ C · n/ ln n. Namely, Π(2n) ≤ C · n/ ln n + Π(n). Thus,

Π(2n) ≤

⌈
lg n

⌉∑
i=0

(
Π
(
2n/2i

)
− Π

(
2n/2i+1

))
≤

⌈
lg n

⌉∑
i=0

C ·
n/2i

ln(n/2i)
= O

( n
ln n

)
, by observing that the summation behaves

like a decreasing geometric series. �

®One could even say “trivial” with heavy Russian accent.
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Lemma 22.2.5. For integers m, k and a prime p, if pk |
(

2m
m

)
, then pk ≤ 2m.

Proof: Let T (p,m) be the number of times p appear in the prime factorization of m!. Formally, T (p,m) is the
highest number k such that pk divides m!. We claim that T (p,m) =

∑∞
i=1

⌊
m/pi

⌋
. Indeed, consider an integer

β ≤ m, such that β = ptγ, where γ is an integer that is not divisible by p. Observe that β contributes exactly to
the first t terms of the summation of T (p,m) – namely, its contribution to m! as far as powers of p is counted
correctly.

Let α be the maximum number such that pα divides
(

2m
m

)
= 2m!

m!m! . Clearly,

α = T (p, 2m) − 2T (p,m) =
∞∑

i=1

(⌊
2m
pi

⌋
− 2

⌊
m
pi

⌋)
.

It is easy to verify that for any integers x, y, we have that 0 ≤
⌊

2x
y

⌋
− 2

⌊
x
y

⌋
≤ 1. In particular, let k be the

largest number such that
(⌊

2m
pk

⌋
− 2

⌊
m
pk

⌋)
= 1, and observe that T (p, 2m) ≤ k as only the proceedings k− 1 terms

might be non-zero in the summation of T (p, 2m). But this implies that
⌊
2m/pk

⌋
≥ 1, which implies in turn that

pk ≤ 2m, as desired. �

Lemma 22.2.6. π(n) = Ω(n/ ln n).

Proof: Assume
(

2m
m

)
have k prime factors, and thus can be written as

(
2m
m

)
=

∏k
i=1 pni

i , By Lemma 22.2.5, we
have pni

i ≤ 2m. Of course, the above product might not include some prime numbers between 1 and 2m,
and as such k is a lower bound on the number of primes in this range; that is, k ≤ π(2m). This implies
22m

2m
≤

(
2m
m

)
≤

k∏
i=1

2m = (2m)k. By taking lg of both sides, we have
2m − lg(2m)

lg(2m)
≤ k ≤ π(2m). �

We summarize the result.

Theorem 22.2.7. Let π(n) be the number of distinct prime numbers between 1 and n. We have that π(n) =
Θ(n/ ln n).

22.3. Bibliographical notes
Miller [Mil76] presented the primality testing algorithm which runs in deterministic polynomial time but relies
on Riemann’s Hypothesis (which is still open). Later on, Rabin [Rab80] showed how to convert this algorithm
to a randomized algorithm, without relying on the Riemann’s hypothesis.

This write-up is based on various sources – starting with the description in [MR95], and then filling in some
details from various sources on the web.

What is currently missing from the write-up is a description of the RSA encryption system. This would
hopefully be added in the future. There are of course typos in these notes – let me know if you find any.
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Chapter 23

Finite Metric Spaces and Partitions
By Sariel Har-Peled, December 30, 2015¬

23.1. Finite Metric Spaces

Definition 23.1.1. A metric space is a pair (X, d) where X is a set and d : X×X→ [0,∞) is a metric, satisfying
the following axioms: (i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, y) + d(y, z) ≥ d(x, z) (triangle
inequality).

For example, R2 with the regular Euclidean distance is a metric space.
It is usually of interest to consider the finite case, where X is an n-point set. Then, the function d can be

specified by
(

n
2

)
real numbers. Alternatively, one can think about (X, d) is a weighted complete graph, where

we specify positive weights on the edges, and the resulting weights on the edges comply with the triangle
inequality.

In fact, finite metric spaces rise naturally from (sparser) graphs. Indeed, let G = (X, E) be an undirected
weighted graph defined over X, and let dG(x, y) be the length of the shortest path between x and y in G. It
is easy to verify that (X, dG) is a finite metric space. As such if the graph G is sparse, it provides a compact
representation to the finite space (X, dG).

Definition 23.1.2. Let (X, d) be an n-point metric space. We denote the open ball of radius r about x ∈ X, by
b(x, r) =

{
y ∈ X

∣∣∣ d(x, y) < r
}
.

Underling our discussion of metric spaces are algorithmic applications. The hardness of various computa-
tional problems depends heavily on the structure of the finite metric space. Thus, given a finite metric space,
and a computational task, it is natural to try to map the given metric space into a new metric where the task at
hand becomes easy.

Example 23.1.3. For example, computing the diameter is not trivial in two dimensions, but is easy in one
dimension. Thus, if we could map points in two dimensions into points in one dimension, such that the
diameter is preserved, then computing the diameter becomes easy. In fact, this approach yields an efficient
approximation algorithm, see Exercise 23.7.3 below.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Of course, this mapping from one metric space to another, is going to introduce error. We would be
interested in minimizing the error introduced by such a mapping.

Definition 23.1.4. Let (X, dX) and (Y, dY) be metric spaces. A mapping f : X→ Y is called an embedding, and
is C-Lipschitz if dY( f (x), f (y)) ≤ C · dX(x, y) for all x, y ∈ X. The mapping f is called K-bi-Lipschitz if there
exists a C > 0 such that

CK−1 · dX(x, y) ≤ dY( f (x), f (y)) ≤ C · dX(x, y),

for all x, y ∈ X.
The least K for which f is K-bi-Lipschitz is called the distortion of f , and is denoted dist( f ). The least

distortion with which X may be embedded in Y is denoted cY(X).

There are several powerful results in this vain, that show the existence of embeddings with low distortion
that would be presented:

1. Probabilistic trees - every finite metric can be randomly embedded into a tree such that the “expected”
distortion for a specific pair of points is O(log n).

2. Bourgain embedding - shows that any n-point metric space can be embedded into (finite dimensional)
metric space with O(log n) distortion.

3. Johnson-Lindenstrauss lemma - shows that any n-point set in Euclidean space with the regular Euclidean
distance can be embedded into Rk with distortion (1 + ε), where k = O(ε−2 log n).

23.2. Examples

23.2.0.0.1. What is distortion? When considering a mapping f : X → Rd of a metric space (X, d) to Rd,
it would useful to observe that since Rd can be scaled, we can consider f to be an an expansion (i.e., no
distances shrink). Furthermore, we can in fact assume that there is at least one pair of points x, y ∈ X, such that
d(x, y) = ‖x − y‖. As such, we have dist( f ) = maxx,y

‖x−y‖
d(x,y) .

23.2.0.0.2. Why distortion is necessary? Consider the a graph G = (V, E) with one vertex s connected
to three other vertices a, b, c, where the weights on the edges are all one (i.e., G is the star graph with three
leafs). We claim that G can not be embedded into Euclidean space with distortion ≤

√
2. Indeed, consider the

associated metric space (V, dG) and an (expansive) embedding f : V → Rd.
Consider the triangle formed by 4 = a′b′c′, where a′ = f (a), b′ = f (b) and c′ = f (c). Next, consider the

following quantity max(‖a′ − s′‖ , ‖b′ − s′‖ , ‖c′ − s′‖) which lower bounds the distortion of f . This quantity is
minimized when r = ‖a′ − s′‖ = ‖b′ − s′‖ = ‖c′ − s′‖. Namely, s′ is the center of the smallest enclosing circle
of 4. However, r is minimize when all the edges of 4 are of equal length, and are in fact of length dG(a, b) = 2.
It follows that dist( f ) ≥ r ≥ 2/

√
3.

It is known that Ω(log n) distortion is necessary in the worst case. This is shown using expanders [Mat02].

23.2.1. Hierarchical Tree Metrics
The following metric is quite useful in practice, and nicely demonstrate why algorithmically finite metric spaces
are useful.
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Definition 23.2.1. Hierarchically well-separated tree (HST) is a metric space defined on the leaves of a rooted
tree T . To each vertex u ∈ T there is associated a label ∆u ≥ 0 such that ∆u = 0 if and only if u is a leaf of T .
The labels are such that if a vertex u is a child of a vertex v then ∆u ≤ ∆v. The distance between two leaves
x, y ∈ T is defined as ∆lca(x,y), where lca(x, y) is the least common ancestor of x and y in T .

A HST T is a k-HST if for a vertex v ∈ T , we have that ∆v ≤ ∆p(v)/k, where p(v) is the parent of v in T .

Note that a HST is a very limited metric. For example, consider the cycle G = Cn of n vertices, with weight
one on the edges, and consider an expansive embedding f of G into a HST HST. It is easy to verify, that there
must be two consecutive nodes of the cycle, which are mapped to two different subtrees of the root r of HST.
Since HST is expansive, it follows that ∆r ≥ n/2. As such, dist( f ) ≥ n/2. Namely, HSTs fail to faithfully
represent even very simple metrics.

23.2.2. Clustering
One natural problem we might want to solve on a graph (i.e., finite metric space) (X, d) is to partition it into
clusters. One such natural clustering is the k-median clustering, where we would like to choose a set C ⊆ X of
k centers, such that νC(X, d) =

∑
q∈X d(q,C) is minimized, where d(q,C) = minc∈C d(q, c) is the distance of q to

its closest center in C.
It is known that finding the optimal k-median clustering in a (general weighted) graph is NP-complete. As

such, the best we can hope for is an approximation algorithm. However, if the structure of the finite metric
space (X, d) is simple, then the problem can be solved efficiently. For example, if the points of X are on the real
line (and the distance between a and b is just |a − b|), then k-median can be solved using dynamic programming.

Another interesting case is when the metric space (X, d) is a HST. Is not too hard to prove the following
lemma. See Exercise 23.7.1.

Lemma 23.2.2. Let (X, d) be a HST defined over n points, and let k > 0 be an integer. One can compute the
optimal k-median clustering of X in O(k2n) time.

Thus, if we can embed a general graph G into a HST HST, with low distortion, then we could approximate
the k-median clustering on G by clustering the resulting HST, and “importing” the resulting partition to the
original space. The quality of approximation, would be bounded by the distortion of the embedding of G into
HST.

23.3. Random Partitions
Let (X, d) be a finite metric space. Given a partition P = {C1, . . . ,Cm} of X, we refer to the sets Ci as clusters.
We write PX for the set of all partitions of X. For x ∈ X and a partition P ∈ PX we denote by P(x) the unique
cluster of P containing x. Finally, the set of all probability distributions on PX is denotedDX.

23.3.1. Constructing the partition
Let ∆ = 2u be a prescribed parameter, which is the required diameter of the resulting clusters. Choose, uni-
formly at random, a permutation π of X and a random value α ∈ [1/4, 1/2]. Let R = α∆, and observe that it is
uniformly distributed in the interval [∆/4,∆/2].

The partition is now defined as follows: A point x ∈ X is assigned to the cluster Cy of y, where y is the first
point in the permutation in distance ≤ R from x. Formally,

Cy =
{
x ∈ X

∣∣∣ x ∈ b(y,R) and π(y) ≤ π(z) for all z ∈ X with x ∈ b(z,R)
}
.
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Let P = {Cy}y∈X denote the resulting partition.
Here is a somewhat more intuitive explanation: Once we fix the radius of the clusters R, we start scooping

out balls of radius R centered at the points of the random permutation π. At the ith stage, we scoop out only the
remaining mass at the ball centered at xi of radius r, where xi is the ith point in the random permutation.

23.3.2. Properties
Lemma 23.3.1. Let (X, d) be a finite metric space, ∆ = 2u a prescribed parameter, and let P be the partition
of X generated by the above random partition. Then the following holds:

(i) For any C ∈ P, we have diam(C) ≤ ∆.

(ii) Let x be any point of X, and t a parameter ≤ ∆/8. Then,

Pr[b(x, t) * P(x)] ≤
8t
∆

ln
b
a
,

where a = |b(x,∆/8)|, b = |b(x,∆)|.

Proof: Since Cy ⊆ b(y,R), we have that diam(Cy) ≤ ∆, and thus the first claim holds.
Let U be the set of points of b(x,∆), such that w ∈ U iff b(w,R) ∩ b(x, t) , ∅. Arrange the points of

U in increasing distance from x, and let w1, . . . ,wb′ denote the resulting order, where b′ = |U |. Let Ik =

[d(x,wk)−t, d(x,wk)+t] and write Ek for the event that wk is the first point in π such that b(x, t)∩Cwk , ∅, and yet
b(x, t) * Cwk . Note that if wk ∈ b(x,∆/8), then Pr[Ek] = 0 since b(x, t) ⊆ b(x,∆/8) ⊆ b(wk,∆/4) ⊆ b(wk,R).

In particular, w1, . . . ,wa ∈ b(x,∆/8) and as such Pr[E1] = · · · = Pr[Ea] = 0. Also, note that if d(x,wk) <
R− t then b(wk,R) contains b(x, t) and as such Ek can not happen. Similarly, if d(x,wk) > R+ t then b(wk,R)∩
b(x, t) = ∅ and Ek can not happen. As such, if Ek happen then R − t ≤ d(x,wk) ≤ R + t. Namely, if Ek happen
then R ∈ Ik. Namely, Pr[Ek] = Pr[Ek ∩ (R ∈ Ik)] = Pr[R ∈ Ik] · Pr[Ek |R ∈ Ik]. Now, R is uniformly distributed
in the interval [∆/4,∆/2], and Ik is an interval of length 2t. Thus, Pr[R ∈ Ik] ≤ 2t/(∆/4) = 8t/∆.

Next, to bound Pr[Ek |R ∈ Ik], we observe that w1, . . . ,wk−1 are closer to x than wk and their distance
to b(x, t) is smaller than R. Thus, if any of them appear before wk in π then Ek does not happen. Thus,
Pr[Ek |R ∈ Ik] is bounded by the probability that wk is the first to appear in π out of w1, . . . ,wk. But this
probability is 1/k, and thus Pr[Ek |R ∈ Ik] ≤ 1/k.

We are now ready for the kill. Indeed,

Pr[b(x, t) * P(x)] =
b′∑

k=1

Pr[Ek] =
b′∑

k=a+1

Pr[Ek] =
b′∑

k=a+1

Pr[R ∈ Ik] · Pr[Ek |R ∈ Ik]

≤

b′∑
k=a+1

8t
∆
·

1
k
≤

8t
∆

ln
b′

a
≤

8t
∆

ln
b
a
,

since
∑b

k=a+1
1
k ≤
∫ b

a
dx
x = ln b

a and b′ ≤ b. �

23.4. Probabilistic embedding into trees
In this section, given n-point finite metric (X, d). we would like to embed it into a HST. As mentioned above,
one can verify that for any embedding into HST, the distortion in the worst case is Ω(n). Thus, we define
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a randomized algorithm that embed (X, d) into a tree. Let T be the resulting tree, and consider two points
x, y ∈ X. Consider the random variable dT (x, y). We constructed the tree T such that distances never shrink; i.e.
d(x, y) ≤ dT (x, y). The probabilistic distortion of this embedding is maxx,y E

[
dT (x,y)
d(x,y)

]
. Somewhat surprisingly,

one can find such an embedding with logarithmic probabilistic distortion.

Theorem 23.4.1. Given n-point metric (X, d) one can randomly embed it into a 2-HST with probabilistic dis-
tortion ≤ 24 ln n.

Proof: The construction is recursive. Let diam(P), and compute a random partition of X with cluster diameter
diam(P)/2, using the construction of Section 23.3.1. We recursively construct a 2-HST for each cluster, and
hang the resulting clusters on the root node v, which is marked by ∆v = diam(P). Clearly, the resulting tree is
a 2-HST.

For a node v ∈ T , let X(v) be the set of points of X contained in the subtree of v.
For the analysis, assume diam(P) = 1, and consider two points x, y ∈ X. We consider a node v ∈ T to be

in level i if level(v) =
⌈
lg∆v
⌉
= i. The two points x and y correspond to two leaves in T , and let û be the least

common ancestor of x and y in t. We have dT (x, y) ≤ 2level(v). Furthermore, note that along a path the levels are
strictly monotonically increasing.

In fact, we are going to be conservative, and let w be the first ancestor of x, such that b = b(x, d(x, y)) is not
completely contained in X(u1), . . . ,X(um), where u1, . . . , um are the children of w. Clearly, level(w) > level

(̂
u
)
.

Thus, dT (x, y) ≤ 2level(w).
Consider the path σ from the root of T to x, and let Ei be the event that b is not fully contained in X(vi),

where vi is the node of σ of level i (if such a node exists). Furthermore, let Yi be the indicator variable which is
1 if Ei is the first to happened out of the sequence of events E0,E−1, . . .. Clearly, dT (x, y) ≤

∑
Yi2i.

Let t = d(x, y) and j =
⌊
lg d(x, y)

⌋
, and ni =

∣∣∣b(x, 2i)
∣∣∣ for i = 0, . . . ,−∞. We have

E
[
dT (x, y)

]
≤

0∑
i= j

E[Yi] 2i ≤

0∑
i= j

2i Pr
[
Ei ∩ Ei−1 ∩ Ei−1 · · · E0

]
≤

0∑
i= j

2i ·
8t
2i ln

ni

ni−3
,

by Lemma 23.3.1. Thus,

E
[
dT (x, y)

]
≤ 8t ln

 0∏
i= j

ni

ni−3

 ≤ 8t ln(n0 · n1 · n2) ≤ 24t ln n.

It thus follows, that the expected distortion for x and y is ≤ 24 ln n. �

23.4.1. Application: approximation algorithm for k-median clustering
Let (X, d) be a n-point metric space, and let k be an integer number. We would like to compute the optimal
k-median clustering. Number, find a subset Copt ⊆ X, such that νCopt(X, d) is minimized, see Section 23.2.2. To
this end, we randomly embed (X, d) into a HST HST using Theorem 23.4.1. Next, using Lemma 23.2.2, we
compute the optimal k-median clustering of HST. Let C be the set of centers computed. We return C together
with the partition of X it induces as the required clustering.

Theorem 23.4.2. Let (X, d) be a n-point metric space. One can compute in polynomial time a k-median clus-
tering of X which has expected price O

(
α log n

)
, where α is the price of the optimal k-median clustering of

(X, d).
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Proof: The algorithm is described above, and the fact that its running time is polynomial can be easily be
verified. To prove the bound on the quality of the clustering, for any point p ∈ X, let center(p) denote the
closest point in Copt to p according to d, where Copt is the set of k-medians in the optimal clustering. Let C be
the set of k-medians returned by the algorithm, and let HST be the HST used by the algorithm. We have

β = νC(X, d) ≤ νC(X, dHST) ≤ νCopt(X, dHST) ≤
∑
p∈X

dHST(p,Copt) ≤
∑
p∈X

dHST(p, center(p)).

Thus, in expectation we have

E
[
β
]
= E

∑
p∈X

dHST(p, center(p))

 =∑
p∈X

E
[
dHST(p, center(p))

]
=
∑
p∈X

O
(
d(p, center(p)) log n

)
= O

(log n)
∑
p∈X

d(p, center(p))

 = O
(
νCopt(X, d) log n

)
,

by linearity of expectation and Theorem 23.4.1. �

23.5. Embedding any metric space into Euclidean space
Lemma 23.5.1. Let (X, d) be a metric, and let Y ⊂ X. Consider the mapping f : X → R, where f (x) =
d(x,Y) = miny∈Y d(x, y). Then for any x, y ∈ X, we have | f (x) − f (y)| ≤ d(x, y). Namely f is nonexpansive.

Proof: Indeed, let x′ and y′ be the closet points of Y , to x and y, respectively. Observe that f (x) = d(x, x′) ≤
d(x, y′) ≤ d(x, y)+d(y, y′) = d(x, y)+ f (y) by the triangle inequality. Thus, f (x)− f (y) ≤ d(x, y). By symmetry,
we have f (y) − f (x) ≤ d(x, y). Thus, | f (x) − f (y)| ≤ d(x, y). �

23.5.1. The bounded spread case

Let (X, d) be a n-point metric. The spread of X, denoted by Φ(X) = diam(X)
minx,y∈X,x,y d(x,y) , is the ratio between the

diameter of X and the distance between the closest pair of points.

Theorem 23.5.2. Given a n-point metric Y = (X, d), with spread Φ, one can embed it into Euclidean space Rk

with distortion O(
√

lnΦ ln n), where k = O(lnΦ ln n).

Proof: Assume that diam(Y) = Φ (i.e., the smallest distance in Y is 1), and let ri = 2i−2, for i = 1, . . . , α, where
α =
⌈
lgΦ
⌉
. Let Pi, j be a random partition of P with diameter ri, using Theorem 23.4.1, for i = 1, . . . , α and

j = 1, . . . , β, where β =
⌈
c log n

⌉
and c is a large enough constant to be determined shortly.

For each cluster of Pi, j randomly toss a coin, and let Vi, j be the all the points of X that belong to clusters in
Pi, j that got ’T ’ in their coin toss. For a point u ∈ x, let fi, j(x) = d(x,X\Vi, j) = minv∈X\Vi, j d(x, v), for i = 0, . . . ,m
and j = 1, . . . , β. Let F : X → R(m+1)·β be the embedding, such that F(x) =

(
f0,1(x), f0,2(x), . . . , f0,β(x),

f1,1(x), f0,2(x), . . . , f1,β(x), . . . , fm,1(x), fm,2(x), . . . , fm,β(x)
)
.

Next, consider two points x, y ∈ X, with distance φ = d(x, y). Let k be an integer such that ru ≤ φ/2 ≤ ru+1.
Clearly, in any partition of Pu,1, . . . , Pu,β the points x and y belong to different clusters. Furthermore, with
probability half x ∈ Vu, j and y < Vu, j or x < Vu, j and y ∈ Vu, j, for 1 ≤ j ≤ β.

Let E j denote the event that b(x, ρ) ⊆ Vu, j and y < Vu, j, for j = 1, . . . , β, where ρ = φ/(64 ln n). By
Lemma 23.3.1, we have

Pr
[
b(x, ρ) * Pu, j(x)

]
≤

8ρ
ru

ln n ≤
φ

8ru
≤ 1/2.
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Thus,

Pr
[
E j

]
= Pr

[(
b(x, ρ) ⊆ Pu, j(x)

)
∩
(
x ∈ Vu, j

)
∩
(
y < Vu, j

)]
= Pr

[
b(x, ρ) ⊆ Pu, j(x)

]
· Pr
[
x ∈ Vu, j

]
· Pr
[
y < Vu, j

]
≥ 1/8,

since those three events are independent. Notice, that if E j happens, than fu, j(x) ≥ ρ and fu, j(y) = 0.
Let X j be an indicator variable which is 1 if Ei happens, for j = 1, . . . , β. Let Z =

∑
j X j, and we have µ =

E[Z] = E
[∑

j X j

]
≥ β/8. Thus, the probability that only β/16 of E1, . . . ,Eβ happens, is Pr[Z < (1 − 1/2) E[Z]].

By the Chernoff inequality, we have Pr[Z < (1 − 1/2) E[Z]] ≤ exp
(
−µ1/(2 · 22)

)
= exp(−β/64) ≤ 1/n10, if we

set c = 640.
Thus, with high probability

‖F(x) − F(y)‖ ≥

√√√ β∑
j=1

(
fu, j(x) − fu, j(y)

)2
≥

√
ρ2 β

16
=
√
β
ρ

4
= φ ·

√
β

256 ln n
.

On the other hand,
∣∣∣ fi, j(x) − fi, j(y)

∣∣∣ ≤ d(x, y) = φ ≤ 64ρ ln n. Thus,

‖F(x) − F(y)‖ ≤
√
αβ(64ρ ln n)2

≤ 64
√
αβρ ln n =

√
αβ · φ.

Thus, setting G(x) = F(x) 256 ln n
√
β

, we get a mapping that maps two points of distance φ from each other

to two points with distance in the range
[
φ, φ ·

√
αβ · 256 ln n

√
β

]
. Namely, G(·) is an embedding with distortion

O(
√
α ln n) = O(

√
lnΦ ln n).

The probability that G fails on one of the pairs, is smaller than (1/n10) ·
(

n
2

)
< 1/n8. In particular, we can

check the distortion of G for all
(

n
2

)
pairs, and if any of them fail (i.e., the distortion is too big), we restart the

process. �

23.5.2. The unbounded spread case
Our next task, is to extend Theorem 23.5.2 to the case of unbounded spread. Indeed, let (X, d) be a n-point
metric, such that diam(X) ≤ 1/2. Again, we look on the different resolutions r1, r2, . . ., where ri = 1/2i−1. For
each one of those resolutions ri, we can embed this resolution into β coordinates, as done for the bounded case.
Then we concatenate the coordinates together.

There are two problems with this approach: (i) the number of resulting coordinates is infinite, and (ii) a pair
x, y, might be distorted a “lot” because it contributes to all resolutions, not only to its “relevant” resolutions.

Both problems can be overcome with careful tinkering. Indeed, for a resolution ri, we are going to modify
the metric, so that it ignores short distances (i.e., distances ≤ ri/n2). Formally, for each resolution ri, let
Gi = (X, Êi) be the graph where two points x and y are connected if d(x, y) ≤ ri/n2. Consider a connected
component C ∈ Gi. For any two points x, y ∈ C, we have d(x, y) ≤ n(ri/n2) ≤ ri/n. Let Xi be the set of
connected components of Gi, and define the distances between two connected components C,C′ ∈ Xi, to be
di(C,C′) = d(C,C′) = minc∈C,c′∈C′ d(c, c′).

It is easy to verify that (Xi, di) is a metric space (see Exercise 23.7.2). Furthermore, we can naturally
embed (X, d) into (Xi, di) by mapping a point x ∈ X to its connected components in Xi. Essentially (Xi, di)
is a snapped version of the metric (X, d), with the advantage that Φ((X, di)) = O(n2). We now embed Xi

into β = O(log n) coordinates. Next, for any point of X we embed it into those β coordinates, by using the
embedding of its connected component in Xi. Let Ei be the embedding for resolution ri. Namely, Ei(x) =
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( fi,1(x), fi,2(x), . . . , fi,β(x)), where fi, j(x) = min(di(x,X \ Vi, j), 2ri). The resulting embedding is F(x) = ⊕Ei(x) =
(E1(x), E2(x), . . . , ).

Since we slightly modified the definition of fi, j(·), we have to show that fi, j(·) is nonexpansive. Indeed,
consider two points x, y ∈ Xi, and observe that∣∣∣ fi, j(x) − fi, j(y)

∣∣∣ ≤ ∣∣∣di(x,Vi, j) − di(y,Vi, j)
∣∣∣ ≤ di(x, y) ≤ d(x, y),

as a simple case analysis­ shows.
For a pair x, y ∈ X, and let φ = d(x, y). To see that F(·) is the required embedding (up to scaling), observe

that, by the same argumentation of Theorem 23.5.2, we have that with high probability

‖F(x) − F(y)‖ ≥ φ ·
√
β

256 ln n
.

To get an upper bound on this distance, observe that for i such that ri > φn2, we have Ei(x) = Ei(y). Thus,

‖F(x) − F(y)‖2 =
∑

i

‖Ei(x) − Ei(y)‖2 =
∑

i,ri<φn2

‖Ei(x) − Ei(y)‖2

=
∑

i,φ/n2<ri<φn2

‖Ei(x) − Ei(y)‖2 +
∑

i,ri<φ/n2

‖Ei(x) − Ei(y)‖2

= βφ2 lg
(
n4
)
+
∑

i,ri<φ/n2

(2ri)2β ≤ 4βφ2 lg n +
4φ2β

n4 ≤ 5βφ2 lg n.

Thus, ‖F(x) − F(y)‖ ≤ φ
√

5β lg n. We conclude, that with high probability, F(·) is an embedding of X into
Euclidean space with distortion

(
φ
√

5β lg n
)
/
(
φ ·

√
β

256 ln n

)
= O(log3/2 n).

We still have to handle the infinite number of coordinates problem. However, the above proof shows that
we care about a resolution ri (i.e., it contributes to the estimates in the above proof) only if there is a pair x
and y such that ri/n2 ≤ d(x, y) ≤ rin2. Thus, for every pair of distances there are O(log n) relevant resolutions.
Thus, there are at most η = O(n2β log n) = O(n2 log2 n) relevant coordinates, and we can ignore all the other
coordinates. Next, consider the affine subspace h that spans F(P). Clearly, it is n− 1 dimensional, and consider
the projection G : Rη → Rn−1 that projects a point to its closest point in h. Clearly, G(F(·)) is an embedding
with the same distortion for P, and the target space is of dimension n − 1.

Note, that all this process succeeds with high probability. If it fails, we try again. We conclude:

Theorem 23.5.3 (Low quality Bourgain theorem.). Given a n-point metric M, one can embed it into Eu-
clidean space of dimension n − 1, such that the distortion of the embedding is at most O(log3/2 n).

Using the Johnson-Lindenstrauss lemma, the dimension can be further reduced to O(log n). In fact, being
more careful in the proof, it is possible to reduce the dimension to O(log n) directly.

23.6. Bibliographical notes
The partitions we use are due to Calinescu et al. [CKR01]. The idea of embedding into spanning trees is due to
Alon et al. [AKPW95], which showed that one can get a probabilistic distortion of 2O

( √
log n log log n

)
. Yair Bartal

­Indeed, if fi, j(x) < di(x,Vi, j) and fi, j(y) < di(x,Vi, j) then fi, j(x) = 2ri and fi, j(y) = 2ri, which implies the above inequality. If
fi, j(x) = di(x,Vi, j) and fi, j(y) = di(x,Vi, j) then the inequality trivially holds. The other option is handled in a similar fashion.
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realized that by allowing trees with additional vertices, one can get a considerably better result. In particular,
he showed [Bar96] that probabilistic embedding into trees can be done with polylogarithmic average distortion.
He later improved the distortion to O(log n log log n) in [Bar98]. Improving this result was an open question,
culminating in the work of Fakcharoenphol et al. [FRT03] which achieve the optimal O(log n) distortion.

Interestingly, if one does not care about the optimal distortion, one can get similar result (for embedding
into probabilistic trees), by first embedding the metric into Euclidean space, then reduce the dimension by
the Johnson-Lindenstrauss lemma, and finally, construct an HST by constructing a quadtree over the points.
The “trick” is to randomly translate the quadtree. It is easy to verify that this yields O(log4 n) distortion. See
the survey by Indyk [Ind01] for more details. This random shifting of quadtrees is a powerful technique that
was used in getting several result, and it is a crucial ingredient in Arora [Aro98] approximation algorithm for
Euclidean TSP.

Our proof of Lemma 23.3.1 (which is originally from [FRT03]) is taken from [KLMN05]. The proof of
Theorem 23.5.3 is by Gupta [Gup00].

A good exposition of metric spaces is available in Matoušek [Mat02].

23.7. Exercises

Exercise 23.7.1 (Clustering for HST.). Let (X, d) be a HST defined over n points, and let k > 0 be an integer.
Provide an algorithm that computes the optimal k-median clustering of X in O(k2n) time.

[Transform the HST into a tree where every node has only two children. Next, run a dynamic programming
algorithm on this tree.]

Exercise 23.7.2 (Partition induced metric.).

(a) Give a counter example to the following claim: Let (X, d) be a metric space, and let P be a partition of X.
Then, the pair (P, d′) is a metric, where d′(C,C′) = d(C,C′) = minx∈C,y∈C′ d(x, y) and C,C′ ∈ P.

(b) Let (X, d) be a n-point metric space, and consider the set U =
{
i
∣∣∣ 2i ≤ d(x, y) ≤ 2i+1, for x, y ∈ X

}
. Prove

that |U | = O(n). Namely, there are only n different resolutions that “matter” for a finite metric space.

Exercise 23.7.3 (Computing the diameter via embeddings.).

(a) (h:1) Let ` be a line in the plane, and consider the embedding f : R2 → `, which is the projection of the
plane into `. Prove that f is 1-Lipschitz, but it is not K-bi-Lipschitz for any constant K.

(b) (h:3) Prove that one can find a family of projections F of size O(1/
√
ε), such that for any two points

x, y ∈ R2, for one of the projections f ∈ F we have d( f (x), f (y)) ≥ (1 − ε)d(x, y).

(c) (h:1) Given a set P of n in the plane, given a O(n/
√
ε) time algorithm that outputs two points x, y ∈ P, such

that d(x, y) ≥ (1 − ε)diam(P), where diam(P) = maxz,w∈P d(z,w) is the diameter of P.

(d) (h:2) Given P, show how to extract, in O(n) time, a set Q ⊆ P of size O(ε−2), such that diam(Q) ≥
(1 − ε/2)diam(P). (Hint: Construct a grid of appropriate resolution.)

In particular, give an (1 − ε)-approximation algorithm to the diameter of P that works in O(n + ε−2.5) time.
(There are slightly faster approximation algorithms known for approximating the diameter.)
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Chapter 24

Approximate Max Cut
By Sariel Har-Peled, December 30, 2015¬

24.1. Problem Statement

Given an undirected graph G = (V, E) and nonnegative weights wi j on the edge i j ∈ E, the maximum cut
problem (MAX CUT) is that of finding the set of vertices S that maximizes the weight of the edges in the cut
(S , S ); that is, the weight of the edges with one endpoint in S and the other in S . For simplicity, we usually set
wi j = O for i j < E and denote the weight of a cut (S , S ) by w(S , S ) =

∑
i∈S , j∈ j

wi j.

This problem is NP-Complete, and hard to approximate within a certain constant.
Given a graph with vertex set V = 1, . . . , n and nonnegative weights Wi j, the weight of the maximum cut

w(S , S ) N given by the following integer quadratic program:

(Q) Maximize
1
2

∑
i< j

,wi j(1 − yiy j)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

Indeed, set S =
{
i
∣∣∣ yi = 1

}
. Clearly, w(S , S ) = 1

2

∑
i< j,wi j(1 − yiy j).

Solving quadratic integer programming is of course NP-Hard. Thus, we we will relax it, by thinking about
the the numbers yi as unit vectors in higher dimensional space. If so, the multiplication of the two vectors, is
now replaced by dot product. We have:

(P) Maximize 1
2

∑
i< j wi j(1 −

〈
vi, v j

〉
)

subject to: vi ∈ S
(n) ∀i ∈ V,

where S(n) is the n dimensional unit sphere in Rn+1. This is an instance of semi-definite programming, which is a
special case of convex programming, which can be solved in polynomial time (solved here means approximated
within arbitrary constant in polynomial time). Observe that (P) is a relaxation of (Q), and as such the optimal
solution of (P) has value larger than the optimal value of (Q).

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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The intuition is that vectors that correspond to vertices that should be on one side of the cut, and vertices on
the other sides, would have vectors which are faraway from each other in (P). Thus, we compute the optimal
solution for (P), and we uniformly generate a random vector r on the unit sphere S(n). This induces a hyperplane
h which passes through the origin and is orthogonal to r. We next assign all the vectors that are on one side of
h to S , and the rest to S .

24.1.1. Analysis
The intuition of the above rounding procedure, is that with good probability, vectors that have big angle between
them would be separated by this cut.

Lemma 24.1.1. We have Pr
[
sign(〈vi, r 〉) , sign

(〈
v j, r
〉)]
=

1
π

arccos
(〈

vi, v j

〉)
.

vi

vj

τ

Proof: Let us think about the vectors vi, v j and r as being in the plane. To see why this
is a reasonable assumption, consider the plane g spanned by vi and v j, and observe
that for the random events we consider, only the direction of r matter, which can be
decided by projecting r on g, and normalizing it to have length 1. Now, the sphere is
symmetric, and as such, sampling r randomly from S(n), projecting it down to g, and
then normalizing it, is equivalent to just choosing uniformly a vector from the unit
circle.

Now, sign(〈vi, r 〉) , sign
(〈

v j, r
〉)

happens only if r falls in the double wedge
formed by the lines perpendicular to vi and v j. The angle of this double wedge is exactly the angle be-
tween vi and v j. Now, since vi and v j are unit vectors, we have

〈
vi, v j

〉
= cos(τ), where τ = ∠viv j. Thus,

Pr
[
sign(〈vi, r 〉) , sign

(〈
v j, r
〉)]
= 2τ/(2π) = 1

π
· arccos

(〈
vi, v j

〉)
, as claimed. �

Theorem 24.1.2. Let W be the random variable which is the weight of the cut generated by the algorithm. We
have

E[W] =
1
π

∑
i< j

wi j arccos
(〈

vi, v j

〉)
.

Proof: Let Xi j be an indicator variable which is 1 if i j is in the cut. We have E
[
Xi j

]
= Pr
[
sign(〈vi, r 〉) , sign

(〈
v j, r
〉)]
=

1
π

arccos
(〈

vi, v j

〉)
, by Lemma 24.1.1.

Clearly, W =
∑

i< j wi jXi j, and by linearity of expectation, we have

E[W] =
∑
i< j

wi j E
[
Xi j

]
=
∑
i< j

arccos
(〈

vi, v j

〉)
. �

Lemma 24.1.3. For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof: Set y = cos(ψ). The inequality now becomes ψ

π
≥ α 1

2 (1 − cosψ). Reorganizing, the inequality becomes
2
π

ψ

1−cos ψ ≥ α, which trivially holds by the definition of α. �

Lemma 24.1.4. α > 0.87856.
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Proof: Using simple calculus, one can see that α achieves its value for ψ = 2.331122..., the nonzero root of
cosψ + ψ sinψ = 1. �

Theorem 24.1.5. The above algorithm computes in expectation a cut of size αOpt ≥ 0.87856Opt, where Opt
is the weight of the maximal cut.

Proof: Consider the optimal solution to (P), and lets its value be γ ≥ Opt. We have

E[W] =
1
π

∑
i< j

wi j arccos
(〈

vi, v j

〉)
≥
∑
i< j

wi jα
1
2

(
1 −
〈
vi, v j

〉)
= αγ ≥ αOpt,

by Lemma 24.1.3. �

24.2. Semi-definite programming

Let us define a variable xi j =
〈
vi, v j

〉
, and consider the n by n matrix M formed by those variables, where xii = 1

for i = 1, . . . , n. Let V be the matrix having v1, . . . , vn as its columns. Clearly, M = VT V . In particular, this
implies that for any non-zero vector v ∈ Rn, we have vT Mv = vT AT Av = (Av)T (Av) ≥ 0. A matrix that has this
property, is called semidefinite. The interesting thing is that any semi-definite matrix P can be represented as a
product of a matrix with its transpose; namely, P = BT B. It is easy to observe that if this semi-definite matrix
has a diagonal one, then B has rows which are unit vectors. Thus, if we solve (P) and get back a semi-definite
matrix, then we can recover the vectors realizing the solution, and use them for the rounding.

In particular, (P) can now be restated as

(S D) Maximize 1
2

∑
i< j wi j(1 − xi j)

xii = 1 for i = 1, . . . , n
subject to:

(
xi j

)
i=1,...,n, j=1,...,n

is semi-definite.

We are trying to find the optimal value of a linear function over a set which is the intersection of linear con-
straints and the set of semi-definite matrices.

Lemma 24.2.1. Let U be the set of n × n semidefinite matrices. The set U is convex.

Proof: Consider A, B ∈ U, and observe that for any t ∈ [0, 1], and vector v ∈ Rn, we have: vT (tA + (1 − t)B)v =
tvT Av + (1 − t)vT Bv ≥ 0 + 0 ≥ 0, since A and B are semidefinite. �

Positive semidefinite matrices corresponds to ellipsoids. Indeed, consider the set xT Ax = 1: the set of
vectors that solve this equation is an ellipsoid. Also, the eigenvalues of a positive semidefinite matrix are all
non-negative real numbers. Thus, given a matrix, we can in polynomial time decide if it is positive semidefinite
or not.

Thus, we are trying to optimize a linear function over a convex domain. There is by now machinery to
approximately solve those problems to within any additive error in polynomial time. This is done by using
interior point method, or the ellipsoid method. See [BV04, GLS93] for more details.
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24.3. Bibliographical Notes

The approximation algorithm presented is from the work of Goemans and Williamson [GW95]. Håstad [Hås01]
showed that MAX CUT can not be approximated within a factor of 16/17 ≈ 0.941176. Recently, Khot et al.
[KKMO04] showed a hardness result that matches the constant of Goemans and Williamson (i.e., one can not
approximate it better than φ, unless P = NP). However, this relies on two conjectures, the first one is the
“Unique Games Conjecture”, and the other one is “Majority is Stablest”. The “Majority is Stablest” conjecture
was recently proved by Mossel et al. [MOO05]. However, it is not clear if the “Unique Games Conjecture” is
true, see the discussion in [KKMO04].

The work of Goemans and Williamson was very influential and spurred wide research on using SDP for
approximation algorithms. For an extension of the MAX CUT problem where negative weights are allowed
and relevant references, see the work by Alon and Naor [AN04].

Bibliography
[AN04] N. Alon and A. Naor. Approximating the cut-norm via grothendieck’s inequality. In Proc. 36th

Annu. ACM Sympos. Theory Comput. (STOC), pages 72–80, 2004.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004.

[GLS93] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-
tion, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg, 2nd edition,
1993.

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6):1115–1145, November 1995.

[Hås01] J. Håstad. Some optimal inapproximability results. J. Assoc. Comput. Mach., 48(4):798–859,
2001.

[KKMO04] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for max cut
and other 2-variable csps. In Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
146–154, 2004. To appear in SICOMP.

[MOO05] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences
invariance and optimality. In Proc. 46th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
21–30, 2005.

4

http://www.math.tau.ac.il/~nogaa/
http://www.stanford.edu/~boyd/cvxbook/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/


Chapter 25

Entropy, Randomness, and Information
By Sariel Har-Peled, December 30, 2015¬

“If only once - only once - no matter where, no matter before what audience - I could better the record of the great
Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something
for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments
- why deny it? - when I begin to doubt - and there is a time limit on all of us.”

– –Romain Gary, The talent scout..

25.1. Entropy
Definition 25.1.1. The entropy in bits of a discrete random variable X is given by

H(X) = −
∑

x

Pr[X = x] lg Pr[X = x] .

Equivalently, H(X) = E
[
lg 1

Pr[X]

]
.

The binary entropy function H(p) for a random binary variable that is 1 with probability p, is H(p) =
−p lg p − (1 − p) lg(1 − p). We define H(0) = H(1) = 0.

The function H(p) is a concave symmetric around 1/2 on the interval [0, 1] and achieves its maximum at 1/2.
For a concrete example, consider H(3/4) ≈ 0.8113 and H(7/8) ≈ 0.5436. Namely, a coin that has 3/4 probably
to be heads have higher amount of “randomness” in it than a coin that has probability 7/8 for heads.

We have that

H(p) =
1

ln 2
(−p ln p − (1 − p) ln(1 − p))

and H′(p) =
1

ln 2

(
− ln p −

p
p
− (−1) ln(1 − p) −

1 − p
1 − p

(−1)
)
= lg

1 − p
p
.

Deploying our amazing ability to compute derivative of simple functions once more, we get that

H′′(p) =
1

ln 2
p

1 − p

(
p(−1) − (1 − p)

p2

)
= −

1
p(1 − p) ln 2

.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
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Since ln 2 ≈ 0.693, we have that H′′(p) ≤ 0, for all p ∈ (0, 1), and the H(·) is concave in this range. Also,
H′(1/2) = 0, which implies that H(1/2) = 1 is a maximum of the binary entropy. Namely, a balanced coin has
the largest amount of randomness in it.

Example 25.1.2. A random variable X that has probability 1/n to be i, for i = 1, . . . , n, has entropy H(X) =
−

∑n
i=1

1
n lg 1

n = lg n.

Note, that the entropy is oblivious to the exact values that the random variable can have, and it is sensitive
only to the probability distribution. Thus, a random variables that accepts −1,+1 with equal probability has the
same entropy (i.e., 1) as a fair coin.

Lemma 25.1.3. Let X and Y be two independent random variables, and let Z be the random variable (X,T ).
Then H(Z) = H(X) + H(Y).

Proof: In the following, summation are over all possible values that the variables can have. By the indepen-
dence of X and Y we have

H(Z) =
∑
x,y

Pr
[
(X,Y) = (x, y)

]
lg

1
Pr

[
(X,Y) = (x, y)

]
=

∑
x,y

Pr[X = x] Pr
[
Y = y

]
lg

1
Pr[X = x] Pr

[
Y = y

]
=

∑
x

∑
y

Pr[X = x] Pr
[
Y = y

]
lg

1
Pr[X = x]

+
∑

y

∑
x

Pr[X = x] Pr
[
Y = y

]
lg

1
Pr

[
Y = y

]
=

∑
x

Pr[X = x] lg
1

Pr[X = x]
+

∑
y

Pr
[
Y = y

]
lg

1
Pr

[
Y = y

] = H(X) + H(Y). �

Lemma 25.1.4. Suppose that nq is integer in the range [0, n]. Then
2nH(q)

n + 1
≤

(
n

nq

)
≤ 2nH(q).

Proof: This trivially holds if q = 0 or q = 1, so assume 0 < q < 1. We know that
(

n
nq

)
qnq(1 − q)n−nq ≤

(q + (1 − q))n = 1. As such, since q−nq(1 − q)−(1−q)n = 2n
(
−q lg q−(1−q) lg(1−q)

)
= 2nH(q), we have(

n
nq

)
≤ q−nq(1 − q)−(1−q)n = 2nH(q).

As for the other direction, we claim that µ(nq) =
(

n
nq

)
qnq(1 − q)n−nq is the largest term in

∑n
k=0 µ(k) = 1, where

µ(k) =
(

n
k

)
qk(1 − q)n−k. Indeed,

∆k = µ(k) − µ(k + 1) =
(
n
k

)
qk(1 − q)n−k

(
1 −

n − k
k + 1

q
1 − q

)
,

and the sign of this quantity is the sign of (k + 1)(1 − q) − (n − k)q = k + 1 − kq − q − nq + kq = 1 + k − q − nq.
Namely, ∆k ≥ 0 when k ≥ nq + q − 1, and ∆k < 0 otherwise. Namely, µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq. Namely, µ(nq) is the largest term in

∑n
k=0 µ(k) = 1, and as such it is larger than the

average. We have µ(nq) =
(

n
nq

)
qnq(1 − q)n−nq ≥ 1

n+1 , which implies(
n
nq

)
≥

1
n + 1

q−nq(1 − q)−(n−nq) =
1

n + 1
2nH(q). �
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Lemma 25.1.4 can be extended to handle non-integer values of q. This is straightforward, and we omit the
easy details.

Corollary 25.1.5. We have:
(i) q ∈ [0, 1/2]⇒

(
n
bnqc

)
≤ 2nH(q). (ii) q ∈ [1/2, 1]

(
n
dnqe

)
≤ 2nH(q).

(iii) q ∈ [1/2, 1]⇒ 2nH(q)

n+1 ≤
(

n
bnqc

)
. (iv) q ∈ [0, 1/2]⇒ 2nH(q)

n+1 ≤
(

n
dnqe

)
.

The bounds of Lemma 25.1.4 and Corollary 25.1.5 are loose but sufficient for our purposes. As a sanity
check, consider the case when we generate a sequence of n bits using a coin with probability q for head, then
by the Chernoff inequality, we will get roughly nq heads in this sequence. As such, the generated sequence Y
belongs to

(
n
nq

)
≈ 2nH(q) possible sequences that have similar probability. As such, H(Y) ≈ lg

(
n
nq

)
= nH(q), by

Example 25.1.2, a fact that we already know from Lemma 25.1.3.

25.1.1. Extracting randomness
Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random vari-
able.

Definition 25.1.6. An extraction function Ext takes as input the value of a random variable X and outputs a
sequence of bits y, such that Pr

[
Ext(X) = y

∣∣∣ |y| = k
]
= 1

2k , whenever Pr
[
|y| = k

]
≥ 0, where |y| denotes the

length of y.

As a concrete (easy) example, consider X to be a uniform random integer variable out of 0, . . . , 7. All that
Ext(x) has to do in this case, is just to compute the binary representation of x. However, note that Defini-
tion 25.1.6 is somewhat more subtle, as it requires that all extracted sequence of the same length would have
the same probability.

Thus, for X a uniform random integer variable in the range 0, . . . , 11, the function Ext(x) can output the
binary representation for x if 0 ≤ x ≤ 7. However, what do we do if x is between 8 and 11? The idea is to
output the binary representation of x−8 as a two bit number. Clearly, Definition 25.1.6 holds for this extraction
function, since Pr

[
Ext(X) = 00

∣∣∣ |Ext(X)| = 2
]
= 1

4 , as required. This scheme can be of course extracted for
any range.

Theorem 25.1.7. Suppose that the value of a random variable X is chosen uniformly at random from the
integers {0, . . . ,m − 1}. Then there is an extraction function for X that outputs on average (i.e., in expectation)
at least

⌊
lg m

⌋
− 1 = bH(X)c − 1 independent and unbiased bits.

Proof: We represent m as a sum of unique powers of 2, namely m =
∑

i ai2i, where ai ∈ {0, 1}. Thus, we
decomposed {0, . . . ,m − 1} into a disjoint union of blocks that have sizes which are distinct powers of 2. If
a number falls inside such a block, we output its relative location in the block, using binary representation of
the appropriate length (i.e., k if the block is of size 2k). The fact that this is an extraction function, fulfilling
Definition 25.1.6, is obvious.

Now, observe that the claim holds trivially if m is a power of two. Thus, if m is not a power of 2, then in
the decomposition if there is a block of size 2k, and the X falls inside this block, then the entropy is k. Thus,
for the inductive proof, assume that are looking at the largest block in the decomposition, that is m < 2k+1, and
let u =

⌊
lg(m − 2k)

⌋
< k. It is easy to verify that, for any integer α > 2k, we have α−2k

α
≤ α+1−2k

α+1 . Furthermore,

m ≤ 2u+1 + 2k. As such, m−2k

m ≤ 2u+1

2u+1+2k .
Let Y be the random variable which is the number of random bits extract. We have that

E[Y] ≥
2k

m
k +

m − 2k

m

(⌊
lg(m − 2k)

⌋
− 1

)
= k +

m − 2k

m
(u − k − 1)

≥ k +
2u+1

2u+1 + 2k
(u − k − 1) = k −

2u+1

2u+1 + 2k
(1 + k − u).
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If u = k − 1, then H(X) ≥ k − 1
2 · 2 = k − 1, as required. If u = k − 2 then H(X) ≥ k − 1

3 · 3 = k − 1. Finally, if
u < k − 2 then

E[Y] ≥ k −
2u+1

2k
(1 + k − u) ≥ k −

k − u + 1
2k−u−1 ≥ k − 1,

since 2+i
2i ≤ 1 for i ≥ 2. �

Theorem 25.1.8. Consider a coin that comes up heads with probability p > 1/2. For any constant δ > 0 and
for n sufficiently large:

1. One can extract, from an input of a sequence of n flips, an output sequence of (1 − δ)nH(p) (unbiased)
independent random bits.

2. One can not extract more than nH(p) bits from such a sequence.

Proof: There are
(

n
j

)
input sequences with exactly j heads, and each has probability p j(1 − p)n− j. We map this

sequence to the corresponding number in the set
{
0, . . . ,

(
n
j

)
− 1

}
. Note, that this, conditional distribution on

j, is uniform on this set, and we can apply the extraction algorithm of Theorem 25.1.7. Let Z be the random
variables which is the number of heads in the input, and let B be the number of random bits extracted. We have

E[B] =
n∑

k=0

Pr[Z = k] E
[
B

∣∣∣ Z = k
]
,

and by Theorem 25.1.7, we have E
[
B

∣∣∣ Z = k
]
≥

⌊
lg

(
n
k

)⌋
− 1. Let ε < p − 1/2 be a constant to be determined

shortly. For n(p − ε) ≤ k ≤ n(p + ε), we have(
n
k

)
≥

(
n

bn(p + ε)c

)
≥

2nH(p+ε)

n + 1
,

by Corollary 25.1.5 (iii). We have

E[B] ≥
dn(p−ε)e∑

k=bn(p−ε)c

Pr[Z = k] E
[
B

∣∣∣ Z = k
]
≥

dn(p−ε)e∑
k=bn(p−ε)c

Pr[Z = k]
(⌊

lg
(
n
k

)⌋
− 1

)

≥

dn(p−ε)e∑
k=bn(p−ε)c

Pr[Z = k]
(
lg

2nH(p+ε)

n + 1
− 2

)
=

(
nH(p + ε) − lg(n + 1)

)
Pr

[
|Z − np| ≤ εn

]
≥

(
nH(p + ε) − lg(n + 1)

)(
1 − 2 exp

(
−

nε2

4p

))
,

since µ = E[Z] = np and Pr
[
|Z − np| ≥ εp pn

]
≤ 2 exp

(
−

np
4

(
ε
p

)2
)
= 2 exp

(
−nε2

4p

)
, by the Chernoff inequality. In

particular, fix ε > 0, such that H(p + ε) > (1 − δ/4)H(p), and since p is fixed nH(p) = Ω(n), in particular, for
n sufficiently large, we have − lg(n + 1) ≥ − δ10nH(p). Also, for n sufficiently large, we have 2 exp

(
−nε2

4p

)
≤ δ

10 .
Putting it together, we have that for n large enough, we have

E[B] ≥
(
1 −
δ

4
−
δ

10

)
nH(p)

(
1 −
δ

10

)
≥ (1 − δ)nH(p),

4



as claimed.
As for the upper bound, observe that if an input sequence x has probability q, then the output sequence y =

Ext(x) has probability to be generated which is at least q. Now, all sequences of length |y| have equal probability
to be generated. Thus, we have the following (trivial) inequality 2|Ext(x)|q ≤ 2|Ext(x)| Pr

[
y = Ext(X)

]
≤ 1,

implying that |Ext(x)| ≤ lg(1/q). Thus,

E[B] =
∑

x

Pr[X = x] |Ext(x)| ≤
∑

x

Pr[X = x] lg
1

Pr[X = x]
= H(X). �
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Chapter 26

Entropy II
By Sariel Har-Peled, December 30, 2015¬

The memory of my father is wrapped up in white paper, like sandwiches taken for a day at work. Just as a magician
takes towers and rabbits out of his hat, he drew love from his small body, and the rivers of his hands overflowed with
good deeds.

– – Yehuda Amichai, My Father..

26.1. Compression

In this section, we will consider the problem of how to compress a binary string. We will map each binary
string, into a new string (which is hopefully shorter). In general, by using a simple counting argument, one can
show that no such mapping can achieve real compression (when the inputs are adversarial). However, the hope
is that there is an underling distribution on the inputs, such that some strings are considerably more common
than others.

Definition 26.1.1. A compression function Compress takes as input a sequence of n coin flips, given as an
element of {H,T }n, and outputs a sequence of bits such that each input sequence of n flips yields a distinct
output sequence.

The following is easy to verify.

Lemma 26.1.2. If a sequence S 1 is more likely than S 2 then the compression function that minimizes the
expected number of bits in the output assigns a bit sequence to S 2 which is at least as long as S 1.

Note, that this is very weak. Usually, we would like the function to output a prefix code, like the Huffman
code.

Theorem 26.1.3. Consider a coin that comes up heads with probability p > 1/2. For any constant δ > 0, when
n is sufficiently large, the following holds.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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(i) There exists a compression function Compress such that the expected number of bits output by Compress
on an input sequence of n independent coin flips (each flip gets heads with probability p) is at most
(1 + δ)nH(p); and

(ii) The expected number of bits output by any compression function on an input sequence of n independent
coin flips is at least (1 − δ)nH(p).

Proof: Let ε > 0 be a constant such that p − ε > 1/2. The first bit output by the compression procedure is ’1’
if the output string is just a copy of the input (using n+ 1 bits overall in the output), and ’0’ if it is compressed.
We compress only if the number of ones in the input sequence, denoted by X is larger than (p − ε)n. By the
Chernoff inequality, we know that Pr

[
X < (p − ε)n

]
≤ exp

(
−nε2/2p

)
.

If there are more than (p − ε)n ones in the input, and since p − ε > 1/2, we have that

n∑
j=dn(p−ε)e

(
n
j

)
≤

n∑
j=dn(p−ε)e

(
n

dn(p − ε)e

)
≤

n
2

2nH(p−ε),

by Corollary 26.2.1. As such, we can assign each such input sequence a number in the range 0 . . . n
22nH(p−ε),

and this requires (with the flag bit) 1 +
⌊
lg n + nH(p − ε)

⌋
random bits.

Thus, the expected number of bits output is bounded by

(n + 1) exp
(
−nε2/2p

)
+

(
1 +

⌊
lg n + nH(p − ε)

⌋)
≤ (1 + δ)nH(p),

by carefully setting ε and n being sufficiently large. Establishing the upper bound.
As for the lower bound, observe that at least one of the sequences having exactly τ = b(p + ε)nc heads,

must be compressed into a sequence having

lg
(

n
b(p + ε)nc

)
− 1 ≥ lg

2nH(p+ε)

n + 1
− 1 = nH(p − ε) − lg(n + 1) − 1 = µ,

by Corollary 26.2.1. Now, any input string with less than τ heads has lower probability to be generated.
Indeed, for a specific strings with α < τ ones the probability to generate them is pα(1 − p)n−α and pτ(1 − p)n−τ,
respectively. Now, observe that

pα(1 − p)n−α = pτ(1 − p)n−τ ·
(1 − p)τ−α

pτ−α
= pτ(1 − p)n−τ

(
1 − p

p

)τ−α
< pτ(1 − p)n−τ,

as 1 − p < 1/2 < p implies that (1 − p)/p < 1.
As such, Lemma 26.1.2 implies that all the input strings with less than τ ones, must be compressed into

strings of length at least µ, by an optimal compresser. Now, the Chenroff inequality implies that Pr[X ≤ τ] ≥
1 − exp

(
−nε2/12p

)
. Implying that an optimal compresser outputs on average at least

(
1 − exp

(
−nε2/12p

))
µ.

Again, by carefully choosing ε and n sufficiently large, we have that the average output length of an optimal
compressor is at least (1 − δ)nH(p). �

26.2. From previous lecture

Corollary 26.2.1. We have:
(i) q ∈ [0, 1/2]⇒

(
n
bnqc

)
≤ 2nH(q). (ii) q ∈ [1/2, 1]

(
n
dnqe

)
≤ 2nH(q).

(iii) q ∈ [1/2, 1]⇒ 2nH(q)

n+1 ≤
(

n
bnqc

)
. (iv) q ∈ [0, 1/2]⇒ 2nH(q)

n+1 ≤
(

n
dnqe

)
.
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Chapter 27

Entropy III - Shannon’s Theorem
By Sariel Har-Peled, December 30, 2015¬

The memory of my father is wrapped up in
white paper, like sandwiches taken for a day at work.

Just as a magician takes towers and rabbits
out of his hat, he drew love from his small body,

and the rivers of his hands
overflowed with good deeds.

– – Yehuda Amichai, My Father..

27.1. Coding: Shannon’s Theorem
We are interested in the problem sending messages over a noisy channel. We will assume that the channel noise
is “nicely” behaved.

Definition 27.1.1. The input to a binary symmetric channel with parameter p is a sequence of bits x1, x2, . . . ,
and the output is a sequence of bits y1, y2, . . . , such that Pr

[
xi = yi

]
= 1 − p independently for each i.

Translation: Every bit transmitted have the same probability to be flipped by the channel. The question is
how much information can we send on the channel with this level of noise. Naturally, a channel would have
some capacity constraints (say, at most 4,000 bits per second can be sent on the channel), and the question is
how to send the largest amount of information, so that the receiver can recover the original information sent.

Now, its important to realize that noise handling is unavoidable in the real world. Furthermore, there are
tradeoffs between channel capacity and noise levels (i.e., we might be able to send considerably more bits
on the channel but the probability of flipping (i.e., p) might be much larger). In designing a communication
protocol over this channel, we need to figure out where is the optimal choice as far as the amount of information
sent.

Definition 27.1.2. A (k, n) encoding function Enc : {0, 1}k → {0, 1}n takes as input a sequence of k bits and
outputs a sequence of n bits. A (k, n) decoding function Dec : {0, 1}n → {0, 1}k takes as input a sequence of n
bits and outputs a sequence of k bits.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Thus, the sender would use the encoding function to send its message, and the decoder would use the
received string (with the noise in it), to recover the sent message. Thus, the sender starts with a message with
k bits, it blow it up to n bits, using the encoding function, to get some robustness to noise, it send it over the
(noisy) channel to the receiver. The receiver, takes the given (noisy) message with n bits, and use the decoding
function to recover the original k bits of the message.

Naturally, we would like k to be as large as possible (for a fixed n), so that we can send as much information
as possible on the channel. Naturally, there might be some failure probability; that is, the receiver might be
unable to recover the original string, or recover an incorrect string.

The following celebrated result of Shannon­ in 1948 states exactly how much information can be sent on
such a channel.

Theorem 27.1.3 (Shannon’s theorem.). For a binary symmetric channel with parameter p < 1/2 and for any
constants δ, γ > 0, where n is sufficiently large, the following holds:

(i) For an k ≤ n(1 − H(p) − δ) there exists (k, n) encoding and decoding functions such that the probability
the receiver fails to obtain the correct message is at most γ for every possible k-bit input messages.

(ii) There are no (k, n) encoding and decoding functions with k ≥ n(1 −H(p) + δ) such that the probability of
decoding correctly is at least γ for a k-bit input message chosen uniformly at random.

27.2. Proof of Shannon’s theorem
The proof is not hard, but requires some care, and we will break it into parts.

27.2.1. How to encode and decode efficiently

27.2.1.1. The scheme

Our scheme would be simple. Pick k ≤ n(1 − H(p) − δ). For any number i = 0, . . . , K̂ = 2k+1 − 1, randomly
generate a binary string Yi made out of n bits, each one chosen independently and uniformly. Let Y0, . . . , YK̂
denote these codewords.

For each of these codewords we will compute the probability that if we send this codeword, the receiver
would fail. Let X0, . . . , XK , where K = 2k − 1, be the K codewords with the lowest probability of failure.
We assign these words to the 2k messages we need to encode in an arbitrary fashion. Specifically, for i =
0, . . . , 2k − 1, we encode i as the string Xi.

The decoding of a message w is done by going over all the codewords, and finding all the codewords that
are in (Hamming) distance in the range [p(1− ε)n, p(1+ ε)n] from w. If there is only a single word Xi with this
property, we return i as the decoded word. Otherwise, if there are no such word or there is more than one word
then the decoder stops and report an error.

27.2.1.2. The proof

­Claude Elwood Shannon (April 30, 1916 - February 24, 2001), an American electrical engineer and mathematician, has been
called “the father of information theory”.
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Y0

Y1

Y2

r = pn

2εpn

Intuition. Each code Yi corresponds to a region that looks like a ring. The “ring”
for Yi is all the strings in Hamming distance between (1 − ε)r and (1 + ε)r from
Yi, where r = pn. Clearly, if we transmit a string Yi, and the receiver gets a string
inside the ring of Yi, it is natural to try to recover the received string to the original
code corresponding to Yi. Naturally, there are two possible bad events here:

(A) The received string is outside the ring of Yi, and
(B) The received string is contained in several rings of different Ys, and it is

not clear which one should the receiver decode the string to. These bad regions
are depicted as the darker regions in the figure on the right.

Let S i = S(Yi) be all the binary strings (of length n) such that if the receiver gets this word, it would decipher
it to be the original string assigned to Yi (here are still using the extended set of codewords Y0, . . . , YK̂). Note,
that if we remove some codewords from consideration, the set S(Yi) just increases in size (i.e., the bad region
in the ring of Yi that is covered multiple times shrinks). Let Wi be the probability that Yi was sent, but it was
not deciphered correctly. Formally, let r denote the received word. We have that

Wi =
∑
r<S i

Pr[r was received when Yi was sent] . (27.1)

To bound this quantity, let ∆(x, y) denote the Hamming distance between the binary strings x and y. Clearly, if
x was sent the probability that y was received is

w(x, y) = p∆(x,y)(1 − p)n−∆(x,y).

As such, we have

Pr[r received when Yi was sent] = w(Yi, r).

Let S i,r be an indicator variable which is 1 if r < S i. We have that

Wi =
∑
r<S i

Pr[r received when Yi was sent] =
∑
r<S i

w(Yi, r) =
∑

r

S i,rw(Yi, r). (27.2)

The value of Wi is a random variable over the choice of Y0, . . . , YK̂ . As such, its natural to ask what is the
expected value of Wi.

Consider the ring
ring(r) =

{
x ∈ {0, 1}n

∣∣∣ (1 − ε)np ≤ ∆(x, r) ≤ (1 + ε)np
}
,

where ε > 0 is a small enough constant. Observe that x ∈ ring(y) if and only if y ∈ ring(x). Suppose, that the
code word Yi was sent, and r was received. The decoder returns the original code associated with Yi, if Yi is the
only codeword that falls inside ring(r).

Lemma 27.2.1. Given that Yi was sent, and r was received and furthermore r ∈ ring(Yi), then the probability
of the decoder failing, is

τ = Pr
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤
γ

8
,

where γ is the parameter of Theorem 27.1.3.
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Proof: The decoder fails here, only if ring(r) contains some other codeword Y j ( j , i) in it. As such,

τ = Pr
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤ Pr

[
Y j ∈ ring(r), for any j , i

]
≤

∑
j,i

Pr
[
Y j ∈ ring(r)

]
.

Now, we remind the reader that the Y js are generated by picking each bit randomly and independently, with
probability 1/2. As such, we have

Pr
[
Y j ∈ ring(r)

]
=

∣∣∣ ring(r)
∣∣∣

|{0, 1}n |
=

(1+ε)np∑
m=(1−ε)np

(
n
m

)
2n ≤

n
2n

(
n

b(1 + ε)npc

)
,

since (1+ ε)p < 1/2 (for ε sufficiently small), and as such the last binomial coefficient in this summation is the
largest. By Corollary 27.3.2 (i), we have

Pr
[
Y j ∈ ring(r)

]
≤

n
2n

(
n

b(1 + ε)npc

)
≤

n
2n 2nH

(
(1+ε)p

)
= n2n

(
H
(
(1+ε)p

)
−1

)
.

As such, we have

τ = Pr
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤

∑
j,i

Pr
[
Y j ∈ ring(r)

]
≤ K̂ Pr

[
Y1 ∈ ring(r)

]
≤ 2k+1n2n

(
H
(
(1+ε)p

)
−1

)

≤ n2n
(
1−H(p)−δ

)
+ 1 + n

(
H
(
(1+ε)p

)
−1

)
≤ n2n

(
H
(
(1+ε)p

)
−H(p)−δ

)
+1

since k ≤ n(1 − H(p) − δ). Now, we choose ε to be a small enough constant, so that the quantity H((1 + ε)p) −
H(p)− δ is equal to some (absolute) negative (constant), say −β, where β > 0. Then, τ ≤ n2−βn+1, and choosing
n large enough, we can make τ smaller than γ/8, as desired. As such, we just proved that

τ = Pr
[
r < S i

∣∣∣ r ∈ ring(Yi)
]
≤
γ

8
. �

Lemma 27.2.2. Consider the situation where Yi is sent, and the received string is r. We have that

Pr
[
r < ring(Yi)

]
=

∑
r < ring(Yi)

w(Yi, r) ≤
γ

8
,

where γ is the parameter of Theorem 27.1.3.

Proof: This quantity, is the probability of sending Yi when every bit is flipped with probability p, and receiving
a string r such that more than pn + εpn bits where flipped (or less than pn − εpn). But this quantity can be
bounded using the Chernoff inequality. Indeed, let Z = ∆(Yi, r), and observe that E[Z] = pn, and it is the sum
of n independent indicator variables. As such∑

r < ring(Yi)

w(Yi, r) = Pr
[
|Z − E[Z]| > εpn

]
≤ 2 exp

(
−
ε2

4
pn

)
<
γ

4
,

since ε is a constant, and for n sufficiently large. �

Lemma 27.2.3. We have that f (Yi) =
∑

r < ring(Yi) E
[
S i,rw(Yi, r)

]
≤ γ/8 (the expectation is over all the choices

of the Ys excluding Yi).
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Proof: Observe that S i,rw(Yi, r) ≤ w(Yi, r) and for fixed Yi and r we have that E[w(Yi, r)] = w(Yi, r). As such,
we have that

f (Yi) =
∑

r < ring(Yi)

E
[
S i,rw(Yi, r)

]
≤

∑
r < ring(Yi)

E[w(Yi, r)] =
∑

r < ring(Yi)

w(Yi, r) ≤
γ

8
,

by Lemma 27.2.2. �

Lemma 27.2.4. We have that g(Yi) =
∑

r ∈ ring(Yi)

E
[
S i,rw(Yi, r)

]
≤ γ/8 (the expectation is over all the choices of

the Ys excluding Yi).

Proof: We have that S i,rw(Yi, r) ≤ S i,r, as 0 ≤ w(Yi, r) ≤ 1. As such, we have that

g(Yi) =
∑

r ∈ ring(Yi)

E
[
S i,rw(Yi, r)

]
≤

∑
r ∈ ring(Yi)

E
[
S i,r

]
=

∑
r ∈ ring(Yi)

Pr[r < S i]

=
∑

r

Pr
[
r < S i ∩

(
r ∈ ring(Yi)

)]
=

∑
r

Pr
[
r < S i

∣∣∣ r ∈ ring(Yi)
]

Pr
[
r ∈ ring(Yi)

]
≤

∑
r

γ

8
Pr

[
r ∈ ring(Yi)

]
≤
γ

8
,

by Lemma 27.2.1. �

Lemma 27.2.5. For any i, we have µ = E[Wi] ≤ γ/4, where γ is the parameter of Theorem 27.1.3, where Wi

is the probability of failure to recover Yi if it was sent, see Eq. (27.1).

Proof: We have by Eq. (27.2) that Wi =
∑

r S i,rw(Yi, r). For a fixed value of Yi, we have by linearity of
expectation, that

E
[
Wi

∣∣∣ Yi

]
= E

∑
r

S i,rw(Yi, r)
∣∣∣ Yi

 =∑
r

E
[
S i,rw(Yi, r)

∣∣∣ Yi

]
=

∑
r ∈ ring(Yi)

E
[
S i,rw(Yi, r)

∣∣∣ Yi

]
+

∑
r < ring(Yi)

E
[
S i,rw(Yi, r)

∣∣∣ Yi

]
= g(Yi) + f (Yi) ≤

γ

8
+
γ

8
=
γ

4
,

by Lemma 27.2.3 and Lemma 27.2.4. Now E[Wi] = E
[
E
[
Wi

∣∣∣ Yi

]]
≤ E

[
γ/4

]
≤ γ/4. �

In the following, we need the following trivial (but surprisingly deep) observation.

Observation 27.2.6. For a random variable X, if E[X] ≤ ψ, then there exists an event in the probability space,
that assigns X a value ≤ ψ.

Lemma 27.2.7. For the codewords X0, . . . , XK , the probability of failure in recovering them when sending them
over the noisy channel is at most γ.
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Proof: We just proved that when using Y0, . . . , YK̂ , the expected probability of failure when sending Yi, is
E[Wi] ≤ γ/4, where K̂ = 2k+1 − 1. As such, the expected total probability of failure is

E

 K̂∑
i=0

Wi

 = K̂∑
i=0

E[Wi] ≤
γ

4
2k+1 ≤ γ2k,

by Lemma 27.2.5. As such, by Observation 27.2.6, there exist a choice of Yis, such that

K̂∑
i=0

Wi ≤ 2kγ.

Now, we use a similar argument used in proving Markov’s inequality. Indeed, the Wi are always positive, and
it can not be that 2k of them have value larger than γ, because in the summation, we will get that

K̂∑
i=0

Wi > 2kγ.

Which is a contradiction. As such, there are 2k codewords with failure probability smaller than γ. We set the
2k codewords X0, . . . , XK to be these words, where K = 2k − 1. Since we picked only a subset of the codewords
for our code, the probability of failure for each codeword shrinks, and is at most γ. �

Lemma 27.2.7 concludes the proof of the constructive part of Shannon’s theorem.

27.2.2. Lower bound on the message size
We omit the proof of this part. It follows similar argumentation showing that for every ring associated with
a codewords it must be that most of it is covered only by this ring (otherwise, there is no hope for recovery).
Then an easy packing argument implies the claim.

27.3. From previous lectures

Lemma 27.3.1. Suppose that nq is integer in the range [0, n]. Then
2nH(q)

n + 1
≤

(
n

nq

)
≤ 2nH(q).

Lemma 27.3.1 can be extended to handle non-integer values of q. This is straightforward, and we omit the
easy details.

Corollary 27.3.2. We have:
(i) q ∈ [0, 1/2]⇒

(
n
bnqc

)
≤ 2nH(q). (ii) q ∈ [1/2, 1]

(
n
dnqe

)
≤ 2nH(q).

(iii) q ∈ [1/2, 1]⇒ 2nH(q)

n+1 ≤
(

n
bnqc

)
. (iv) q ∈ [0, 1/2]⇒ 2nH(q)

n+1 ≤
(

n
dnqe

)
.

Theorem 27.3.3. Suppose that the value of a random variable X is chosen uniformly at random from the
integers {0, . . . ,m − 1}. Then there is an extraction function for X that outputs on average at least

⌊
lg m

⌋
− 1 =

bH(X)c − 1 independent and unbiased bits.

27.4. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].
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Chapter 28

Low Dimensional Linear Programming
By Sariel Har-Peled, December 30, 2015¬

“Napoleon has not been conquered by man. He was greater than all of us. But god punished him because he relied on
his own intelligence alone, until that prodigious instrument was strained to breaking point. Everything breaks in the
end.”

– Carl XIV Johan, King of Sweden.

28.1. Linear programming in constant dimension (d > 2)
Let assume that we have a set H of n linear inequalities defined over d (d is a small constant) variables.
Every inequality in H defines a closed half space in Rd . Given a vector −→c = (c1, . . . , cd) we want to find
p = (p1, . . . , pd) ∈ Rd which is in all the half spaces h ∈ H and f (p) =

∑
i ci pi is maximized. Formally:

LP in d dimensions:(H,−→c )
H - set of n closed half spaces in Rd

−→c - vector in d dimensions
Find p ∈ Rd s.t. ∀h ∈ H we have p ∈ h and f (p) is maximized.
Where f (p) =

〈
p,−→c
〉
.

A closed half space in d dimensions is defined by an inequality of the form

a1x1 + a2x2 + · · · + anxn ≤ bn.

One difficulty that we ignored earlier, is that the optimal solution for the LP might be unbounded, see
Figure 28.1.

Namely, we can find a solution with value∞ to the target function.
For a half space h let η(h) denote the normal of h directed into the feasible region. Let µ(h) denote the closed

half space, resulting from h by translating it so that it passes through the origin. Let µ(H) be the resulting set
of half spaces from H. See Figure 28.1 (b).

The new set of constraints µ(H) is depicted in Figure 28.1 (c).

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Figure 28.1: (a) Unbounded LP. (b). (c).
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g

µ(h2) ∩ g µ(h1) ∩ g

h2

µ(h2)

(a) (b) (c)

Figure 28.2: (a). (b). (c).

Lemma 28.1.1. (H,−→c ) is unbounded if and only if (µ(H),−→c ) is unbounded.

Proof: Consider the ρ′ the unbounded ray in the feasible region of (H,−→c ) such that the line that contain it
passes through the origin. Clearly, ρ′ is unbounded also in (H,−→c ), and this is if and only if. See Figure 28.2
(a). �

Lemma 28.1.2. Deciding if (µ(H),−→c ) is bounded can be done by solving a d−1 dimensional LP. Furthermore,
if it is bounded, then we have a set of d constraints, such that their intersection prove this.

Furthermore, the corresponding set of d constraints in H testify that (H,−→c ) is bounded.

Proof: Rotate space, such that −→c is the vector (0, 0, . . . , 0, 1). And consider the hyperplane g ≡ xd = 1.
Clearly, (µ(H),−→c ) is unbounded if and only if the region g ∩

⋂
h∈µ(H) h is non-empty. By deciding if this region

is unbounded, is equivalent to solving the following LP: L′ = (H′, (1, 0, . . . , 0)) where

H′ =
{
g ∩ h

∣∣∣ h ∈ µ(H)
}
.

Let h ≡ a1x1 + . . . + ad xd ≤ 0, the region corresponding to g ∩ h is a1x1 + · · · + ad−1xd−1 ≤ −ad which is a
d − 1 dimensional hyperplane. See Figure 28.2 (b).

But this is a d − 1 dimensional LP, because everything happens on the hyperplane xd = 1.
Notice that if (µ(H),−→c ) is bounded (which happens if and only if (H,−→c ) is bounded), then L′ is infeasible,

and the LP L′ would return us a set d constraints that their intersection is empty. Interpreting those constraints

2
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Figure 28.3: (a). (b). (c).

in the original LP, results in a set of constraints that their intersection is bounded in the direction of −→c . See
Figure 28.2 (c).

(In the above example, µ(H) ∩ g is infeasible because the intersection of µ(h2) ∩ g and µ(h1) ∩ g is empty,
which implies that h1 ∩ h2 is bounded in the direction −→c which we care about. The positive y direction in this
figure. ) �

We are now ready to show the algorithm for the LP for L = (H,−→c ). By solving a d − 1 dimensional LP we
decide whether L is unbounded. If it is unbounded, we are done (we also found the unbounded solution, if you
go carefully through the details).

See Figure 28.3 (a).
(in the above figure, we computed p.)
In fact, we just computed a set h1, . . . , hd s.t. their intersection is bounded in the direction of −→c (thats what

the boundness check returned).
Let us randomly permute the remaining half spaces of H, and let h1, h2, . . . , hd, hd+1, . . . , hn be the resulting

permutation.

Let vi be the vertex realizing the optimal solution for the LP:

Li =
(
{h1, . . . , hi} ,

−→c
)

There are two possibilities:

1. vi = vi+1. This means that vi ∈ hi+1 and it can be checked in constant time.

2. vi , vi+1. It must be that vi < hi+1 but then, we must have... What is depicted in Figure 28.3 (b).

B - the set of d constraints that define vi+1. If hi+1 < B then vi = vi+1. As such, the probability of vi , vi+1

is roughly d/i because this is the probability that one of the elements of B is hi+1. Indeed, fix the first i + 1
elements, and observe that there are d elements that are marked (those are the elements of B). Thus, we are
asking what is the probability of one of d marked elements to be the last one in a random permutation of
hd+1, . . . , hi+1, which is exactly d/(i + 1 − d).

Note that if some of the elements of B is h1, . . . , hd than the above expression just decreases (as there are
less marked elements).

Well, let us restrict our attention to ∂hi+1. Clearly, the optimal solution to Li+1 on hi+1 is the required vi+1.
Namely, we solve the LP Li+1 ∩ hi+1 using recursion.

This takes T (i + 1, d − 1) time. What is the probability that vi+1 , vi?

3



Well, one of the d constraints defining vi+1 has to be hi+1.The probability for that is ≤ 1 for i ≤ 2d − 1, and
it is

≤
d

i + 1 − d
,

otherwise.

Summarizing everything, we have:

T (n, d) = O(n) + T (n, d − 1) +
2d∑

i=d+1

T (i, d − 1)

+

n∑
i=2d+1

d
i + 1 − d

T (i, d − 1)

What is the solution of this monster? Well, one essentially to guess the solution and verify it. To guess solution,
let us “simplify” (incorrectly) the recursion to :

T (n, d) = O(n) + T (n, d − 1) + d
n∑

i=2d+1

T (i, d − 1)
i + 1 − d

So think about the recursion tree. Now, every element in the sum is going to contribute a near constant
factor, because we divide it by (roughly) i+1−d and also, we are guessing the the optimal solution is linear/near
linear.

In every level of the recursion we are going to penalized by a multiplicative factor of d. Thus, it is natural,
to conjecture that T (n, d) ≤ (3d)3dn.

Which can be verified by tedious substitution into the recurrence, and is left as exercise.

Theorem 28.1.3. Given an d dimensional LP (H,−→c ),it can be solved in expected O
(
(3d)3dn

)
time (the constant

in the O is dim independent).

BTW, we are being a bit conservative about the constant. In fact, one can prove that the running time is d!n.
Which is still exponential in d.
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SolveLP((H,−→c ))
/* initialization */
Rotate (H,−→c ) s.t. −→c = (0, . . . , 1)
Solve recursively the d − 1 dim LP:

L′ ≡ µ(H) ∩ (xd = 1)
if L′ has a solution then

return “Unbounded”

Let g1, . . . , gd be the set of constraints of L′ that testifies that L′ is infeasible
Let h1, . . . , hd be the hyperplanes of H corresponding to g1, . . . , gd

Permute H s.t. h1, . . . , hd are first.
vd = ∂h1 ∩ ∂h2 ∩ · · · ∩ ∂hd

/*vd is a vertex that testifies that (H,−→c ) is bounded */

/* the algorithm itself */
for i← d + 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← SolveLP((Hi−1 ∩ ∂hi, −→c )) (*)

where Hi−1 = {h1, . . . , hi−1}

return vn

28.2. Handling Infeasible Linear Programs

In the above discussion, we glossed over the question of how to handle LPs which are infeasible. This requires
slightly modifying our algorithm to handle this case, and I am only describing the required modifications.

First, the simplest case, where we are given an LP L which is one dimensional (i.e., defined over one
variable). Clearly, we can solve this LP in linear time (verify!), and furthermore, if there is no solution, we can
return two input inequality ax ≤ b and cx ≥ d for which there is no solution together (i.e., those two inequalities
[i.e., constraints] testifies that the LP is not satisfiable).

Next, assume that the algorithm SolveLP when called on a d − 1 dimensional LP L′, if L′ is not feasible
it return the d constraints of L′ that together have non-empty intersection. Namely, those constraints are the
witnesses that L′ is infeasible.

So the only place, where we can get such answer, is when computing vi (in the (*) line in the algorithm).
Let h′1, . . . , h

′
d be the corresponding set of d constraints of Hi−1 that testifies that (Hi−1 ∩ ∂hi, −→c ) is an infeasible

LP. Clearly, h′1, . . . , h
′
d, hi must be a set of d + 1 constraints that are together are infeasible, and that is what

SolveLP returns.

28.3. References

The description in this class notes is loosely based on the description of low dimensional LP in the book of de
Berg et al. [dBCKO08].
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Chapter 29

Expanders I
By Sariel Har-Peled, December 30, 2015¬

“Mr. Matzerath has just seen fit to inform me that this partisan, unlike so many of them, was an authentic partisan. For
- to quote the rest of my patient’s lecture - there is no such thing as a part-time partisan. Real partisans are partisans
always and as long as they live. They put fallen governments back in power and over throw governments that have
just been put in power with the help of partisans. Mr. Matzerath contended - and this thesis struck me as perfectly
plausible - that among all those who go in for politics your incorrigible partisan, who undermines what he has just set
up, is closest to the artiest because he consistently rejects what he has just created.”

– Gunter Grass, The tin drum.

29.1. Preliminaries on expanders

29.1.1. Definitions
Let G = (V, E) Be an undirected graph, where V = {1, . . . , n}. A d-regular graph is a graph where all vertices
have degree d. A d-regular graph G = (V, E) is a δ-edge expander (or just, δ-expander) if for every set S ⊆ V
of size at most |V | /2, there are at least δd |S | edges connecting S and S = V \ S ; that is

e(S , S ) ≥ δd |S | , (29.1)

where
e(X,Y) =

∣∣∣∣{uv
∣∣∣ u ∈ X, v ∈ Y

}∣∣∣∣ .
A graph is [n, d, δ]-expander if it is a n vertex, d-regular, δ-expander.

A (n, d)-graph G is a connected d-regular undirected (multi) graph. We will consider the set of vertices of
such a graph to be the set ~n� = {1, . . . , n}.

For a (multi) graph G with n nodes, its adjacency matrix is a n × n matrix M, where Mi j is the number of
edges between i and j. It would be convenient to work the transition matrix Q associated with the random walk
on G. If G is d-regular then Q = M(G)/d and it is doubly stochastic.

A vector x is eigenvector of a matrix M with eigenvalue µ, if xM = µx. In particular, by taking the dot
product of both size by x, we get 〈xM, x〉 = 〈µx, x〉, which implies µ = 〈xM, x〉 / 〈x, x〉. Since the adjacency

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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matrix M of G is symmetric, all its eigenvalues are real numbers (this is a special case of the spectral theorem
from linear algebra). Two eigenvectors with different eigenvectors are orthogonal to each other.

We denote the eigenvalues of M by λ̂1 ≥ λ̂2 ≥ · · · λ̂n, and the eigenvalues of Q by λ̂1 ≥ λ̂2 ≥ · · · λ̂n. Note,
that for a d-regular graph, the eigenvalues of Q are the eigenvalues of M scaled down by a factor of 1/d; that is
λ̂i = λ̂i/d.

Lemma 29.1.1. Let G be an undirected graph, and let ∆ denote the maximum degree in G. Then,
∣∣∣∣λ̂1(G)

∣∣∣∣ =∣∣∣∣λ̂1(M)
∣∣∣∣ = ∆ if and only one connected component of G is ∆-regular. The multiplicity of ∆ as an eigenvector is

the number of ∆-regular connected components. Furthermore, we have
∣∣∣∣λ̂i(G)

∣∣∣∣ ≤ ∆, for all i.

Proof: The ith entry of M1n is the degree of the ith vertex vi of G (i.e., M1n = d(vi), where 1n = (1, 1, . . . , 1) ∈
Rn. So, let x be an eigenvector of M with eigenvalue λ, and let x j , 0 be the coordinate with the largest
(absolute value) among all coordinates of x corresponding to a connect component H of G. We have that

|λ|
∣∣∣x j

∣∣∣ = ∣∣∣(Mx) j

∣∣∣ =
∣∣∣∣∣∣∣∣
∑

vi∈N(v j)

xi

∣∣∣∣∣∣∣∣ ≤ ∆
∣∣∣x j

∣∣∣ ,
where N(v j) are the neighbors of vi in G. Thus, all the eigenvalues of G have

∣∣∣∣λ̂i

∣∣∣∣ ≤ ∆, for i = 1, . . . , n. If
λ = ∆, then this implies that xi = x j if vi ∈ N(v j), and d(v j) = ∆. Applying this argument to the vertices of
N(v j), implies that H must be ∆-regular, and furthermore, x j = xi, if xi ∈ V(H). Clearly, the dimension of the
subspace with eigenvalue (in absolute value) ∆ is exactly the number of such connected components. �

The following is also known. We do not provide a proof since we do not need it in our argumentation.

Lemma 29.1.2. If G is bipartite, then if λ is eigenvalue of M(G) with multiplicity k, then −λ is also its eigen-
value also with multiplicity k.

29.2. Tension and expansion

Let G = (V, E), where V = {1, . . . , n} and G is a d regular graph.

Definition 29.2.1. For a graph G, let γ(G) denote the tension of G; that is, the smallest constant, such that for
any function f : V(G)→ R, we have that

E
x,y∈V

[
| f (x) − f (y)|2

]
≤ γ(G) E

xy∈E

[
| f (x) − f (y)|2

]
. (29.2)

Intuitively, the tension captures how close is estimating the variance of a function defined over the vertices
of G, by just considering the edges of G. Note, that a disconnected graph would have infinite tension, and the
clique has tension 1.

Surprisingly, tension is directly related to expansion as the following lemma testifies.

Lemma 29.2.2. Let G = (V, E) be a given connected d-regular graph with n vertices. Then, G is a δ-expander,

where δ ≥
1

2γ(G)
and γ(G) is the tension of G.
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Proof: Consider a set S ⊆ V , where |S | ≤ n/2. Let fS (v) be the function assigning 1 if v ∈ S , and zero
otherwise. Observe that if (u, v) ∈

(
S × S

)
∪
(
S × S

)
then | fS (u) − fS (v)| = 1, and | fS (u) − fS (v)| = 0 otherwise.

As such, we have

2 |S | (n − |S |)
n2 = E

x,y∈V

[
| fS (x) − fS (y)|2

]
≤ γ(G) E

xy∈E

[
| fS (x) − fS (y)|2

]
= γ(G)

e
(
S , S
)

|E|
,

by Lemma 29.2.4. Now, since G is d-regular, we have that |E| = nd/2. Furthermore, n − |S | ≥ n/2, which
implies that

e
(
S , S
)
≥

2 |E| · |S | (n − |S |)
γ(G)n2 =

2(nd/2)(n/2) |S |
γ(G)n2 =

1
2γ(G)

d |S | .

which implies the claim (see Eq. (29.1)). �

Now, a clique has tension 1, and it has the best expansion possible. As such, the smaller the tension of a
graph, the better expander it is.

Definition 29.2.3. Given a random walk matrix Q associated with a d-regular graph, let B(Q) = 〈v1, . . . , vn〉

denote the orthonormal eigenvector basis defined by Q. That is, v1, . . . , vn is an orthonormal basis for Rn,
where all these vectors are eigenvectors of Q and v1 = 1n/

√
n. Furthermore, let λ̂i denote the ith eigenvalue of

Q, associated with the eigenvector vi, such that λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n.

Lemma 29.2.4. Let G = (V, E) be a given connected d-regular graph with n vertices. Then γ(G) = 1
1−λ̂2

, where

λ̂2 = λ2/d is the second largest eigenvalue of Q.

Proof: Let f : V → R. Since in Eq. (29.2), we only look on the difference between two values of f , we
can add a constant to f , and would not change the quantities involved in Eq. (29.2). As such, we assume that
E
[
f (x)
]
= 0. As such, we have that

E
x,y∈V

[
| f (x) − f (y)|2

]
= E

x,y∈V

[
( f (x) − f (y))2

]
= E

x,y∈V

[
( f (x))2

− 2 f (x) f (y) + ( f (y))2
]

(29.3)

= E
x,y∈V

[
( f (x))2

]
− 2 E

x,y∈V

[
f (x) f (y)

]
+ E

x,y∈V

[
( f (y))2

]
= E

x∈V

[
( f (x))2

]
− 2 E

x∈V

[
f (x)
]

E
y∈V

[
f (y)
]
+ E

y∈V

[
( f (y))2

]
= 2 E

x∈V

[
( f (x))2

]
.

Now, let I be the n × n identity matrix (i.e., one on its diagonal, and zero everywhere else). We have that

ρ =
1
d

∑
xy∈E

( f (x) − f (y))2 =
1
d

∑
x∈V

d( f (x))2
− 2
∑
xy∈E

f (x) f (y)

 =∑
x∈V

( f (x))2
−

2
d

∑
xy∈E

f (x) f (y)

=
∑
x,y∈V

(I − Q)xy f (x) f (y).

Note, that 1n is an eigenvector of Q with eigenvalue 1, and this is the largest eigenvalue of Q. Let B(Q) =
〈v1, . . . , vn〉 be the orthonormal eigenvector basis defined by Q, with eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n, respec-
tively. Write f =

∑n
i=1 αivi, and observe that

0 = E
[
f (x)
]
=

n∑
i=1

f (i)
n
=

〈
f ,

v1
√

n

〉
=

〈∑
i

αivi,
v1
√

n

〉
=

1
√

n
〈α1v1, v1〉 =

α1
√

n
,

3



since vi⊥v1 for i ≥ 2. Hence α1 = 0, and we have

ρ =
∑
x,y∈V

(I − Q)xy f (x) f (y) =
∑
x,y∈V

(I − Q)xy

n∑
i=2

αn
i=1αivi(x)

n∑
j=1

α jv j(y)

=
∑

i, j

αiα j

∑
x∈V

vi(x)
∑
y∈V

(I − Q)xyv j(y).

Now, we have that∑
y∈V

(I − Q)xyv j(y) =
〈 [

xth row of
(I − Q)

]
, v j

〉
=
(
(I − Q)v j

)
(x) =

((
1 − λ̂ j

)
v j

)
(x) =

(
1 − λ̂ j

)
v j(x),

since v j is eigenvector of Q with eigenvalue λ̂ j. Since v1, . . . , vn is an orthonormal basis, and f =
∑n

i=1 αivi, we
have that ‖ f ‖2 =

∑
j α

2
j . Going back to ρ, we have that

ρ =
∑

i, j

αiα j

∑
x∈V

vi(x)
(
1 − λ̂ j

)
v j(x) =

∑
i, j

αiα j

(
1 − λ̂ j

)∑
x∈V

vi(x)v j(x)

=
∑

i, j

αiα j

(
1 − λ̂ j

) 〈
vi, v j

〉
=

n∑
j=1

α2
j

(
1 − λ̂ j

) 〈
v j, v j

〉
≥
(
1 − λ̂2

) n∑
j=2

α2
j

∑
x∈V

(
v j(x)
)2
=
(
1 − λ̂2

) n∑
j=2

α2
j =
(
1 − λ̂2

)
‖ f ‖2 =

(
1 − λ̂2

) n∑
j=1

( f (x))2 (29.4)

= n
(
1 − λ̂2

)
E

x∈V

[
( f (x))2

]
,

since α1 = 0 and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n.
We are now ready for the kill. Indeed, by Eq. (29.3), and the above, we have that

E
x,y∈V

[
| f (x) − f (y)|2

]
= 2 E

x∈V

[
( f (x))2

]
≤

2

n
(
1 − λ̂2

) ρ = 2

dn
(
1 − λ̂2

) ∑
xy∈E

( f (x) − f (y))2

=
1

1 − λ̂2

·
1
|E|

∑
xy∈E

( f (x) − f (y))2 =
1

1 − λ̂2
E

xy∈E

[
| f (x) − f (y)|2

]
.

This implies that γ(G) ≤
1

1 − λ̂2

. Observe, that the inequality in our analysis, had risen from Eq. (29.4), but if

we take f = v2, then the inequality there holds with equality, which implies that γ(G) ≥ 1
1−λ̂2

, which implies
the claim. �

Lemma 29.2.2 together with the above lemma, implies that the expansion δ of a d-regular graph G is at
least δ = 1/2γ(G) = (1 − λ2/d)/2, where λ2 is the second eigenvalue of the adjacency matrix of G. Since the
tension of a graph is direct function of its second eigenvalue, we could either argue about the tension of a graph
or its second eigenvalue when bounding the graph expansion.
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Chapter 30

Expanders II
By Sariel Har-Peled, December 30, 2015¬

Be that as it may, it is to night school that I owe what education I possess; I am the first to own that it doesn’t amount
to much, though there is something rather grandiose about the gaps in it.

– Gunter Grass, The tin drum.

30.1. Bi-tension

Our construction of good expanders, would use the idea of composing graphs together. To this end, in our
analysis, we will need the notion of bi-tension. Let Ẽ(G) be the set of directed edges of G; that is, every edge
xy ∈ E(G) appears twice as (x→ y) and (y→ x) in Ẽ.

Definition 30.1.1. For a graph G, let γ2(G) denote the bi-tension of G; that is, the smallest constant, such that
for any two function f , g : V(G)→ R, we have that

E
x,y∈V

[
| f (x) − g(y)|2

]
≤ γ2(G) E

(x→y)∈Ẽ

[
| f (x) − g(y)|2

]
. (30.1)

The proof of the following lemma is similar to the proof of Lemma 30.3.1. The proof is provided for the
sake of completeness, but there is little new in it.

Lemma 30.1.2. Let G = (V, E) be a connected d-regular graph with n vertices. Then γ2(G) =
1

1 − λ̂
, where

λ̂ = λ̂(G), where λ̂(G) = max
(
λ̂2,−λ̂n

)
, where λ̂i is the ith largest eigenvalue of the random walk matrix

associated with G.

Proof: We can assume that E
[
f (x)

]
= 0. As such, we have that

E
x,y∈V

[
| f (x) − g(y)|2

]
= E

x,y∈V

[
( f (x))2

]
− 2 E

x,y∈V

[
f (x)g(y)

]
+ E

y∈V

[
(g(y))2

]
= E

x,y∈V

[
( f (x))2

]
+ E

y∈V

[
(g(y))2

]
. (30.2)

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
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1

http://creativecommons.org/licenses/by-nc/3.0/


Let Q be the matrix associated with the random walk on G (each entry is either zero or 1/d), we have

ρ = E
(x→y)∈Ẽ

[
| f (x) − g(y)|2

]
=

1
nd

∑
(x→y)∈Ẽ

( f (x) − g(y))2 =
1
n

∑
x,y∈V

Qxy( f (x) − g(y))2

=
1
n

∑
x∈V

(
( f (x))2 + (g(x))2

)
−

2
n

∑
x,y∈V

Qxy f (x)g(y).

Let B(Q) = 〈v1, . . . , vn〉 be the orthonormal eigenvector basis defined by Q (see Definition 30.3.3), with eigen-
values λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n, respectively. Write f =

∑n
i=1 αivi and g =

∑n
i=1 βivi. Since E

[
f (x)

]
= 0, we have that

α1 = 0. Now, Qxy = Qyx, and we have

∑
x,y∈V

Qxy f (x)g(y) =
∑
x,y∈V

Qyx

∑
i

αivi(x)


∑

j

β jv j(y)

 =∑
i, j

αiβ j

∑
y∈V

v j(y)
∑
x∈V

Qyxvi(x)

=
∑

i, j

αiβ j

∑
y∈V

v j(y)
(
λ̂ivi(y)

)
=

∑
i, j

αiβ jλ̂i

〈
v j, vi

〉
=

n∑
i=2

αiβiλ̂i

∑
y∈V

(vi(y))2

≤ λ̂

n∑
i=2

α2
i + β

2
i

2

∑
y∈V

(vi(y))2
≤
λ̂

2

n∑
i=1

∑
y∈V

(
(αivi(y))2 + (βivi(y))2

)
=
λ̂

2

∑
y∈V

(
( f (y))2 + (g(y))2

)
As such,

E
(x→y)∈Ẽ

[
| f (x) − g(y)|2

]
=

1
nd

∑
(x→y)∈Ẽ

| f (x) − g(y)|2 =
1
n

∑
y∈V

(
( f (y))2 + (g(y))2

)
−

1
n

∑
x,y∈V

2 f (x)g(y)
d

=
1
n

∑
y∈V

(
( f (y))2 + (g(y))2

)
−

2
n

∑
x,y∈V

Qxy f (x)g(y)

≥

1
n
−

2
n
·
λ̂

2

∑
y∈V

(
( f (y))2 + (g(y))2

)
=

(
1 − λ̂

)(
E

y∈V

[
( f (y))2

]
+ E

y∈V

[
(g(y))2

])
=

(
1 − λ̂

)
E

x,y∈V

[
| f (x) − g(y)|2

]
,

by Eq. (30.2). This implies that γ2(G) ≤ 1/
(
1 − λ̂

)
. Again, by trying either f = g = v2 or f = vn and g = −vn,

we get that the inequality above holds with equality, which implies γ2(G) ≥ 1/
(
1 − λ̂

)
. Together, the claim

now follows. �

30.2. Explicit construction
For a set U ⊆ V of vertices, its characteristic vector, denoted by x = χU , is the n dimensional vector, where
xi = 1 if and only if i ∈ U.

The following is an easy consequence of Lemma 30.3.2.

Lemma 30.2.1. For a d-regular graph G the vector 1n = (1, 1, . . . , 1) is the only eigenvector with eigenvalue d
(of the adjacency matrix M(G), if and only if G is connected. Furthermore, we have |λi| ≤ d, for all i.
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Our main interest would be in the second largest eigenvalue of M. Formally, let

λ2(G) = max
x⊥1n,x,0

∣∣∣∣∣〈xM, x〉
〈x, x〉

∣∣∣∣∣ .
We state the following result but do not prove it since we do not need it for our nafarious purposes (however,

we did prove the left side of the inequality).

Theorem 30.2.2. Let G be a δ-expander with adjacency matrix M and let λ2 = λ2(G) be the second-largest
eigenvalue of M. Then

1
2

(
1 −

λ2

d

)
≤ δ ≤

√
2
(
1 −

λ2

d

)
.

What the above theorem says, is that the expansion of a [n, d, δ]-expander is a function of how far is its
second eigenvalue (i.e., λ2) from its first eigenvalue (i.e., d). This is usually referred to as the spectral gap.

We will start by explicitly constructing an expander that has “many” edges, and then we will show to reduce
its degree till it become a constant degree expander.

30.2.1. Explicit construction of a small expander

30.2.1.1. A quicky reminder of fields

A field is a set F together with two operations, called addition and multiplication, and denoted by + and ·,
respectively, such that the following axioms hold:

(i) Closure: ∀x, y ∈ F, we have x + y ∈ F and x · y ∈ F.

(ii) Associativity: ∀x, y, z ∈ F, we have x + (y + z) = (x + y) + z and (x · y) · z = x · (y · z).

(iii) Commutativity: ∀x, y ∈ F, we have x + y = y + x and x · y = y · x.

(iv) Identity: There exists two distinct special elements 0, 1 ∈ F. We have that ∀x ∈ F it holds x + 0 = a and
x · 1 = x.

(v) Inverse: There exists two distinct special elements 0, 1 ∈ F, and we have that ∀x ∈ F there exists an
element −x ∈ F, such that x + (−x) = 0.

Similarly, ∀x ∈ F, x , 0, there exists an element y = x−1 = 1/x ∈ F such that x · y = 1.

(vi) Distributivity: ∀x, y, z ∈ F we have x · (y + z) = x · y + x · z.

Let q = 2t, and r > 0 be an integer. Consider the finite field Fq. It is the field of polynomials of degree at
most t − 1, where the coefficients are over Z2 (i.e., all calculations are done modulus 2). Formally, consider the
polynomial

p(x) = xt + x + 1.

It it irreducible over F2 = {0, 1} (i.e., p(0) = p(1) , 0). We can now do polynomial arithmetic over polynomials
(with coefficients from F2), where we do the calculations modulus p(x). Note, that any irreducible polynomial
of degree n yields the same field up to isomorphism. Intuitively, we are introducing the n distinct roots of p(x)
into F by creating an extension field of F with those roots.
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An element of Fq = F2t can be interpreted as a binary string b = b0b1 . . . , bt−1 of length t, where the
corresponding polynomial is

poly(b) =
t−1∑
i=0

bixi.

The nice property of Fq is that addition can be interpreted as a xor operation. That is, for any x, y ∈ Fq, we have
that x + y + y = x and x − y − y = x. The key properties of Fq we need is that multiplications and addition can
be computed in it in polynomial time in t, and it is a field (i.e., each non-zero element has a unique inverse).

30.2.1.1.1. Computing multiplication in Fq. Consider two elements α, β ∈ Fq. Multiply the two polynomials
poly(α) by poly(β), let poly(γ) be the resulting polynomial (of degree at most 2t−2), and compute the remainder
poly(β) when dividing it by the irreducible polynomial p(x). For this remainder polynomial, normalize the
coefficients by computing their modules base 2. The resulting polynomial is the product of α and β.

For more details on this field, see any standard text on abstract algebra.

30.2.1.2. The construction

Let q = 2t, and r > 0 be an integer. Consider the linear spaceG = F r
q . Here, a member α = (α0, . . . , αr) ∈ G can

be thought of as being a string (of length r+1) over Fq, or alternatively, as a binary string of length n = t(r+1).
For α = (α0, . . . , αr) ∈ G, and x, y ∈ Fq, define the operator

ρ(α, x, y) = α + y ·
(
1, x, x2, . . . , xr

)
=

(
α0 + y, α1 + yx, α2 + yx2, . . . , αr + yxr

)
∈ G.

Since addition over Fq is equivalent to a xor operation we have that

ρ(ρ(α, x, y), x, y) =
(
α0 + y + y, α1 + yx + yx, α2 + yx2 + yx2, . . . , αr + yxr + yxr

)
= (α0, α1, α2, . . . , αr) = α.

Furthermore, if (x, y) , (x′, y′) then ρ(α, x, y) , ρ(α, x′, y′).
We now define a graph LD(q, r) = (G, E), where

E =
{
αβ

∣∣∣∣∣∣ α ∈ G, x, y ∈ Fq

β = ρ(α, x, y)

}
Note, that this graph is well defined, as ρ(β, x, y) = α. The degree of a vertex of LD(q, r) is

∣∣∣Fq

∣∣∣2 = q2, and
LD(q, r) has N = |G| = qr+1 = 2t(r+1) = 2n vertices.

Theorem 30.2.3. For any t > 0, r > 0 and q = 2t, where r < q, we have that LD(q, r) is a graph with qr+1

vertices. Furthermore, λ1(LD(q, r)) = q2, and λi(LD(q, r)) ≤ rq, for i = 2, . . . , n.
In particular, if r ≤ q/2, then LD(q, r) is a

[
qr+1, q2, 1

4

]
-expander.

Proof: Let M be the N × N adjacency matrix of LD(q, r). Let L : Fq → {0, 1} be a linear map which is onto. It
is easy to verify that

∣∣∣L−1(0)
∣∣∣ = ∣∣∣L−1(1)

∣∣∣­
We are interested in the eigenvalues of the matrix M. To this end, we consider vectors in RN . The ith row

an ith column of M is associated with a unique element bi ∈ G. As such, for a vector v ∈ RN , we denote by

­Indeed, if Z = L−1(0), and L(x) = 1, then L(y) = 1, for all y ∈ U =
{
x + z

∣∣∣ z ∈ Z
}
. Now, its clear that |Z| = |U |.
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v[bi] the ith coordinate of v. In particular, for α = (α0, . . . , αr) ∈ G, let vα ∈ RN denote the vector, where its
β = (β0, . . . , βr) ∈ G coordinate is

vα
[
β
]
= (−1)L

(∑r
i=0 αi βi

)
.

Let V =
{
vα

∣∣∣α ∈ G}
. For α , α′ ∈ V , observe that

〈vα, vα′〉 =
∑
β∈G

(−1)L
(∑r

i=0 αi βi
)
· (−1)L

(∑r
i=0 α

′
i βi

)
=

∑
β∈G

(−1)L
(∑r

i=0

(
αi+α

′
i

)
βi

)
=

∑
β∈G

vα+α′
[
β
]
.

So, consider ψ = α+α′ , 0. Assume, for the simplicity of exposition that all the coordinates of ψ are non-zero.
We have, by the linearity of L that

〈vα, vα′〉 =
∑
β∈G

(−1)L
(∑r

i=0 αi βi
)
=

∑
β0∈Fq,...,βr−1∈Fq

(−1)L(ψ0 β0+···+ψr−1 βr−1)
∑
βr∈Fq

(−1)L(ψr βr).

However, since ψr , 0, the quantity
{
ψrβr

∣∣∣ βr ∈ Fq

}
= Fq. Thus, the summation

∑
βr∈Fq

(−1)L(ψr βr) gets
∣∣∣L−1(0)

∣∣∣
terms that are 1, and

∣∣∣L−1(0)
∣∣∣ terms that are −1. As such, this summation is zero, implying that 〈vα, vα′〉 = 0.

Namely, the vectors of V are orthogonal.
Observe, that for α, β, ψ ∈ G, we have vα

[
β + ψ

]
= vα

[
β
]
vα

[
ψ
]
. For α ∈ G, consider the vector Mvα. We

have, for β ∈ G, that

(Mvα)
[
β
]
=

∑
ψ∈G

Mβψ · vα
[
ψ
]
=

∑
x,y ∈ Fq
ψ=ρ(β,x,y)

vα
[
ψ
]
=

∑
x,y ∈ Fq

vα
[
β + y(1, x, . . . , xr)

]

=

 ∑
x,y ∈ Fq

vα
[
y(1, x, . . . , xr)

] · vα[β] .
Thus, setting λ(α) =

∑
x,y ∈ Fq

vα
[
y(1, x, . . . , xr)

]
∈ R, we have that Mvα = λ(α) ·vα. Namely, vα is an eigenvector,

with eigenvalue λ(α).
Let pα(x) =

∑r
i=0 αixi, and let

λ(α) =
∑

x,y ∈ Fq

vα
[
y(1, x, . . . , xr)

]
∈ R =

∑
x,y∈Fq

(−1)L(ypα(x))

=
∑

x,y∈Fq
pα(x)=0

(−1)L(y pα(x)) +
∑

x,y∈Fq
pα(x),0

(−1)L(y pα(x)).

If pα(x) = 0 then (−1)L(y pα(x)) = 1, for all y. As such, each such x contributes q to λ(α).
If pα(x) , 0 then y pα(x) takes all the values of Fq, and as such, L(y pα(x)) is 0 for half of these values, and

1 for the other half. Implying that these kind terms contribute 0 to λ(α). But pα(x) is a polynomial of degree
r, and as such there could be at most r values of x for which the first term is taken. As such, if α , 0 then
λ(α) ≤ rq. If α = 0 then λ(α) = q2, which implies the theorem. �

This construction provides an expander with constant degree only if the number of vertices is a constant.
Indeed, if we want an expander with constant degree, we have to take q to be as small as possible. We get
the relation n = qr+1 ≤ qq, since r ≤ r, which implies that q = Ω(log n/ log log n). Now, the expander of
Theorem 30.2.3 is q2-regular, which means that it is not going to provide us with a constant degree expander.

However, we are going to use it as our building block in a construction that would start with this expander
and would inflate it up to the desired size.
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30.3. From previous lectures

Lemma 30.3.1. Let G = (V, E) be a given connected d-regular graph with n vertices. Then γ(G) = 1
1−λ̂2

, where

λ̂2 = λ2/d is the second largest eigenvalue of Q.

Lemma 30.3.2. Let G be an undirected graph, and let ∆ denote the maximum degree in G. Then,
∣∣∣∣λ̂1(G)

∣∣∣∣ =∣∣∣∣λ̂1(M)
∣∣∣∣ = ∆ if and only one connected component of G is ∆-regular. The multiplicity of ∆ as an eigenvector is

the number of ∆-regular connected components. Furthermore, we have
∣∣∣∣λ̂i(G)

∣∣∣∣ ≤ ∆, for all i.

Definition 30.3.3. Given a random walk matrix Q associated with a d-regular graph, let B(Q) = 〈v1, . . . , vn〉

denote the orthonormal eigenvector basis defined by Q. That is, v1, . . . , vn is an orthonormal basis for Rn,
where all these vectors are eigenvectors of Q and v1 = 1n/

√
n. Furthermore, let λ̂i denote the ith eigenvalue of

Q, associated with the eigenvector vi, such that λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n.
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Chapter 31

Expanders III - The Zig Zag Product
By Sariel Har-Peled, December 30, 2015¬

Gradually, but not as gradually as it seemed to some parts of his brain, he began to infuse his tones with a sarcastic
wounding bitterness. Nobody outside a madhouse, he tried to imply, could take seriously a single phrase of this
conjectural, nugatory, deluded, tedious rubbish. Within quite a short time he was contriving to sound like an unusually
fanatical Nazi trooper in charge of a book-burning reading out to the crowd excerpts from a pamphlet written by a
pacifist, Jewish, literate Communist. A growing mutter, half-amused, half-indignant, arose about him, but he closed
his ears to it and read on. Almost unconsciously he began to adopt an unnameable foreign accent and to read faster
and faster, his head spinning. As if in a dream he heard Welch stirring, then whispering, then talking at his side. he
began punctuating his discourse with smothered snorts of derision. He read on, spitting out the syllables like curses,
leaving mispronunciations, omissions, spoonerisms uncorrected, turning over the pages of his script like a score-reader
following a presto movement, raising his voice higher and higher. At last he found his final paragraph confronting him,
stopped, and look at his audience.

– Kingsley Amis, Lucky Jim.

31.1. Building a large expander with constant degree

31.1.1. Notations
For a vertex v ∈ V(G), we will denote by vG[i] = v[i] the ith neighbor of v in the graph G (we order the
neighbors of a vertex in an arbitrary order).

The regular graphs we next discuss have consistent labeling. That is, for a regular graph G (we assume here
that G is regular). This means that if u is the ith neighbor v then v is the ith neighbor of u. Formally, this means
that v[i][i] = v, for all v and i. This is a non-trivial property, but its easy to verify that the low quality expander
of Theorem 31.4.3 has this property. It is also easy to verify that the complete graph can be easily be made into
having consistent labeling (exercise). These two graphs would be sufficient for our construction.

31.1.2. The Zig-Zag product
At this point, we know how to construct a good “small” expander. The question is how to build a large expander
(i.e., large number of vertices) and with constant degree.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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The intuition of the construction is the following: It is easy to improve the expansion qualities of a graph
by squaring it. The problem is that the resulting graph G has a degree which is too large. To overcome this, we
will replace every vertex in G by a copy of a small graph that is connected and has low degree. For example, we
could replace every vertex of degree d in G by a path having d vertices. Every such vertex is now in charge of
original edge of the graph. Naturally, such a replacement operation reduces the quality of the expansion of the
resulting graph. In this case, replacing a vertex with a path is a potential “disaster”, since every such subpath
increases the lengths of the paths of the original graph by a factor of d (and intuitively, a good expander have
“short” paths between any pair of vertices).

G
H

G r©H

Consider a “large” (n,D)-graph G and a “small” (D, d)-graph H. As a
first stage, we replace every vertex of G by a copy of H. The new graph K
has ~n� × ~D� as a vertex set. Here, the edge vu ∈ V(G), where u = v[i] and
v = u[ j], is replaced by the edge connecting (v, i) ∈ V(K) with (u, j) ∈ V(K).
We will refer to this resulting edge (v, i)(u, j) as a long edge. Also, we copy
all the edges of the small graph to each one of its copies. That is, for each
i ∈ ~n�, and uv ∈ E(H), we add the edge (i, u)(i, v) to K, which is a short edge.
We will refer to K, which is a (nD, d + 1)-graph, as a replacement product of
G and H, denoted by G r©H. See figure on the right for an example.

G r©H
e1

e3

e2

Again, intuitively, we are losing because the expan-
sion of the resulting graph had deteriorated too much. To
overcome this problem, we will perform local shortcuts
to shorten the paths in the resulting graph (and thus im-
prove its expansion properties). A zig-zag-zig path in the
replacement product graph K, is a three edge path e1e2e3,
where e1 and e3 are short edges, and the middle edge e2

is a long edge. That is, if e1 = (i, u)(i, v), e2 = (i, v)( j, v′),
and e3 = ( j, v′)( j, u′), then e1, e2, e3 ∈ E(K), i j ∈ E(G),
uv ∈ E(H) and v′u′ ∈ E(H). Intuitively, you can think
about e1 as a small “zig” step in H, e2 is a long “zag”
step in G, and finally e3 is a “zig” step in H.

Another way of representing a zig-zag-zig path v1v2v3v4 starting at the vertex v1 = (i, v) ∈ V(F), is to
parameterize it by two integers `, `′ ∈ ~d�, where

v1 = (i, v), v2 = (i, vH[`]) v3 = (iG[vH[`]] , vH[`]) v4 =
(
iG[vH[`]] , (vH[`])H

[
`′
])
.

Let Z be the set of all (unordered) pairs of vertices of K connected by such a zig-zag-zig path. Note, that
every vertex (i, v) of K has d2 paths having (i, v) as an end point. Consider the graph F = (V(K),Z). The graph F
has nD vertices, and it is d2 regular. Furthermore, since we shortcut all these zig-zag-zig paths in K, the graph
F is a much better expander (intuitively) than K. We will refer to the graph F as the zig-zag product of G and H.

Definition 31.1.1. The zig-zag product of (n,D)-graph G and a (D, d)-graph H, is the (nD, d2) graph F = G z©H,
where the set of vertices is ~n� × ~D� and for any v ∈ ~n�, i ∈ ~D�, and `, `′ ∈ ~d� we have in F the edge
connecting the vertex (i, v) with the vertex (iG[vH[`]] , (vH[`])H[`′]).

Remark 31.1.2. We need the resulting zig-zag graph to have consistent labeling. For the sake of simplicity of
exposition, we are just going to assume this property.

We next bound the tension of the zig-zag product graph.
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Theorem 31.1.3. We have γ(G z©H) ≤ γ2(G)(γ2(H))2. and γ2(G z©H) ≤ γ2(G)(γ2(H))2.

Proof: Let G = (~n�, E) be a (n,D)-graph and H = (~D�, E′) be a (D, d)-graph. Fix any function f : ~n� ×
~D�→ R, and observe that

ψ = E
u,v∈~n�
k,`∈~D�

[
| f (u, k) − f (v, `)|2

]
= E

k,`∈~D�

[
E

u,v∈~n�

[
| f (u, k) − f (v, `)|2

]]

≤ E
k,`∈~D�

[
γ2(G) E

uv∈E(G)

[
| f (u, k) − f (v, `)|2

]]
= γ2(G) E

k,`∈~D�

 E
u∈~n�
p∈~D�

[∣∣∣ f (u, k) − f
(
u
[
p
]
, `

)∣∣∣2]︸                                         ︷︷                                         ︸
=∆1

.

Now,

∆1 = E
u∈~n�
`∈~D�

[
E

k,p∈~D�

[∣∣∣ f (u, k) − f
(
u
[
p
]
, `

)∣∣∣2]] ≤ E
u∈~n�
`∈~D�

[
γ2(H) E

kp∈E(H)

[∣∣∣ f (u, k) − f
(
u
[
p
]
, `

)∣∣∣2]]

= γ2(H) E
u∈~n�
`∈~D�

 E
p∈~D�
j∈~d�

[∣∣∣ f (u, p
[
j
])
− f

(
u
[
p
]
, `

)∣∣∣2]︸                                            ︷︷                                            ︸
=∆2

.

Now,

∆2 = E
j∈~d�
`∈~D�

 E
u∈~n�
p∈~D�

[∣∣∣ f (u, p
[
j
])
− f

(
u
[
p
]
, `

)∣∣∣2] = E
j∈~d�
`∈~D�

 E
v∈~n�
p∈~D�

[∣∣∣ f (v[p
]
, p

[
j
])
− f (v, `)

∣∣∣2]
= E

j∈~d�
v∈~n�

 E
p∈~D�
`∈~D�

[∣∣∣ f (v[p
]
, p

[
j
])
− f (v, `)

∣∣∣2]
= γ2(H) E

j∈~d�
v∈~n�

[
E

p`∈E(H)

[∣∣∣ f (v[p
]
, p

[
j
])
− f (v, `)

∣∣∣2]]
︸                                            ︷︷                                            ︸

=∆3

.

Now, we have

∆3 = E
j∈~d�
v∈~n�

 E
p∈~D�
i∈~d�

[∣∣∣ f (v[p
]
, p

[
j
])
− f (v, p[i])

∣∣∣2] = E
(u,k)(`,v)∈E(G z©H)

[
| f (u, k) − f (`, v)|

]
,

as
(
v
[
p
]
, p

[
j
])

is adjacent to
(
v
[
p
]
, p

)
(a short edge), which is in turn adjacent to (v, p) (a long edge), which is

adjacent to (v, p[i]) (a short edge). Namely,
(
v
[
p
]
, p

[
j
])

and (v, p[i]) form the endpoints of a zig-zag path in the
replacement product of G and H. That is, these two endpoints are connected by an edge in the zig-zag product
graph. Furthermore, it is easy to verify that each zig-zag edge get accounted for in this representation exactly
once, implying the above inequality. Thus, we have ψ ≤ γ2(G)(γ2(H))2∆3, which implies the claim.

The second claim follows by similar argumentation. �
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31.1.3. Squaring
The last component in our construction, is squaringsquaring!graph a graph. Given a (n, d)-graph G, consider
the multigraph G2 formed by connecting any vertices connected in G by a path of length 2. Clearly, if M is the
adjacency matrix of G, then the adjacency matrix of G2 is the matrix M2. Note, that

(
M2

)
i j

is the number of
distinct paths of length 2 in G from i to j. Note, that the new graph might have self loops, which does not effect
our analysis, so we keep them in.

Lemma 31.1.4. Let G be a (n, d)-graph. The graph G2 is a (n, d2)-graph. Furthermore γ2

(
G2

)
=

(γ2(G))2

2γ2(G)−1 .

Proof: The graph G2 has eigenvalues
(
λ̂1(G)

)2
, . . . ,

(
λ̂1(G)

)2
for its matrix Q2. As such, we have that

λ̂
(
G2

)
= max

(
λ̂2

(
G2

)
,−λ̂n

(
G2

))
.

Now, λ̂1

(
G2

)
= 1. Now, if λ̂2(G) ≥

∣∣∣∣λ̂n(G)
∣∣∣∣ < 1 then λ̂

(
G2

)
= λ̂2

(
G2

)
=

(
λ̂2(G)

)2
=

(̂
λ(G)

)2
.

If λ̂2(G) <
∣∣∣∣λ̂n(G)

∣∣∣∣ then λ̂
(
G2

)
= λ̂2

(
G2

)
=

(
λ̂n(G)

)2
=

(̂
λ(G)

)2
..

Thus, in either case λ̂
(
G2

)
=

(̂
λ(G)

)2
. Now, By Lemma 31.4.1 γ2(G) = 1

1−λ̂(G)
, which implies that λ̂(G) =

1 − 1/γ2(G), and thus

γ2

(
G2

)
=

1

1 − λ̂
(
G2) = 1

1 −
(̂
λ(G)

)2 =
1

1 −
(
1 − 1

γ2(G)

)2 =
γ2(G)

2 − 1
γ2(G)

=
(γ2(G))2

2γ2(G) − 1
. �

31.1.4. The construction

So, let build an expander using Theorem 31.4.3, with parameters r = 7 q = 24 = 32. Let d = q2 = 256. The
resulting graph H has N = qr+1 = d4 vertices, and it is d = q2 regular. Furthermore, λ̂i ≤ r/q = 7/32, for all
i ≥ 2. As such, we have

γ(H) = γ2(H) =
1

1 − 7/32
=

32
25
.

Let G0 be any graph that its square is the complete graph over n0 = N+1 vertices. Observe that G2
0 is d4-regular.

Set Gi =
(
G2

i−1 z©H
)
, Clearly, the graph Gi has

ni = ni−1N

vertices. The graph G2
i−1 z©H is d2 regular. As far as the bi-tension, let αi = γ2(Gi). We have that

αi =
α2

i−1

2αi−1 − 1
(γ2(H))2 =

α2
i−1

2αi−1 − 1

(
32
25

)2

≤ 1.64
α2

i−1

2αi−1 − 1
.

It is now easy to verify, that αi can not be bigger than 5.

Theorem 31.1.5. For any i ≥ 0, one can compute deterministically a graph Gi with ni = (d4 + 1)d4i vertices,
which is d2 regular, where d = 256. The graph Gi is a (1/10)-expander.

Proof: The construction is described above. As for the expansion, since the bi-tension bounds the tension of
a graph, we have that γ(Gi) ≤ γ2(Gi) ≤ 5. Now, by Lemma 31.4.2, we have that Gi is a δ-expander, where
δ ≥ 1/(2γ(Gi)) ≥ 1/10. �
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31.2. Bibliographical notes
A good survey on expanders is the monograph by Hoory et al. [HLW06]. The small expander construction
is from the paper by Alon et al. [ASS08] (but its originally from the work by Along and Roichman [AR94]).
The work by Alon et al. [ASS08] contains a construction of an expander that is constant degree, which is of
similar complexity to the one we presented here. Instead, we used the zig-zag expander construction from the
influential work of Reingold et al. [RVW02]. Our analysis however, is from an upcoming paper by Mendel
and Naor [MN08]. This analysis is arguably reasonably simple (as simplicity is in the eye of the beholder, we
will avoid claim that its the simplest), and (even better) provide a good intuition and a systematic approach to
analyzing the expansion.

We took a creative freedom in naming notations, and the name tension and bi-tension are the author’s own
invention.

31.3. Exercises
Exercise 31.3.1 (Expanders made easy.). By considering a random bipartite three-regular graph on 2n vertices
obtained by picking three random permutations between the two sides of the bipartite graph, prove that there is
a c > 0 such that for every n there exits a (2n, 3, c)-expander. (What is the value of c in your construction?)

Exercise 31.3.2 (Is your consistency in vain?). In the construction, we assumed that the graphs we are dealing
with when building expanders have consistent labeling. This can be enforced by working with bipartite graphs,
which implies modifying the construction slightly.

(A) Prove that a d-regular bipartite graph always has a consistent labeling (hint: consider matchings in this
graph).

(B) Prove that if G is bipartite so is the graph G3 (the cubed graph).

(C) Let G be a (n,D)-graph and let H be a (D, d)-graph. Prove that if G is bipartite then GG z©H is bipartite.

(D) Describe in detail a construction of an expander that is: (i) bipartite, and (ii) has consistent labeling at
every stage of the construction (prove this property if necessary). For the ith graph in your series, what is
its vertex degree, how many vertices it has, and what is the quality of expansion it provides?

Exercise 31.3.3 (Tension and bi-tension.). [30 points]
Disprove (i.e., give a counter example) that there exists a universal constant c, such that for any connected

graph G, we have that γ(G) ≤ γ2(G) ≤ cγ(G).

Acknowledgements
Much of the presentation was followed suggestions by Manor Mendel. He also contributed some of the figures.

31.4. From previous lectures

Lemma 31.4.1. Let G = (V, E) be a connected d-regular graph with n vertices. Then γ2(G) =
1

1 − λ̂
, where

λ̂ = λ̂(G), where λ̂(G) = max
(
λ̂2,−λ̂n

)
, where λ̂i is the ith largest eigenvalue of the random walk matrix

associated with G.
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Lemma 31.4.2. Let G = (V, E) be a given connected d-regular graph with n vertices. Then, G is a δ-expander,

where δ ≥
1

2γ(G)
and γ(G) is the tension of G.

Theorem 31.4.3. For any t > 0, r > 0 and q = 2t, where r < q, we have that LD(q, r) is a graph with qr+1

vertices. Furthermore, λ1(LD(q, r)) = q2, and λi(LD(q, r)) ≤ rq, for i = 2, . . . , n.
In particular, if r ≤ q/2, then LD(q, r) is a

[
qr+1, q2, 1

4

]
-expander.
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Chapter 32

Miscellaneous Prerequisite
By Sariel Har-Peled, December 30, 2015¬

Be that as it may, it is to night school that I owe what education I possess; I am the first to own that it doesn’t amount
to much, though there is something rather grandiose about the gaps in it.

– The tin drum, Gunter Grass.

The purpose of this chapter is to remind the reader (and the author) about some basic definitions and results
in mathematics used in the text. The reader should refer to standard texts for further details.

32.1. Geometry and linear algebra

A set X in Rd is closed, if any sequence of converging points of X converges to a point that is inside X. A
set X ⊆ Rd is compact if it is closed and bounded; namely; there exists a constant c, such that for all p ∈ X,
‖p‖ ≤ c.
Definition 32.1.1 (Convex hull). The convex hull of a set R ⊆ Rd is the set of all convex combinations of points
of R; that is,

CH(R) =

 m∑
i=0

αiri

∣∣∣∣∣∣∣∀i ri ∈ R, αi ≥ 0, and
m∑

j=1

αi = 1

 .
In the following, we cover some material from linear algebra. Proofs of these facts can be found in any text

on linear algebra, for example [Leo98].
For a matrix M, let MT denote the transposed matrix. We remind the reader that for two matrices M and B,

we have (MB)T = BT MT . Furthermore, for any three matrices M,B, and C, we have (MB)C = M(BC).
A matrix M ∈ Rn×n is symmetric if MT = M. All the eigenvalues of a symmetric matrix are real numbers.

A symmetric matrix M is positive definite if xT Mx > 0, for all x ∈ Rn. Among other things this implies that
M is non-singular. If M is symmetric, then it is positive definite if and only if all its eigenvalues are positive
numbers.

In particular, if M is symmetric positive definite, then det(M) > 0. Since all the eigenvalues of a positive
definite matrix are positive real numbers, the following holds, as can be easily verified.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Claim 32.1.2. A symmetric matrix M is positive definite if and only if there exists a matrix B such that M = BT B
and B is not singular.

For two vectors u, v ∈ Rn, let 〈u, v〉 = uT v denote their dot product.

Lemma 32.1.3. Given a simplex 4 in Rd with vertices v1, . . . , vd, vd+1 (or equivalently 4 = CH(v1, . . . , vd+1)),
the volume of this simplex is the absolute value of (1/d!)|C|, where C is the value of the determinant C =∣∣∣∣∣∣ 1 1 . . . 1
v1 v2 . . . vd+1

∣∣∣∣∣∣. In particular, for a triangle with vertices at (x, y), (x′, y′), and (x′′, y′′) its area is the

absolute value of
1
2

∣∣∣∣∣∣∣∣
1 x y
1 x′ y′

1 x′′ y′′

∣∣∣∣∣∣∣∣.
32.1.1. Linear and affine subspaces

Definition 32.1.4. The linear subspace spanned by a set of vectors V ⊆ Rd is the set linear(V) =
{∑

i αi
−→v i

∣∣∣∣αi ∈ R,
−→v i ∈ V

}
.

An affine combination of vectors v1, . . . , vn is a linear combination
∑n

i=1 αi · vi = α1v1 + α2v2 + · · · + αnvn

in which the sum of the coefficients is 1; thus,
∑n

i=1 αi = 1. The maximum dimension of the affine subspace in
such a case is (n − 1)-dimensions.

Definition 32.1.5. The affine subspace spanned by a set V ⊆ Rd is

affine(V) =

∑
i

αi
−→v i

∣∣∣∣∣∣∣αi ∈ R,
−→v i ∈ V, and

∑
i

αi = 1

 .
For any vector −→v ∈ V, we have that affine(V) = −→v + linear

(
V −
−→v
)
, where V −

−→v =
{
−→v ′ − −→v

∣∣∣∣−→v ′ ∈ V}.
32.1.2. Computational geometry
The following are standard results in computational geometry; see [dBCKO08] for more details.

Lemma 32.1.6. The convex hull of n points in the plane can be computed in O(n log n) time.

Lemma 32.1.7. The lower and upper envelopes of n lines in the plane can be computed in O(n log n) time.

Proof: Use duality and the algorithm of Lemma 32.1.6. �

32.2. Calculus

Lemma 32.2.1. For x ∈ (−1, 1), we have ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ · · · =

∞∑
i=1

(−1)i+1 xi

i
.

Lemma 32.2.2. The following hold:
(A) For all x ∈ R, 1 + x ≤ exp(x).
(B) For x ≥ 0, 1 − x ≤ exp(−x).
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(C) For 0 ≤ x ≤ 1, exp(x) ≤ 1 + 2x.
(D) For x ∈ [0, 1/2], exp(−2x) ≤ 1 − x.

Proof: (A) Let f (x) = 1 + x and g(x) = exp(x). Observe that f (0) = g(0) = 1. Now, for x ≥ 0, we have
that f ′(x) = 1 and g′(x) = exp(x) ≥ 1. As such f (x) ≤ g(x) for x ≥ 0. Similarly, for x < 0, we have
g′(x) = exp(x) < 1, which implies that f (x) ≤ g(x).

(B) This is immediate from (A).
(C) Observe that exp(1) ≤ 1 + 2 · 1 and exp(0) = 1 + 2 · 0. By the convexity of 1 + 2x, it follows that

exp(x) ≤ 1 + 2x for all x ∈ [0, 1].
(D) Observe that (i) exp(−2(1/2)) = 1/e ≤ 1/2 = 1 − (1/2), (ii) exp(−2 · 0) = 1 ≤ 1 − 0, (iii) exp(−2x)′ =

−2 exp(−2x), and (iv) exp(−2x)′′ = 4 exp(−2x) ≥ 0 for all x. As such, exp(−2x) is a convex function and the
claim follows. �

Lemma 32.2.3. For 1 > ε > 0 and y ≥ 1, we have that
ln y
ε
≤ log1+ε y ≤ 2

ln y
ε

.

Proof: By Lemma 32.2.2, 1 + x ≤ exp(x) ≤ 1 + 2x for x ∈ [0, 1]. This implies that ln(1 + x) ≤ x ≤ ln(1 + 2x).

As such, log1+ε y =
ln y

ln(1 + ε)
=

ln y
ln(1 + 2(ε/2))

≤
ln y
ε/2

. The other inequality follows in a similar fashion. �
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