
README

Welcome to the new, computationally efficient implementation of MIXMAX, the random 
number generator!

MIXMAX is a matrix-recursive random number generator introduced in 1986 
by my parents, George Savvidy and Natalia Ter-Arutyunyan-Savvidy.

[1]   On the Monte Carlo simulation of physical systems
      J.Comput.Phys. 97, 566 (1991), 
      http://dx.doi.org/10.1016/0021-9991(91)90015-D  (published journal version in English)
      https://lib-extopc.kek.jp/preprints/PDF/1986/8607/8607219.pdf (preprint version from 

January 1986)

and, my own paper, studying the period and dynamics of the generator:

[2]  The MIXMAX random number generator
     Comp. Phys. Commun. 196 (2015), pp 161–165
     http://dx.doi.org/10.1016/j.cpc.2015.06.003

a recent review by George Savvily:
 
[3]  Anosov C-systems and random number generators
      Theor.Math.Phys. 188 (2016) 1155-1171,
      Teor.Mat.Fiz. 188 (2016)  223-243
      https://link.springer.com/article/10.1134%2FS004057791608002X
      http://arxiv.org/abs/1507.06348
      

and, a recent paper with the three-parameter MIXMAX family

[4] K. Savvidy and G. Savvidy,
    ``Spectrum and Entropy of C-systems. MIXMAX random number generator,''
     Chaos, Solitons & Fractals, Volume 91, (2016) pp. 33–38
     http://dx.doi.org/10.1016/j.chaos.2016.05.003

WHY USE MIXMAX?

If you are doing large sized Monte-Carlo simulations, you should consider using MIXMAX. 
Examples are particle physics, lattice gauge theory, statistical physics or whenever the quantity of 
random numbers to simulate each event, trajectory, MCMC or Metropolis update and so on is 
large. In the case of the Metropolis updates near the  critical point, or more generally while 
simulating arbitrary Markov Chains with long correlation lengths, the dimension of the generator 
must be larger  than the correlation length times the consumption per update. How large are the 
typical generators? To give an idea, the widely used RANLUX has a state vector of size 24. The 
Mersenne twister is larger at 623, but not recommended for physics due to very long correlation 
lengths in the sequence, as explained below in the THEORY section. Unlike generators designed 
by computer scientists which tend to emphasize equi-distribution and randomness in terms of bits, 
MIXMAX has strong theoretical guarantees in terms of its floating point output.  Multiple streams 
are guaranteed by theory to be statistically independent. The default dimension used in this 
implementation is N=240, but we invite the user to increase it as necessary if the Monte-Carlo 

http://dx.doi.org/10.1016/j.cpc.2015.06.003


dimension is larger. At the moment the largest dimension which we provide is N=44851, and for all 
of the recommended values of N the period is independent of the seed. If you need to make 
random matrixes of size M x M, you are safest to choose an N > M^2.  In the case of an arbitrary 
large value of N, the period will be astronomic but different for different seeds.  

WHAT IS MIXMAX?

The random number generator was an outgrowth of research on dynamical systems, namely 
Yang-Mills classical mechanics. It was noted in the first paper that if a dynamical system 
possessed the property of Kolmogorov's mixing, then it could be used to generate pseudo-random 
numbers. A specific system with discrete time was proposed [1], by means of a linear 
automorphism of a hypercube, x_{i+1} = A . x_i mod 1 where A is a matrix with integer entries. For 
mixing, it is required that the determinant is equal to one, and that all eigenvalues are different by 
absolute value from 1. A specific realization  with these properties is the three-parameter (N,m,s) 
family of MIXMAX matrixes:

2    m+2  2m+2        3m+2    ...   (N-2)m+2    1
1     2    m+2        2m+2    ...   (N-3)m+2    1
1     1     2          m+2    ...   (N-4)m+2    1
     ...
1     1     1           1 ...     2    m+2+s    1    
1     1     1           1 ...     1      2      1
1     1     1           1 ...     1      1      1

The Matrix contains natural numbers and is defined recursively for all N>1, since the Matrix of 
size N shares everything except the first column and first row with the Matrix of size N-1. The 
eigenvalues of the Matrix are widely dispersed and none should lie very close to the unit circle. 
The largest eigenvalue appears to grow fast with N, and Kolmogorov's entropy is  O(N log(m) ). 
Thus, the spectrum of this system is multi-scale, with trajectories exhibiting exponential instabilities 
on all time-scales.

Some new parameter combinations which give RNGs with excellent statistical properties and 
performance are offered in this release. The new default, which passes all statistical tests which 
we have run, is  N=240 and m=2^51+1 and s=487013230256099140, and has much larger 
entropy. The specific value of s and m is chosen such that the generator has a maximal period.

Other parameter combinations make use of the new possibility of setting a large m, in 
particular, we now have generators with a small state in order to lower the memory requirements 
such as the N=8, m=2^53+1 , s=0 generator. 

 
The original generator was based on this recursion with real numbers on [0,1), generating 

directly in floating point. The trajectories which have rational components are periodic and can be 
simulated on the computer exactly. The present implementation applies to vectors with rational 
components of the form x_i = a_i / p, where p is the Mersenne prime 2^61-1. The real arithmetic 
modulo 1 is equivalent exactly to the integer arithmetic modulo p: if

   x = a/p and y=b/p 
then 
   x+y mod 1 = (a+b mod p)/p

INSTALLATION



On Linux, Unix, and Mac OSX systems, unzip the archive and change into the directory:

unzip mixmax_release_NNN.zip
cd mixmax_release_NNN

The implementation of the generator is in the file mixmax.c and there are various example 
driver programs included. Type make, and hopefully you will have an executable called mixmax 
which can be run:

make
./mixmax

At this point, it will ask you to enter the number of floating point numbers to produce, and then 
print them one on a line, in 18 decimal digit precision which is the actual usable precision in this 
implementation of the generator. 

Next, I encourage the user to run the test suite by typing 
make check

With the latest optimizations, including an assembler code suggested by Andrzej Görlich from 
NBI, the speed is comparable to MT19937. It appears that GCC-5 is able to better optimize our 
code than the earlier versions of gcc or clang.

USAGE

A few example programs for using the generator are provided. It can be as simple as 
allocating the generator state, seeding it, and getting values out of it (see driver_main.c):

#include "mixmax.h"
rng_state_t S;
rng_state_t *X = &S;
seed_spbox(X, 12345);
double z=get_next_float(X);
You are permitted to request the double-precision floating point with get_next_float() and 

integer numbers with get_next() in any order you may need. If you need 32 bit integers, it is ok to 
simply cast it to uint32_t.

Next, a program (see driver_testU01.c) is provided for testing the generator with the testU01 
suite (contains BigCrush), if it is installed on the system. Go ahead and run it on your own system, 
just to be sure.

Third, there is now a method for initializing and running huge simulations, which absolutely 
guarantees the non-collision of different streams by a system of hierarchical skipping. You provide 
the four initialization ID's and the function seed_uniquestream will make a skip by some large 
number of steps calculated from the four ID's such that the substream derived from it is absolutely 
guaranteed to not collide with any other stream produced from another four ID's so long as 

1) at least one bit in at least one of the IDs is different.
2) less than 10^100 numbers are drawn
(this is good enough : a single CPU will not exceed this in the lifetime of the universe, 10^19 

sec, 
 even if it had a clock cycle of Planck time, 10^44 Hz )

C++



The C++ code is provided as a simple include, in the file mixmax.hpp. Compilation requires 
the C++11 standard features, so the C++ code will not compile with gcc versions older than 4.7. 
Example usage is in the file example.cpp which can be compiled with 

make plusplus
./mixmax.plusplus

Roughly speaking, you include the header, initialize the generator and then get random 
numbers:

#include "mixmax.hpp"
mixmax_engine gen{0,0,0,1};
double z=gen.get_next_float();
std::cout << std::setw(18) << std::setprecision(18) <<  z << std::endl;

 Alternatively, you can use the std::random interface:
static std::uniform_real_distribution<double> dist{0,1};
std::cout << dist(gen) << std::endl;

WRAPPERS

I am adding a GSL scientific library interface and an example usage in driver_gsl.c. Just do 
“make gsl; GSL_RNG_TYPE=MIXMAX ./gsl“. There exists a ROOT and a CLHEP interface as 
well. In version 2.0 we have included a new C++ code which contains the C++11 standard 
interface for random numbers.

PORTABILITY

The generator works on most 64-bit systems, this includes both 64-bit Linux flavors and Intel 
Mac. It has also been run on Mac OSX systems with PPC architecture. The latest version also 
runs on 32-bit systems and on Windows. If you require a good quality generator which will work 
efficiently on embedded 8- or 16-bit systems, let me know and I will see what I can do for you. As 
well, if you require a vectorized version with substantially higher performance, it can be provided 
but requires one-off

integration work which I can provide.

It has been recently tested extensively on very wide variety of platforms, as part of the 
release of ROOT, and so it is safe to say that it successfully compiled on several recent vintages of 
the GNU compiler gcc and clang, and also on the Intel compiler icc. 

The implementation uses bit shifts to implement the modular arithmetic, nevertheless, it 
produces the same output on big-endian and small-endian machines. This has been specifically 
tested on ppc. The program outputs uint64_t integers between 1 and 2^61-1 inclusive and 
therefore the 61 lower bits are usable. The 61 bits of precision is more than the double precision 
and  is good to 18  decimal.

 The facilities to allocate and initialize instances of the generator have been provided, and are 
thread-safe. The generator state has a filehandle associated with it, in order to direct output from 
different threads.There is now an example program (driver_threads.c, to run type "make multi; ./
multi" ) which initializes several threads and outputs each RNG stream to a different file. 

THEORY

Ergodicity is the property of a dynamical system such that space averages are equal to time 
averages. This is what allows to obtain the value of the observable by Monte-Carlo by averaging 



over a single trajectory. When we want to speed up, by using multiple CPUs or threads to simulate 
multiple trajectories, we need the k-mixing property. MIXMAX is a chaotic dynamical system which 
has the even stronger properties of k-mixing of Kolmogorov and as well is a C-system of Anosov. 
C-systems of Anosov are the ultimate in chaotic properties - the dynamics is strictly hyperbolic in 
all of the phase space.

Study of this recursion on a Galois field GF[p] is a complicated subject [7], suffice to say that 
for maximum period the characteristic polynomial of the matrix should have its eigenvalues as the 
primitive roots of the root-N-extended field GF[Root[p,N]]. Recursions based on matrices whose 
characteristic polynomial is a primitive trinomial in GF[2^D] were advocated by Niederreiter [N86] 
and have made their way into mainstream [MT98] in the form of Mersenne twisters of various D, 
for example D=19937. This is entirely due to the ease of finding primitive polynomials whenever 
2^D-1  is a prime, namely it is sufficient that the polynomial is irreducible. The drawback is that all 
of the eigenvalues get extremely close to the unit circle, and this gets worse (!) with large D.

When the modulus, p, is not equal to 2, and the determinant of the matrix is equal to one, the 
standard theory is not applicable. Extension of the theory to this case was done in the paper [2] 
and the maximum period is equal to q=(p^N-1)/(p-1).

   The eigenvalues of the matrix used by MIXMAX are well-separated from unity for all the 
recommended N.  Fortunately, in the current implementation [2] the computational complexity is of 
order O(N), rather than O(N^2) of the original or the O(N ln(N) ) of the improved implementation 
(ref. [7]). This means that per random number generated, the cost is constant and does not 
increase with N. 
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                                          FIG 1: the spectrum of the matrix for N=240, m=2^51+1

   One additional new feature, compared to other multiple recursive generators is the function 
to skip over some large number of steps k by using the precomputed and stored matrix (A^k mod 
p). 

STATISTICAL TESTS
We have used the very high quality suite of tests, testU01.  In the latest release, the 

generators with all N use the three-parameter family with a nontrivial m, and so pass all tests in 
BigCrush for all the provided N.

LITERATURE
In addition to the two papers where the generator was introduced, there exists among other 

the following literature which is most closely related.  Niederreiter has proposed using the matrix 
recursion and  a realization on finite fields in 1986 [N86]. Martin Luscher found in [LJ94] the 
improvement to RCARRY which was sufficient in practice to overcome the high correlations 
intrinsic to generators based on sparse matrices with many eigenvalues close to the unit circle 
(such as both RCARRY and MT19937). Luscher's RANLUX accomplishes this by skipping over 
the sequence which moves the eigenvalues further away from the unit circle at the cost of speed.

[N86]  H.Niederreiter,



     A pseudorandom vector generator based on finite field arithmetic, 
     Mathematica Japonica, Vol. 31, pp. 759-774, (1986), see also
      "Finite fields, pseudorandom numbers, and quasirandom points," 
        in : Finite fields, Coding theory, and Advance in Communications and Computing. 
        (G.L.Mullen and P.J.S.Shine, eds) pp. 375-394, Marcel Dekker, N.Y. 1993.

[5] Matrix generator of pseudorandom numbers
    J.Comput.Phys.97, 573 (1991)
    http://dx.doi.org/10.1016/0021-9991(91)90016-E     (published journal version in English)
    http://ccdb5fs.kek.jp/cgi-bin/img/allpdf?198607220 (preprint version from January 1986)

[LJ94] M. Luscher, Computer Physics Communications  79 (1994) 100
     F. James,    Computer Physics Communications 79 (1994) 111
     
[7] "K-system generator of pseudorandom numbers on Galois field,"
     G. G. Athanasiu, E. G. Floratos, G. K. Savvidy
     arXiv:physics/9703024
     International Journal of Modern Physics C, Volume 8, Issue 03, pp. 555-565 (1997).

[MT98] M. Matsumoto and T. Nishimura, 
    "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number 

generator", 
    ACM Trans. on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 (1998) 

DOI:10.1145/272991.272995

[9] Two early works of which I just recently became aware of, one in Japanese and the other 
in French.

     If you happen to have a paper or electronic copy of either of the two, please let me know!

     N. Niki, 
     Finite field arithmetic and multidimensional uniform pseudorandom numbers (Japanese), 
     Proc. Inst. Statist. Math. 32 (1984) 231–239.

    E.-H. A. D. E. Tahmi, Contribution aux generateurs de vecteurs pseudo-aleatoires, 
    These, Univ. Sci. Techn. Houari Boumedienne, Algiers, 1982.

TIMELINE

January, 1986
the original papers are out

July, 1987
Akopov talks to Fred James at CERN

December, 1991
the original papers are published in JCP

1994
Luscher publishes his method of improving the RCARRY generator by means of skipping

December 2004
I find a way to implement the matrix recursion without explicitly using the matrix,



the computational complexity becomes O(N)

November 24, 2012
the initial version 0.01 is released on hepforge.org

January 2015 - current
This work is supported in part by the European Union's Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie
Grant Agreement No 644121.

July 25, 2015
Version 1.0 is released.

Sept 14, 2015
the generator is released as part of the ROOT package from CERN.

November 10th, 2015
released as part of CLHEP package

August 29, 2016
a 2.0beta version is released with a new C++ implementation

September, 2017
2.0 final version is relased, includes a C++ implementation in a simple include.
Software is free to use, LGPL license no longer available, other licenses are available -- 

please enquire

In the not too distant future - 
 a AVX vectorized version

Email me, Konstantin Savvidy, ksavvidis @at@ gmail.com


