
AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-L

3-18 Vol. 2A

AAA—ASCII Adjust After Addition

Instruction Operand Encoding

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register is the implied 
source and destination operand for this instruction. The AAA instruction is only useful when it follows an ADD 
instruction that adds (binary addition) two unpacked BCD values and stores a byte result in the AL register. The 
AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result. 

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF flags are set. If there 
was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, bits 4 
through 7 of the AL register are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX ← AX + 106H;
AF ← 1;
CF ← 1;

ELSE
AF ← 0;
CF ← 0;

FI;
AL ← AL AND 0FH;

FI;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are set to 0. The OF, 
SF, ZF, and PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

37 AAA NP Invalid Valid ASCII adjust AL after addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA



AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-19

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.



AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-L

3-20 Vol. 2A

AAD—ASCII Adjust AX Before Division

Instruction Operand Encoding

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-significant digit in the 
AH register) so that a division operation performed on the result will yield a correct unpacked BCD value. The AAD 
instruction is only useful when it precedes a DIV instruction that divides (binary division) the adjusted value in the 
AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the AH register to 00H. 
The value in the AX register is then equal to the binary equivalent of the original unpacked two-digit (base 10) 
number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any number base (see the 
“Operation” section below), by setting the imm8 byte to the selected number base (for example, 08H for octal, 0AH 
for decimal, or 0CH for base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean adjust 
ASCII (base 10) values. To adjust values in another number base, the instruction must be hand coded in machine 
code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;
tempAH ← AH;
AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; 
(* imm8 is set to 0AH for the AAD mnemonic.*)
AH ← 0;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the OF, AF, and CF flags 
are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D5 0A AAD NP Invalid Valid ASCII adjust AX before division.

D5 ib AAD imm8 NP Invalid Valid Adjust AX before division to number base 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA



AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-21

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.



AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-L

3-22 Vol. 2A

AAM—ASCII Adjust AX After Multiply

Instruction Operand Encoding

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked (base 10) BCD 
values. The AX register is the implied source and destination operand for this instruction. The AAM instruction is 
only useful when it follows an MUL instruction that multiplies (binary multiplication) two unpacked BCD values and 
stores a word result in the AX register. The AAM instruction then adjusts the contents of the AX register to contain 
the correct 2-digit unpacked (base 10) BCD result. 

The generalized version of this instruction allows adjustment of the contents of the AX to create two unpacked 
digits of any number base (see the “Operation” section below). Here, the imm8 byte is set to the selected number 
base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is interpreted 
by all assemblers to mean adjust to ASCII (base 10) values. To adjust to values in another number base, the 
instruction must be hand coded in machine code (D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;
AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)
AL ← tempAL MOD imm8;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The OF, AF, and CF flags 
are undefined.

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D4 0A AAM NP Invalid Valid ASCII adjust AX after multiply.

D4 ib AAM imm8 NP Invalid Valid Adjust AX after multiply to number base 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA



AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-23

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.



AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-L

3-24 Vol. 2A

AAS—ASCII Adjust AL After Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD result. The AL register 
is the implied source and destination operand for this instruction. The AAS instruction is only useful when it follows 
a SUB instruction that subtracts (binary subtraction) one unpacked BCD value from another and stores a byte 
result in the AL register. The AAA instruction then adjusts the contents of the AL register to contain the correct 1-
digit unpacked BCD result. 

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and AF flags are set. If no 
decimal carry occurred, the CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL 
register is left with its top four bits set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-bit mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)
THEN

AX ← AX – 6;
AH ← AH – 1;
AF ← 1;
CF ← 1;
AL ← AL AND 0FH;

ELSE
CF ← 0;
AF ← 0;
AL ← AL AND 0FH;

FI;
FI;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The OF, SF, ZF, and 
PF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

3F AAS NP Invalid Valid ASCII adjust AL after subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA



AAS—ASCII Adjust AL After Subtraction

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-25

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.



ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

3-26 Vol. 2A

ADC—Add with Carry

Instruction Operand Encoding

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry (CF) flag and 
stores the result in the destination operand. The destination operand can be a register or a memory location; the 
source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be 
used in one instruction.) The state of the CF flag represents a carry from a previous addition. When an immediate 
value is used as an operand, it is sign-extended to the length of the destination operand format.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to AX.

15 id ADC EAX, imm32 I Valid Valid Add with carry imm32 to EAX.

REX.W + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign extended to 64-
bits to RAX.

80 /2 ib ADC r/m8, imm8 MI Valid Valid Add with carry imm8 to r/m8.

REX + 80 /2 ib ADC r/m8*, imm8 MI Valid N.E. Add with carry imm8 to r/m8.

81 /2 iw ADC r/m16, imm16 MI Valid Valid Add with carry imm16 to r/m16.

81 /2 id ADC r/m32, imm32 MI Valid Valid Add with CF imm32 to r/m32.

REX.W + 81 /2 id ADC r/m64, imm32 MI Valid N.E. Add with CF imm32 sign extended to 64-bits 
to r/m64.

83 /2 ib ADC r/m16, imm8 MI Valid Valid Add with CF sign-extended imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 MI Valid Valid Add with CF sign-extended imm8 into r/m32.

REX.W + 83 /2 ib ADC r/m64, imm8 MI Valid N.E. Add with CF sign-extended imm8 into r/m64.

10 /r ADC r/m8, r8 MR Valid Valid Add with carry byte register to r/m8.

REX + 10 /r ADC r/m8*, r8* MR Valid N.E. Add with carry byte register to r/m64.

11 /r ADC r/m16, r16 MR Valid Valid Add with carry r16 to r/m16.

11 /r ADC r/m32, r32 MR Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 MR Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte register.

REX + 12 /r ADC r8*, r/m8* RM Valid N.E. Add with carry r/m64 to byte register.

13 /r ADC r16, r/m16 RM Valid Valid Add with carry r/m16 to r16.

13 /r ADC r32, r/m32 RM Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA



ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-27

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates 
the result for both data types and sets the OF and CF flags to indicate a carry in the signed or unsigned result, 
respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an ADD instruction is 
followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC + CF;

Intel C/C++ Compiler Intrinsic Equivalent

ADC: extern unsigned char _addcarry_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *sum_out);

ADC: extern unsigned char _addcarry_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short 
*sum_out);

ADC: extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *sum_out);

ADC: extern unsigned char _addcarry_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 
*sum_out);

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.



ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-L

3-28 Vol. 2A

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.



ADCX — Unsigned Integer Addition of Two Operands with Carry Flag

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-29

ADCX — Unsigned Integer Addition of Two Operands with Carry Flag

Instruction Operand Encoding

Description
Performs an unsigned addition of the destination operand (first operand), the source operand (second operand) 
and the carry-flag (CF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of 
CF can represent a carry from a previous addition. The instruction sets the CF flag with the carry generated by the 
unsigned addition of the operands. 
The ADCX instruction is executed in the context of multi-precision addition, where we add a series of operands with 
a carry-chain. At the beginning of a chain of additions, we need to make sure the CF is in a desired initial state. 
Often, this initial state needs to be 0, which can be achieved with an instruction to zero the CF (e.g. XOR).
This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode. 
In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to addi-
tional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64 bits.
ADCX executes normally either inside or outside a transaction region.
Note: ADCX defines the OF flag differently than the ADD/ADC instructions as defined in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A.

Operation
IF OperandSize is 64-bit

THEN CF:DEST[63:0] ← DEST[63:0] + SRC[63:0] + CF;
ELSE CF:DEST[31:0] ← DEST[31:0] + SRC[31:0] + CF;

FI;

Flags Affected
CF is updated based on result. OF, SF, ZF, AF and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent
unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);

unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.

Opcode/
Instruction

Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 F6 /r
ADCX r32, r/m32

RM V/V ADX Unsigned addition of r32 with CF, r/m32 to r32, writes CF.

66 REX.w 0F 38 F6 /r
ADCX r64, r/m64

RM V/NE ADX Unsigned addition of r64 with CF, r/m64 to r64, writes CF.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA



ADCX — Unsigned Integer Addition of Two Operands with Carry Flag

INSTRUCTION SET REFERENCE, A-L

3-30 Vol. 2A

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments. 
If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) For an illegal address in the SS segment.
#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19] = 0.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.



ADD—Add

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-31

ADD—Add

Instruction Operand Encoding

Description

Adds the destination operand (first operand) and the source operand (second operand) and then stores the result 
in the destination operand. The destination operand can be a register or a memory location; the source operand 
can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one 
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and unsigned integer oper-
ands and sets the CF and OF flags to indicate a carry (overflow) in the signed or unsigned result, respectively. The 
SF flag indicates the sign of the signed result.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.

05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.

05 id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.

REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended to 64-bits to RAX.

80 /0 ib ADD r/m8, imm8 MI Valid Valid Add imm8 to r/m8.

REX + 80 /0 ib ADD r/m8*, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

81 /0 iw ADD r/m16, imm16 MI Valid Valid Add imm16 to r/m16.

81 /0 id ADD r/m32, imm32 MI Valid Valid Add imm32 to r/m32.

REX.W + 81 /0 id ADD r/m64, imm32 MI Valid N.E. Add imm32 sign-extended to 64-bits to 
r/m64.

83 /0 ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to r/m16.

83 /0 ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm8 to r/m32.

REX.W + 83 /0 ib ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

00 /r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.

REX + 00 /r ADD r/m8*, r8* MR Valid N.E. Add r8 to r/m8.

01 /r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.

01 /r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.

REX.W + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.

02 /r ADD r8, r/m8 RM Valid Valid Add r/m8 to r8.

REX + 02 /r ADD r8*, r/m8* RM Valid N.E. Add r/m8 to r8.

03 /r ADD r16, r/m16 RM Valid Valid Add r/m16 to r16.

03 /r ADD r32, r/m32 RM Valid Valid Add r/m32 to r32.

REX.W + 03 /r ADD r64, r/m64 RM Valid N.E. Add r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA



ADD—Add

INSTRUCTION SET REFERENCE, A-L

3-32 Vol. 2A

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.


