corrfitter Documentation
Release 3.6.1

G.P. Lepage

September 26, 2013

1 corrfitter - Least-Squares Fit to Correlators

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16

Introduction oL o
BasicFits
FasterFits
Faster Fits — Postive Parameters
Faster Fits — Marginalization
Faster Fits — Chained Fits
Variations
Very Fast (But Limited) Fits
3-Point Correlators
Testing Fits with Simulated Data
Bootstrap Analyses oL
Implementation
Correlator Model Objects
corrfitter.CorrFitter Objects
FastFitObjects
Annotated Example 000 L.

2 Indices and tables

Index

CONTENTS

....................... 19
....................... 24

corrfitter Documentation, Release 3.6.1

Contents:

CONTENTS 1

corrfitter Documentation, Release 3.6.1

2 CONTENTS

CHAPTER
ONE

CORRFITTER - LEAST-SQUARES FIT TO
CORRELATORS

1.1 Introduction

This module contains tools that facilitate least-squares fits, as functions of time t, of simulation (or other statistical)
data for 2-point and 3-point correlators of the form:

Gab (t) = <b(t) a(0)>
Gavb (t,T) = <b(T) V(t) a(0)>

where T > t > 0. Each correlator is modeled using corrfitter.Corr2 for 2-point correlators, or
corrfitter.Corr3 for 3-point correlators in terms of amplitudes for each source a, sink b, and vertex Vv, and
the energies associated with each intermediate state. The amplitudes and energies are adjusted in the least-squares fit
to reproduce the data; they are defined in a shared prior (typically a dictionary).

Anobjectof type corrfitter.CorrFitter describes a collection of correlators and is used to fit multiple models
to data simultaneously. Fitting multiple correlators simultaneously is important if there are statistical correlations be-
tween the correlators. Any number of correlators may be described and fit by a single corrfitter.CorrFitter
object.

We now review the basic features of corrfitter. These features are also illustrated in the context of a real appli-
cation in an Annotated Example, at the end.

1.2 Basic Fits

To illustrate, consider data for two 2-point correlators: Gaa with the same source and sink (a), and Gab which
has source a and (different) sink b. The data are contained in a dictionary data, where data[’Gaa’]
and data[’Gab’] are one-dimensional arrays containing values for Gaa (t) and Gab (t), respectively, with
t=0,1,2...63. Each array element in data [’ Gaa’] and data [’ Gab’] is a Gaussian random variable of
type gvar.GVar, and specifies the mean and standard deviation for the corresponding data point:

>>> print datal[’Gaa’]
[0.1597910(41) 0.0542088(31) ... 1
>>> print datal[’Gab’]

[0.156145(18) 0.102335(15) ...]

gvar.GVars can also capture any statistical correlations between different pieces of data.

We want to fit this data to the following formulas:

corrfitter Documentation, Release 3.6.1

Gaa(t,N) = sum_1i=0..N-1 a[i]lx*2 * exp(-E[1]*t)
Gab (t,N) = sum_i=0..N-1 a[i]l«b[i] *» exp(-E[i]~*t)

Our goal is to find values for the amplitudes, a[1] and b [1], and the energies, E [1], so that these formulas repro-
duce the average values for Gaa (t, N) and Gab (t, N) that come from the data, to within the data’s statistical errors.
We use the same a [i]s and E [1i]s in both formulas. The fit parameters used by the fitter are the a[i]sand b [i]s,
as well as the differences dE[i]=E[i]-E[i-1] for 1>0 and dE[0]=E[0]. The energy differences are usually
positive by construction (see below) and are easily converted back to energies using:

E[i] = sum_Jj=0..1 dE[]]

A typical code has the following structure:

from corrfitter import CorrFitter

data = make_data('mcfile’) # user-supplied routine
models = make_models () # user-supplied routine
N = 4 # number of terms in fit functions
prior = make_prior (N) # user-supplied routine

fitter = CorrFitter (models=models)
fit = fitter.lsqgfit (data=data, prior=prior) # do the fit
print_results (fit, prior, data) # user-supplied routine

We discuss each user-supplied routine in turn.

1.2.1 a) make_data

make_data ("mcfile’) creates the dictionary containing the data that is to be fit. Typically such data comes from
a Monte Carlo simulation. Imagine that the simulation creates a file called ' mcfile’ with layout

first correlator: each line has Gaa(t) for t=0,1,2...63
Gaa 0.159774739530e+00 0.541793561501e-01

Gaa 0.159751906801e+00 0.542054488624e-01

Gaa

second correlator: each line has Gab(t) for t=0,1,2...63
Gab 0.155764170032e+00 0.102268808986e+00

Gab 0.156248435021e+00 0.102341455176e+00

Gab

where each line is one Monte Carlo measurement for one or the other correlator, as indicated by the tags at the start of
each line. (Lines for Gab may be interspersed with lines for Gaa since every line has a tag.) The data can be analyzed
using the gvar.dataset module:

import gvar as gv
def make_data(filename) :

dset = gv.dataset.Dataset (filename)
return gv.dataset.avg_data (dset)

This reads the data from file into a dataset object (type gvar.dataset.Dataset) and then computes av-
erages for each correlator and t, together with a covariance matrix for the set of averages. Thus data =

4 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

make_data (‘mcfile’) creates a dictionary where data[’Gaa’] is a 1-d array of gvar.GVars obtained
by averaging over the Gaa datain the "mcfile’, and data [’ Gab’] is a similar array for the Gab correlator.

1.2.2 b) make_models

make_models () identifies which correlators in the fit data are to be fit, and specifies theoretical models (that is, fit
functions) for these correlators:

from corrfitter import Corr2

def make_models () :
models = [Corr2(datatag=’Gaa’, tdata=range(64), tfit=range(64),
a="a’, b="a’, dE='dE’),

Corr2 (datatag=’'Gab’, tdata=range(64), tfit=range(64),
a="a’, b='b’, dE='dE’)
]

return models

For each correlator, we specify: the key used in the input data dictionary data for that correlator (datatag); the
values of t for which results are given in the input data (tdata); the values of t to keep for fits (t £it, here the
same as the range in the input data, but could be any subset); and fit-parameter labels for the source (a) and sink
(b) amplitudes, and for the intermediate energy-differences (dE). Fit-parameter labels identify the parts of the prior,
discussed below, corresponding to the actual fit parameters (the labels are dictionary keys). Here the two models, for
Gaa and Gab, are identical except for the data tags and the sinks. make_models () returns a list of models; the only
parts of the input fit data that are fit are those for which a model is specified in make_models ().

Note that if there is data for Gba (t, N) in addition to Gab (t,N), and Gba = Gab, then the (weighted) average of
the two data sets will be fit if models [1] is replace by:

Corr2 (datatag=’Gab’, tdata=range(64), tfit=range(64),
a=("a’, None), b=('b’, None), dE=("dE’, None),
othertags=['Gba’])

The additional argument othertags lists other data tags that correspond to the same physical quantity; the data
for all equivalent data tags is averaged before fitting (using 1sgfit.wavg ()). Alternatively (and equivalently) one
could add a third Corr2 to models for Gba, but it is more efficient to combine it with Gab in this way if they are
equivalent.

1.2.3 c) make_prior

This routine defines the fit parameters that correspond to each fit-parameter label used in make_models () above. It
also assigns a priori values to each parameter, expressed in terms of Gaussian random variables (gvar . GVars), with
a mean and standard deviation. The prior is built using class gvar .BufferDict:

import gvar as gv

def make_prior(N):

prior = gvar.BufferDict () # prior = {} works too
prior[’a’] = [gv.gvar(0.1, 0.5) for i in range (N)]
prior[’b’] = [gv.gvar(l., 5.) for i in range(N)]
prior[’dE’] = [gv.gvar(0.25, 0.25) for i in range (N)]

return prior

(gvar.BufferDict can be replaced by an ordinary Python dictionary; it is used here because it remembers
the order in which the keys are added.) make_prior (N) associates arrays of N Gaussian random variables

1.2. Basic Fits 5

corrfitter Documentation, Release 3.6.1

(gvar.GVars) with each fit-parameter label, enough for N terms in the fit function. These are the a priori val-
ues for the fit parameters, and they can be retrieved using the label: setting prior=make_prior (N), for example,
implies thatprior[’a’] [i],prior['b’] [1i] andprior [’ dE’] [1] arethe a priorivaluesfora [i],b[1]
and dE [1] in the fit functions (see above). The a priori value for each a [1] here is set to 0.140 . 5, while that for
eachb[i] is 145:

>>> print prior([’a’]
[0.10(50) 0.10(50) 0.10(50) 0.10(50)1
>>> print prior[’b’]

0) 1.

[1.0(5.0) 1.0(5.0) 0(5.0) 1.0(5.0)1]

Similarly the a priori value for each energy difference is 0.25+0.25. (See the 1sgfit documentation for further
information on priors.)

1.2.4 d) print_results

The actual fit is done by fit=fitter.lsqgfit (...), which also prints out a summary of the fit results (this
output can be suppressed if desired). Further results are reported by print_results (fit, prior, data):
for example,

def print_results(fit, prior, data):

a = fit.p['a’] # array of alils
b = fit.p[’'b’"] # array of b[ils
dE = fit.p['dE’] # array of dE[i]s
E = [sum(dE[:1i+1]) for i in range(len(dE))] # array of E[i]s
print ’Best fit wvalues:

print ' al0] =",al0]

print ’ b[0] =",b[0]

print ’ E[0] =',E[0]

print 'b[0]/a[0] =’',b[0]/a[0]

0], "b0/a0’:b[0]/al0]}

outputs = {’E0’:E[0], "a0’:a[0], ’'b0’:b
r "dE’=prior['dE’'],

[
inputs = {’a’=prior[’a’], 'b’=prior[’'b’],
"data’=[datalk] for k in datal)
print fit.fmt_errorbudget (outputs, inputs)
The best-fit values from the fit are contained in £it .p and are accessed using the labels defined in the prior and
the corrfitter.Corr2 models. Variables like a[0] and E[0] are gvar.GVar objects that contain means and
standard deviations, as well as information about any correlations that might exist between different variables (which
is relevant for computing functions of the parameters, like b [0] /a [0] in this example).

The last line of print_results (fit, prior, data) prints an error budget for each of the best-fit results for
al0],b[0],E[0] andb[0]/a[0], which are identified in the print output by the labels * a0’, "b0’, " E0’ and
"b0/a0’, respectively. The error for any fit result comes from uncertainties in the inputs — in particular, from the
fit data and the priors. The error budget breaks the total error for a result down into the components coming from each
source. Here the sources are the a priori errors in the priors for the “ a’ amplitudes, the * b’ amplitudes, and the
"dE’ energy differences, as well as the errors in the fit data data. These sources are labeled in the print output by
"a’,'b’,’dE’, and ' data’, respectively. (See the gvar/lsqgfit tutorial for further details on partial standard
deviations and gvar . fmt_errorbudget ().)

Plots of the fit data divided by the fit function, for each correlator, are displayed by calling
fitter.display_plots () provided the matplotlib module is present.

6 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

1.3 Faster Fits

Good fits often require fit functions with several exponentials and many parameters. Such fits can be costly. One
strategy that can speed things up is to use fits with fewer terms to generate estimates for the most important parameters.
These estimates are then used as starting values for the full fit. The smaller fit is usually faster, because it has fewer
parameters, but the fit is not adequate (because there are too few parameters). Fitting the full fit function is usually
faster given reasonable starting estimates, from the smaller fit, for the most important parameters. Continuing with the
example from the previous section, the code

data = make_data('mcfile’)
fitter = CorrFitter (models=make_models())

p0O = None
for N in [1,2,3,4,5,6,7,8]:
prior = make_prior (N)

fit = fitter.lsqgfit (data=data, prior=prior, p0=p0)
print_results (fit, prior, data)
p0 = fit.pmean

does fits using fit functions with N=1. . . 8 terms. Parameter mean-values £it . pmean from the fit with N exponen-
tials are used as starting values pO for the fit with N+1 exponentials, hopefully reducing the time required to find the
best fit for N+1.

1.4 Faster Fits — Postive Parameters

Priors used in corrfitter.CorrFitter assign an a priori Gaussian/normal distribution to each parameter. It is
possible instead to assign a log-normal distribution, which forces the corresponding parameter to be positive. Consider,
for example, energy parameters labeled by ' dE’ in the definition of a model (e.g., Corr2 (dE='dE’, ...)). To
assign log-normal distributions to these parameters, include their logarithms in the prior and label the logarithms with
"logdE’ or ' log (dE) ' : for example, in make_prior (N) use

prior[’logdE’] = [gv.log(gv.gvar(0.25, 0.25)) for i in range (N)]

insteadof prior ['dE’] = [gv.gvar(0.25, 0.25) for i in range (N)]. The fitter then uses the log-
arithms as the fit parameters. The original * dE’ parameters are recovered (automatically) inside the fit function from
exponentials of the ’ 1ogdE"’ fit parameters.

Using log-normal distributions where possible can significantly improve the stability of a fit. This is because otherwise
the fit function typically has many symmetries that lead to large numbers of equivalent but different best fits. For
example, the fit functions Gaa (t, N) and Gab (t, N) above are unchanged by exchanging a[1],b[i] and E [1]
with a[j],b[J] and E[J] for any i and j. We can remove this degeneracy by using a log-normal distribution
for the dE [1]s since this guarantees that all dE [1]s are positive, and therefore that E[0],E[1],E[2] ... are
ordered (in decreasing order of importance to the fit at large t).

Another symmetry of Gaa and Gab, which leaves both fit functions unchanged, is replacing a[i],b[i] by
—a[i],-b[1i]. Yet another is to add a new term to the fit functions with a[k],b[k], dE[k] where a[k]=0
and the other two have arbitrary values. Both of these symmetries can be removed by using a log-normal distribution
for the a [1] priors, thereby forcing all a [1] >0.

The log-normal distributions for the a [1] and dE [i] are introduced into the code example above by changing the
corresponding labels in make_prior (N), and taking logarithms of the corresponding prior values:

import gvar as gv

def make_models () : # same as before
models = [Corr2(datatag=’Gaa’, tdata=range (64), tfit=range(64),

1.3. Faster Fits 7

corrfitter Documentation, Release 3.6.1

a="a’, b='"a’", dE="dE’),

Corr2 (datatag=’'Gab’, tdata=range(64), tfit=range(64),
a="a’, b="b’, dE='dE’)
]

return models

def make_prior (N):

prior = gvar.BufferDict () # prior = {} works too
prior[’loga’] = [gv.log(gv.gvar(0.1, 0.5)) for i in range (N)]
prior[’b’] = [gv.gvar(l., 5.) for i in range (N)]

prior[’logdE’] = [gv.log(gv.gvar(0.25, 0.25)) for i in range (N)]

return prior

This replaces the original fit parameters, a [1] and dE [1], by new fit parameters, 1og (a[i]) and log(dE[1]).
The a priori distributions for the logarithms are Gaussian/normal, with priors of log(0.1£0.5) and
1log (0.25+0.25) forthe log (a)s and Log (dE) s respectively.

Note that the labels are unchanged here in make_models (). It is unnecessary to change labels in the models;
corrfitter.CorrFitter will automatically connect the modified terms in the prior with the appropriate terms
in the models. This allows one to switch back and forth between log-normal and normal distributions without chang-
ing the models — only the names in the prior need be changed. corrfitter.CorrFitter also supports “sqrt-
normal” distributions, which are indicated by ' sqrt’ at the start of a parameter-name in the prior; the actual param-
eter in the fit function is the square of this fit- parameter, and so is again positive.

Note also that only a few lines in print_results (fit, prior, data), above, would change had we used log-
normal priors for a and dE:

a = fit.transformed_p([’a’]) # array of alils
dE = fit.transformed p[’'dE’] # array of dE[i]s

inputs = {’loga’:prior[’loga’], ’'b’:prior[’b’], ’'logdE’:fit.prior[’logdE’],
"data’ : [datal[k] for k in datal}

Here fit.transformed_p contains the best-fit parameter values from the fitter, in addition to the exponentials of
the ' loga’ and ' LogdE’ parameters.

1.5 Faster Fits — Marginalization

Often we care only about parameters in the leading term of the fit function, or just a few of the leading terms. The
non-leading terms are needed for a good fit, but we are uninterested in the values of their parameters. In such cases
the non-leading terms can be absorbed into the fit data, leaving behind only the leading terms to be fit (to the modified
fit data) — non-leading parameters are, in effect, integrated out of the analysis, or marginalized. The errors in the
modified data are adjusted to account for uncertainties in the marginalized terms, as specified by their priors. The
resulting fit function has many fewer parameters, and so the fit can be much faster.

Continuing with the example in Faster Fits, imagine that Nmax=8 terms are needed to get a good fit, but we only care
about parameter values for the first couple of terms. The code from that section can be modified to fit only the leading
N terms where N<Nmax, while incorporating (marginalizing) the remaining, non-leading terms as corrections to the
data:

Nmax = 8
data = make_data('mcfile’)
models = make_models ()

8 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

fitter = CorrFitter (models=make_models())

prior = make_prior (Nmax) # build priors for Nmax terms

p0 = None

for N in [1,2,3]:
fit = fitter.lsqgfit (data=data, prior=prior, pO0=p0, nterm=N) # fit N terms
print_results (fit, prior, data)
p0 = fit.pmean

Here the nterm parameter in fitter.lsqgfit specifies how many terms are used in the fit functions. The prior
specifies Nmax terms in all, but only parameters in nt erm=N terms are varied in the fit. The remaining terms specified
by the prior are automatically incorporated into the fit data by corrfitter.CorrFitter.

Remarkably this method is usually as accurate with N=1 or 2 as a full Nmax-term fit with the original fit data; but
it is much faster. If this is not the case, check for singular priors, where the mean is much smaller than the standard
deviation. These can lead to singularities in the covariance matrix for the corrected fit data. Such priors are easily
fixed: for example, use gvar.gvar (0.1, 1.) rather than gvar.gvar (0.0, 1.). In some situations an svd cut
(see below) can also help.

1.6 Faster Fits — Chained Fits

Large complicated fits, where lots of models and data are fit simultaneously, can take a very long time. This is
especially true if there are strong correlations in the data. Such correlations can also cause problems from numerical
roundoff errors when the inverse of the data’s covariance matrix is computed for the chi =2 function, requiring large
svd cuts which can degrade precision (see below). An alternative approach is to use chained fits. In a chained fit, each
model is fit by itself in sequence, but with the best-fit parameters from each fit serving as priors for fit parameters in
the next fit. All parameters from one fit become fit parameters in the next, including those parameters that are not
explicitly needed by the next fit (since they may be correlated with the input data for the next fit or with its priors).
Statistical correlations between data/priors from different models are preserved throughout (approximately).

The results from a chained fit are identical to a standard simultaneous fit in the limit of large statistics (that is, in the
Gaussian limit), but a chained fit never involves fitting more than a single correlator at a time. Single-correlator fits
are usually much faster than simultaneous multi-correlator fits, and roundoff errors (and therefore svd cuts) are much
less of a problem. Consequently chained fits can be more accurate in practice than conventional simultaneous fits,
especially for high-statistics data.

Converting to chained fits is trivial: simply replace fitter.lsgfit(...) by
fitter.chained_lsqgfit (...). The output from this function represents the results for the entire chain of fits,
and so can be used in exactly the same way as the output from fitter.1lsqgfit () (and is usually quite similar, to
within statistical errors). Results from the different links in the chain — that is, from the fits for individual models —
can be accessed after the fit using fitter.fit.fits[datatag] where datatag is the data tag for the model
of interest.

Setting parameter parallel=True in fitter.chained_lsqgfit (...) makes the fits for each model inde-
pendent of each other. Each correlator is fit separately, but nothing is passed from one fit to the next. In particular,
each fit uses the input prior. Parallel fits can be better than chained fits in situations where different models share few
or no parameters.

It is sometimes useful to combine chained and parallel fits. This is done by using a nested list of models. For example,
setting

models = [ml, m2, [m3a,m3b], m4]

with parallel=False (the default)in fitter.chained_lsqgfit causes the following chain of fits:

ml -> m2 -> (parallel fit of [m3a,m3b]) -> m4

1.6. Faster Fits — Chained Fits 9

corrfitter Documentation, Release 3.6.1

Here the output from m1 is used in the prior for fit m2, and the output from m2 is used as the prior for a parallel fit of
m3a and m3Db together — that is, m3a and m3b are not chained, but rather are fit in parallel with each using a prior
from fit m2. The result of the parallel fit of [m3a, m3b] is used as the prior for m4. Different levels of nesting in the
list of models alternate between chained and parallel fits.

It is sometimes useful to follow a chained fit with an ordinary fit, but using the best-fit parameters from the chained fit
as the prior for the ordinary fit: for example,

fit = fitter.chained_lsqgfit (data=data, prior=prior)
fit = fitter.lsqgfit (data=data, prior=fit.p)

The second fit should, in principle, have no effect on the results since it adds no new information. In some
cases, however, it polishes the results by making small (compared to the errors) corrections that tighten up the
overall fit. It is generally fairly fast since the prior (£it .p) is relatively narrow. It is also possible to polish
fits using fitter.chained_lsqgfit, with parameters parallel=True and flat=True, rather than using
fitter.lsqgfit. This can be faster for very large fits.

1.7 Variations

Any 2-point correlator can be turned into a periodic function of t by specifying the period through parameter tp.
Doing so causes the replacement (for tp>0)

exp (-E[i]xt) -> exp (-E[i]xt) + exp(-E[i]*(tp-t))

in the fit function. If tp is negative, the function is replaced by an anti-periodic function with period abs (tp) and
(for tp<0):

exp (-E[i]xt) -> exp (-E[i]xt) - exp(-E[i]~* (abs(tp)-t))

Also (or alternatively) oscillating terms can be added to the fit by modifying parameter s and by specifying sources,
sinks and energies for the oscillating pieces. For example, one might want to replace the sum of exponentials with two
sums

sum_i af[i]#*2 » exp(-E[i]*t) - sum_i aol[i]l**x2 (-1)+**t » exp(-Eo[i]x*t)

in a (nonperiodic) fit function. Then an appropriate model would be, for example,

Corr2 (datatag=’Gaa’, tdata=range(64), tfit=range(64),
a=("a’,’ao’), b=("a’",’ao’), dE=('logdE’,"logdEo"), s=(1,-1))

where ao and dEo refer to additional fit parameters describing the oscillating component. In general parameters
for amplitudes and energies can be tuples with two components: the first describing normal states, and the second
describing oscillating states. To omit one or the other, put None in place of a label. Parameter s [0] is an overall
factor multiplying the non-oscillating terms, and s [1] is the corresponding factor for the oscillating terms.

Highly correlated data can lead to problems from numerical roundoff errors, particularly where the fit code inverts the
covariance matrix when constructing the chi~+ 2 function. Such problems show up as unexpectedly large chi 2
or fits that stall and appear never to converge. Such situations are usually improved by introducing an svd cut: for
example,

fit = fitter.lsqgfit (data=data, prior=prior, pO0=p0, svdcut=le-4)

Introducing an svd cut increases the effective errors and so is a conservative move. For more information about svd
cuts see the 1sgfit tutorial and documentation. Parameters svdcut and svdnum are used to specify an svd cut.
(It is often useful to to set svdnum equal to the number of measurements used to determine the covariance matrix for
G (t) since that is the largest number of eigenmodes possible in the covariance matrix.)

10 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

1.8 Very Fast (But Limited) Fits

At large t, correlators are dominated by the term with the smallest E, and often it is only the parameters in that leading
term that are needed. In such cases there is a very fast analysis that is often almost as accurate as a full fit. An example
is:

from corrfitter import fastfit

data = make_data('mcfile’) # user—-supplied routine - fit data

N = 10 # number of terms in fit functions

prior = make_prior (N) # user—-supplied routine - fit prior

model = Corr2(a=..., b=..., ...) # create model describing correlator
fit = fastfit (data=data, prior=prior, model=model)

print (E[0] =", fit.E) # E[0]

print ("a[0]+b[0] =", fit.ampl) # al0]*b[0]

print (' chi2/dof =’, fit.chi2/fit.dof) # good fit if of order 1 or less
print ('Q =’, fit.Q) # good fit if Q bigger than about 0.1

fastfit estimates E[0] by using the prior, in effect, to remove (marginalize) all terms from the correlator other
than the E[0] term: so the data Gdata (t) for the correlator is replaced by, for example,

Gdata(t) - sum_i=1..N-1 a[i]lxb[i] * exp(-E[i]*t)

where a[1],b[1],and E[1i] for 1>0 are replaced by their values in the prior. The modified prior is then fit by a
single term, a[0] * b[0] * exp(-E[0]xt), which means that a fit is not necessary (since the functional form
is so simple). It is important to check the chix*2 of the fit, to make sure the fit is good. If it is not, try restricting
model.tfit tolarger ts(fastfit averages estimates from all tsinmodel.tfit).

The marginalization of terms with larger Es allows the code to use information from much smaller ts than otherwise,
increasing precision. It also quantifies the uncertainty caused by the existence of these terms. This simple analysis is
a special case of the more general marginalization strategy discussed in Faster Fits, above.

1.9 3-Point Correlators

Correlators Gavb (t, T) = <b (T) V(t) a (0)> can also be included in fits as functions of t. In the illustration
above, for example, we might consider additional Monte Carlo data describing a form factor with the same intermediate
states before and after V (t) . Assuming the data is tagged by avbT15 and describes T=15, the corresponding entry
in the collection of models might then be:

Corr3 (datatag='"aVvbTl5’, T=15, tdata=range(l16), tfit=range(16),

Vnn="Vvnn’, # parameters for V
a="a’, dEa='"dE’, # parameters for a->V
b="b’, dEb='dE’, # parameters for V->b

)

This models the Monte Carlo data for the 3-point function using the following formula:

sum_1i,J ali] * exp(-Ea[il=*t) * Vnn[i,Jj] * b[J] * exp(-Eb[]J]=*t)

where the Vnn [1, j]s are new fit parameters related to a—>V—->b form factors. Obviously multiple values of T can
be studied by including multiple corrfitter.Corr3 models, one for each value of T. Either or both of the initial
and final states can have oscillating components (include sa and/or sb), or can be periodic (include tpa and/or tpb).
If there are oscillating states then additional Vs must be specified: Vno connecting a normal state to an oscillating
state, Von connecting oscillating to normal states, and Voo connecting oscillating to oscillating states.

1.8. Very Fast (But Limited) Fits 11

corrfitter Documentation, Release 3.6.1

There are two cases that require special treatment. One is when simultaneous fits are made to a->V->b and
b->V->a. Then the Vnn, Vno, etc. for b—>V—->a are the (matrix) transposes of the the same matrices for a->V->b.
In this case the models for the two would look something like:

models = [

Corr3 (datatag=’aVvbTl5’, T=15, tdata=range(l6), tfit=range(1l6),
vnn=’'Vnn’, Vno=’'Vno’, Von=’'Von’, Voo='Voo’,
a=("a’,’ao’), dEa=('dE’,’dEo’), sa=(1,-1), # a—>V
b=("b’,"bo’), dEb=('dE’,’dEo’), sb=(1,-1) # V->b
)I

Corr3 (datatag="bvaTl5’, T=15, tdata=range(l16), tfit=range(1l6),
Vnn='Vnn’, Vno=’'Vno’, Von=’Von’, Voo=’Voo’, transpose_V=True,
a=("b’,"bo’), dEa=('dE’,’dEo’), sa=(1,-1), # b-—>V
b=("a’",’ao’), dEb=('dE’,’dEo’), sb=(1,-1) # V->a
)I

]

The same Vs are specified for the second correlator, but setting t ranspose_V=True means that the transpose of
each matrix is used in the fit for that correlator.

The second special case is for fits to a—>V->a where source and sink are the same. In that case, Vnn and Voo are
symmetric matrices, and Von is the transpose of Vno. The model for such a case would look like:

Corr3 (datatag=’aVvbTl5’, T=15, tdata=range(l6), tfit=range(l6),
Vnn='Vnn’, Vno=’'Vno’, Von=’'Vno’, Voo=’'Voo’, symmetric_V=True,
a=("a’,’ao’), dEa=('dre’, ’'dgo’), sa=(1, -1), # a->V
b=("a’,’ao0’"), dEb=('dE’, ’"dEo’), sb=(1, -1) # V->a
)

Here Vno and Von are set equal to the same matrix, but specifying symmetric_V=True implies that the transpose
will be used for Von. Furthermore Vnn and Voo are symmetric matrices when symmetric_V==True and so
only the upper part of each matrix is needed. In this case Vnn and Voo are treated as one-dimensional arrays with
N (N+1) /2 elements corresponding to the upper parts of each matrix, where N is the number of exponentials (that is,
the number of a [1]8).

1.10 Testing Fits with Simulated Data

Large fits are complicated and often involve nontrivial choices about algorithms (e.g., chained fits versus regular fits),
priors, and svd cuts — choices that affect the values and errors for the fit parameters. In such situations it is often a
good idea to test the fit protocol that has been selected. This can be done by fitting simulated data. Simulated data
looks almost identical to the original fit data but has means that have been adjusted to correspond to fluctuations around
a correlator with known (before the fit) parameter values: p=pexact. The corrfitter.CorrFitter iterator
simulated_data_iter creates any number of different simulated data sets of this kind. Fitting any of these with
a particular fit protocol tests the reliability of that protocol since the fit results should agree with pexact to within the
(simulated) fit’s errors. One or two fit simulations of this sort are usually enough to establish the validity of a protocol.
It is also easy to compare the performance of different fit options by applying these in fits of simulated data, again
because we know the correct answers (pexact) ahead of time.

Typically one obtains reasonable values for pexact from a fit to the real data. Assuming these have been dumped
into a file named "pexact_file" (using, for example, fit .dump_pmean ("pexact_file")), atesting script
might look something like:

import gvar as gv
import lsqgfit

12 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

import corrfitter

def main () :
dataset = gv.dataset.Dataset(...) # from original fit code
fitter = corrfitter.CorrFitter(# from original fit code
models = make_models(...),
prior = make_prior(...),
)
n =2 # number of simulations
pexact = lsgfit.nonlinear_fit.load_parameters ("pexact_file")

for sdata in fitter.simulated_data_iter(n, dataset, pexact=pexact):
sfit = fit to the simulated data sdata
sfit = fitter.lsqgfit (data=sdata, pO=pexact, prior=prior, svdcut=..., ...)
check that sfit.p values agree with pexact to within sfit.psdev

Simulated fits provide an alternative to a bootstrap analysis (see next section). By collecting results from many
simulated fits, one can test whether or not fit results are distributed in Gaussian distributions around pexact, with
widths that equal the standard deviations from the fit (fit .psdevor sfit.psdev).

Fit simulations are particularly useful for setting svd cuts. Given a set of approximate parameter values to use for
pexact, it is easy to run fits with a range of svd cuts to see how small svdcut can be made before the parameters
of interest deviate too far from pexact.

1.11 Bootstrap Analyses

A bootstrap analysis gives more robust error estimates for fit parameters and functions of fit parameters than the
conventional fit when errors are large, or fluctuations are non-Gaussian. A typical code looks something like:

import gvar as gv
import gvar.dataset as ds
from corrfitter import CorrFitter

it

dset = ds.Dataset (‘mcfile’)

data = ds.avg_data (dset) # create fit data

fitter = Corrfitter (models=make_models())

N = 4 # number of terms in fit function
prior = make_prior (N)

fit = fitter.lsqgfit (prior=prior, data=data) # do standard fit

print 'Fit results:’

print 'a’,exp(fit.p[’loga’l) # fit results for ’a’ amplitudes
print 'dE’,exp(fit.p[’logdE’]) # fit results for ’dE’ energies

bootstrap analysis
print ’'Bootstrap fit results:’

nbootstrap = 10 # number of bootstrap iterations

bs_datalist = (ds.avg_data(d) for d in dset.bootstrap_iter (nbootstrap))

bs = ds.Dataset () # bootstrap output stored in bs

for bs_fit in fitter.bootstrap_iter (bs_datalist): # bs_fit = lsqfit output
p = bs_fit.pmean # best fit values for current bootstrap iteration
bs.append(’a’, exp(pl’loga’l)) # collect bootstrap results for afi]

bs.append ('dE’, exp(pl[’logdE’]))# collect results for dE[1]
include other functions of p

bs = ds.avg_data (bs, bstrap=True) # medians + error estimate

1.11. Bootstrap Analyses 13

corrfitter Documentation, Release 3.6.1

7 57

print 'a’, bs[’a’] # bootstrap result for ’"a

print 'dE’, Dbs[’dE’] # bootstrap result for ’dE’ energies

amplitudes

This code first prints out the standard fit results for the * a’ amplitudes and ’ dE’ energies. It then makes 10 bootstrap
copies of the original input data, and fits each using the best-fit parameters from the original fit as the starting point
for the bootstrap fit. The variation in the best-fit parameters from fit to fit is an indication of the uncertainty in
those parameters. This example uses a gvar.dataset.Dataset object bs to accumulate the results from each
bootstrap fit, which are computed using the best-fit values of the parameters (ignoring their standard deviations). Other
functions of the fit parameters could be included as well. Atthe end avg_data (bs, bstrap=True) finds median
values for each quantity in bs, as well as a robust estimate of the uncertainty (to within 30% since nbootstrap is
only 10).

The list of bootstrap data sets bs_datalist can be omitted in this example in situations where the input data
has high statistics. Then the bootstrap copies are generated internally by fitter.bootstrap_iter () from the
means and covariance matrix of the input data (assuming Gaussian statistics).

1.12 Implementation

corrfitter.CorrFitter allows models to specify how many exponentials to include in the fit function (using
parameters nterm, nterma and ntermb). If that number is less than the number of exponentials specified by the
prior, the extra terms are incorporated into the fit data before fitting. The default procedure is to multiply the data by
G(t,p,N)/G(t,p,max (N, Nmax)) where: G (p, t,N) is the fit function with N terms for parameters p and time
t; N is the number of exponentials specified in the models; Nmax is the number of exponentials specified in the prior;
and here parameters p are set equal to their values in the prior (correlated gvar . GVars).

An alternative implementation for the data correction is to add G (t, p,N) -G (t, p, max (N, Nmax)) to the data.
This implementation is selected when parameter ratio in corrfitter.CorrFitter is set to False. Results
are similar to the other implementation.

Background information on the some of the fitting strategies used by corrfitter.CorrFitter can be found
by doing web searches for “hep-1at/0110175” and “arXiv:1111.1363”. These are two papers by G.P. Lepage and
collaborators whose published versions are: G.P. Lepage et al, Nucl.Phys.Proc.Suppl. 106 (2002) 12-20; and K.
Hornbostel et al, Phys.Rev. D85 (2012) 031504.

1.13 Correlator Model Objects

Correlator objects describe theoretical models that are fit to correlator data by varying the models’ parameters.

A model object’s parameters are specified through priors for the fit. A model assigns labels to each of its parameters
(or arrays of related parameters), and these labels are used to identify the corresponding parameters in the prior.
Parameters can be shared by more than one model object.

A model object also specifies the data that it is to model. The data is identified by the data tag that labels it in the input
file or gvar.dataset .Dataset.

class corrfitter.Corr2 (datatag, tdata, tfit, a, b, dE, s=1.0, tp=None, othertags=None)
Two-point correlators Gab (t) = <b(t) a(0)>.

corrfitter.Corr2 models the t dependence of a 2-point correlator Gab (t) using

Gab(t) = sn » sum_1 an[i]+bn[i] * fn(En[i], t)
+ so * sum_i ao[i]xbo[i] » fo(Eo[i], t)

where sn and so are typically -1, 0, or 1 and

14 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

fn(E, t) = exp(-Ext) + exp(-Ex(tp-t)) # tp>0 —- periodic

or exp (-E*xt) - exp(-Ex (-tp-t))# tp<0 -- anti-periodic

or exp (“Ext) # if tp is None (nonperiodic)
fo(E, t) = (-1)*xxt *x fn(E, t)

The fit parameters for the non-oscillating piece of Gab (first term) are an[i],bn[1], and dEn [i] where:

dEn[0] = En[0] > O
dEn[i] = En[i]-En[i-1] > O (for 1>0)
and therefore En[1i] = sum_3j=0..1 dEn[j]. The fit parameters for the oscillating pied are defined anal-

ogously: ao[1],bo[i],and dEo[1].

The fit parameters are specified by the keys corresponding to these parameters in a dictionary of priors supplied
by corrfitter.CorrFitter. The keys are strings and are also used to access fit results. Any key that
begins with “log” is assumed to refer to the logarithm of the parameter in question (that is, the exponential of
the fit-parameter is used in the formula for Gab (t) .) This is useful for forcing an, bn and/or dE to be positive.

When tp is not None and positive, the correlator is assumed to be symmetrical about tp/2, with
Gab (t)=Gab (tp-t). Data from t>tp/2 is averaged with the corresponding data from t<tp/2 before
fitting. When tp is negative, the correlator is assumed to be anti-symetrical about —tp/2.

Parameters

 datatag (string) — Key used to access correlator data in the input data dictionary (see
corrfitter.CorrFitter). data[self.datatag] is (1-d) array containing the
correlator values (gvar .GVars) if data is the input data.

* a (string, or two-tuple of strings and/or None) — Key identifying the fit pa-
rameters for the source amplitudes an in the dictionary of priors provided by
corrfitter.CorrFitter; or a two-tuple of keys for the source amplitudes (an,
ao). The corresponding values in the dictionary of priors are (1-d) arrays of prior val-
ues with one term for each an[i] or ao[1]. Replacing either key by None causes the
corresponding term to be dropped from the fit function. These keys are used to label the
corresponding parameter arrays in the fit results as well as in the prior.

* b (string, or two-tuple of strings and/or None) — Same as self .a but for the sinks (bn,
bo) instead of the sources (an, ao).

* dE (string, or two-tuple of strings and/or None) — Key identifying the fit pa-
rameters for the energy differences dEn in the dictionary of priors provided by
corrfitter.CorrFitter; or a two-tuple of keys for the energy differences (dEn,
dEo) . The corresponding values in the dictionary of priors are (1-d) arrays of prior values
with one term for each dEn[i] or dEo[i]. Replacing either key by None causes the
corresponding term to be dropped from the fit function. These keys are used to label the
corresponding parameter arrays in the fit results as well as in the prior.

* S (number or two-tuple of numbers) — Overall factor sn, or two-tuple of overall factors
(sn, so).

* tdata (list of integers) — The ts corresponding to data entries in the input data. Note that
len(self.tdata) == len(data[self.datatag]) is required if data is the
input data dictionary.

o tfit (list of integers) — List of ts to use in the fit. Only data with these ts (all of which should
be in tdata) is used in the fit.

* tp (integer or None) — If not None and positive, the correlator is assumed to be periodic
with Gab (t) =Gab (tp-t) . If negative, the correlator is assumed to be anti-periodic with

1.13. Correlator Model Objects 15

corrfitter Documentation, Release 3.6.1

Gab (t)=-Gab (-tp—-t). Setting tp=None implies that the correlator is not periodic,
but rather continues to fall exponentially as t is increased indefinitely.

* othertags (sequence of strings) — List of additional data tags for data to be averaged with
the self.datatag data before fitting.

builddata (data)
Assemble fit data from dictionary data.

Extracts parts of array data [self.datatag] that are needed for the fit, as specified by self.tp and
self.tfit. The entries in the (1-D) array data [self.datatag] are assumed to be gvar.GVars
and correspond tothe t * s in ‘‘self.tdata.

buildprior (prior, nterm)
Create fit prior by extracting relevant pieces of prior.

Priors for the fit parameters, as specificied by self . a etc., are copied from prior into a new dictionary
for use by the fitter. If a key "XX" cannot be found in prior, the buildprior looks for one of
"logXX", "log (XX) ", "sgrtXX",or "sqgrt (XX) " and includes the corresponding prior instead.

The number of terms kept in each part of the fit can be specified using nterm = (n, no) where n is
the number of non-oscillating terms and no is the number of oscillating terms. Setting nterm = None
keeps all terms.

fitfen (p, nterm=None, t=None)
Return fit function for parameters p.

class corrfitter.Corx3 (datatag, T, tdata, tfit, Vnn, a, b, dEa, dEb, sa=1.0, sb=1.0, Vno=None,

Von=None, Voo=None, transpose_V=False, symmetric_V=False, tpa=None,

tpb=None, othertags=None)
Three-point correlators Gavb (t, T) = <b(T) V(t) a(0)>.

corrfitter.Corr3 models the t dependence of a 3-point correlator Gavb (t, T) using

Gavb(t, T) =
sum_1i, j san*an[i]xfn(Ean[i],t)*Vnn[i, jl*sbn+xbn[j]l*fn(Ebn[j],T-t)

+sum_1i, j sanxan[i]*fn(Ean[i],t)*Vno[i, j]*sboxbo[j]l*xfo(Ebo[]j],T-t)
+sum_i, J sao*ao[il*xfo(Eao[i],t)*Von[i, j]l*sbnxbn[j]l*«fn(Ebn(j],T-t)
+sum_i, j saoxao[il]lxfo(Eao[i],t)*Vool[i, jlxsboxbo[j]l*fo(Ebo[]j],T-t)
where
fn(E, t) = exp(-Ext) + exp(-Ex(tp-t)) # tp>0 —-- periodic

or exp (-Ext) - exp (-Ex (-tp-t))# tp<0 -- anti-periodic

or exp (-Ext) # if tp is None (nonperiodic)
fo(E, t) = (-1)**xt * fn(E, t)

The fit parameters for the non-oscillating piece of Gavb (first term) are Vnn [i, j],an[i],bn[J],dEan[1]
and dEbn [j] where, for example:

dEan[0] = Ean[0] > 0

dEan[i] = Ean[i]-Ean[i-1] > O (for 1>0)

and therefore Ean[i] = sum_j=0..1i dEan/[j]. The parameters for the other terms are similarly defined.
Parameters

 datatag (string) — Tag used to label correlator in the input gvar.dataset .Dataset.

* a (string, or two-tuple of strings or None) — Key identifying the fit parameters
for the source amplitudes an, for a->V, in the dictionary of priors provided by
corrfitter.CorrFitter; or a two-tuple of keys for the source amplitudes (an,

16

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

ao). The corresponding values in the dictionary of priors are (1-d) arrays of prior val-
ues with one term for each an[i] or ao[1i]. Replacing either key by None causes the
corresponding term to be dropped from the fit function. These keys are used to label the
corresponding parameter arrays in the fit results as well as in the prior.

b (string, or two-tuple of strings or None) — Same as self.a except for sink amplitudes
(bn, bo) for V—>b rather than for (an, ao).

dEa (string, or two-tuple of strings or None) — Fit-parameter label for a->V intermediate-
state energy differences dEan, or two-tuple of labels for the differences (dEan, dEao).
Each label represents an array of energy differences. Replacing either label by None causes
the corresponding term in the correlator function to be dropped. These keys are used to label
the corresponding parameter arrays in the fit results as well as in the prior.

dEDb (string, or two-tuple of strings or None) — Fit-parameter label for V->b intermediate-
state energy differences dEbn, or two-tuple of labels for the differences (dEbn, dEbo).
Each label represents an array of energy differences. Replacing either label by None causes
the corresponding term in the correlator function to be dropped. These keys are used to label
the corresponding parameter arrays in the fit results as well as in the prior.

sa (number, or two-tuple of numbers) — Overall factor san for the non-oscillating a->Vv
terms in the correlator, or two-tuple containing the overall factors (san, sao) for the non-
oscillating and oscillating terms.

sb (number, or two-tuple of numbers) — Overall factor sbn for the non-oscillating V—>b
terms in the correlator, or two-tuple containing the overall factors (sbn, sbo) for the non-
oscillating and oscillating terms.

Vnn (string or None) — Fit-parameter label for the matrix of current matrix elements
vnn[i, j] connecting non-oscillating states. Labels that begin with “log” indicate that
the corresponding matrix elements are replaced by their exponentials; these parameters are
logarithms of the corresponding matrix elements, which must then be positive.

Vno (string or None) — Fit-parameter label for the matrix of current matrix elements
Vno[1i, j] connecting non-oscillating to oscillating states. Labels that begin with “log”
indicate that the corresponding matrix elements are replaced by their exponentials; these
parameters are logarithms of the corresponding matrix elements, which must then be posi-
tive.

Von (string or None) — Fit-parameter label for the matrix of current matrix elements
Von[i, j] connecting oscillating to non-oscillating states. Labels that begin with “log”
indicate that the corresponding matrix elements are replaced by their exponentials; these
parameters are logarithms of the corresponding matrix elements, which must then be posi-
tive.

Voo (string or None) — Fit-parameter label for the matrix of current matrix elements
Voo [i, j] connecting oscillating states. Labels that begin with “log” indicate that the
corresponding matrix elements are replaced by their exponentials; these parameters are log-
arithms of the corresponding matrix elements, which must then be positive.

transpose_V (boolean) — If True, the transpose V[j, 1] is used in place of V[1,] for
each current matrix element in the fit function. This is useful for doing simultaneous fits to
a->V->b and b->V->a, where the current matrix elements for one are the transposes of
those for the other. Default value is False.

symmetric_V (boolean) — If True, the fit function for a—>V—->b is unchanged (symmet-
rical) under the the interchange of a and b. Then Vnn and Voo are square, symmetric
matrices with V[i, j1=V[j, 1] and their priors are one-dimensional arrays containing
only elements V[1, j] with j>=1 in the following layout:

1.13. Correlator Model Objects

17

corrfitter Documentation, Release 3.6.1

(vto,01],vIio,11,vI[0,2]...V[0O,N],
v[1,1],vI[1,2]...V[1,N],
v(2,2]...V[2,N],

VI[N, NJ]

Furthermore the matrix specified for Von is transposed before being used by the fitter; nor-
mally the matrix specified for Von is the same as the matrix specified for Vvno when the
amplitude is symmetrical. Default value is False.

* tdata (list of integers) — The ts corresponding to data entries in the input
gvar.dataset .Dataset.

o tfit (list of integers) — List of ts to use in the fit. Only data with these ts (all of which should
be in tdata) is used in the fit.

* tpa (integer or None) — If not None and positive, the a—>V correlator is assumed to be
periodic with period tpa. If negative, the correlator is anti-periodic with period —tpa.
Setting t pa=None implies that the correlators are not periodic.

* tpb (integer or None) — If not None and positive, the V—>b correlator is assumed to be
periodic with period tpb. If negative, the correlator is periodic with period —tpb. Setting
tpb=None implies that the correlators are not periodic.

builddata (data)

Assemble fit data from dictionary data.

Extracts parts of array data [self.datatag] that are needed for the fit, as specified by self.tfit.
The entries in the (1-D) array data[self.datatag] are assumed to be gvar .GVars and correspond
tothet*'s in ‘‘self.tdata.

buildprior (prior, nterm)

Create fit prior by extracting relevant pieces of prior.

Priors for the fit parameters, as specificied by self . a etc., are copied from prior into a new dictionary
for use by the fitter. If a key "XX" cannot be found in prior, the buildprior looks for one of
"logXX", "log (XX) ", "sgrtXX", or "sqgrt (XX) " and includes the corresponding prior instead.

The number of terms kept in each part of the fit can be specified using nterm = (n, no) where n is
the number of non-oscillating terms and no is the number of oscillating terms. Setting nterm = None
keeps all terms.

fitfen (p, nterm=None, t=None)

Return fit function for parameters p.

class corrfitter.BaseModel (datatag, othertags= [])

Base class for correlator models.

Derived classes must define methods fitfcn, buildprior, and builddata, all of which are described
below. In addition they can have attributes:

datatag
corrfitter.CorrFitter builds fit data for the correlator by extracting the data in an
input gvar.dataset.Dataset labelled by string datatag. This label is stored in the
BaseModel and must be passed to its constructor.

all_datatags
Models can specify more than one set of fit data to use in fitting. The list of all the datatags used

18

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

is self.all_datatags. The first entry is always self.datatag; the other entries are
from othertags.

_abscissa
(Optional) Array of abscissa values used in plots of the data and fit corresponding to the model.
Plots are not made for a model that doesn’t specify this attribute.

builddata (data)
Construct fit data.

Format of output must be same as format for fitfcn output.
Parameters data (dictionary) — Dataset containing correlator data (see gvar .dataset).

buildprior (prior, nterm=None)
Extract fit prior from prior; resizing as needed.

If nterm is not None, the sizes of the priors may need adjusting so that they correspond to the values
specified in nterm (for normal and oscillating pieces).

Parameters
e prior (dictionary) — Dictionary containing a priori estimates of the fit parameters.

* nterm (tuple of None or integers) — Restricts the number of non-oscillating terms in the
fit function to nterm [0] and oscillating terms to nterm[1]. Setting either (or both) to
None implies that all terms in the prior are used.

fitfen (p, nterm=None)
Compute fit function fit parameters p using nterm terms. *

Parameters
* p (dictionary) — Dictionary of parameter values.

* nterm (tuple of None or integers) — Restricts the number of non-oscillating terms in the
fit function to nterm [0] and oscillating terms to nterm [1]. Setting either (or both) to
None implies that all terms in the prior are used.

1.14 corrfitter.CorrFitter Objects

corrfitter.CorrFitter objects are wrappers for 1sgfit.nonlinear_fit () which is used to fit a col-
lection of models to a collection of Monte Carlo data.

class corrfitter.CorrFitter (models, svdcut=(le-15, le-15), svdnum=None, tol=1e-10, maxit=500,

nterm=None, ratio=False, fast=False, processed_data=None)
Nonlinear least-squares fitter for a collection of correlators.

Parameters

* models (list or other sequence) — Sequence of correlator models, such as
corrfitter.Corr2 or corrfitter.Corr3, to use in fits of fit data. Individual
models in the sequence can be replaced by sequences of models (and/or further sequences,
recursively) for use by corrfitter.CorrFitter.chained_lsgfit(); such
nesting is ignored by the other methods.

* svdcut (number or None or 2-tuple) — If svdcut is positive, eigenvalues ev [i] of the
(rescaled) data covariance matrix that are smaller than svdcut «max (ev) are replaced by
svdcut xmax (ev) in the covariance matrix. If svdcut is negative, eigenvalues less than
| svdcut | *max (ev) are set to zero in the covariance matrix. The covariance matrix is

1.14. corrfitter.CorrFitter Objects 19

corrfitter Documentation, Release 3.6.1

left unchanged if svdcut is set equal to None (default). If svdcut is a 2-tuple, svd cuts
are applied to both the correlator data (svdcut [0]) and to the prior (svdcut [1]).

* svdnum (integer or None or 2-tuple) — At most svdnum eigenmodes are retained in the
(rescaled) data covariance matrix; the modes with the smallest eigenvalues are discarded.
svdnum is ignored if it is set to None. If svdnum is a 2-tuple, svd cuts are applied to both
the correlator data (svdnum [0]) and to the prior (svdnum[1]).

* tol (positive number less than 1) — Tolerance used in 1sgfit.nonlinear_fit () for
the least-squares fits (default=1e-10).

* maxit (integer) — Maximum number of iterations to use in least-squares fit (default=500).

* nterm (number or None; or two-tuple of numbers or None) — Number of terms fit in the
non-oscillating parts of fit functions; or two-tuple of numbers indicating how many terms to
fit for each of the non-oscillating and oscillating pieces in fits. If set to None, the number is
specified by the number of parameters in the prior.

* ratio (boolean) — If True, use ratio corrections for fit data when the prior specifies more
terms than are used in the fit. If False (the default), use difference corrections (see imple-
mentation notes, above).

bootstrap_fit_iter (datalist=None, n=None)

Iterator that creates bootstrap copies of a corrfitter.CorrFitter fit using bootstrap data from list
data_list.

A bootstrap analysis is a robust technique for estimating means and standard deviations of arbitrary func-
tions of the fit parameters. This method creates an interator that implements such an analysis of list (or
iterator) datalist, which contains bootstrap copies of the original data set. Each data_list[i] isa
different data input for self.lsqgfit () (thatis, a dictionary containing fit data). The iterator works
its way through the data sets in data_1l1ist, fitting the next data set on each iteration and returning the
resulting 1sgfit.LSQFit fitobject. Typical usage, foran corrfitter.CorrFitter object named
fitter, would be:

for fit in fitter.bootstrap_iter (datalist):
analyze fit parameters in fit.p

Parameters

* data_list (sequence or iterator or None) — Collection of bootstrap data sets for fitter. If
None, the data_list is generated internally using the means and standard deviations of the
fit data (assuming gaussian statistics).

* n (integer) — Maximum number of iterations if n is not None; otherwise there is no max-
imum.

Returns Iterator that returns a 1sgfit.LSQFit object containing results from the fit to the
next data setin data_list.

bootstrap_iter (datalist=None, n=None)

Iterator that creates bootstrap copies of a corrfitter.CorrFitter fit using bootstrap data from list
data_list.

A bootstrap analysis is a robust technique for estimating means and standard deviations of arbitrary func-
tions of the fit parameters. This method creates an interator that implements such an analysis of list (or
iterator) datalist, which contains bootstrap copies of the original data set. Each data_list[i] isa
different data input for self.lsqgfit () (thatis, a dictionary containing fit data). The iterator works
its way through the data sets in data_11st, fitting the next data set on each iteration and returning the
resulting 1sgfit.LSQFit fitobject. Typical usage, foran corrfitter.CorrFitter object named
fitter, would be:

20

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

for fit in fitter.bootstrap_iter (datalist):
analyze fit parameters in fit.p

Parameters

* data_list (sequence or iterator or None) — Collection of bootstrap data sets for fitter. If
None, the data_list is generated internally using the means and standard deviations of the
fit data (assuming gaussian statistics).

* n (integer) — Maximum number of iterations if n is not None; otherwise there is no max-
imum.

Returns Iterator that returns a 1sgfit.LSQFit object containing results from the fit to the
next data setin data_list.

builddata (data, prior, nterm=None)
Build fit data, corrected for marginalized terms.

buildfit£fcn (priorkeys)
Create fit function, with support for log-normal,... priors.

buildprior (prior, nterm=None, fast=False)
Build correctly sized prior for fit from prior.

Adjust the sizes of the arrays of amplitudes and energies in a copy of prior according to parameter
nterm; return prior if both ntermand self.nterm are None.

chained_1sqfit (data, prior, pO=None, print_fit=True, nterm=None, svdcut=None, svdnum=None,

tol=None, maxit=None, parallel=False, flat=False, fast=None, **args)
Compute chained least-squares fit.

A chained fit fits data for each model in self .models sequentially, using the best-fit parameters (means
and covariance matrix) of one fit to construct the prior for the fit parameters in the next fit: Correlators
are fit one at a time, starting with the correlator for self.models[0]. The best-fit output from the
fit for self.models[1i] is fed, as a prior, into the fit for self.models [i+1]. The best-fit output
from the last fit in the chain is the final result. Results from the individual fits can be found in dictionary
self.fit.fits, whichisindexed by the models[i] .datatags.

Setting parameter parallel=True causes parallel fits, where each model is fit separately, using the
original prior. Parallel fits make sense when models share few or no parameters; the results from the
individual fits are combined using weighted averages of the best-fit values for each parameter from every
fit.

Entries self.models[i] in the list of models can themselves be lists of models, rather than just an
individual model. In such a chase, the models listed in se1f.models [1] are fit together using a parallel
fit if parameter parallel is False or a chained fit otherwise. Grouping models in this ways instructs
the fitter to alternate between chained and parallel fits. For example, setting

models [ml, m2, [m3a,m3b], m4]

with parallel=False causes the following chain of fits
ml -> m2 —-> [m3a,m3b] —-> m4
where: 1) the output from m1 is used as the prior for m2; 2) the output from m2 is used as the prior for for

a parallel fit of m3a and m3b together; 3) the output from the parallel fit of [m3a, m3b] is used as the
prior for m4; and, finally, 4) the output from m4 is the final result of the entire chained fit.

A slightly more complicated example is

1.14. corrfitter.CorrFitter Objects 21

corrfitter Documentation, Release 3.6.1

models = [ml, m2, [m3a, [m3bx,m3by]], m4]

which leads to the chain of fits
ml ->m2 -> [m3a, m3bx -> m3by] -> m4

where fits of m3bx and m3by are chained, in parallel with the fit to m3a. The fitter alternates between
chained and parallel fits at each new level of grouping of models.

Parameters

» data (dictionary) — Input data. The datatags from the correlator models are used as
data labels, with data [datatag] being a 1-d array of gvar . GVars corresponding to
correlator values.

e prior (dictionary) — Bayesian prior for the fit parameters used in the correlator models.

* p0 — A dictionary, indexed by parameter labels, containing initial values for the parame-
ters in the fit. Setting pO=None implies that initial values are extracted from the prior.
Setting p0="filename" causes the fitter to look in the file with name "filename"
for initial values and to write out best-fit parameter values after the fit (for the next call to
self.lsqgfit ()).

« parallel (bool) — If True, fit models in parallel using prior for each; otherwise chain
the fits (default).

e flat (bool) — If True, flatten the list of models thereby chaining all fits
(parallel==False) or doing them all in parallel (parallel==True); otherwise
use self.models asis (default).

* fast — If True, use the smallest number of parameters needed in each fit; otherwise use all
the parameters specified in prior in every fit. Omitting extra parameters can make fits go
faster, sometimes much faster. Final results are unaffected unless prior contains strong
correlations between different parameters, where only some of the correlated parameters
are kept in individual fits. Default is False.

e print_fit — Print fit information to standard output if True; otherwise print nothing.

The following parameters overwrite the values specified in the corrfitter.CorrFitter constructor
when set to anything other than None: nterm, svdcut, svdnum, tol, and maxit. Any further
keyword arguments are passed on to 1sgfit.nonlinear_fit (), which does the fit.

collect_fitresults ()
Collect results from last fit for plots, tables etc.

Returns

A dictionary with one entry per correlator model, containing (t, G, dG, Gth, dGth) —
arrays containing:

t = times

G(t) = data averages for correlator at times t

dG (t) = uncertainties in G(t)

Gth (t) = fit function for G(t) with best-fit parameters
dGth (t) = uncertainties in Gth(t)

display plots()
Show plots of data/fit-function for each correlator.

Assumes matplotlib isinstalled (to make the plots). Plots are shown for one correlator at a time. Press
key n to see the next correlator; press key p to see the previous one; press key g to quit the plot and return

22 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

control to the calling program; press a digit to go directly to one of the first ten plots. Zoom, pan and save
using the window controls.

1sqgfit (data, prior, pO=None, print_fit=True, nterm=None, svdcut=None, svdnum=None, tol=None,
maxit=None, fast=None, **args)
Compute least-squares fit of the correlator models to data.

Parameters

» data (dictionary) — Input data. The datatags from the correlator models are used as
data labels, with data [datatag] being a 1-d array of gvar.GVars corresponding to
correlator values.

e prior (dictionary) — Bayesian prior for the fit parameters used in the correlator models.

* p0 — A dictionary, indexed by parameter labels, containing initial values for the parame-
ters in the fit. Setting pO=None implies that initial values are extracted from the prior.
Setting p0="filename" causes the fitter to look in the file with name "filename"
for initial values and to write out best-fit parameter values after the fit (for the next call to
self.lsgfit ()).

e print_fit — Print fit information to standard output if True; otherwise print nothing.

* fast — If True, remove parameters from prior that are not needed by the correlator
models; otherwise keep all parameters in prior as fit parameters (default). Ignoring
extra parameters usually makes fits go faster. This has no other effect unless there are
correlations between the fit parameters needed by the models and the other parameters in
prior that are ignored.

The following parameters overwrite the values specified in the corrfitter.CorrFitter constructor
when set to anything other than None: nterm, svdcut, svdnum, tol, and maxit. Any further
keyword arguments are passed on to 1sgfit.nonlinear_fit (), which does the fit.

simulated_data_iter (n, dataset, pexact=None, rescale=1.0)
Create iterator that returns simulated fit data from dataset.

Simulated fit data has the same covariance matrix as data=gvar.dataset.avg_data (dataset),
but mean values that fluctuate randomly, from copy to copy, around the value of the fitter’s fit function
evaluated at p=pexact. The fluctuations are generated from averages of bootstrap copies of dataset.

The best-fit results from a fit to such simulated copies of data should agree with the numbers in pexact
to within the errors specified by the fits (to the simulated data) — pexact gives the “correct” values for the
parameters. Knowing the correct value for each fit parameter ahead of a fit allows us to test the reliability
of the fit’s error estimates and to explore the impact of various fit options (e.g., fitter.chained_fit
versus fitter.lsgfit, choice of SVD cuts, omission of select models, etc.)

Typically one need examine only a few simulated fits in order to evaluate fit reliability, since we know the
correct values for the parameters ahead of time. Consequently this method is much faster than traditional
bootstrap analyses. More thorough testing would involve running many simulations and examining the
distribution of fit parameters or functions of fit parameters around their exact values (from pexact). This
is overkill for most problems, however.

pexact is usually taken from the last fit done by the fitter (self. fit .pmean) unless overridden in the
function call. Typical usage is as follows:

dataset = gvar.dataset.Dataset (...)
data = gvar.dataset.avg_data (dataset)

fit = fitter.lsqgfit (data=data, ...)

for sdata in fitter.simulated_bootstrap_data_iter (n=4, dataset):

1.14. corrfitter.CorrFitter Objects 23

corrfitter Documentation, Release 3.6.1

redo fit 4 times with different simulated data each time
here pexact=fit.pmean is set implicitly
sfit = fitter.lsqgfit (data=sdata, ...)

check that sfit.p (or functions of it) agrees

with pexact=fit.pmean to within sfit.p’s errors

Parameters
* n (integer) — Maximum number of simulated data sets made by iterator.
* dataset (gvardataset.Dataset) — Dataset containing Monte Carlo copies of the correlators.

* pexact (dictionary of numbers) — Correct parameter values for fits to the simulated data —
fit results should agree with pexact to within errors. If None, uses self.fit.pmean
from the last fit.

* rescale (positive number) — Rescale errors in simulated data by rescale (i.e., multiply
covariance matrix by rescale *x 2). Defaultis one, which implies no rescaling.

1.15 Fast Fit Objects

class corrfitter.fastfit (data, prior, model, svdcut=None, svdnum=None, ratio=True, osc=False)

Fast fit for the leading component of a Corr2.
This function class estimates En[0] and an[0] *bn [0] in a two-point correlator:

Gab(t) = sn * sum_i an[i]+xbn[i] * fn(En[i], t)
+ so * sum_i ao[i]l*bo[i] » fo(Eo[i], t)

where sn and so are typically -1, 0, or 1 and

fn(E, t) = exp(-E*xt) + exp(-Ex(tp-t)) # tp>0 -- periodic

or exp (“Ext) — exp(-Ex(-tp-t))# tp<0 -- anti-periodic

or exp (-Ex*t) # if tp is None (nonperiodic)
fo(E, t) = (-1)*x*xt * fn(E, t)

The correlator is specified by model, and prior is used to remove (marginalize) all terms other than the
En[0] term from the data. This gives a corrected correlator Ge (t) that includes uncertainties due to the terms
removed. Estimates of En[0] are given by:

Eeff(t) = arccosh(0.5% (Gc (t+1)+Gc(t-1))/Gec(t)),

The final estimate is the weighted average Eeff_avg of the Eef f (t) s for different ts. Similarly, an estimate
for the product of amplitutes, an [0] xbn [0] is obtained from the weighted average of

RAeff(t) = Gc(t)/fn(Eeff_avg, t).

If osc=True, an estimate is returned for Eo[0] rather than En[0], and ao[0] xbo[0] rather than

an[0]*bn[0]. These estimates are most reliable when Eo [0] is smaller than En[0] (and so dominates
at large t).

The results of the fast fit are stored and returned in an object of type corrfitter. fastfit with the follow-
ing attributies:

E
Estimate of En[0] (or Eo [0] if osc==True) computed from the weighted average of Eeff (t) for ts
inmodel.tfit. The prior is also included in the weighted average.

24

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

ampl
Estimate of an[0] xbn[0] (or ao[0] xbo [0] if osc==True) computed from the weighted average
of Aeff (t) fortsinmodel.tfit[1:-1]. The prior is also included in the weighted average.

chi2
chi[0] isthe chi~«2 for the weighted average of Ee £ £ (t)s; chi[1] isthe same for the Aeff (t)s.
dof

dof [0] is the effective number of degrees of freedom in the weighted average of Eeff (t)s; dof[1]
is the same for the Aeff (t)s.

Q
Q[0] is the quality factor Q for the weighted average of Eeff (t)s; Q[1] is the same for the Aeff (t)s.

Elist
List of Eef £ (t) s used in the weighted average to estimate E.

ampllist
List of Aeff (t) s used in the weighted average to estimate ampl.

Parameters

 data (dictionary) — Input data. The datatag from the correlator model is used as a data
key, with data[datatag] being a 1-d array of gvar .GVars corresponding to the cor-
relator values.

* prior (dictionary) — Bayesian prior for the fit parameters in the correlator model.

* model (Corr2) — Correlator model for correlator of interest. The ts in model.tfit must
be consecutive.

* osc (Bool) — If True, extract results for the leading oscillating term in the correlator
(Eo [01]); otherwise ignore.

In addition an svd cut can be specified, as in corrfitter.CorrFitter, using parameters svdcut
and svdnum. Also the type of marginalization use can be specified with parameter ratio (see
corrfitter.CorrFitter).

1.16 Annotated Example

In this section we describe a complete script that uses corrfitter to extract energies, amplitudes, and transition
matrix elements for the 1y and D mesons. The source code (example.py) and data file (example.data) are
included with the corrfitter distribution, in the examples/ directory.

The main method follows the pattern described in Faster Fits:

from _ future import print_function # makes this work for python2 and 3

import gvar as gv
import numpy as np
import collections
from corrfitter import CorrFitter, Corr2, Corr3

def main () :
data = make_data (’example.data’)
fitter = CorrFitter (models=make_models())
p0 = None
for N in [1, 2, 3, 4]:

1.16. Annotated Example 25

corrfitter Documentation, Release 3.6.1

print (30 » ’'=’, ’'nterm =’, N)
prior = make_prior (N)
fit = fitter.lsqgfit (data=data, prior=prior, p0=p0)
p0 = fit.pmean
print_results (fit, prior, data)
fitter.display_plots()

The raw Monte Carlo data is in a file named ’ example.data’. We are doing four fits, with 1, 2, 3, and 4 terms
in the fit function. Each fit starts its minimization at point p0O, which is set equal to the mean values of the best-fit
parameters from the previous fit (p0 = fit.pmean). This reduces the number of iterations needed for convergence
inthe N = 4 fit, for example, from 217 to 23. It also makes multi-term fits more stable.

The last line displays plots of the fit data divided by the fit, provided matplot1ib is installed. A plot is made for
each correlator, and the ratios should equal one to within errors. To move from one plot to the next press “n” on the

€99, 99

keyboard; to move to a previous plot press “p”’; to quit the plots press “q”.

We now look at each other major routine in turn.

1.16.1 a) make_data

Method make_data (' example.data’) reads in the Monte Carlo data, averages it, and formats it for use by
corrfitter.CorrFitter. The data file (example.data’) contains 225 lines, each with 64 numbers on it,
of the form:

etas 0.3045088594E+00 0.7846334531E-01 0.3307295938E-01
etas 0.3058093438E+00 0.7949004688E-01 0.3344648906E-01

Each of these lines is a single Monte Carlo estimate for the 7, correlator on a lattice with 64 lattice points in the t
direction; there are 225 Monte Carlo estimates in all. The same file also contains 225 lines describing the D¢ meson
correlator:

Ds 0.2303351094E+00 0.4445243750E-01 0.8941437344E-02
Ds 0.2306766563E+00 0.4460026875E-01 0.8991960781E-02

And it contains 225 lines each giving the 3-point amplitude for s — D where the source and sink are separated by
15 and 16 time steps on the lattice:

3ptT15 0.4679643906E-09 0.1079643844E-08 0.2422032031E-08
3ptT15 0.4927106406E-09 0.1162639109E-08 0.2596277812E-08
3ptTl6 0.1420718453E-09 0.3205214219E-09 0.7382921875E-09
3ptT16 0.1501385469E-09 0.3478552344E-09 0.8107883594E-09

The first, second, third, etc. lines for each label come from the first, second, third, etc. Monte Carlo iterations,
respectively; this allows the code to compute correlations between different types of data.

We use the tools in gvar.dataset designed for reading files in this format:

def make_ data (datafile) :
""rm Read data from datafile and average it. """
return gv.dataset.avg_data(gv.dataset.Dataset (datafile))

This routine returns a dictionary whose keys are the strings used to label the individual lines in example.data: for
example,

26 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

>>> data = make_data('example.data’)
>>> print (datal[’Ds’])

[0.2307150(73) 0.0446523(32) 0.0089923(15) ... 0.0446527(32)]
>>> print (datal[’3ptTl1l6’])
[1.4583(21)e-10 3.3639(44)e-10 ... 0.000023155(30)]

Here each entry in data is an array of gvar . GVars representing the Monte Carlo estimates (mean and covariance)
for the corresponding correlator. This is the format needed by corrfitter.CorrFitter.

1.16.2 b) make_models

Method make_models () specifies the theoretical models that will be used to fit the data:

def make_models () :

"mr Create models to fit data. """

tmin = 5

tp = 64

models = [

Corr2 (

datatag=’'etas’,
tp=tp, tdata=range(tmin), tfit=range(tmin, tp-tmin),
a='etas:a’, b='etas:a’, dE='etas:dE’
)I

Corr2 (
datatag='Ds’,
tp=tp, tdata=range(tmin), tfit=range(tmin, tp-tmin),
a=('Ds:a’, ’'Ds:ao’), b=('Ds:a’, ’'Ds:ao0’),
dE=('Ds:dE’, ’'Ds:dEo’), s=(1., -1.)
)I

Corr3(
datatag='3ptT1l5",
tdata=range(16), T=15, tfit=range (tmin, 16-tmin),
a="etas:a’, dEa='etas:dE’, tpa=tp,
b=('Ds:a’, ’"Ds:ao’), dEb=('Ds:dE’, ’'Ds:dEo’), tpb=tp, sb=(1, -1.),
Vnn=’'Vnn’, Vno=’'Vno’

),

Corr3(
datatag=’3ptTl6’,
tdata=range(17), T=16, tfit=range(tmin, 17-tmin),
a="etas:a’, dEa='etas:dE’, tpa=tp,
b=('Ds:a’, ’"Ds:ao’), dEb=('Ds:dE’, ’'Ds:dEo’), tpb=tp, sb=(1, -1.),
vnn='Vnn’, Vno=’Vno’
)
1

return models

Four models are specified, one for each correlator to be fit. The first two are for the 7, and Dg two-point correla-
tors, corresponding to entries in the data dictionary with keys etas’ and ' Ds’, respectively. These are periodic
propagators, with period 64 (tp), and we want to omit the first and last 5 (tmin) time steps in the correlator. The
ts to be fit are listed in t £it, while the ts contained in the data are in tdata. Labels for the fit parameters cor-
responding to the sources (and sinks) are specified for each, ' etas:a’ and 'Ds:a’, as are labels for the energy
differences, ' etas:dE’ and 'Ds:dE’. The D; propagator also has an oscillating piece because this data comes
from a staggered-quark analysis. Sources/sinks and energy differences are specified for these as well: ' Ds:ao’ and
"Ds:dEo’.

1.16. Annotated Example 27

corrfitter Documentation, Release 3.6.1

Finally three-point models are specifies for the data corresponding to data-dictionary keys ’3ptT15’ and
"3ptT16’. These share several parameters with the two-point correlators, but introduce new parameters for the
transition elements: Vnn’ connecting normal states, and ’ Vno’ connecting normal states with oscillating states.

1.16.3 c) make_prior

Method make_prior (N) creates a priori estimates for each fit parameter, to be used as priors in the fitter:

def make_prior (N):
""" Create priors for fit parameters. """
prior = gv.BufferDict ()

etas

metas = gv.gvar('0.4(2)")

prior[’log(etas:a)’] = gv.log(gv.gvar(N = [70.3(3)"1))
prior[’log(etas:dE)’] = gv.log(gv.gvar(N = [70.5(5)"1))
prior[’log(etas:dE)’]1[0] = gv.log(metas)

Ds

mDs = gv.gvar('1.2(2)")

prior[’log(Ds:a)’] = gv.log(gv.gvar(N = [70.3(3)"1]1))
prior[’log(Ds:dE)’] = gv.log(gv.gvar(N = [70.5(5)"1))
prior[’log(Ds:dE)’"][0] = gv.log(mDs)

Ds —-— oscillating part

prior[’log(Ds:ao0)’] = gv.log(gv.gvar(N = [70.1(1)"1))
prior[’log(Ds:dEo)’] = gv.log(gv.gvar(N = [70.5(5)"1]))
prior[’log(Ds:dEo)’]1[0] = gv.log(mDs + gv.gvar(’0.3(3)"))
Vv

prior[’Vnn’] = gv.gvar(N = [N = ["0(1)"]1])

prior[’Vno’] = gv.gvar(N « [N = ["0(1)"11)

return prior

Parameter N specifies how many terms are kept in the fit functions. The priors are specified in a dictionary prior.
Each entry is an array, of length N, with one entry for each term. Each entry is a Gaussian random variable, specified
by an object of type gvar .GVar. Here we use the fact that gvar.gvar () can make a list of gvar .GVars from a
list of strings of the form * 0.1 (1) " : for example,

>>> print (gv.gvar([’1(2)", "3(2)"1))
[1.0(2.0) 3.0(2.0)]

In this particular fit, we can assume that all the sinks/sources are positive, and we can require that the energy dif-
ferences be positive. To force positivity, we use log-normal distributions for these parameters by defining priors
for " log(etas:a)’, " log(etas:dE)’,.. rather than ' etas:a’, 'etas:dE’,... (see Faster Fits — Postive
Parameters). The a priori values for these fit parameters are the logarithms of the values for the parameters them-
selves: for example, each etas:a’ has prior 0. 3 (3), while the actual fit parameters, 1og (etas:a), have priors
log(0.3(3)) = -1.2(1.0).

We override the default priors for the ground-state energies in each case. This is not unusual since dE [0], unlike the
other dEs, is an energy, not an energy difference. For the oscillating D; state, we require that its mass be 0.3 (3)
larger than the D, mass. One could put more precise information into the priors if that made sense given the goals
of the simulation. For example, if the main objective is a value for Vnn, one might include fairly exact information
about the D, and 7, masses in the prior, using results from experiment or from earlier simulations. This would make
no sense, however, if the goal is to verify that simulations gives correct masses.

Note, finally, that a statement like

28 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

prior[’Vnn’] = gv.gvar (N = [N+ [70(1)"11)

is not the same as

prior[’'Vnn’] = N % [N % [gv.gvar('0(1)”")]1]

correct

wrong

The former creates N x+ 2 independent gvar.GVars, with one for each element of Vnn; it is one of the most

succinct ways of creating a large number of gvar.GVars.

The latter creates only a single gvar.GVar and uses

it repeatedly for every element Vnn, thereby forcing every element of Vnn to be equal to every other element when
fitting (since the difference between any two of their priors is 0+0); it is almost certainly not what is desired. Usually
one wants to create the array of strings first, and then convert it to gvar .GVars using gvar.gvar ().

1.16.4 d) print_results

Method print_results (fit,
fit:

prior,

def print_results (fit,
print ('Fit results:’)
p = fit.transformed_p #

prior, data):

etas
E_etas =
a_etas =
print (’
print (’

np.cumsum(p[’etas:dE’])
pl[’etas:a’])

Eetas:’, E_etas[:3])
aetas:’, a_etas[:3])

Ds
E_Ds = np.cumsum(p[’Ds:dE’])
a_Ds = p[’Ds:a’l)
print (‘\n EDs:’,
print (' abDs:’,

E_Ds[:3])
a Ds[:31)

Dso —— oscillating piece

E_Dso = np.cumsum(p[’Ds:dEo’])
a_Dso = p[’'Ds:ao’]
print (‘\n EDso:’,
print (’ aDso:’,

E_Dso[:31)
a_Dso[:3])

Vv

Vnn = p[’Vnn']

p[’Vno']
etas->V->Ds:’,

etas->V->Dso:’,

Vno =
print (' \n

vnn[0, 0])
print (/]

Vno[0, O

error budget

outputs = gv.BufferDict ()
outputs[’metas’] = E_etas[0]
outputs[’'mDs’] = E_Ds[O0]
outputs[’mDso-mDs’] = E_Dso[0] - E_Ds[0]
outputs[’Vnn’] = Vnn[0, 0]
outputs[’Vno’] = Vno[0, 0]

inputs = collections.OrderedDict ()
inputs|[’statistics’] = data
inputs.update (prior)

inputs[’svd’] = fit.svdcorrection

+H= =

data) reports on the best-fit values for the fit parameters from the last

best-fit parameterss

can use dict () instead
statistical errors in data
all entries in prior

svd cut (if present)

1.16. Annotated Example

29

corrfitter Documentation, Release 3.6.1

print (\n’ + gv.fmt_values (outputs))
print (gv.fmt_errorbudget (outputs, inputs))

print (‘\n’)

The best-fit parameter values are stored in dictionary p=fit.transformed_p, as are the exponentials of the
log-normal parameters. We also turn energy differences into energies using numpy ‘s cummulative sum function
numpy . cumsum () . The final output is:

Fit results:
Eetas: [0.41619(12) 1.007(89) 1.43(34)]
aetas: [0.21834(16) 0.170(74) 0.30(12)]

EDs: [1.20166(16) 1.704(17) 2.29(20)]
aDs: [0.21466(20) 0.275(20) 0.52(20)]

EDso: [1.442(16) 1.65(11) 2.17(44)]
aDso: [0.0634(90) 0.080(26) 0.116(93)]

etas—->V->Ds
etas—->V->Dso

0.76725(76)
-0.793(92)

Finally we create an error budget for the 7, and D, masses, for the mass difference between the D, and its opposite-
parity partner, and for the ground-state transition amplitudes Vnn and Vno. The quantities of interest are specified
in dictionary outputs. For the error budget, we need another dictionary, inputs, specifying various inputs to the
calculation: the Monte Carlo data, the priors, and the results from any svd cuts (none here). Each of these inputs
contributes to the errors in the final results, as detailed in the error budget:

Values:
metas: 0.41619(12)
mDs: 1.20166(16)
mDso-mDs: 0.240(16)
Vnn: 0.76725(76)

Vno: —-0.793(92)

o)

Partial % Errors:

metas mDs mDso-mDs vVnn Vno

statistics: 0.03 0.01 4.51 0.09 8.60
log(etas:a) 0.00 0.00 0.11 0.01 0.39
log(etas:dE) 0.00 0.00 0.06 0.01 0.38
log(Ds:a): 0.00 0.00 0.53 0.02 0.96
log(Ds:dE) : 0.00 0.00 0.44 0.02 0.59
log (Ds:ao) 0.00 0.00 1.10 0.01 3.85
log (Ds:dEo) 0.00 0.00 1.14 0.01 5.66
vnn: 0.00 0.00 0.58 0.03 1.03

Vno: 0.00 0.00 4.25 0.01 3.39

svd 0.00 0.00 0.00 0.00 0.00

total 0.03 0.01 6.46 0.10 11.61

The error budget shows, for example, that the largest sources of uncertainty in every quantity are the statistical errors
in the input data.

1.16.5 e) Final Results

The output from running this code is as follows:

30 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

Least Square Fit:
[dof]

chi2/dof

Parameters:

log(etas:a)
log(etas:dE)
log(Ds:a)

log (Ds:dE)
log(Ds:ao0)
log (Ds:dEo)
Vvnn 0,0

Vno 0,0

O O O O O O

Settings:
svdcut =

7.4e+03

-1.38766
-0.80364
-1.35559
0.220836
-1.7014
0.54320
0.74220
-1.0474

(le-15,1e-15)

Least Square Fit:
[dof]

chi2/dof

Parameters:
log(etas:a)

log(etas:dE)

log(Ds:a)

log (Ds:dE)

log (Ds:ao0)

log (Ds:dEo)

Vnn

~

~

~

Vno

~ 0~

~

HPORPRPORFRPRORFRPORFRFORFRFRORFRFORFR ORFR ORF O

PP OORFrRFE OO
~

~

Settings:
svdcut =

3 [69]

-1.52065
-1.300
-0.87643
-0.331
-1.53878
-1.0798
0.18357
-0.5880
-2.6014
-1.266
0.3735
-0.323
0.76314
-0.4536
0.0799
-0.25
-0.6796
0.946
-1.00
0.1

(le-15,1e-15)

Least Square Fit:
[dof]

chi2/dof
Parameters:
log(etas:a)

0
1
2
log(etas:dE) O
1
2
0

log(Ds:a)

0.7 [69]

-1.52172
-1.81
-1.13

-0.87662
-0.54
-0.82

-1.53871

nterm = 1

[69] Q=20 1ogGBF = -2.5405e+05 itns = 26

(30) [1.2 (1.0)]

(14) [=0.92 (50) 1]

(20) [1.2 (1.0)]

(54) [0.18 (17) 1]

(16) [=2.3 (1.0) 1

(39) [0.41 (24) 1]

(23) [0.0 (1.0) 1

(21) [0.0 (1.0) 1 *

svdnum = (None,None) reltol/abstol = 1le-10/1e-10
nterm = 2

Q = 6e-16 logGBF = 1531.1 itns = 78

(64) [1.2 (1.0) 1

(15) [=1.2 (1.0)]

(26) [=0.92 (50) 1

(10) [-0.7 (1.0) 1

(66) [=1.2 (1.0)]

(68) [=1.2 (1.0) 1]

(11) [0.18 (17) 1

(55) [=0.7 (1.0)]

(75) [2.3 (1.0)]

(76) [=2.3 (1.0) 1 *

(14) [0.41 (24)]

(41) [=0.7 (1.0) 1

(30) [0.0 (1.0) 1

(52) [0.0 (1.0)]

(73) [0.0 (1.0)]

(76) [0.0 (1.0) 1

(76) [0.0 (1.0)]

(66) [0.0 (1.0) 1

(13) [0.0 (1.0)]

1.0) [0.0 (1.0)]

svdnum = (None,None) reltol/abstol = 1le-10/1e-10
nterm = 3
Q0 = 0.97 1logGBF = 1601.6 itns = 69

(73) [=1.2 (1.0) 1

(47) [-1.2 (1.0)]

(20) [=1.2 (1.0)]

(28) [=0.92 (50) 1]

(17) [=0.7 (1.0) 1

(44) [=0.7 (1.0)]

(91) [=1.2 (1.0) 1

1.16. Annotated Example

31

corrfitter Documentation, Release 3.6.1

P e e N e T T T e T T N I N e e e e T NP

0.18370

0

log (Ds:dE)

0

log(Ds:ao0)

0

log (Ds:dEo)

< 0 O N H >0 O O
[Fo I e e I "o B Co BN I S
~
O TN O H O O
N W N T N O O
D N T e T .
— O v .« O o O O O
1~ O o |
|
o
—A N O 4 N O 1 N O
L N N N
O O O = = NN
a
(=}
>

N
~

N

o
~
o

Vno

—A N O 4 N O
L N NN S

O O — = = N N

N
~

N

Settings:

reltol/abstol = 1le-10/1e-10

(None, None)

svdnum

(le-15,1e-15)

svdcut

=4

nterm

Least Square Fit:

23

itns

= 0.7 [69] Q 0.97 logGBF = 1602.1

[dof]

chi2/dof

Parameters:

N~ o~ o~~~ o~ N~~~ o~~~ o~~~ o~~~

O O O O OO OO OOl oOoooooo
N [ee]
N AN NN ANNANNAIITMO OO M

M M AN N OO NS T OHOMLWUL N T MO O
OO N A OO MmO o M o .
(((((((((((((((((((—
O~ N MmO ANO O LW OO0MmIM> WML
AN M WK O WWOo O >0 WM~ >~ WM
—H e s s O ¢+ + O N + s+ MO s+ e e e e
N A A >O0 OO MmMm « O W +OONNNN
(¥ R e e e e O . T A B O T e) E E B |
. . o o
— o — (@]
| | |
O N MO 1 NMOANMmO—ANMmO A NM
— — — — —
©] G =] [©]
N kel o) ©
0n . 0n .
] 0 [a)] 0 2]
+ © ~ A A
O + o)l ~ ~
~) o] o o
o)l ~ — o] @]
o o — —
— e}

—

Chapter 1. corrfitter - Least-Squares Fit to Correlators

32

corrfitter Documentation, Release 3.6.1

P T T T T T e T T T e e T e T T T T N e e e e T

N O VM HONOOOO0OOOWOOONMLUL O OOMmOOOoOo oo o
— O~ e M e . — . [e)) . A M O O e .
i o e e T B e TR e B s R e B e o B s B e O T T e I O e R |
O O 1 n N O o N ~ o ™M n O @ N ~
O N OV =T AN AHNHDANOOOHO OO OO0 NOOMANOOHOOOOOOOo
[I o) . o . . o~ . . P .
4 O O W - O O O O O O O O oo oo o O O OO O OO0 ooooooo
o 11~ o o | o | |
. |
o
O N MO A1 NMOANMOANMOHANMOHANMmOANMOHANMO A NM
L N N N N N N N N N N N N N
— OO OO A4 141 1 N AN ANNMOMmMmMMmOOOO A A4 NNNNMmMMmMmM
@]
£3] o O
© (= =}
. > >3
)]
A
o
[e]
—

Settings:

= le-10/1e-10

reltol/abstol

(None, None)

svdnum

(le-15,1e-15)

svdcut

Fit results:

1.43(34)]
0.30(12)]

[0.41619(12) 1.007(89)
0.170(74)

[0.21834 (16)

Eetas:

aetas:

2.29(20)]
0.52(20)]

[1.20166(16) 1.704(17)
0.275(20)

[0.21466(20)

EDs:

aDs:

[1.442(16) 1.65(11) 2.17(44)]

EDso:

[0.0634(90) 0.080(26) 0.116(93)]1

aDso:

0.76725(76)
-0.793(92)

etas—->V->Ds

etas—->V->Dso

Values:

0.41619(12)
1.20166(16)
0.240(16)

metas:

mDs:

mDso-mDs:

0.76725(76)

vnn:

33

1.16. Annotated Example

corrfitter Documentation, Release 3.6.1

Vno: —-0.793(92)

o

Partial % Errors:

metas mDs mDso-mDs Vnn Vno

statistics: 0.03 0.01 4.51 0.09 8.60
log(etas:a) 0.00 0.00 0.11 0.01 0.39
log(etas:dE) 0.00 0.00 0.06 0.01 0.38
log(Ds:a): 0.00 0.00 0.53 0.02 0.96
log (Ds:dE) : 0.00 0.00 0.44 0.02 0.59
log (Ds:ao0) 0.00 0.00 1.10 0.01 3.85
log (Ds:dEo) 0.00 0.00 1.14 0.01 5.66
Vnn: 0.00 0.00 0.58 0.03 1.03

Vno: 0.00 0.00 4.25 0.01 3.39

svd 0.00 0.00 0.00 0.00 0.00

total 0.03 0.01 6.46 0.10 11.61

This is a relatively simple fit, taking only a couple of seconds on a laptop.

Fits with only one or two terms in the fit function are poor, with chi2/dofs that are significantly larger than
one.

Fits with three terms work well, and adding futher terms has almost no impact. The chi*x2 does not improve
and parameters for the added terms differ little from their prior values (since the data are not sufficiently accurate
to add new information).

Chained fits (see Faster Fits — Chained Fits) are used if fitter.lsqgfit (...) is replaced by
fitter.chained_lsqgfit (...) inmain (). The results are about the same: for example,
Values:
metas: 0.41619(12)
mDs: 1.20156(17)
mDso-mDs: 0.2554(41)
Vnn: 0.7676(12)

Vno: —-0.754(26)

‘We obtain more or less the same results,

Values:
metas: 0.41619(11)
mDs: 1.20156(15)
mDso-mDs: 0.2576(27)

Vnn: 0.76666(67)
Vno: —-0.747(15)

if we polish the final results from the chained fit using a final call to fitter.lsqgfit (see Faster Fits —
Chained Fits):

fit = fitter.chained_lsqgfit (data=data, prior=prior, p0=p0)
fit = fitter.lsgfit (data=data, prior=fit.p, svdcut=le-4)

Another variation is to replace the last line (return models)inmake_models () by:

return [models[:2]] + models[2:]

This causes the two 2-point correlators (models [: 2]) to be fit in parallel, which makes sense since they share
no parameters. The result of the (parallel) fit of the 2-point correlators is used as a prior for the chained fits

34

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

of the 3-point correlators (models[2:]). The fit results are mostly unchanged, although the polishing fit is
significantly faster (more than 2x) in this case:

Values:
metas: 0.41620(11)
mDs: .20154 (15)
mDso-mDs : .2557(29)
Vnn: 0.76718(60)
Vno: -0.746(15)

o

* Marginalization (see Faster Fits — Marginalization) can speed up fits like this one. To use an 8-term fit function,
while tuning parameters for only N terms, we change only four lines in the main program:

def main () :
data make_data (' example.data’)
models = make_models ()

fitter = CorrFitter (models=make_models (), ratio=False) #1

p0 = None

for N in [1, 2]: #2
print (30 = ’=’, ’'nterm =’, N)
prior = make_prior (8) #3
fit = fitter.lsqgfit (data=data, prior=prior, pO0=p0, nterm=(N, N)) #4

p0 = fit.pmean
print_results (fit, prior, data)
fitter.display_plots()

The first modification (#1) is in the definition of fitter, where we add an extra argument to tell
corrfitter.CorrFitter what kind of marginalization to use (that is, not the ratio method). The sec-
ond modification (#2) limits the fits to N=1, 2, because that is all that will be needed to get good values for the
leading term. The third modification (# 3) sets the prior to eight terms, no matter what value N has. The last (#4)
tells fitter.lsgfit to fit parameters from only the first N terms in the fit function; parts of the prior that are
not being fit are incorporated (marginalized) into the fit data. The output shows that results for the leading term
have converged by N=2 (and even N=1 isn’t so bad):

==== == ==== nterm = 1
Least Square Fit (input data correlated with prior):
chi2/dof [dof] = 0.98 [69] Q = 0.53 logGBF = 1586.4 itns = 8
Parameters:
log(etas:a) 0 -1.52151 (78) [1.2 (1.0) 1
log(etas:dE) 0 -0.87662 (29) [=0.92 (50)]
log(Ds:a) O -1.5387 (10) [1.2 (1.0)]
log(Ds:dE) 0 0.18372 (14) [0.18 (17) 1
log(Ds:ao) O -2.628 (25) [=2.3 (1.0)]
log(Ds:dEo) 0 0.3738 (32) [0.41 (24)]
Vnn 0,0 0.76533 (60) [0.0 (1.0) 1
Vno 0,0 -0.710 (11) [0.0 (1.0) 1
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 1le-10/1e-10

nterm = 2
Least Square Fit (input data correlated with prior):

chi2/dof [dof] = 0.71 [69] Q = 0.97 logGBF = 1602.3 itns = 17
Parameters:
log(etas:a) O -1.52169 (72) [1.2 (1.0) 1]
1 -1.81 (52) [-1.2 (1.0) 1]
log(etas:dE) 0 -0.87660 (28) [-0.92 (50) 1]

1.16. Annotated Example 35

corrfitter Documentation, Release 3.6.1

1 -0.54 (17) [-0.7 (1.0) 1
log(Ds:a) 0 -1.53882 (88) [=1.2 (1.0) 1
1 -1.339 (75) [1.2 (1.0) 1
log(Ds:dE) 0 0.18370 (13) [0.18 (17) 1
1 -0.711 (34) [=0.7 (1.0) 1
log(Ds:ao) 0 -2.746 (92) [=2.3 (1.0) 1
1 -2.44 (10) [=2.3 (1.0) 1
log(Ds:dEo) O 0.3661 (74) [0.41 (24)]
1 -1.45 (24) [0.7 (1.0) 1
Vnn 0,0 0.76759 (74) [0.0 (1.0) 1
0,1 -0.488 (35) [0.0 (1.0) 1
1,0 0.039 (51) [0.0 (1.0) 1
1,1 0.63 (74) [0.0 (1.0) 1
vno 0,0 -0.774 (42) [0.0 (1.0) 1
0,1 0.25 (16) [0.0 (1.0) 1]
1,0 0.34 (43) [0.0 (1.0) 1
1,1 0.29 (95) [0.0 (1.0) 1
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = 1le-10/1e-10
Fit results:
Eetas: 0.41619(12) 1.00(10)
aetas: 0.21834(16) 0.164(85)
EDs: 1.20165(15) 1.693(17)
aDs: 0.21463(19) 0.262(20)
EDso: 1.442(11) 1.676(61)
aDso: 0.0642(59) 0.0872(90)
etas->V->Ds = 0.76759(74)
etas->V->Dso = -0.774(42)
Values:
metas: 0.41619(12)
mDs: 1.20165(15)
mDso-mDs: 0.241(11)
vnn: 0.76759(74)
Vno: -0.774(42)
Partial % Errors:
metas mDs mDso-mDs Vnn Vno
statistics: 0.03 0.01 3.69 0.09 4.53
log(etas:a) 0.00 0.00 0.10 0.01 0.54
log (etas:dE) 0.00 0.00 0.06 0.00 0.42
log(Ds:a) 0.00 0.00 0.34 0.01 0.47
log (Ds:dE) : 0.00 0.00 0.52 0.02 0.47
log (Ds:ao) 0.00 0.00 0.40 0.00 1.37
log (Ds:dEo) 0.00 0.00 0.54 0.00 1.94
vnn: 0.00 0.00 1.03 0.03 0.25
Vno: 0.00 0.00 2.10 0.02 1.28
svd 0.00 0.00 0.00 0.00 0.00
total 0.03 0.01 4.47 0.10 5.37

* Test the code by adding test_fit (fitter, ’example.data’) tothe main program, where:

36 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

def test_fit (fitter, datafile):
gv.ranseed ((5339893179535759510, 4088224360017966188, 7597275990505476522))
print (' \nRandom seed:’, gv.ranseed.seed)
dataset = gv.dataset.Dataset (datafile)

pexact = fitter.fit.pmean

prior = fitter.fit.prior

for sdata in fitter.simulated_data_iter (n=2, dataset=dataset, pexact=pexact):
print (! \n============================== gimulation’)
sfit = fitter.lsgfit (data=sdata, prior=prior, pO=pexact)
diff = []

check chi+*2 for leading parameters
for k in sfit.p:
diff.append(sfit.p[k].flat[0] - pexact[k].flat[0])
print (
"Leading parameter chi2/dof [dof] = ’
(gv.chi2 (diff) / gv.chi2.dof),
"[¢d]" % gv.chi2.dof,
! Q = " % gv.chi2.Q
)

o\

This code does n=2 simulations of the full fit, using the means of fit results from the last fit done by fitter
as pexact. The code prints out each fit, and for each it computes the chi«*2 of the difference between the
leading parameters and pexact. The output is:

Random seed: (5339893179535759510, 4088224360017966188, 7597275990505476522)

simulation
Least Square Fit:
chi2/dof [dof] = 0.68 [69] Q = 0.98 1ogGBF = 1602.5 itns = 21
Parameters:

log(etas:a) O -1.52103 (72) [=1.2 (1.0)]

1 -1.76 (32) [-1.2 (1.0) 1

2 -1.13 (48) [1.2 (1.0) 1

3 -1.22 (95) [-1.2 (1.0) 1

log(etas:dE) O -0.87635 (28) [-0.92 (50)]

1 -0.54 (12) [=0.7 (1.0) 1

2 -0.72 (53) [0.7 (1.0) 1

3 -0.70 (97) [-0.7 (1.0) 1

log(Ds:a) 0 -1.53847 (93) [1.2 (1.0) 1

1 -1.32 (10) [1.2 (1.0) 1

2 -0.83 (38) [-1.2 (1.0) 1]

3 -1.13 (98) [1.2 (1.0) 1

log (Ds:dE) 0 0.18379 (13) [0.18 (17) 1

1 -0.701 (45) [-0.7 (1.0) 1]

2 -0.69 (39) [=0.7 (1.0) 1

3 -0.75 (99) [0.7 (1.0) 1

log(Ds:ao) O -2.709 (97) [=2.3 (1.0) 1]

1 -2.46 (38) [=2.3 (1.0) 1

2 -2.16 (82) [=2.3 (1.0) 1

3 -2.3 (1.0) [=2.3 (1.0) 1]

log(Ds:dEo) O 0.3691 (82) [0.41 (24)]

1 -1.40 (48) [0.7 (1.0) 1

2 -0.69 (80) [=0.7 (1.0) 1]

3 -0.7 (1.0) [=0.7 (1.0) 1

Vnn 0,0 0.76731 (83) [0.0 (1.0) 1

0,1 -0.487 (38) [0.0 (1.0) 1

0,2 0.32 (43) [0.0 (1.0) 1

4

1.16. Annotated Example 37

corrfitter Documentation, Release 3.6.1

o
—
|
(]
—
~
o —
— <
|
0] 1
—
9]
I (o
is)
— -
o
i)
9]
Q
[} N
~ .
— S
o o
) &)
— —
() o
“ . I
]]]]]]]]]]]]]]]]]]]]]]]]]]]]] — e R R B R R e e B
Il M
[eNeNeoNoNeoNeoNeoNeoNeNeNoNo o ReNeoNo ool ol oo lNolNo ol ool el ol o) nmuv [eNelNeNoNeoNeoNoNeoNeNeNe Ne e ReNo NN ol
. — (@] . [Te] . — .
e i i R B B B A A A M B i B e e e i M e B e M M e B [0) [¢) e et e R B e e e e i M e M M M
(((((((((((((((((((((((((((((I e —_—— — — — - — = — — — — - — — —
o N [ee)
[eNeNeNoNoNeoNeoNeoNeNeNeNoNRoNeNoNeoNeNeo oo NeNoNoNeoNeoNeNeNeNe) = — NN NN NNNNA>S MM
. ~ 0 « e e e . . .
[elNeNeNeNeNeNeollolNeoNeoleNeoNeoNeo ool olNe oo Neoleo ool ol ol el el o) [0) — c A4 4 40000 d 41440000 NN
[O [e)) T O e e e I e | [B |
) ~ - o
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[N N s . OV T A A U S N SN VO VA VN N T S t—y
~ . © o
o —
1 jn] I
I £
£ - e
5 — 9]
)))))))))))))))))))))))))))))] (= o~~~ e~~~ o~~~ o~~~ e~~~ —~
N HO OO OOOOWOOOHWWMONhOOWOOTOOOO O O O kel o] | — 0 O~ 00 NO WL WOowMmMSS O O O W
O~ O s M . o . W N O O . o . > T | ~H OO N> AN+ OMmOo ™~ o
e m e —m— o 4 - 4~ 44+ o 0 = N N N N N N N N N N NG
- - - < - - < - T L e - - - o
~ -~ O N S ™ O o W ™~ (Rl \e] WO MW o < 0 WML — WO O < O
O~ VW 40 NOOO JdO0OO0OO0OWVWANHOONOODOOOOOOOO] — T OO OSSO0 AN OSSO M
O . . o . . o~ — O AN + ¢ s O e e O) e s e M~ o+ e[~
<N cE-NeNeNelloNeNeoNeoNoNe e Ne oo e lNeNeNeoNeo e e No oo Ne) N ~ ™ N~ A A~ +O0OO0M™MHO H®W +O O -+
o | | O_ | | _ﬂﬁ/_ O 5,__80_,_5,__1ﬂ_,ﬂ_/__
i
0] < o — o — o
— O | | |
~ I
L0 ~ .
— [0) i
MO A NMOANMO ANMOANMO ANMOANMO—ANM | D -~ OH N MO ANMO A NMO ANMO
N S S (OO} o O
O " 4 4 N ANANNOMMMHmMmOOOO A1 NNNNMMMm™M — =1 o — — — — —_
~ o] o — ®] (o]] o
o G G io] o] ©
S I © T 4 0 - 0 o
> N Q, 5 0 4 © 0] [a) 9] 9]
n P [oae} [OJE} © ~ [a)] =]
o 3 o 0~ FEEN0) EB] o ~ ~
c O [« N (O (0] (o] o o
-H O -~ 2o e o ~ — e}]
2> kel n g @ O o — —
P o0 [@ O 9 ¢]
[0) 0] 0] © —
19} — = [aF]

Chapter 1. corrfitter - Least-Squares Fit to Correlators

38

corrfitter Documentation, Release 3.6.1

e B e R B R I R e R T T T T I e B B T B R R R i B R R B T R)

0

log (Ds:dEo)

0.76785

Vnn 0,0

<O OO N O OO VWO OO oo O oI ™~
TN O)~ O .M . [} . o™
((((((o = o~ o —= o~ o —
M N N> MO — < o
O O NO O ANO OO O o o o v
<t N & T ~
- O O O O O O O OO oo oo .
o I © [| o
| |
AN MO A NMMO A NMO A NMO
N N e N
OO0 O d d A AN NNNOMmMHmMmMmO
(o]
(=}
>

[~ 0 O WO O WwoOo oo oo o

— O c M O ¢ e O .

~~ A >~ A A = A A A A A A

— O n o <

M O O = OO 1O O O o o oo

O O O O O OO OO oo o oo o
|

A NMMHDO A NMOANMO A ANM
N T N N

OO O dd A" N ANNNOMmMmMm™M

Settings:

reltol/abstol = 1le-10/1le-10

(None, None)

svdnum

(le-15,1e-15)

svdcut

= 0.46 [8]

[dof]

Leading parameter chi2/dof

This shows that the fit is working well, at least for the leading parameter for each key.

Other options are easily checked. For example, only one line need be changed in test_fit in order to test a

marginalized fit:

=(2,2))

nterm

pexact,

pO=

=prior,

prior

sdata,

fitter.lsqgfit (data

sfit

Running this code gives:

4088224360017966188, 7597275990505476522)

(5339893179535759510,

Random seed:

== simulation
(input data correlated with prior):

Least Square Fit

23

itns

1logGBF = 1602.4

.7 [69] Q = 0.97

=0

[dof]

chi2/dof

39

1.16. Annotated Example

corrfitter Documentation, Release 3.6.1

Parameters:
log(etas:a) O -1.52098 (72) [-1.2 (1.0)]
1 -1.71 (49) [1.2 (1.0)]
log(etas:dE) O -0.87634 (28) [-0.92 (50) 1
1 -0.52 (16) [=0.7 (1.0) 1
log(Ds:a) O -1.53883 (91) [1.2 (1.0)]
1 -1.390 (78) [1.2 (1.0) 1
log (Ds:dE) 0 0.18377 (13) [0.18 (17) 1
1 -0.735 (37) [-0.7 (1.0)]
log(Ds:ao) O -2.670 (58) [=2.3 (1.0)]
1 -2.34 (14) [=2.3 (1.0) 1
log(Ds:dEo) 0 0.3719 (55) [0.41 (24)]
1 -1.20 (21) [=0.7 (1.0) 1
Vnn 0,0 0.76751 (76) [0.0 (1.0) 1
0,1 -0.459 (35) [0.0 (1.0) 1
1,0 0.080 (53) [0.0 (1.0) 1
1,1 0.72 (73) [0.0 (1.0) 1
Vno 0,0 -0.755 (29) [0.0 (1.0) 1
0,1 0.37 (16) [0.0 (1.0) 1
1,0 -0.067 (398) [0.0 (1.0) 1
1,1 0.27 (96) [0.0 (1.0) 1
Settings:
svdcut = (le-15,1e-15) svdnum = (None,None) reltol/abstol = le-10/1e-10
Leading parameter chi2/dof [dof] = 0.82 [8] Q0 =10.6
simulation
Least Square Fit (input data correlated with prior):
chi2/dof [dof] = 0.63 [69] Q = 0.99 logGBF = 1604.6 itns = 12
Parameters:
log(etas:a) 0 -1.52243 (70) [1.2 (1.0)]
1 -1.34 (50) [1.2 (1.0) 1
log(etas:dE) O -0.87680 (27) [-0.92 (50) 1
1 -0.41 (13) [-0.7 (1.0) 1
log(Ds:a) 0 -1.53999 (93) [1.2 (1.0) 1
1 -1.455 (75) [1.2 (1.0) 1
log(Ds:dE) 0 0.18355 (13) [0.18 (17) 1
1 -0.771 (38) [=0.7 (1.0) 1
log(Ds:ao) 0 -2.700 (72) [=2.3 (1.0) 1
1 -2.39 (12) [=2.3 (1.0) 1
log(Ds:dEo) O 0.3688 (64) [0.41 (24)]
1 -1.32 (22) [0.7 (1.0) 1
Vnn 0,0 0.76780 (76) [0.0 (1.0) 1
0,1 -0.437 (33) [0.0 (1.0) 1
1,0 0.065 (62) [0.0 (1.0) 1
1,1 0.15 (77) [0.0 (1.0) 1
Vno 0,0 -0.761 (34) [0.0 (1.0) 1
0,1 0.33 (17) [0.0 (1.0) 1
1,0 0.071 (399) [0.0 (1.0) 1
1,1 -0.14 (97) [0.0 (1.0) 1
Settings:
svdcut = (le-15,1le-15) svdnum = (None,None) reltol/abstol = le-10/1e-10
Leading parameter chi2/dof [dof] = 0.56 [8] Q0 =10.8

40 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 3.6.1

This is also fine and confirms that nterm= (2, 2) marginalized fits are a useful, faster substitute for full fits.
Indeed the simulation suggests that the marginalized fit is somewhat more accurate than the original fit for the
oscillating-state parameters (Vno, log (Ds:ao), log (Ds:dEo) — compare the simulated results with the
nterm=4 results from the original fit, as these were used to define pexact).

1.16. Annotated Example 41

corrfitter Documentation, Release 3.6.1

42 Chapter 1. corrfitter - Least-Squares Fit to Correlators

CHAPTER
TWO

* genindex
* modindex

INDICES AND TABLES

43

corrfitter Documentation, Release 3.6.1

44 Chapter 2. Indices and tables

Symbols

_abscissa (BaseModel attribute), 19

A

all_datatags (BaseModel attribute), 18
ampl (fastfit attribute), 24
ampllist (fastfit attribute), 25

B

BaseModel (class in corrfitter), 18
bootstrap_fit_iter() (corrfitter.CorrFitter method), 20
bootstrap_iter() (corrfitter.CorrFitter method), 20
builddata() (corrfitter.BaseModel method), 19
builddata() (corrfitter.Corr2 method), 16
builddata() (corrfitter.Corr3 method), 18
builddata() (corrfitter.CorrFitter method), 21
buildfitfcn() (corrfitter.CorrFitter method), 21
buildprior() (corrfitter.BaseModel method), 19
buildprior() (corrfitter.Corr2 method), 16
buildprior() (corrfitter.Corr3 method), 18
buildprior() (corrfitter.CorrFitter method), 21

C

chained_Isqfit() (corrfitter.CorrFitter method), 21
chi2 (fastfit attribute), 25

collect_fitresults() (corrfitter.CorrFitter method), 22
Corr2 (class in corrfitter), 14

Corr3 (class in corrfitter), 16

CorrFitter (class in corrfitter), 19

D

datatag (BaseModel attribute), 18
display_plots() (corrfitter.CorrFitter method), 22
dof (fastfit attribute), 25

E

E (fastfit attribute), 24
Elist (fastfit attribute), 25

F

fastfit (class in corrfitter), 24

INDEX

fitfen() (corrfitter.BaseModel method), 19
fitfcn() (corrfitter.Corr2 method), 16
fitfen() (corrfitter.Corr3 method), 18

L

Isqfit() (corrfitter.CorrFitter method), 23

Q

Q (fastfit attribute), 25

S

simulated_data_iter() (corrfitter.CorrFitter method), 23

45

	corrfitter - Least-Squares Fit to Correlators
	Introduction
	Basic Fits
	Faster Fits
	Faster Fits — Postive Parameters
	Faster Fits — Marginalization
	Faster Fits — Chained Fits
	Variations
	Very Fast (But Limited) Fits
	3-Point Correlators
	Testing Fits with Simulated Data
	Bootstrap Analyses
	Implementation
	Correlator Model Objects
	corrfitter.CorrFitter Objects
	Fast Fit Objects
	Annotated Example

	Indices and tables
	Index

