
Programming with Python PastSet

PastSet was first introduced as an interprocess communication paradigm in Anshus in 1992. The
paradigm resembles that of Linda, but with some significant differences. Tuples are generated
dynamically based on tuple templates that may also be generated dynamically. A tuple template is
an ordered set of types. Tuples based on a particular template has an ordered set of variables
matching the types in the template. Each type in a tuple template has an associated value-space, or
dimension, describing the set of all possible values for that type in this template. Taken together, the
types in a template spawns a space encompassing all conceivable type-value combinations for
tuples based on that template. A tuple with all singular values represents a singular point in this
space.
As with Linda, PastSet supports writing (called move) tuples into tuple-space and reading (called
observe) tuples that reside in tuple space. Contrary to Linda’s in operation, PastSet observe does not
remove tuples from tuple space, the tuple that is observed is marked as observed but remains in the
PastSet so that it can be read again if specified so directly. No mechanism is provided to remove
individual tuples from PastSet. All PastSet operations return only when the operation has
completed, or an error has been detected, no asynchronous calls exist.
In PastSet, each set of tuples based on identical templates is denoted an element of PastSet. An
element may be seen as representing a trace of interprocess communications in the
multidimensional space spawned by the tuple template. PastSet preserves the causal order among all
operations on tuples based on the same or identical templates. There is no ordering between tuples
of different elements. Tuples that match the same type, but which the programmer does not wish to
place in the same element can be differentiated by an initial flag.
In effect, PastSet keeps a sequentially ordered log of all tuples of the same or identical templates
that have existed in the system. This also allows the processes to re-read previously read tuples.
It is the intention that the added semantics of PastSet will allow programmers to more easily create
parallel programs that are not limited to the traditional ‘bag of tasks’ type.
Two pointers First and Last are associated with each element in PastSet. First refers to the elements
oldest unobserved tuple. Last refers to the tuple most recently moved into the element. A parameter,
DeltaValue, associated with each element in PastSet defines the maximum number of tuples allowed
between First and Last for that element. A process may change DeltaValue at any time. The move
and observe operators update First and Last, and obey the restrictions imposed by DeltaValue for
each element in PastSet.
Functionality is provided to truncate PastSet on a per element basis, permanently removing all
tuples that are older than a given tuple

"Tabel",(int),(float)

1,3.14

2,4.6

33,0.0

42,2,72

"Name,(string[255])

Poppey

Betty Boo

John Doe

"Taken",(bool)

1

0

0

0

1

pyPastSet
pyPastSet is a reimplementation of PastSet in Python, it is not written with optimal speed in mind
but rather ease-of-use and true portability. pyPastSet maintains a mostly PastSet-like notation but
some changes have been made to make pyPastSet more pythonesque, i.e. elements are objects in
pyPastSet and operations on elements are methods to that object.

1.1 PastSet
Before using PastSet the application needs to connect to PastSet.

1.2 The Enter-operator
Before accessing PastSet, processes must issue at least one enter-operation specifying a tuple template that will be used.
In addition to specifying a tuple template, the enter-operation also establishes a binding between the template and a
unique element in PastSet. If no identical template has been specified for any previously executed enter-operation, the
binding is established with a new element created in PastSet. If an identical template has been specified for a previously
executed enter-operation, the binding is established to the previously created element.

import pastset

pset = pastset.PastSet()

Example 1: Getting access to PastSet.

(“Test”, (int), (float))

(“Test”, (int), (float))

Example 2: Two matching tuple templates

(“Test”, (int), (float))

(“Test”, (int), (complex))

Example 3: Two tuple templates that do not match

The tuple-template may contain a tag that is used to differentiate between otherwise similar templates. An appropriately
complex tag may be used as a security mechanism to prevent unauthorized access to the element, much like using a
large, sparse name-space. In addition to the tag, the parameters for the enter-operator are the tuple including the tag, and
an identifier for a set of filter functions that will be described in a later section. The enter-operator returns a element
object that identifies the element and is used when accessing the element from that point on. If no existing element fits
the tuple-template, a new element of PastSet is created.

1.3 The Move operator
The move-operator is used to add tuples to PastSet. It is semantically similar to the ‘out’ operator in Linda, but has a
different syntax identifying the operation’s target element. The move-operator takes an element object and a tuple as
parameters.

The move-operator returns after the operation has completed. The move operation blocks unless it can complete without
violating the limit defined by DeltaValue. A process blocked on move, remains blocked until one of two things happens.
Either another process executes an observe operation increasing the First pointer by one, allowing one blocked move
operation to complete. Alternatively another process may increase DeltaValue allowing one or more blocked moves to
complete. A blocked move operation is terminated if the element is deleted from Past-Set; see the axe-operator below.

1.4 The Observe operator
The observe-operator reads a tuple value from an element, and makes it available to the process that issued the observe.
Observe may be called with or without an index. The optional parameter is an absolute number that specifies which
tuple to read.

If no tuple number is specified, the observe operator reads the value of the tuple pointed to by the First pointer, and
atomically increases the pointer by one. If First > Last, the process blocks until another process issues a move onto the
element. This situation occurs when an observe-operation is issued and there are no unobserved tuples in the element.

If a tuple number is specified, that specific tuple value is read. If the tuple does not exist, the process will block until it
eventually does, if the tuple has been truncated an error will be returned. Reading specific tuples does not alter the First
pointer, even if the specified tuple is the one pointed to by the First pointer. If the specified tuple no longer exists, see
the axe operator below, an Expired exception is raised.

The observe-operator does not directly compare to either of Linda’s operators; in and read. Observe differs from in,
since the observed tuple remains in PastSet available for later observe operations. It differs from read, by not always
being completely transparent.

my_element = pset.enter((“Test”, int, float))

my_element = pset.enter((“Test”, int, float), my_filter)

Example 4: The PastSet API entry for EnterDimension

my_element.move((42, 3.14))

Example 5: The PastSet API entry for Move - note that the flag need not be passed for the Move operator

new_tuple = my_element.observe() # returns the oldest unobserved tuple

new_tuple = my_element.observe(42) # returns tuple number 42

Example 6: The PastSet API entries for Observe

1.5 The X-function
Any element may be associated with one X-function. X-functions are function pairs, X-in and X-out, which are applied
as tuples are moved or observed. When a move operation is executed tuple data is filtered through the X-in function and
then stored according to the X-in result. When an observe-operation is issued, the X-out function is called with the input
tuple as parameter, X-out returns one specific tuple.

X-functions may potentially perform any semantic operation on the tuple, but are primarily intended to supply the
following features: alternatives to sequential ordering, pattern matching, and tuple manipulation. Alternative ordering
may be used for achieving any number of orderings of tuples, i.e. by a real-time time-stamp in the tuple, by sorting, or
for supporting priorities in ‘bag of job’ type applications.

Pattern matching as supplied by Linda can also be supplied via an X-function, as the X-in function can build a lookup
table, i.e., a hash table, and the X-out function can then perform pattern-matching using regular database algorithms.

General tuple manipulation may be used for a number of purposes; in the extreme most of the applications functionality
may be implemented using X-functions. An example of such tuple manipulation could be a graphical application where
moves and observes to an element work on bitmapped frames for a video stream. An X-in function could mpeg
compress frames as they are moved to PastSet, and an X-out function could decompress frames as they are observed.

1.6 The Axe and DelElement operators
The axe-operator provides a coarse mechanism for truncating elements by marking for deletion “old” tuples in any
specified element. Axe called on an element takes as argument the absolute number of the newest tuple to mark for
deletion. At the completion of axe, this tuple and all older tuples in this element are marked for deletion. The actual
deletion of tuples and freeing of storage space may be done asynchronously to the completion of axe and may chose a
lower index than the specified as the first one to be eliminated. Thus axe cannot be used as a way of removing tuples
that may not be seen any more, it is purely a measure to preserve memory.

DelElement is used to remove any single element in PastSet, freeing its storage for other uses. DelElement removes the
element at the time it is called, so that after a DelElement operation returns, the element identifier is no longer valid, and
en EnterDimension on an identical tuple template will return a new, empty, element.

1.7 The First, Last and Delta operators
PastSet allows the programmer to read the values of the First and Last pointers of any element, and to read or modify
the DeltaValue. First and Last called on an element returns the respective index. Delta is also bound to elements, and
may take as an optional parameter the new DeltaValue. A decrease of DeltaValue below the current Last-First is readily
accepted. Future move-operations are tested for completion against the new DeltaValue, and are possibly blocked
accordingly. Increases to DeltaValue allow a corresponding number of blocked move operations to complete. Blocked
move operations are unblocked in the same order that they were blocked.

my_element.axe(index)

pset.delelement(my_element)

Example 7: The PastSet API entries for the Axe and DelElement operators

index = my_element.first()

index = my_element.last()

size = my_element.delta()

new_size = my_element.delta(42)

Example 8: The PastSet API entries for the First, Last and DeltaValue operators

1.8 Spawn
Spawn is used to start new processes on the compute nodes participating. They are launched from the available PastSet
clients running on the nodes. Spawn takes two arguments, one is the name of the application (filename) that the new
process should start executing, the other parameter is a list of arguments to that function.

pset.spawn(application, arguments)

Example 9: The PastSet API for Spawn

	Programming with Python PastSet
	pyPastSet
	1.1 PastSet
	1.2 The Enter-operator
	1.3 The Move operator
	1.4 The Observe operator
	1.5 The X-function
	1.6 The Axe and DelElement operators
	1.7 The First, Last and Delta operators
	1.8 Spawn

