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Kurzfassung

Neurowissenschaftler verwenden Computersimulationen als eine Möglichkeit, um das
Gehirn und Hirnaktivität zu erforschen. Sie entwickeln und veröffentlichen zahlreiche
Neuronen- und Synapsen-Modelle mit unterschiedlichem Detailgrad die in Simulationen
von einzelen Neuronen oder großen biologischen neuronalen Netzen verwendet wer-
den. Neben Neuronen- und Synapsen-Modellen entstanden mehreren Simulatoren für
neuronale Netzwerke mit unterschiedlichem Umfang und meist inkompatible Modellbe-
schreibungen. Dies erschwert die Entwicklung und Veröffentlichung neuer Neuron- und
Synapse-Modelle, so wie die Überprüfung von Erkenntnissen zwischen Simulatoren, da
jedes Modell für jeden Simulator implementiert und angepasst werden muss.

Diese Arbeit beschreibt das Design von NESTML und seine Entwicklung mit dem Mon-
tiCore Framework. NESTML ist eine erweiterbare Modellierungssprache spezifisch für
die neurowissenschaftliche Domäne. Es ermöglicht die Modellierung von Spiking Punkt-
Neuron Modellen in einer sauberen und prägnant Syntax. Ein zugehöriges Verarbei-
tungstool führt statische Analysen an NESTML Modellen durch, um programmatische
Korrektheit zu überprüfen und Neurowissenschaftler bei der Entwicklung neuer Neuron-
Modelle zu unterstützen. Des weiteren generiert das Tool effizienten Simulationscode
für den NEST Simulator, sowie die komplette Infrastruktur für NEST Module, damit der
generierte Code komfortabel compiliert und in NEST geladen wird. Dies reduziert den
Arbeitsaufwand um Neuron-Modelle zu erstellen, zu pflegen und zu verteilen.

Abstract

Neuroscientists use computer simulations as one way to research the brain and brain
activity. They develop and publish numerous neuron and synapse models with different
levels of detail to be used in simulations of single neurons or of large biological neuronal
networks. Besides the neuron and synapse models, the neuroscience community has
developed several simulators with different scope and, mostly, incompatible model de-
scriptions. This makes it hard to develop and publish new neuron and synapse models
and even harder to verify findings across simulators, since the model must be imple-
mented and adjusted for every simulator.

This thesis describes the design of NESTML and its development with the MontiCore
framework. NESTML is an extendable modeling language specific for the neuroscience
domain. It allows modeling spiking point neuron models in a clean and concise syntax.
An associated processing tool performs static analysis on NESTML models to check for
programmatically correctness and, thus, supports neuroscientists in creating new neu-
ron models. Furthermore, it generates efficient simulation code for the NEST simulator
and the complete NEST module infrastructure to easily compile and load the generated
code into NEST. This reduces the workload to create and to maintain neuron models for
NEST and, by adding more simulator targets in the future, across simulators.
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Task Description

The task of this master thesis is to design and develop an extendable domain specific
language to model components of neuronal networks, i.e. neurons and synapses, and
to generate efficient code from these models for neuronal simulators, like the NEural
Simulation Tool (NEST). The purpose of this language is to enable neuroscientists to
easily define and exchange newly developed models in a standardized way and to test
the models in different simulation tools.

During the design phase existing neuron modeling languages, like NineML, are re-
viewed and current state-of-the-art in neuroscience research is examined. Additionally,
a close cooperation with the NEST team in Jülich takes place, so that in extensive inter-
views requirements for the language are analyzed, domain specific knowledge can be
incorporated into the language and its usability can be tested.

To implement the modeling language, the DSL development framework MontiCore is
used. It allows specifying an extendable domain specific language and generates the
lexer and parser for the language. Context conditions, defined in the design phase,
have to be implemented. They assure, that only valid models are accepted. The to
be implemented code generators have to generate efficient code, since simulations of
neuronal networks are a computationally complex task, and the code needs to eas-
ily integrate into the existing simulation tools. Finally, MontiCore can generate editor
support for syntax highlighting, which will assists future users of the language.

The focus of the thesis is, on the one hand, to design and develop the modeling lan-
guage for neuron models, to implement neuron specific context conditions and to gen-
erate efficient code for a NEST plugin., and on the other hand, to design the language
and the implementation to be easily extendable. It is planed to model synapse models
with that language and to generate code for other simulators in the future.
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Chapter 1

Introduction

Understanding the brain and neuronal activity is a difficult task. The human brain, for
example, consists of up to 1012 neurons; each receives input from approximately 104

other neurons and generates output to about as many. A single cubic millimeter of
cortex contains at least 105 cells with about 109 connections. Measurements of the bio-
chemical and electrophysiological processes in neurons and brain areas in vitro and in
vivo builds the foundation for computer simulations of neural tissue and neural circuits.
These simulations allow the detailed investigation of neuronal activity and the testing
of hypotheses about dynamics and function of the modeled system.

To carry out such simulations the field of computational neuroscience developed vari-
ous dedicated and specialized programs to execute models of parts of the brain with
different levels of detail – from the behavior of a single neuron to the interaction of
biological neuronal networks of increasing size [Bre+07]. To achieve results that cor-
respond to the activity in real brains detailed models of neurons and synapses are
needed. Over the years the neuroscience community developed numerous models of
both, each with a different level of detail or with the focus on different biophysical
details [GK02; MDG08].

1.1 Motivation

The variety of neuron and synapse models leads to assets and drawbacks. On the one
hand, neuroscientists can choose models that fit best to the experiment they want to
conduct through computer simulation. On the other hand, each neuron or synapse
model that is relevant for a simulator has to actually be implemented and optimized for
the simulator and has to be maintained throughout the lifetime of the simulator.

Additionally, neuroscientists regularly develop new models that incorporate new find-
ings or that better suit their experiment. Publishing those models includes their math-
ematical properties and possibly a concrete implementation for the simulator that the
neuroscientist used. To reproduce the findings in another simulator or to conduct own
experiments with the new model requires the model to be implemented for the other
simulator. The neuroscientist has to become familiar with the programming language
and the framework of the other simulator and has to adjust the model, so that it be-
haves the same as the published one. This alone can become a cumbersome task,
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since modern simulators can be highly complex programs that make use of various
parallel computing techniques to process the enormous neuronal networks, which are
needed in order to have realistic simulations of parts of the brain.

Model description

         Modeling Language
neuron MyNeuron:
  state:
    // dynamic state ...
  end
  parameter:
    // parameters of the neuron...
  end
  dynamics timestep (t_h ms):
    // ...
  end
end

Modeling Language Tool

• check for errors
• optimize model

transform
processmanually

model 
implementations 
for different 
simulator

generate�V

�t
= � V

RC
+

I

C

Figure 1.1: A desirable workflow for developing new neuron or synapse models. From
the mathematical description create a specification in a dedicated modeling language.
Let the corresponding tool support the model developer by analyzing and optimizing
the model and pointing to errors. Finally, let the tool generate simulator specific imple-
mentations of the model.

From the point of view of a neuroscientist or of a developer for a neuronal network
simulator, it would be preferable that a neuron or synapse model is specified once
and can be reused in different simulators. A dedicated modeling language or domain
specific language can be used to completely specify a neuron or synapse model in a
standardized way [Cro+12]. A corresponding tool can then process the model, support
the model developer by pointing out errors and generate specialized implementations
of that model for different simulators. Figure 1.1 illustrates this workflow.

Such a modeling language and a corresponding tool can support neuroscientists and
developer of simulator in several ways. If the model description is compact and expres-
sive, it is well suited to be published along with the mathematical description. Neurosci-
entist then only have to use the tool to generate the implementation for their preferred
simulator. When all models of a simulator are specified in this language and some code
in the simulator changes, only the code generation of the tool for that specific simulator
has to be adjusted and new implementations of the models can be generated.

1.2 Goals

The goals of this thesis are:

• Design a modeling language that is compact, concise, expressive and easy to
learn. This language should allow specifying models with enough detail, so that
simulator specific implementations can be generated out of models.

With respect to the scope of a master thesis, the language should at least be able to
model point neurons (Section 2.2). Extendibility for more sophisticated neuron models
and for synapse models should be considered.

• Develop a corresponding tool for the modeling language that can process model
descriptions, analyze them for computational correctness and generate model
implementations for neuronal network simulators.

4



The processing tool will be developed with the MontiCore framework [Grö+08; Kra09]
and besides others, includes the implementation of a symbol table and various context
conditions. These context conditions check models for computational correctness and
help model developers to create their neuron models by supplying helpful error mes-
sages. The code generation will be limited to the NEST simulator [GD07], for now, but
future versions of the tool should support more simulators. Hence, the working name
of this language is NESTML – NEST Modeling Language.

1.3 Thesis Outline

Chapter 1, Introduction, introduces the topic of this thesis and motivates the usage of
a domain specific language to describe neuron models for the computational neuro-
science.

Chapter 2, Fundamentals, gives the basic knowledge and introduces tools that are used
in order to create NESTML. This includes an explanation of the structure of the brain
and the function of neurons. Furthermore, formal languages, such as programming
languages and domain specific languages, and the processing of such languages are
explained. In particular, the framework MontiCore is introduced.

Chapter 3, Requirements Analysis, identifies and summarizes the functional and non-
functional requirements for this language.

Chapter 4, Design, shows the design of NESTML and its related languages. This includes
a description of the syntax of each language as well as its semantics and context con-
ditions. Different design choices are identified and explained.

Chapter 5, Implementation, depicts the implementation of NESTML and its related lan-
guages with MontiCore. It describes the project layout and general implementation
strategies for the symbol table, type calculations and the code generation.

Chapter 6, Application Scenario, contains a short introduction into the usage of the lan-
guage and the tool itself. On the example of the famous integrate-and-fire neuron a full
implementation of a neuron model in NESTML is shown, alongside with the generated
code for the NEST simulator.

Chapter 7, Related Work, examines languages and processing tools that are related to
NESTML.

Chapter 8, Conclusion, concludes this thesis and gives an outlook on future work.

Appendix A, Abbreviations, explains the used abbreviations in diagrams.

Appendix B, Language Grammars, contains the MontiCore grammar definitions for the
developed languages.

Appendix C, Example NESTML neuron, contains an example implementation of the
integrate-and-fire neuron model in NESTML.

Appendix D, Generated NEST Code (neuron), contains the C++ header and implemen-
tation file that are generated from the neuron model in Appendix C.

Appendix E, Generated NEST Code (unit), contains an example UnitDSL model with the
corresponding generated C++ code.
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Chapter 2

Fundamentals

This chapter introduces the fundamental entities that are used in this thesis. An ex-
planation of the basic structure and functionality of neurons and synapses is contained
in Section 2.1. Section 2.2 describes different simulators for biological neuronal net-
works. These two sections are roughly based on the descriptions in Eppler [Epp10].
Section 2.3 describes the building blocks of programming languages and differentiates
between domain specific and general purpose languages. Section 2.4 contains the
general structure and workflow of tools that process those programming languages –
the so-called compilers. Finally, Section 2.5 introduces the development framework
MontiCore for domain specific programming languages.

2.1 The Brain on a microscopic scale

Although the brains of different animals differ considerably on a macroscopic scale, the
brain of vertebrates consist of the same building blocks, on a microscopic scale. In
particular, these are nerve cells (neurons) that communicate via electric pulses (action
potentials or spikes) over connections called synapses. Figure 2.1 shows the structure
of a typical neuron. It consists of a cell body or soma, dendrites and the axon.

The membrane of a neuron maintains an electric potential – the membrane potential –
via different biochemical processes. One process consists of ion pumps that transport
specific types of ions and can be open or closed depending on the membrane poten-
tial. In the resting state (i.e. in the absence of external input) the membrane potential
fluctuates around a resting potential (about -70 mV). Incoming action potentials from
other cells lead to an excursion of the membrane potential of the cell. If the membrane
potential reaches a certain threshold, the cell fires an action potential itself that travels
along the axon. If the spike reaches a synapse it causes the release of chemical neuro-
transmitter into the synaptic cleft. After a spike, the neuron is inactive (refractory) for
some milliseconds. The receptors on the membrane of the postsynaptic neuron reg-
ister the spike and, depending on the type of this neuron and synapse, the receptors
trigger a rise (excitation) or decline (inhibition) of the membrane potential.
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Figure 2.1: The structure of a vertebrate neuron. The red neuron receives input from
the orange neuron and forwards action potentials to the green neuron. The round
clipping shows a synaptic connection in detail. [Epp10]

2.2 Simulation of Neuronal Networks

Two different types of neuronal networks have to be distinguished: artificial and biolog-
ical neuronal networks. Artificial neuronal networks assume that a brain function has
many processing elements (the neurons) with weighted connections between them
(the synapses). They are successfully applied in computer science, e.g. for pattern
recognition, solving of optimization problems and machine learning. To approximate a
target function with an artificial neuronal networks, a small network with a task oriented
structure is created. An input vector is propagated through the network and processed
by the neurons. The output can be compared to the target function and the weights of
the connections can be modified in order to optimize the approximation. This adaption
is often referred to as learning.

Artificial neuronal networks, however, can not be used to understand the brain, since
they are not based on the properties of real neurons. Neuron models in biological
neuronal networks are not solving a certain task, but replicate the behavior of real
neurons. Different neuron models were developed with mathematical descriptions for
certain aspects of real neurons, e.g. spiking behavior or membrane potential. These
descriptions are based on observations and measurements in real neural systems.

Different fields of computational neuroscience require different level of detail for their
neuron model. Reaction-diffusion models describe the interaction of molecules inside
cells or at the cell membrane. Compartment models reconstruct real neurons by divid-
ing them into a large number of electrical compartments. The compartments describe
the propagation of action potentials and the dynamics of parameters like the mem-

8



Figure 2.2: The abstraction levels of neuron models. The real neuron is modelled as
a compartment model with a variable number of compartments, each representing a
separate region with its own membrane potential. The simplest representation of the
real neuron has a single compartment – the point neuron. [Epp10]

brane potential in the dendrites and axon of a cell via equations from cable theory.
Point neuron models only have a single compartment and are modeled using math-
ematical equations for the membrane potential and for spike generation. Population
models describe neuronal networks on the functional level. They model whole neuron
populations as single entities and describe their behavior upon its overall input and out-
put. Field models are basically population models that take the spatial composition of
populations into account. The derivation of the integrate-and-fire point neuron model
is described in Chapter 6 in detail.

Synapses play an important role in the information processing themselves. They differ
by the neurotransmitter they use, their strength (weight) and by the time they need to
transmit the signal (delay, usually in the order of 1 ms). Depending on their usage, the
strength of a synapse can change, they can die or new synapses can grow. If synaptic
plasticity occurs on the scale of milliseconds, seconds or minutes it is called short-
term depression/ potentiation (STD/STP). If it occurs in the range of hours and days it
is called long-term depression/ potentiation (LTD/LTP) and can last for months or even
years. Hence, long-term changes are the basis of learning and memory.

A biological neuronal network of point neurons is described as a graph with nodes with
different neuron models, and edges with different synaptic properties. The commu-
nication between nodes is based in spikes. Depending on the size of those networks
they can be analyzed either analytically or by computer simulations. In the subsequent
sections some simulators for biological neuronal networks with their key characteristics
will be described.

NEST [DG02; Epp10; GD07] The NEural Simulation Tool is a framework that is opti-
mized for simulating large, structured neuronal networks. The built-in neuron
models are mostly spiking point neurons, but there is no restriction on the type of
neuron model in general. The synapse models can either be static or can change
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their weights according to synaptic plasticity rules. Networks in NEST are rep-
resented as weighted, directed graphs of nodes and connections between the
nodes. The communication between nodes is based on events, e.g. spike or cur-
rent events.

NEST is developed in an object-oriented style with a number of independent mod-
ules in C++. A built-in simulation language interpreter (SLI) is the primary inter-
face for users to create neuronal networks and start the simulation. The simu-
lation kernel implements all functionalities to define and simulate this neuronal
network. It contains a base class for neuronal models with derived implementa-
tions of important models. New models can be developed by extending this base
class and implementing the required abstract functions, e.g. the update-function.
The development of a neuronal model is covered in Section 5.3.4 in depth. The
network driver of the kernel manages the temporal update of all simulation ele-
ments. Basically, NEST simulates a neuronal network in a time driven strategy
with the following algorithm:

1 t <− 0 / / start simulation at time zero
2 WHILE t < TStop / / perform simulation unt i l T_Stop is reached
3 PARALLEL on a l l processes
4 deliver a l l events to designated node
5 advance current state St−1 to St by cal l ing update fo ra l l nodes
6 END
7 exchange new generated events between a l l processes
8 increment time t <− t+Delta / / the smallest connection delay in the network
9 END

Brian [GB08] Brian is a time driven simulator for spiking neuronal networks entirely
written in the Python programming language. This makes it easy to learn and
suitable for rapid prototyping of single compartment neuron models. It also sup-
ports multi-compartment models, but developing those models is more involved.
The dynamics of neuron and synapse models are directly defined by their differen-
tial equations written in ordinary mathematical notation. Additionally, Brian has
basic support for synaptic plasticity. To achieve the necessary performance even
for larger networks Brian uses vectorized operations based on NumPy [Oli06] and
optionally certain core routines are written in optimised C code. The left set of
equations can directly be used in Brian to model leaky integrate and fire neurons,
which in general are described by the right set of equations:

1 ’ ’ ’
2 dV/ dt = (ge+gi−(V+49*mV))/(20*ms) : volt
3 dge/ dt = −ge/(5*ms) : volt
4 dgi / dt = −gi /(10*ms) : volt
5 ’ ’ ’

τm
dV

dt
= −(V − EL) + ge + gi

τe
dge
dt

= −ge

τi
dgi
dt

= −gi

NEURON [HC97] The NEURON simulator is capable of building and using “biological”
neuron models with complex morphological and biophysical properties and many
compartments, as well as more “artificial” point neuron models, like the integrate
and fire neuron model. New neuron and synapse models and networks of them
can be defined with a set of GUI tools or with the custom programming language
HOC. Both methods can be combined, to take advantage of the strengths of both.
The library of biophysical mechanisms, which can be used as building blocks for
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neuron or synapse models, can be extended with descriptions in the NMODL lan-
guage, whose syntax for expressing nonlinear algebraic equations, differential
equations, and kinetic reaction schemes closely resembles familiar mathematical
notation.

Others [Epp10] Besides the above described simulators and many “home grown” sim-
ulators of individual laboratories, the field of computational neuroscience has
other important and popular programs and s few of them will be mentioned here.
The GEneral NEural SImulation System (GENESIS) [BB98] is a simulation platform
for neuronal systems of sub-cellular components, complex single neurons and
large networks. The Multiscale Object-Oriented Simulation Environment (MOOSE)
[RB08] extends GENESIS and can be used for large, detailed simulations in com-
putational neuroscience and systems biology. Finally, MCell [Ker+08] is a model-
ing tool for realistic simulation of cellular signaling in the three-dimensional sub-
cellular microenvironment in and around living cells.

In this thesis we concentrate on modeling and processing point neuron models and
generating simulator code for the NEST simulator from these model descriptions.

2.3 Domain Specific and General Purpose Languages

Domain specific languages (DSL) are programming languages that are tied to a spe-
cific application domain, have a limited language scope and in most cases are not
computationally complete [Kra09] or executable. The purpose of DSLs is to support
domain experts to express concepts and models of their specific domain more clearly
and declarative than with general purpose languages and do not focus on their solu-
tion. DSLs have high entry costs, since the language has to be created from ground up
and developers have to learn the new language. They pay of, if they are heavily used
afterwards, because they generally decrease the work of developers a lot.

General purpose languages (GPL) have a very general language scope and are com-
putational complete, i.e. that everything, that can be computed, can be expressed in
such a language. So all domain concepts can be modeled with a GPL, too, but the ex-
pressiveness of the concepts is limited to the language scope. For example, with object
oriented languages like Java these domain concepts can be modeled with classes that
contain appropriate methods and variables. Another benefit is, that compilers for these
languages are availably and potential developers already know that language, but the
work do express domain concepts in a GPL is generally higher than in a dedicated DSL.

It is possible to differentiate domain specific languages into internal and external DSLs
[Gho10]. Internal DSLs are implemented inside another, general purpose language and
thereby are a subset of the host language. This reduces the work to create such a
language, since no separate compiler needs to be developed, but the host language
limits its expressiveness. Examples for this kind language are ScalaTest which is a
testing framework for the scala programming language [Ven13], PyNEST which is the
Python interface to the NEST simulator [Epp+09], and nemo which is a neuron modeling
language implemented in CHICKEN Scheme [Rai13], see Chapter 7.
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External DSLs are completely new designed languages. This involves developing a sep-
arate compiler, but has the benefit, that all properties of the language can be defined
freely, so that clarity and expressiveness of the resulting language can be superior to
embedded DSLs. Prominent examples for this kind of language are the structured query
language (SQL) for relational databases [Mül08], the hypertext markup language HTML
[Ber+13] and the COmmon Business-Oriented Language COBOL, that can be seen as a
DSL for business applications [Völ11].

All programming languages have several components that define their look, usage and
meaning. These are fundamental components, such as concrete syntax, abstract syn-
tax and their semantics, and more practical components, such as their type system,
symbol tables and context conditions. In the following, a short introduction to these
components is given, since NESTML needs all these components.

Concrete Syntax The concrete syntax describes, how the programming language
presents itself to potential users. There are textual programming languages,
graphical or mixture of them. Textual programming languages are often defined
by grammars, that are used to create lexers and parsers [Völ11], see Section 2.4.
Some editors can highlight their syntax, but basically the developer is working
with plain text. Graphical programming languages need some kind of editor, with
which graphical elements, like rectangles and circles, are manipulated. Examples
for graphical programming languages are Scratch [Mal+04] and blockly [FS13].
They are often used for educational purposes.

Abstract Syntax The abstract syntax describes the internal representation of a lan-
guage, which can be independent to the concrete syntax. Therefore, a given
program written in a concrete syntax has to be translated into its abstract syntax,
which is often modeled as a tree structure. Language-processing tools use this
representation to analyze and manipulate a given program. The abstract syntax
of a programming language can be developed separately from the concrete syn-
tax, allowing for several concrete syntaxes translating into one abstract syntax,
or the concrete and abstract syntax can be developed simultaneously, this makes
sure, that there always is a concrete syntax for testing the language, and keeps
both syntaxes consistent, see Section 2.5.

Semantics The semantics of a language describes the meaning of the language it-
self and of each element of the language. Just like the syntax of a programming
language, its semantics can be exactly defined: The denotational semantics uses
mathematical constructs that describe the meaning of each element. The op-
erational semantics uses abstract machines and state transitions to explain se-
mantics. Finally, translational semantics translates elements into a language with
well-known semantics [Völ11]. With these semantics the output of a program with
a given input can be evaluated.

Type System Most programming languages have several different types that describe
the variables they are manipulating. These types can be primitive, like boolean
values, integer or floating point numbers, and can become more complex with
structs in C or classes in Java. Programming languages have type systems with
different degrees of strictness, ranging form untyped languages, where variables
have no type at all, like Smalltalk [SR91], over dynamically typed languages like
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Python [Sum08], to strictly typed languages, like in Haskell [OGS08]. With the
type system of a language, the type correctness of a program can be tested at
compile time which reduces the amount of runtime errors the more strictly the
language is typed.

Symbol Table The symbol table of a programming language relates a variable or type
name with its contextual information, e.g. the type of the variable or the embed-
ded variables and functions of a type. Symbol tables can be nested into so-called
namespaces, so that the ’visibility’ of a name can be restricted. The main pur-
pose of a symbol table is to offer an interface to merge models, i.e. a model
publishes all its usable symbols in its symbol table and other models can refer to
those symbols, without the need to recompile the source code. Beside that, the
symbol table supports checking of context conditions and code generation.

Context Conditions A program can conform to its concrete syntax, i.e. it is syntacti-
cally correct, but there still can be errors that can be caught in the static analyzes
during compile time. These errors are checked with context conditions that ana-
lyze the abstract syntax of a program. The use of context conditions over syntax
definitions can have different reasons: Either the error can not be described with
the syntax definition, since it involves context knowledge that can not be ex-
pressed with context-free grammars, e.g. a variable has to be declared before
use, or describing the error in the syntax definition is not desired to keep the
definition simple. It is beneficial, if as many errors as possible are caught during
static analyzes, so that developers can fix these errors before they deploy their
program.

2.4 Compiler

This section introduces the basic concepts of compilers for programming languages,
focusing on textual languages, since in this thesis a textual DSL will be created, and
discusses the steps of modern language processing. From the outside a compiler trans-
lates a high level program, i.e. the source program, into a lower level program, i.e. the
target program, while outputting warnings and errors, if something is wrong with the
source program. The target program can have any abstraction level: It could be ma-
chine code for a specific processor, code for another programming language or even
optimized code for the source programming language.

Figure 2.3 is an overview of the components and workflow of a typical compiler. In real-
world compilers these components do not need to be so clearly separated, but they are
still present in some way. When the compiler gets a source program, it first passes the
source code to the lexer. The lexer analyzes the sequence of characters and splits it,
according to its lexical rules, into tokens. Thus, a token is the internal representation
of a sequence of characters in the compiler. If a sequence of characters can not be
matched with a lexical rule, the lexer reports an error to the error handler.

The purpose of the error handler is to gather all error reports of the static analyzes
and produce meaningful error messages for the programmer. The more errors can be
found during the different steps and the better error messages are provided, the more
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Lexer Parser Syntactic Analyser

Code GeneratorSymbol Table Error Handler

Error Printer

Source Program

Source Code Tokens AST

AST

Target Code

Target ProgramError Messages

CpD

Figure 2.3: The basic architecture of a compiler. Circles denote inputs or outputs of
the compiler, the boxes its components. Arrows denote the dataflow inside the com-
piler and their labels state, what data is transferred. The dashed arrows show other
communication between components. [Mül08]

productive can a programmer correct his work. This means, that, as a general rule, the
compiler should not stop upon one error, but should continue to try to find more errors.

The parser takes the stream of tokens from the lexer and tries to build a tree on top
of these tokens. This tree is called abstract syntax tree (AST) and is built according to
rules defined by the abstract syntax. If tokens are in the wrong order or missing, the
parser again reports errors to the error handler. The work of the lexer and parser will
be demonstrated with a small example language, called ab-language. The language
allows source programs, that match the regular expression (a|b)+, e.g. “a”, “b”, “ba”
and “aaabbbababba” are programs of that language. Then ’a’ and ’b’ are candidates for
the tokens A and B, respectively. The abstract syntax for this language can be defined
with a EBNF grammar, with S as start-production [Aho+06]:

S → A | B | SS
A→ a

B → b

When the lexer reads in the program “aba”, he outputs the token-stream ABA to the
parser. According to this grammar, the parser builds the AST, which can be seen in
Figure 2.4. At the bottom is the character sequence, on top of that – in squares – are
the tokens as the leaves of the AST and on top of the tokens are the S-productions that
span the rest of the tree.

When the parser has finished building the AST and no errors occurred, it passes the
AST further to the syntactical analyzer. The analyzer is responsible for checking con-
text conditions of the respective language. Therefore, he builds up all necessary in-
frastructures, like the symbol table, and reports all errors to the error handler. An
example context condition for the ab-language could be, that at most five ’a’s are al-
lowed. Extending the given grammar to catch that condition is possible, but increases
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Figure 2.4: The abstract syntax tree of the program “aba” for the ab-language.

its complexity a lot. A context condition can check this on the AST very easily. Finally,
if the AST complies with the language definition and fulfills all context conditions, the
AST is passed to the code generator, that generates the target program out of the AST
and symbol table. This generator step is often called the compiler backend and differ-
ent code generators can be used interchangeably, which is important, if the compiler
should generate code for different targets, e.g. machine code for different processors
or neuron models for different simulators.

2.5 MontiCore

The development of compilers for a new programming language is a hard task and has
lots of pitfalls. The MontiCore project [Fic+13] is a tool that supports the development
of languages with Java in many ways. On the one hand, MontiCore is a generator for
lexers and parsers for context-free programming languages and on the other hand,
MontiCore is a framework that simplifies and speeds up the other steps of language
processing described previously in Section 2.4. Hence, MontiCore fits very well into
agile, model-driven software development, as DSLs created with MontiCore assist de-
velopers to define models more declarative and its template based code generation
allows fast, iterative development and improves source code maintainability.

MontiCore uses one grammar format to formulate new language definitions. With this
format the concrete and the abstract syntax of the new language is defined simultane-
ously. Out of a language defined in this grammar MontiCore generates the lexer and
parser for this language, as well as class definitions for the AST and other auxiliary
classes. An introduction to the grammar format and its usage is given in Section 2.5.1.

The MontiCore framework contains support for the creation and processing of symbol
tables and for handling name resolution. It has support for checking of context con-
ditions and has a sophisticated error-reporting engine. These concepts and how they
are organized in the MontiCore DSLTool are explained in Section 2.5.2. MontiCore is
capable to analyze the hierarchical structure of the AST in two ways. The standard way
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is to use a variation of the visitor pattern [Gam+95]. The other way is to use attribute
grammars [Ste12] that allow calculating attributes of nodes in the AST top down or
bottom up and are described in Section 2.5.4. For code generation MontiCore works
with the FreeMarker template engine [DRS13]. Its syntax and usage is illustrated in
Section 2.5.5.

To allow for modularized development of languages, MontiCore enables developers to
compose languages in different manners. A language can inherit syntax from another
language or it can allow embedding parts of another languages syntax into itself. Since
languages can be composed in such a way, MontiCore makes composition of context
conditions and symbol tables possible, too. Section 2.5.3 introduces the concepts of
language composition in MontiCore in more detail.

2.5.1 MontiCore’s DSL Grammar

Languages developed with MontiCore use a grammar system based on regular expres-
sions to define its concrete and abstract syntax; similar to ANTLR [Par07; PH13], upon
which MontiCore is built. In this Section the basic syntax of MontiCore’s grammar sys-
tem will be introduced. An extensive presentation of MontiCore’s grammar can be
found in its documentation [Fic+13]. All MontiCore grammars start with a package def-
inition, which is followed by import statements, to include names of other packages.
After that the actual grammar definition starts with the keyword grammar, followed
by the grammar name and a block that contains the options and productions of the
grammar. Single-line comments start with // and continue until the end of the line.
Multi-line comments span from an opening /* to a closing */. Listing 2.1 shows an ex-
ample grammar for a language that describe (physical) units and their range – this is a
simplified version of the units grammar defined in Section 4.1. MontiCore differentiates
between lexical productions that describe how tokens are created from of character se-
quences, and parser productions, that describe how sequences of token are identified
as sentences of the language.

Lexical productions start with the keyword token, have a token-name and a regular
expression assigned to them. The regular expressions of lexical productions only con-
sist of other tokens or terminal symbols. Terminal symbols are either a character sur-
rounded by single quotes, like ’a’, or a sequence of characters surrounded by double
quotes. Alternatives for symbols can be expressed by vertical bars or with ranges of
characters, like ’a’ .. ’z’. The expected number of occurrences of a symbol can be ex-
pressed with either a question mark for zero or one occurrence, a plus sign for one or
more occurrences or with a star sign for zero or more occurrences. Symbols can be
grouped with parenthesis. If a token is preceded with a type, like Number in line 10,
then the source of the token is not stored as a string, but the lexer tries to cast the
string into that type.

Parser productions, or nonterminal productions, can start with the keywords interface or
abstract or with no keyword. They also have a name and a regular expression assigned
to them. The regular expressions of parser productions consist of tokens, terminals or
nonterminals. Concatenation is expressed by putting symbols one after another, see
line 16 of the grammar in Listing 2.1 – there is no special character for concatena-
tion. Expressing alternatives and number of occurrences is handled in the same way as
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for lexical productions. Additionally, alternatives for terminals can be expressed with
square brackets. Symbols can be preceded with an identifying name, like from:Number.
Terminals in parser productions are automatically identified as special keywords of the
language and as such are not permitted as identifiers.

1 package unit ;
2 / / A sample grammar for a language describing physical units .
3 grammar Unit {
4 options {
5 nostring noident
6 }
7 / / token for ident i f ie r
8 token Name = ( ’a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ _ ’ )+;
9 / / token for integer numbers

10 token Number = ( ’0 ’ . . ’9 ’)+ : int ;
11
12 Units = ( Unit " ; " )* ; / / allows zero or more units to be defined
13
14 / / unit def in i t ion : a name, a domain and i t s range with inclusive
15 / / or exclusive parenthesis
16 Unit = " unit " unitName:Name Domain LeftParenthesis Range RightParanthesis ;
17
18 Domain = ([ real : "Real" ] | [ integer : " Integer " ] ) ;
19
20 LeftParenthesis = ( [ inclusive : " [ " ] | [ exclusive : " ( " ] ) ;
21
22 RightParanthesis = ( [ inclusive : " ] " ] | [ exclusive : " ) " ] ) ;
23
24 Range = (from:Number | [ fromInf : "−in f " ] ) " . . . " ( to :Number | [ toInf : " in f " ] ) ;
25
26 / / add methods or variables to the generated AST classes
27 ast Unit = method public String toString ( ) {
28 return " unit " + getUnitName ( ) ;
29 };
30 }

Listing 2.1: Example Grammar for Units in MontiCore.

When MontiCore processes such a grammar definition, it generates a lexer and a parser
for the language and creates class definitions for the abstract syntax tree. This gener-
ation process gets customized in different ways: The options block of the grammar may
include options like noident or nostring to remove predefined tokens IDENT and STRING, re-
spectively, or options like parser lookahead=1 and lexer lookahead=4 influence the parser
and lexer. Parser productions are translated to a class for the AST and its regular
expression defines the inner structure of the generated class. Terminal symbols are
ignored, since they do not contain additional information for the AST. Tokens and non-
terminals become member variables of the generated class, where tokens translate to
a String and nonterminals to the appropriate AST class. The name of an element in the
production influences the name of the appropriate member variable of the AST class.
Alternatives in square brackets become integer member variables, with constants de-
fined in a separate ASTConstants<GrammarName> class, if there is more than one option
in the square brackets. Otherwise, this member variable is a boolean which states,
whether it is there or not, see line 18 in Listing 2.1. The AST class hierarchy for the
simple units grammar from Listing 2.1 is shown in Figure 2.5 – for simplicity some gen-
erated classes and methods are omitted.
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Figure 2.5: Generated class hierarchy from the simple unit grammar in Listing 2.1.

The MontiCore grammar has several other elements that influence the parsing behav-
ior or the generation process. The element ast <ProductionName> = ... allows to extend
the generated AST class with additional member variables and methods. If a parser
production is preceded with a slash, like /Unit = ..., then MontiCore only generates an
abstract prototype class for that production which the developer has to extend. Syn-
tactic predicates can be used to eliminate ambiguity of alternatives in productions and
block operations can solve the “dangling-else-problem” [Aho+06] by setting the greed-
iness of the parser. The “dangling-else-problem” can occur, when nested if -statements
are followed by an else-statement, like in if (<TEST>) if (<TEST>) /*.. */else /*.. */. Then it is
ambiguous to the parser, to which if -statement the else-statement belongs to.

2.5.2 MontiCore Framework

The MontiCore framework is built from modules, that assist developers to create the
desired language-processing tool, with lexing and parsing of input programs, static an-
alyzes to check correctness of the program and corresponding code generation. The
main entry point to the framework is the mc.DSLTool class. Developers need to subclass
this class for their tool. The DSLTool supports the implementation of a command-line
interface to the compiler and has a basic file processing behavior implemented. Fig-
ure 2.6 presents the architecture for a compiler developed with MontiCore. All compo-
nents need to be registered with the DSLTool. Workflows make up the building blocks of
all tasks a compiler has to perform. The root factories create the DSLRoot objects that
represent an input file or a model and are handles to their AST and auxiliary data. The
language-processing contains the lexer, parser and AST classes that are responsible
for processing input files and creating the AST, see Section 2.4. The error delegators
contain several error handlers, that process upcoming problem reports and flag the
respective root object, if an error occurred. The workflows, which are executed after
an error was found, can then decide, whether to continue or to finish the processing.
When the DSL grammar is passed to MontiCore, it generates the language-processing
infrastructure and the root factories. Some basic workflows, e.g. the parsing workflow,
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are also generated, which is indicated by the dashed arrow.
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Processing

DSLTool Framework

input

generates

Error Delegators

partly generated

CD

Figure 2.6: The basic architecture of a compiler developed with MontiCore [Kra09].

The workflow infrastructure is an important part of language-processing tools built
with MontiCore. The parsing and the checking of context conditions is modeled as a
workflow and the creation of symbol tables is modeled as a composition of workflows.
Whenever the developers want to analyze or work with the AST, the MontiCore frame-
work favors the use of workflows. Figure 2.7 outlines this infrastructure. The DSLTool
as a subclass of the mc.ADSLToolExecuter, executes all mc.ExecutionUnit in the order
they are registered to it. The mc.DSLWorkflow is a subclass of the ExecutionUnit, that
represents one step in the processing of one file. Developers need to subclass the
DSLWorkflow to implement their own tasks. Both, the ExecutionUnit and the DSLWork-
flow, work on mc.DSLRoot objects which are created by a mc.DSLRootFactory. Every
language generated with MontiCore has its own subclass of DSLRoot and DSLRootFac-
tory and a DSLRoot object represents a file or model of that language. The DSLRoot
object contains a handle to the AST for that model, has information about all errors in
that model and stores its symbol table.

Developers can analyze and manipulate the AST in different ways within a workflow.
The visitor pattern [Gam+95] is the preferred way of MontiCore: a supervising visitor
with a set of client visitors traverses the AST in depth-first order [SW11]. When this
visitor visits a node, it calls the visit-method of its client visitors with this node as
argument. Then it traverses the children of that node and, when all children are vis-
ited, he calls the endVisit-method of its client visitors with this node as argument. The
developer only needs to implement the visit- and endVisit-methods of these client
visitors for nodes he is interested in. With the ownVisit-method he can influence the
order of visiting child-nodes. Another way is to use MonitCores functional API and per-
form filter-, fold- and map-functions on the AST [Kra09]. Finally, MontiCore supports the
concept of attribute grammars, which is explained in Section 2.5.4 in more detail.

MontiCore generates the parsing workflow and the root factories, but the MontiCore
grammar does not state, which production should be used as the start-production or
how the workflows and factories should be named. For this purpose, MontiCore uses
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Figure 2.7: The workflow infrastructure of MontiCore [Kra09].

a separate language DSL that state these properties. Listing 2.2 shows the language
file for the simple units grammar from Listing 2.1. It defines the name for the root
class, the name for the parsing workflow associated to that root class and it defines
the root factory name associated to that root class. In line 10 the production Units
from the grammar Unit is set as start-production. This start-production is also needed
behind the name of the root class in angle brackets. Also, inside this language DSL the
embedding of other languages is declared, see Section 2.5.3.

1 package unit ;
2
3 dsltool UnitTool {
4 / / Root Class
5 root UnitRoot<Package>;
6 / / Parsing Workflow
7 parsingworkflow UnitParsingWorkflow for UnitRoot<Package> ;
8 / / RootFactory
9 rootfactory UnitRootFactory for UnitRoot<Units> {

10 Unit . Units units <<start>> ;
11 }
12 }

Listing 2.2: Language DSL for simple units.

The MontiCore framework contains support for creating and working with symbol ta-
bles. The developer needs to define the namespace establishing AST nodes and thereby
creates a hierarchical structure for the namespaces, this allows for scoping of symbols.
Each namespace has a link to its parent namespace and can have multiple child names-
paces. A namespace has different types of symbol tables, that represent the symbols
origin or whether it should be public to other namespaces. Symbols are stored as
language specific symbol table entries that store, beside their name, all relevant infor-
mation about that symbol, e.g. its type and modifiers. Figure 2.8 shows the relationship
between namespaces, symbol tables and its entries. A dedicated workflow for building
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up and filling namespaces and symbol tables is predefined in MontiCore. A visitor is
used to traverse the AST. Whenever the visitor inspects a node that is relevant for the
symbol table, it is responsible for transforming that node into a symbol table entry and
for storing that entry in its corresponding symbol table.

 
 
NameSpace

 
 
SymbolTable

 
 
STEntry

parent

children

entries

*

*

*

CD

Figure 2.8: The relationship between NameSpace, SymbolTable, Entries [Völ11].

After the symbol table workflow has finished without errors, the context condition check
workflow can be executed. Therefore, the developer registers, on the one hand, a set
of interfaces2.coco.ContextConditions, which contains methods to report errors and
to resolve symbols, and, on the other hand, a CheckWorkflowClient visitor, which gets
that set of context conditions and executes these context conditions on all relevant
nodes of the AST.

Language composition and code generation are also part of the MontiCore framework,
and are introduced in Section 2.5.3 and Section 2.5.5, respectively.

2.5.3 Language Composition

Building language-processing tools from ground up is a complex task. Therefore, Monti-
Core has different methods to reuse languages or part of languages, that are build with
MontiCore, in new languages. This also reduces the complexity of building a language,
since this task can be split into smaller chunks. This section describes MontiCore’s three
methods of compose languages: inheritance, embedding and aggregation [Völ11].

1 package unit2 ;
2
3 grammar UnitsWithDescription extends unit . Unit {
4 UnitWithDescription extends Unit = "description " " unit " unitName:Name desc : String ;
5 }

Listing 2.3: Example for language inheritance.

Language inheritance means that one language inherits all productions from another
language, e.g. a language’s Literals can contain several useful literals and by extending
that language all other languages can reuse those literals. Listing 2.3 shows, how
the new language UnitsWithDescription extends the language unit.Unit in line 3 and
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thereby inherits all its literals and productions. It is also possible to extend these pro-
ductions, like in line 4 of Listing 2.3. Interface and abstract productions allow building
an interface for a language, to make clear at what points extensions are intended.

MontiCore accepts external productions that are filled by embedding productions of
other languages. To declare such blank productions, the developer adds a statement
in the grammar definition, that starts with external and is followed by the production
name, like external Calculation;. This way, every time a calculation is needed in the gram-
mar, this production can be used. In the language DSL file of a language this production
is then linked to a real production of another language, see Listing 2.4, line 8.

1 package mc;
2
3 dsltool SampleTool {
4 / / . . . some parts are omitted
5 rootfactory SampleRootFactory for SampleRoot<Package> {
6 Sample.Package package <<start>> ;
7 / / l ink the production Expression to the external production Calculation
8 mc. javadsl . JavaDSL . Expression expression in mc. Calculation ;
9 }

10 }

Listing 2.4: Link a foreign production to an external production.

It starts with the full path to the real production (mc.javadsl.JavaDSL.Expression), then
an identifier (expression), followed by the keyword in and the path to the blank pro-
duction (mc.Calculation). Another language, that should use C++ expressions with
anything else staying the same, could reuse the grammar definition and only need to
supply a modified language DSL file.

In some application scenarios two or more languages are used to support each other,
e.g. one language declares a class hierarchy and the other languages uses the declared
classes. This kind of information exchange is possible with language aggregation that
processes different languages within one DSLTool. The DSLTool has to register their
root factories and can specify different workflows for those root objects, e.g. parsing
workflows. This allows to create one tool, that aggregates all DSLs, that a client needs,
and has the possibility, to build symbol tables and context conditions across the models
of different DSLs, e.g. a sequence diagram DSL could check with a class diagram DSL
whether a certain object can call a certain method.

When languages are composed in such ways, their symbol tables and context condi-
tions potentially need to be merged. To make symbols from one language available to
another language adapters are used [Gam+95; Völ11]. Adapters can be introduced ei-
ther during the set-up of the symbol table, by registering a QualifiedEntryHandler, that
creates an adapter for every entry, or during resolving of symbols, by registering a ded-
icated IResolverClient, that forwards the resolving to clients of the other language and
builds the adapter around the result. Merging the context conditions of two languages
requires registering both sets of ContextCondition and both CheckWorkflowClient vis-
itors. Additional context conditions to check the interplay of both languages are also
possible.
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2.5.4 Attribute Grammar

Extending context-free grammars with attributes and computation rules is an alter-
native method to analyze abstract syntax trees, especially its hierarchical structures.
These context-free grammars are called attribute grammar. Only nonterminals of an
attribute grammar are extended with attributes and have computation rules to com-
pute these attributes. There are two kinds of attributes: Synthesized attributes are
calculated bottom-up, i.e. from the leaves of the AST to the root. Inherited attributes
are calculated top-down, i.e. from the root to the leaves. The following grammar is a
modified version of the ab-language from Section 2.4.

Productions | Synthesized Rules | Inherited Rules
S′ → S | len(S′) = len(S) | dep(S) = 1

S → S1S2 | len(S) = len(S1) + len(S2) | dep(S1) = dep(S2) = dep(S) + 1

S → A | len(S) = len(A) | dep(A) = d(S) + 1

S → B | len(S) = len(B) | dep(B) = d(S) + 1

A→ a | len(A) = 1

B → b | len(B) = 1

Every nonterminal has the synthesized attribute len of type integer and the inherited
attribute dep of type integer. The len-attribute should store the length of the ab-word in
that node and the dep-attribute should store the depth of the appropriate node. To the
right of the productions are the computation rules. The synthesized rules always assign
a value to the attribute of the nonterminal on the left-hand-side of the production and
the inherited rules assign a value to the attribute of every nonterminal on the right-
hand-side of the production. In the computation rules all synthesized and inherited
attributes of the current production can be used, but it is important, that no circular
dependencies between rules exist. These circular dependencies can not only occur
locally to the production, but also across multiple nodes of the AST. If there are circular
dependencies between rules, the attributes can not be computed [Ste12]. Algorithms to
check that no circular dependencies can occur within a given attribute grammar exist,
but need exponential time, if no further restrictions are applied [Ste12]. Figure 2.9
shows a computation of the attributes on the AST of Figure 2.4.

With MontiCore the attributes are defined inside the grammar definition of the lan-
guage, but their rules are defined with a special calculator class. Listing 2.5 shows,
how the synthesized len- and inherited dep-attributes are defined inside the grammar
definition of the ab-language – a slash in front of the java.lang.Integer denotes, that a
Java-type is meant and not a production from the grammar. Listing 2.6 shows, how the
attributes are linked to their calculator class. A synthesized attribute needs a calculator
class, that extends SynthesizedAttributeCalculation and as calc-methods for every
AST node, that is important for that attribute. An inherited attribute needs a calculation
class, that extends InheritedAttributeCalculation and as calc-methods for every AST
node, that is important for that attribute. MontiCore generates for every language a
subclass of AttributeStorageConnector, which handles the evaluation of rules and the
caching of already calculated attribute values, i.e. the attributes are not stored on the
nodes of an AST, but within this AttributeStorageConnector. Circular dependencies are
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Figure 2.9: Computing inherited and synthesized attributes on the word “aba” with the
AST from Figure 2.4. The inherited attribute dep is on the left side of the node and the
synthesized attribute len is on the right side of the node. The dashed arrows show the
computation flow for the attribute.

checked during runtime and entering a calc-method twice during the evaluation of one
attribute leads to an exception. Assume the ab-language is defined with MontiCore, has
the name ABLang and the value of the attribute len is needed from the node n of type
ASTS, then a new object of the generated connector ABLangConcreteStorageConnector
has to be created and the method getLen(node) is called on that object. [Ste12]

1 . . .
2 concept attributes {
3 syn len : / java . lang . Integer ; / / declare the synthesized attribute len of type Integer
4 inh dep: / java . lang . Integer ; / / declare the inherited attribute dep of type Integer
5 }
6 . . .

Listing 2.5: Attribute definition inside grammar.

1 . . .
2 concept Attributes {
3 len { / / le t the class ablang . LenCalculator calculate the attribute len
4 ablang .ABLang. len = /ablang . LenCalculator
5 }
6 dep { / / le t the class ablang . DepCalculator calculate the attribute dep
7 ablang .ABLang.dep = /ablang . DepCalculator
8 }
9 }

10 . . .

Listing 2.6: Computation rules inside language DSL.
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2.5.5 Code Generation with FreeMarker

When the compiler has successfully finished parsing and analyzing the input program,
its AST can be forwarded to code generation. The mc.GenerationTool, a subclass of
mc.DSLTool, implements a general infrastructure for code generation with FreeMarker
templates [DRS13]. To use that infrastructure, the developer has to register template-
and AST node-pairs and the CodegenVisitor from the CodegenWorkflow will execute a
template whenever it visits its corresponding node.

FreeMarker templates are text files that contain arbitrary text and FreeMarker syntax
side by side. Whenever a template is executed, this syntax is interpreted and replaced
with resulting text. FreeMarker has two kind of elements in its syntax: interpolations
and directives. Interpolations execute all kind of expressions and write out the result of
that expression. The syntax for interpolations is ${<expression>}, e.g. ${3+6}. Direc-
tives are responsible for assigning variables, for branching and for looping. All direc-
tives basically have the following structure: They have a starting tag <#directivename
parameters>, with different parameters according to the directivename, and most direc-
tives need a closing tag </#directivename>. See Listing 2.7 for a FreeMarker example,
with Listing 2.8 as the result of executing that template.

1 <#assign x=0 names=["johnson" , "smith" , " al ice " , "bob" ]>
2 <#i f x == 0>
3 x is zero
4 <#else>
5 x is not zero
6 </# i f>
7
8 Let ’ s loop through some names:
9 <#l ist names as n>

10 − Hello , ${n}!
11 </# l ist>

Listing 2.7: Examples for the FreeMarker syntax.

1 x is zero
2
3 Let ’ s loop through some names:
4 − Hello , johnson!
5 − Hello , smith!
6 − Hello , al ice !
7 − Hello , bob!

Listing 2.8: Result from executing Listing 2.7.

MontiCore extends FreeMarker’s template processing engine to allow more complex
calculations on the AST outside of the templates. Therefore, when using FreeMarker
templates with MontiCore, the templates contain two predefined variables: The cur-
rent AST node is stored in the variable ast and allows the access to all information and
children of that node. A TemplateOperator is stored in the variable op. The Templa-
teOperator has auxiliary methods, like callTemplate or includeTemplate, that embed
the resulting text or generate a separate file. Other methods, like callCalculator or
applyCalculator, execute subclasses of TemplateCalculators, that implement calcu-
lations in Java, which are too extensive for the FreeMarker syntax. To support these
two tasks, it has an own variable infrastructure, to pass down variables from cal-
culators to the calling template or from a template to the templates it calls. With
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op.setValue("varName", <value>) a variable varName with some value can be declared.
Those variables can be accessed either the same way as variables declared with the
assign-directive or with the getValue-method of the TemplateOperator.
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Chapter 3

Requirements Analysis

In this chapter the requirements for the domain specific language NESTML and the
tool, that processes NESTML models, are listed, including a short description of each
requirement. The order does not indicate an ordering of the requirements. Section 3.1
lists the non-functional or quality requirements, which define constraints for NESTMLs
design and implementation. Section 3.2 lists the functional requirements defining what
NESTML is supposed to be capable of.

3.1 Non-Functional Requirements

This section lists the non-functional requirements of NESTML and its processing tool.
With NESTML it should be possible to express the most important concepts of neuron
models and it should be easy to read and comprehend neurons written in NESTML.
Ease of use and completeness with respect to the concepts are a prerequisite for the
adoption of NESTML by neuroscientists.

NF01 NESTML should be expressive and easy to comprehend and learn.

The workload and complexity to model neuron models with NESTML should be notably
lower, than to implement the models for the simulator directly. In addition, NESTML’s
processing tool should support the development, e.g. with constructive and compre-
hensive error messages.

NF02 NESTML should support developers in creating neuron models.

When NESTML’s feature set will be extended in the future, a clean and comprehensible
API will support developers to create these features for NESTML. Also, the code base of
simulators is likely to change over time, hence the code generator of NESTML needs to
cope with those changes.

NF03 NESTML should be easy to maintain.

In the scope of this thesis, only the most important concepts of neuron models will
be implemented. More concepts and features are planned for the future. Therefore,
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extensibility is an important design goal.

NF04 NESTML should designed to be easy extendable.

NF04.1 NESTML should be extendable to model more detailed neuron models, e.g.
multi-compartment neurons.

Several methods to advance the neuron dynamics in time are known and used in com-
putational neuroscience. The dynamics could be expressed by advancing the neu-
ron state by one simulation time step or by the minimum delay over all synapses
[Han+10a]. The dynamics can even be modeled as an event based system, where
incoming spikes or currents are processed individually. In the scope of this thesis only
the first of these dynamics will be considered, but extendibility for the others would be
desirable.

NF04.2 NESTML should be extendable to model different types of neuron dynamics.

Many neuron models are described in terms of ODEs and solving ODEs can be very
difficult. The ability to model neurons with ODEs and defer their solving to an ODE
solver of the target simulator makes formulating neuron models easier.

NF04.3 NESTML should be extendable to model neurons in terms of ordinary differen-
tial equations (ODE).

A neuron model should be specified only once in NESTML. From these models the code
for a neuronal network simulator should be generated. NESTML’s processing tool should
support code generation for different simulators eventually, so that the same neuron
model can be simulated with those simulators. This would allow to reproduce and verify
scientific findings across simulators.

NF05 A NESTML model should be used to generate simulator specific code, that repre-
sents this neuron model in the simulator.

NESTML should only generate code for programmatically correct models and issues
that could lead to compilation errors in the generated code should already be caught
by context conditions of NESTML.

NF06 Generated code should be programmatically correct.

Different simulators have different approaches to efficient code. Some may only need
fast code, some may have memory limitations and others may have constraints for
the code size. In either case, NESTML should allow to follow the simulator dependent
guidelines to generate efficient code for specific simulators.

NF07 Generated code should be efficient.

3.2 Functional Requirements

This section contains the functional requirements of NESTML and its processing tool.
They state, what NESTML shall allow to model (F01 – F14) and what code shall be
generated for the NEST simulator (F15 – F17).
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NESTML is a domain specific language (DSL) to model neurons. We decided to start with
modeling point neurons, since they represent the structurally simplest neuron models.
Extendibility for more complex models is stated in NF04.1.

F01 NESTML shall model point neurons.

During simulations of neuronal networks neurons get inputs and generate output. Based
on the input the internal state of a neuron changes over time, e.g. the membrane po-
tential increases or decreases upon incoming spikes from other neurons. The state of
a neuron needs to be modeled with NESTML.

F02 NESTML shall model the state of a neuron.

F02.1 The state of neurons shall be modeled as variables.

F03 NESTML shall model the state changes (dynamics) of a neuron.

A neuron has several attributes that do not change over time, but can vary from neu-
ron to neuron. Important for simulations could be individual size, resting potential or
spiking threshold of a neuron. We decided, that individual neuron should be parame-
terizable, to model this behavior.

F04 NESTML shall allow neurons to be parameterizable.

F04.1 The parameters of a neuron shall be modeled as variables.

F04.2 The parameters of a neuron shall have initial (default) values.

F04.3 The parameters of a neuron shall not be changeable during simulation.

Besides state and parameters, neuron models often need auxiliary and intermediate
values to advance the state. These could be values, that do not represent biophysical
properties of a neuron, but are needed in order to calculate the neuron dynamics.

F05 NESTML shall model internal variables for neurons.

Many attributes of a neuron have physical units, e.g. the membrane potential is mea-
sured in millivolt and the refractory time is measured in milliseconds. NESTML should
reflect this, by modeling physical units and allowing variables to be defined with these
units as data type.

F06 NESTML shall model physical units.

F07 Variables in NESTML shall be declared with an appropriate type.

Since variables in NESTML already have a fixed type, a strict type system helps to find
errors during static analysis and thereby assists developers in creating neuron models
with NESTML.

F08 NESTML shall have a strict type system.

In a neuronal network neurons can receive different types of input. This could be spikes
from other neurons or electrical currents from external devices. These inputs influence
the state of a neuron and are thus important, to express the neuron dynamics.

F09 NESTML shall model neurons with different types of inputs.
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Neurons exchange information by emitting spikes via their axon to the dendrites of
other neurons. Hence, the spike output needs to be modeled by NESTML.

F10 NESTML shall model neurons to allow output.

To model the neuron dynamics, function bodies (F12) or initial values of variables in a
detailed and structured way, NESTML should have a simple procedural language. This
language should allow expressing program flow and to model different dynamics and
functions. This includes (possibly infinite) looping, branching, mathematical expres-
sions and local variables. Furthermore, the language should have a clean and consis-
tent syntax that supports neuroscientists to be productive and only have a minimum
set of statement types consistent with NESTML.

F11 NESTML shall have a simple procedural language to model dynamics and functions.

F11.1 The simple procedural language shall allow to model all possible program flows.

F11.2 The simple procedural language shall have a minimum set of statement types.

F11.3 The simple procedural language shall have a readable and concise syntax.

F11.4 The simple procedural language shall be consistent with NESTML.

When certain, common functionality is grouped and can be reused by different neuron
models, the complexity to model a neuron can be reduced and neuron models po-
tentially have less errors. Therefore, NESTML should allow formulating functions and
modeling components, that contain domain-specific and often used functionality.

F12 NESTML shall allow to modularize functionality into functions.

F13 NESTML shall allow to modularize often used functionality into components.

Components and units can only be reused, if it is possible to refer to them in an unam-
biguous way. Therefore, neuron models, units and components should be organized in
a hierarchical way.

F14 NESTML shall organize neuron models, units and components in a hierarchical way.

The NESTML processing tool should generate code for different simulators from a neu-
ron model specification (NF05). The NEST simulator is chosen as the first supported
simulator, hence the following requirements concern the code generator for the NEST
simulator. On the one hand, a NESTML neuron model need be transformed into a NEST
neuron model. On the other hand, all auxiliary components and units that are used by
the NESTML neuron model need to be transformed into elements, that the NEST neuron
model can use.

F15 The NESTML processing tool shall generate neuron model code for the NEST simu-
lator.

F16 The NESTML processing tool shall generate all auxiliary components and units that
are used by a NESTML neuron model.

It shall be easy to integrate the generated neuron models into to NEST simulator, so the
NESTML processing tool has to generate all necessary code for NEST’s module infras-
tructure. This way the generated code can directly be compiled for NEST and included
as a dynamic library.

F17 The NESTML processing tool shall generate additional code for NEST’s module
infrastructure.
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Chapter 4

Design

This chapter describes the design of NESTML and its sub-languages. It describes the
purpose of each language, how they are composed and the meaning of the individual
elements of the languages. Section 4.1 covers the UnitDSL, which is used to model
physical units. In Section 4.2 a simple procedural language (SPL) is described. NESTML
and the composition of all languages are outlined in Section 4.3. Finally, Section 4.4
contains a detailed description of context conditions for the languages.

All languages inherit from a modified version of mc.literals.Literals. Listing B.1
shows the important parts of the nestml.literals.Literals grammar. This language
includes several literals for numbers, strings, booleans and identifiers. This allows a
notation of numbers and strings similar to Java, C/C++ or Python. Identifiers for vari-
ables, functions and types can contain any alphabetic letter, numbers, underscores
or dollar signs ($). The identifier are case-sensitive. Many languages use semicolons
as statement delimiter, but to reduce typing and provide a clean and concise syntax
(F11.3), NESTML should allow to end a statement with a line break. Since MontiCore
ignores all whitespaces by default, including line breaks, this behavior needs to be
changed. In addition, single-line comments represent a line break and thereby a state-
ment delimiter, but MontiCore skips those comments by default, too. By inheriting from
nestml.literals.Literals the tokens EOL and SL_COMMENT can be used as a delimiter
for statements.

The concrete syntax of NESTML, the UnitDSL and the SPL should be consistent across
the languages (NF01,F11.4), hence some general design choices are needed: Since
NESTML allows line breaks as statement delimiters, line breaks are statement delim-
iters for the UnitDSL and SPL, too. Requirement NF01 states, that the language should
be easy to learn. Since the Python language is widely used in the neuroscientific com-
munity, we decided to design the languages to use a syntax similar to Python’s. As
Python’s indentation syntax is inherently context-sensitive and MonitCore can only pro-
cess context-free languages, we choose to start continuous blocks of statements with
a colon, like in Python, and mark the end of blocks with the keyword end. Section 4.2
explains the context-sensitivity of Python in more detail.
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4.1 The UnitDSL

Requirement F06 states, that NESTML should model physical units, and that the at-
tributes of a neuron should be strictly typed (requirement F07). The size of a neuron is
better described with the unit µm than with a generic floating point type. The spiking
behavior involves the membrane potential in mV and the currents in pA that are gath-
ered from the dendrites and the soma. Different time constants in ms are needed for
the refractory behavior and the neuron dynamics.

One way to introduce units to NESTML would be, to implement a limited set of units
in the core language. This would prohibit the use of other units since it would require
a change to the language itself. A different approach is, to model physical units with
a dedicated domain specific language and use those units to describe neurons. Such
unit definitions can be grouped into a library and reused by future neuron models.
Therefore, we decided to create the UnitDSL as part of NESTML. This section describes
its syntax and gives a general definition of its semantics. The integration of the UnitDSL
is described in Section 4.3.

Basically, units consist of a name that identifies them, and a domain in which elements
of the unit reside. The domains in the UnitDSL are either the real numbers R, denoted
with the keyword Real, or the integer numbers Z, denoted with the keyword Integer. The
UnitDSL extends this definition, by adding a range for a unit. This can be useful: Not
only for physical units, but also allows to model primitive data types, like the unsigned
integers, or any mathematical set of numbers, like the natural numbers N. Variables,
which use such a unit type, can then be checked for correct values. In principle, ex-
pressions with variables of physical units can be checked for correctness with respect
to the resulting unit, but this is beyond the scope of this thesis.

The concrete syntax of the UnitDSL starts by declaring a package, using the command
package <name>, followed by a colon. Then the unit definitions are listed. A semicolon
or a line break can delimit them. If semicolons delimit multiple unit definitions, the def-
initions can be written in one line one after another. Finally, the keyword end completes
the package definition. Single-line comments start with a // and continue to the end of
the line and multi-line comments start with a /* and continue to the matching */. See
Listing 4.1 for a full UnitDSL example and Listing B.3 for the full UnitDSL grammar.

1 / / This is an example for the UnitDSL .
2 package example. units : / / the units are declared inside package example. units
3 / / One Volt V consits of 1000 mV
4 unit mV Real (−inf . . . inf ) ; / / declare the unit mV of domain Real with the
5 / / possible values between −in f inty and in f i n i t y
6 unit ms Integer (−inf . . . inf )
7 unit natural Integer [0 . . . inf ) / / declare the natural numbers of domain Integer
8 / / with possible values zero to in f i n i t y ( excluding )
9 /*

10 declare a special unit of domain Real with values in
11 { x ∈ R | − 0.01 < x ≤ 1.5 ∗ 1013 }
12 */
13 unit special Real (−0.01 . . . 1.5e13]
14 end

Listing 4.1: Example units for the UnitDSL.
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Listing 4.2 shows the MontiCore production, with which a single unit can be described.
A unit definition starts with the keyword unit and is followed by its base name – its
simple name. Next, the domain of the unit is specified as either Integer or Real. The
range of the unit is described in mathematical notation: parenthesis denote, that the
left or right value is not included in the range. Square brackets denote, that the left
or right value is included in the range. The left and right values denote the lower
and upper bound of the range. The values can either be a numeric literal or infinity,
denoted by −inf or inf for plus or minus infinity. The three dots indicate the numbers
between the borders in the given domain. Hence, a unit can directly be translated
into a mathematical set, e.g. the unit special from Listing 4.1 corresponds to the set
{ x ∈ R | − 0.01 < x ≤ 1.5 ∗ 1013 }. The full-qualified name of a unit is the simple name
prepended with its package name, e.g. example.units.mV.

1 Unit = " unit " unitName:Name
2 ( [ real : "Real" ] | [ integer : " Integer " ] ) / / domain
3 ( [ lef t Inc lus ive : " [ " ] | [ leftExclusive : " ( " ] ) / / l e f t delimiter
4 (from: SignedNumericLiteral | [ fromInf : "−in f " ] ) / / lower bound
5 " . . . "
6 ( to : SignedNumericLiteral | [ toInf : " in f " ] ) / / upper bound
7 ( [ r ightInclusive : " ] " ] | [ rightExclusive : " ) " ] ) ; / / r ight delimiter

Listing 4.2: The MontiCore production to describe a single unit with the UnitDSL.

Listing 4.2 specifies the abstract syntax of a single unit. As described in Section 2.5.1,
productions in the grammar result in generation of corresponding abstract syntax tree
(AST) classes and to keep the API flat, we decided to not divide the production like in
Listing 2.1. Hence, the class ASTUnit corresponds to the Unit production and has the
following member variables: The string unitName contains the base name of a unit.
The boolean variables real and integer state, whether the unit has an integer or a
real domain. The boolean variables leftInclusive, leftExclusive, rightInclusive,
rightExclusive state, whether the range is delimited by inclusive or exclusive braces.
The boolean variables fromInf and toInf state, if the lower or upper bound is infinity.
Otherwise the variables from and to contain the lower or upper bound of the range.

1 UnitLine = Unit (options {greedy=true ;}: " ; " Unit )* ( " ; " )? ;

Listing 4.3: The MontiCore production to describe a single line of unit definitions.

As stated above, multiple unit definitions can be written in one line, if semicolons de-
limit them. Listing 4.3 shows the responsible production UnitLine. The corresponding
AST class ASTUnitLine solely contains the member variable unit, which basically is a
list of ASTUnit objects.

end inf Integer package Real unit

Table 4.1: The reserved keywords of the UnitDSL.

4.2 A Simple Procedural Language

NESTML needs a way to define the dynamics of a neuron. Requirement F11 states, that
a procedural language would be an appropriate approach, enabling a fine-grain control
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over the neuron dynamics. MontiCore contains a complete DSL for Java, but require-
ment NF01 points out, that the language should be easy to learn for neurosientists.
Since the Python language is widely used in this community, it is likely, that neurosci-
entist will adopt a language similar to Python faster than a language similar to Java.
Hence, we decided to create a simple procedural language (SPL) with a syntax similar
to Python’s.

Lexers and parsers created with MontiCore can only process context-free languages
(see Section 2.5), and the Python syntax is inherently context-sensitive: On the one
hand, a continuous block of code is identified by the same level of indentation. This
requires the lexer to know which is the current level of indentation and how deep pre-
vious indentations are. Listing 4.4 shows an example, that highlights this behavior: the
print i in line 4 belongs to the body of the inner for-loop and the final print belongs
to the body of the outer loop, since its indentation lines up with the start of the block
of the outer loop in line 2. On the other hand, Python ignores indentation inside round,
square and curly braces [RD11]. To make the syntax context-free and keep similarity
with Python, a continuous block of code starts with a colon, but ends with the keyword
end.

1 for i in x:
2 for j in y: # start of outer loop code block
3 print j # belongs to inner loop
4 print i # belongs to inner loop
5 print # belongs to outer loop

Listing 4.4: Different level of indentation for Python.

The concrete syntax of SPL essentially is a sequence of statements, which either can be
simple statements, which span only one line, or statements that influence the control
flow, possibly spanning multiple lines. Multiple simple statements can be written in one
line, if a semicolon separates them. A line break or a single-line comment can be used
as a delimiter of simple statements, too. Simple statements include variable declara-
tion, variable assignment, function calls and return statements. The control flow can
be influenced with if-branching and for- and while-loops. The syntax and semantics
of these statements will be described in the rest of this section and Listing B.4 contains
the complete grammar definition for SPL.

In several statements of the SPL mathematical and logical expressions can be used. Be-
fore discussing those statements, these expressions will be explained. Most of Pythons
operators are also available in SPL. The operator // is omitted due to simplicity. All
operators that work with lists, tuples or dictionaries are omitted, since no such data
types are present in SPL.

The binary operators +, −, ∗ and / represent ordinary addition, subtraction, multipli-
cation and division on numeric types The division operator performs integer division
only if both operands are integer types. The expression a ∗ ∗b rises a to the power of
b: ab. Strings are concatenated with other strings, numbers or boolean values with +.
The unary and prefix operators − and + can be used on any number value, variable
of numeric type or bracket term. The − sign negates the associated expression, but
the + sign has no impact on the expression. Successive unary + and − signes are not
allowed.

The following operators only work on integer expressions and are added for complete-
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ness: The binary operators |, & and ^ represent the bitwise OR, XOR and AND, re-
spectively. The bitwise left and right shift is done with the operators << and >>. The
modulo operator % computes the remainder of an integer division. The unary, prefix
operator ~ inverts every bit of the associated integer expression.

Numeric expressions can be compared with the typical binary operators <, <=, >, >=,
==, ! = and <> and result in a boolean value. In contrast to Python and for simplicity
multiple comparisons can not be lined one after another. One of the boolean operators
and or or is needed between two boolean expressions. The unary, prefix operator not

can be used to negate a boolean expression. The operator precedence is given in
Table 4.2. It is important to note, that expressions can not span multiple lines, since
the line break is a delimiter for statements. Every expression can be surrounded by
parenthesis to specify a non-default evaluation order.

Operators Description

or Boolean OR
and Boolean AND
not Boolean NOT (unary, prefix)

<, <=, >, >=, ==, !=, <> Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND

<<, >> Shifts
+, − Addition and subtraction

*, /, % Multiplication, division, remainder
+, −, ~ Positive, negative, bitwise NOT (unary, prefix)

** Exponentiation

Table 4.2: The operator precedence in SPL from lowest precedence (least binding) to
highest precedence (most binding). Operators in the same box have the same prece-
dence and are evaluated from left to right, except for exponentiation, which groups
from right to left.

1 AND_Expr = SHIFT_Expr ( "&" SHIFT_Expr ) * ; / / sh i f ts are more binding than bitwise AND,
2 / / hence AND_Expr has a l i s t of SHIFT_Expr
3 SHIFT_Expr = ARITH_Expr (SHIFT_ExprEnd )* ;
4 SHIFT_ExprEnd = sign : [ "<<" | ">>" ] ARITH_Expr ; / / d i f ferent iate the sign of every
5 / / subsequent operand

Listing 4.5: Example operator productions of SPL.

The abstract syntax for mathematical and logical expressions is very similar for all op-
erators. The operator precedence is reflected in the abstract syntax, which on the one
side makes the AST rather deep and on the other side simplifies the evaluation of cer-
tain context conditions, e.g. type evaluations of expressions. Listing 4.5 shows the
productions for the shift operators and for the boolean operator AND (&) as examples.
If there is only one operator in a row of Table 4.2, like for example the bitwise AND,
the corresponding production does not need to differentiate operators. Hence, the cor-
responding AST class only has a list containing the next stronger binding precedence
production, e.g. the AST class ASTAND_Expr for the production AND_Expr (line 1 in List-
ing 4.5) has a list containing ASTShift_Expr objects, which correspond to the SHIFT_Expr
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production. If there are two or more operators in a row of Table 4.2, like the shift opera-
tors, the production of that precedence has to differentiate between the operators. The
AST class for the production SHIFT_Expr (line 3) (ASTSHIFT_Expr) has a member variable
containing the AST class of the next stronger binding precedence production ARITH_Expr

(ASTARITH_Expr) – representing the first element of a shift expression –, and a list of
ASTSHIFT_ExprEnd objects, which correspond to the SHIFT_ExprEnd production (line 4) and
differentiates the corresponding left and right shift operator.

The concrete syntax of SPL contains two alternatives to declare variables: With and
without an initial assignment of an expression. According to requirement F07, the dec-
laration of variables involves a type. In contrast to many popular programming lan-
guages, we decided that the type is written after the variable name. This resembles
the way, how units are written in physics: first the value or variable and then the unit.
SPL itself does not allow to create new types, so some are predefined: the type real
represents floating point numbers and integer represents integer numbers. The type
boolean represent the boolean values true and false. Finally, the type string represents
string values. It is possible, to declare more than one variable of the same type in one
variable declaration by separating the variable names with comma. If a declaration
with multiple variables has an initial assignment, all variables are assigned the result
of the expression. If the declaration does not have an assignment, the variable has a
default value depending on its type: Zero for numeric types, the empty string for string
and true for boolean. This eliminates the need for a generic null value for uninitialized
variables and keeps unassigned variables in a deterministic state.

1 / / a declaration can declare one or more variables , that are represented with
2 / / the l i s t vars , the variables have a type and an optional expression assigned
3 Declaration = vars :Name ( " , " vars :Name)* type :DottedName ( "=" Expr )? ;
4
5 / / an assignment assignes a expression to a variable
6 / / which is represented by the dotted name
7 Assignment = DottedName "=" Expr ;

Listing 4.6: SPL production for variable declaration and assignment.

After the variable is declared it can be (re)assigned or used in expressions. Listing 4.6
shows the production for variable declarations and variable assignments in SPL and
Listing 4.7 shows examples for variable declarations and assignments. The type of the
expression of an assignment must match the type of the assignee variable.

1 foo real = −4.34e12 / / variable foo of type real with i n i t i a l value −4.34e12
2 x , y , z integer / / three integer variables with i n i t i a l value 0
3 bar string = "Hello , world ! " / / variable bar of type string
4 b boolean = true / / variable b of type boolean
5
6 / / assign x , y and z
7 x = 1 << 5; y = x ^ 0xFF / / x equals 0x20 or 32, y equals 0xDF or 223
8 z = y + 1 / / z equals 0xE0 or 224
9

10 / / function ca l l demonstrating string concatenation and mathematical expressions
11 print ( " result : " + (2 + 3 − 4 * 5 / 6. ** −random( ) ) * 0x23)

Listing 4.7: Example of variable declarations and variable assignments.

In SPL functions can be called in expressions and as a simple statements. SPL itself
does not allow creating new functions, but some functions are predefined in a standard

36



library. In the last line of Listing 4.7 an example of function calls as a simple statement
is given: first the name of the function is stated, then, in parenthesis, the arguments are
given to the function. If a function needs more than one argument, they are separated
by comma. The types of the arguments have to match the types of the function param-
eters. SPL contains the return statement, since requirement F12 states, that NESTML
should have functions. The return statement returns the result of an expression from a
function.

Branching uses an if-statement similar to Python’s: it starts with an if-statement, fol-
lowed by a boolean test and, after the colon, the corresponding block of statements.
The code block for the if-branch is followed by zero or more elif-clauses with own tests
and blocks. An optional else-clause finishes the if-statement. See Listing 4.8 for an
exemplary if-statement in SPL and Listing 4.9 for the corresponding if-statement in C.

1 i f <Test1>:
2 <Block1>
3 elif <Test2>:
4 <Block2>
5 else :
6 <Block3>
7 end

Listing 4.8: Exemplary if-statement in
SPL.

1 i f (<Test1>) {
2 <Block1>
3 } else i f (<Test2>) {
4 <Block2>
5 } else {
6 <Block3>
7 }

Listing 4.9: Corresponding if-
statement in C.

Looping is possible using either a while loop, that loops until its test becomes false,
or a for-loop. Listing 4.10 gives an exemplary while-loop and Listing 4.11 gives the
Corresponding while-statement in C.

1 while <Test>:
2 <Block>
3 end

Listing 4.10: Exemplary while-loop in
SPL.

1 while (<Test>) {
2 <Block>
3 }

Listing 4.11: Corresponding while-
statement in C.

1 for <Variable−Name> in <Start−Value> . . . <End−Value> [step <Step−Value>]:
2 <Block>
3 end

Listing 4.12: Exemplary for-loop in SPL.

1 for ( <Variable−Name> = <Start−Value>; / / the variable needs to be defined beforhand
2 <Variable−Name> < <End−Value>; / / i f the given step−value is negative , then
3 / / <Variable−Name> > <End−Value> is checked
4 <Variable−Name> += <Step−Value>) / / default step−value is 1
5 {
6 <Block>
7 }

Listing 4.13: Corresponding for-loop in C.

The concrete syntax of the for-loop diverges from the Python syntax, since SPL does
not contain support for collections so far. Listing 4.12 contains an exemplary for-loop:
After the keyword for follows the variable name, over which this loop iterates. This
variable needs to be defined previously. The keyword in starts the definition of a range,
similar to the UnitDSL, see Section 4.1, except that the Start-Value and End-Value can
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contain arbitrary numeric expressions. The Step-Value after the keyword step contains
a numeric value, which is added to the iteration-variable after every loop. If the step
value is omitted a default value of one is assumed. The for-loop starts by assigning the
start value to the iteration variable. In every loop it first checks, whether the iteration
variable is smaller than the end value, then it executes its block and, finally, it adds the
step value to the iteration variable. If the step value is negative, it checks, whether the
iteration variable is greater than the end value. Listing 4.13 shows the corresponding
for-loop in C for the for-loop in SPL in Listing 4.12.

Every new block in an if-statement, while-statement or for-statement resembles a new
scope for variable definitions. This means, that variables defined inside a scope are
only visible inside that scope and scopes defined inside this scope. If variables with
the same name are defined in surrounding scopes, these variables are hidden by the
variables in the inner scope. Listing 4.14 illustrates this behavior.

1 x real = 0.5 / / f i r s t declaration of x
2 i f x > 0: / / start a new scope
3 x integer = 3 / / Ok! The integer−x hides the real−x from the outer scope!
4 x string = "Hello " / / Error ! integer−x and string−x are both in the same scope!
5 end

Listing 4.14: Scoping in SPL.

and elif else end for if in not or return step while

Table 4.3: The reserved keywords of the SPL.

4.3 NESTML

NESTML is a language specifically designed for the neuroscience domain. It describes
neuron models very clearly and expressive (requirement NF01) and have models that
are detailed enough, so that those neuron models can be used to generate code for
simulators (requirement NF05). In this section the design, composition and semantics
of NESTML and its elements is described in detail. Listing B.6 contains the full grammar
for NESTML.

NESTML is a composition of the above-described languages. Just like the UnitDSL and
SPL it extends the nestml.literals.Literals, so that it has access to the same com-
mon literals and has the same single-line and multi-line comments:

• Single-line comments start with a // and continue to the end of the line.

• multi-line comments start with a /* and continue to the matching */.

To define new units directly in a NESTML file, NESTML embeds the UnitLine production
from the UnitDSL. From SPL it embeds the Block production, that is used for the blocks
in function declarations and the dynamics declaration, and the Declaration production,
that is used in the state, parameter and internal variable blocks to declare variables of
the neuron or component. Figure 4.1 illustrates this composition.
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nestml.literals.Literals

nestml.unit.Unit nestml.spl.SPL

nestml.NESTML
UnitLine BlockDeclaration

CD

Figure 4.1: The composition of NESTML.

In the following the concrete and abstract syntax of NESTML is described and the se-
menatics of individual elements is outlined. A NESTML file starts with the definition of a
package name, e.g. package <name>:, and conclude with the keyword end. The package
name is a dot separated series of names like models.iaf.leaky and all package names
are possible, except for the packages starting with nestml, which are reserved for pre-
defined types. Types defined inside a package definition all belong to that package
and their full-qualified name is composed of their base name prefixed with the package
name, e.g. let the neuron iaf_neuron be defined inside the package models.iaf and
then its full-qualified name would be models.iaf.iaf_neuron. A package definition can
contain any number of import statements, unit, neuron and component definitions. New
units can be defined as described in Section 4.1, see line 5 in Listing 4.18. Listing 4.15
shows the general structure of a NESTML file.

1 package <pname>: / / define the package
2 <import−statements> / / import any number of types
3 <unit−definit ions> / / declare any number of new units
4 <component−definit ions> / / declare any number of new components
5 <neuron−definit ions> / / declare any number of new neurons
6 end

Listing 4.15: General structure of a NESTML file.

The import statements allows to imported unit names and component names from other
packages. This way their base name can be used in the definition of neurons and
components within this package. Either all names from one package can be imported
by putting a star at the end of the package name or exactly one base name from a type
can be imported by using its full-qualified name. See Listing 4.16 for import examples.

1 import units . unitless .* / / a l l names from package unit . unit less can be used
2 / / now, l ike ’ real ’ and ’ integer ’
3 import nestml . Logger / / now the name ’Logger ’ can be used , to access the
4 / / component nestml . Logger

Listing 4.16: Import examples for NESTML.

A component contains a related set of functions and variables that can be reused in the
definition of neuron models (requirement F13). A component definition starts with the
keyword component and the name of the component. Then the body of the component
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definition is opened with a colon and eventually closed with the keyword end. Similar to
the component definition, the definition of a neuron starts with the keyword neuron and
the name of the neuron. Its body is opened with a colon and eventually closed with the
keyword end. Listing 4.17 shows the basic productions that are responsible for neuron
and component definitions. The body elements are variable blocks, input declarations,
output declarations, dynamics declarations, function declarations and use declarations.

1 Neuron = "neuron" Name Body; / / neurons and components both have an identifying
2 Component = "component" Name Body; / / name and a body with basical ly the same elements
3
4 interface BodyElement; / / a l l elements in the body extend the BodyElement
5 / / The body starts with a colon , can have multiple empty lines , l ine breaks and
6 / / body elements and is finished with the keyword end
7 / Body = " : " ( SL_COMMENT! | EOL! | BodyElement)* "end" ;

Listing 4.17: The productions for neurons and components in NESTML.

There are three different kind variable blocks: state, parameter and internal. Every
neuron and component is allowed to have at most one state-variables block, one pa-
rameter-variables block and one internal-variables block. A variable block starts with
one of the keywords state, parameter or internal and starts a block of AliasDeclarations
with colon and ends it with the keyword end.

1 package samplePackage: / / the package def in it ion : package name is samplePackage
2
3 import units . time .* / / import the units from package units . time (e .g. ms)
4
5 unit mV Real (−inf . . . inf ) / / declare the unit mV next to the neuron def in it ion
6
7 neuron SampleNeuron1: / / start neuron definit ion , f u l l name of neuron is
8 / / samplePackage.SampleNeuron1
9 state : / / start block with state variables

10 V_m mV / / declare the membrane potential V_m as state variable
11 / / of type mV ( mi l l i vo l t )
12 alias foo mV = 3 * V_m / / a l ias variable , that always returns three times
13 / / the membrane potential
14 end / / end of state variables block
15
16 parameter: / / start block with parameter variables
17 V_th mV = −55.0 / / declare membrane threshold V_th as parameter
18 end / / end of parameter variables block
19
20 internal : / / start block with internal variables
21 h ms = Time. resolution ( ) / / declare variable h as the simulation time resolution
22 end / / end of internal variables block
23
24 output : spike / / declare , that this neuron emits spikes
25
26 input : / / start input block
27 inhSpikes <− inhibitory spike / / the buffer inhSpikes receives inhibitory spikes
28 excSpikes <− excitatory spike / / the buffer excSpikes receives excitatory spikes
29 end / / end of input block
30 end / / end of neuron def in it ion
31 end / / end of package

Listing 4.18: Example neuron in NESTML with state, parameter and internal variables,
in- and outputs.

The AliasDeclarations in these blocks are similar to variable declarations in SPL (Sec-
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tion 4.2). Variables can have the following types: nestml.boolean, nestml.string or
any unit. In addition to declarations in SPL it is possible, to precede the declaration
of one variable with the keyword alias. This variable becomes an alternative handle
to its assigned expression and every use of the variable involves that expression to be
evaluated. Alias variables can be useful to express, that this variable is always depend-
ing on the other variables in its expression. Declarations of regular variables and alias
variables can be seen in Listing 4.18.

The variables declared in the state-variables block represent the time dependent state
of a neuron or a component, i.e. those variables are supposed to change over the
time of the simulation (requirement F02). Hence, they are the most interesting values
of a neuron model to observe for a neuroscientist. A prominent example would be the
membrane potential of a neuron which should be modeled as a state variable. Every at-
tribute of a neuron or component, that does not change over time, but can vary among
neurons, should be modeled as a variable in the parameter-variable block (requirement
F04). Examples for neuron parameters would be its refractory time, its spiking thresh-
old or its size. If the neuron or component needs some precalculated values or some
aspect of the model does not fit into either state or parameter, it should be modeled as
an internal variable (requirement F05). Parameter and internal variables are not sup-
posed to change during simulation (requirement F04.3) and they are supposed to have
an initial value. If no initial value is given the default value for the variable type is as-
signed. Listing 4.18 is the definition of a sample neuron in NESTML. This sample neuron
contains state, parameter and internal variables and shows the concepts of package
definition (line 1), import statements (line 3).

A neuron definition is allowed to have a single block of input declarations (requirement
F09). It starts with the keyword input that is followed by a colon. Then several inputs
can be declared. The block is finished with the keyword end. An input declaration starts
with the name for a buffer that should receive the specified input. The input type can
either be spikes or currents, which is denoted with the keywords spike and current. Spike
input can further be specified to be inhibitory, excitatory or both, which is indicated by
the keywords inhibitory and excitatory in front of the keyword spike. If both or no spike
type is mentioned the buffer receives inhibitory and excitatory spikes. The left arrow <-
indicates that the input type specified on its right side should go into the buffer on its
left side. An example input block is given in Listing 4.18 lines 26 – 29. The production
for individual input declarations is shown in Listing 4.19.

1 InputLine = Name "<−" / / the buffer name
2 InputType* / / zero or more spike types
3 ( [ spike : "spike" ] | [ current : "current" ] ) ; / / either spike or current input
4
5 / / spikes can either be inhibitory or excitatory
6 InputType = ([ inh : " inhibitory " ] | [ exc : "excitatory " ] ) ;

Listing 4.19: The productions to declare a single input.

The output definition of a neuron (requirement F10) starts with the keyword output that
is followed by a colon. Then the type of the output is stated: NESTML supports spike
output, denoted by the keyword spike, and current output, denoted by the keyword
current. Listing 4.18 line 24 shows the definition of spike output.

With the possibility to define functions, requirement F12 is implemented. The concrete
syntax of a function starts with the keyword function and then the function name is
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stated. After that a list of zero or more function parameters can be named. Just like
declaring a variable, a parameter is declared by first stating its name and then its type.
Multiple parameters are separated by comma. Behind the parameter list an optional
return type can be defined. Finally, the function body is introduced by a colon and
completed with the keyword end. The code inside the function body is a block of SPL
code. Listing 4.20 shows the productions responsible for defining functions.

1 Function implements BodyElement = " function" Name / / define function name
2 " ( " Parameters? " ) " / / optional l i s t of parameters
3 ( returnType :DottedName)? / / optional return type
4 " : " Block "end" ; / / function body is an SPL code block
5 Parameters = Parameter ( " , " Parameter ) * ; / / one or more parameters
6 Parameter = Name type :DottedName; / / a parameter has a name and atype

Listing 4.20: The productions to define a function in NESTML.

Functions resemble a reusable chunk of code. They can be called in SPL code as a
separate simple statement or inside an expression, like in Listing 4.7. The block of SPL
code forms a new scope for local variable definitions. The stated parameters count as
variables inside that scope, so no local variables with the same name as a parameter is
allowed inside the top-most scope of a function. The type of the result from a function
is determined with its return type. If the return type is omitted, the function does not
return a value, i.e. its return type is the predefined type nestml.void. To return the
result from a function, the return-statement of SPL has to be used.

1 / / previously import the type units . unitless . integer
2 function f ib (n integer ) integer : / / function takes an integer and returns an integer
3 i f n == 0: / / calculate fibunacci number n in function body
4 return 0 / / possibly several return statements
5 elif n == 1:
6 return 1
7 else :
8 return f ib (n − 1) + f ib (n − 2) / / == f ib (n)
9 end

10 end

Listing 4.21: The Fibonacci function in NESTML.

The dynamics definition of a neuron is similar to a function (requirement F03). The
definition starts with the keyword dynamics. Then the type of dynamic is specified,
which can either be timestep or minDelay. Afterwards a list of parameters surrounded
by parentheses can be defined. Finally, a block of SPL code, bounded by a colon and the
keyword end, describes the neuron dynamics. Listing 4.22 shows an example timestep
dynamics.

1 dynamics timestep ( t units . time .ms) : / / start dynamics def in it ion
2 <SPL−code> / / any block of SPL code
3 end / / end of dynamics def in it ion

Listing 4.22: Exemplary timestep dynamics in NESTML.

If the timestep dynamics is specified, the parameter list only contains a single param-
eter of type units.time.ms. The execution of the timestep dynamics should advance the
state of the neuron by one simulation timestep to the current simulation time, which is
provided by that parameter. The minDelay dynamics is an exemplary extension point
for future dynamics descriptions (requirement NF04.2) and is not completely defined
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yet. The execution of the minDelay dynamics should advance the state of the neuron
by the minimum delay of all synapses to the current simulation time.

The purpose of components is to modularize functionality (requirement F13), so they
can contain associated functions and variables. Neurons and other components can
use them in two ways. Every component has a single, global instance. This instance
can be referenced with its (full-qualified) type name. Its functions and variables can be
used with the well-known dot-syntax, e.g. Math.sin(0) or Logger.info("Hello."). This
is useful for components that do not carry any state and supply auxiliary functions, like
mathematical or I/O functions.

1 use sample .RefractoryComponent as refr

Listing 4.23: Use-statement in NESTML.

If components contain mutable state that should be different for every neuron, a neuron
or component can use an own instance of that component by stating an appropriate
use-statement inside its definition. The statement starts with the keyword use and
then the name of the component is stated. After that, the keyword as is followed by the
referencing name. Listing 4.23 shows a full use-statement, in which an instance of the
component sample.RefractoryComponent is referenced by the name ref. Functions and
variables of that component can be used with the dot-syntax.

Finally the keyword structure is reserved for future extensions to declare the structure
of a multi-compartment neuron (requirement NF04.1).

alias and as component current dynamics elif
else end excitatory for function if import
in inf inhibitory input Integer internal minDelay

neuron not or output package parameter Real
return spike state step structure timestep unit

use while

Table 4.4: The reserved keywords of NESTML.

4.4 Context Conditions

The following sections list and describe the context conditions for the UnitDSL, the SPL
and NESTML. Since NESTML is a composition of those languages, the context conditions
of the UnitDSL and the SPL are valid for NESTML as well.

4.4.1 UnitDSL Context Conditions

The context conditions for the UnitDSL make sure, that no duplicate units are defined
(U01) and that the range of a unit is valid and non-empty (U06 – U06). The severity
level of all these context conditions is error.

U01 No two units with the same full-qualified names are allowed, i.e. within one pack-
age every unit has to have its distinct name.
Severity: error
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U02 Infinity can never be included in a range, because it is not part of the real or
integer domain. This applies for both the lower and the upper bound. Hence,
ranges like [−inf ... inf] and every variation with only one infinity included are not
allowed.
Severity: error

U03 Units with integer domain can only have integer values in their range. A real
value can never be in the range of an integer unit. This forbids a unit-definition
like: unit foobar Integer (1.3 ... 5e3].
Severity: error

U04 The lower bound of a range must be smaller or equal to its upper bound, otherwise
the range would be empty. This forbids a unit-definition like:
unit empty Real (10.5e3 ... −2.4].
Severity: error

U05 If the lower and the upper bound of the range are equal, both braces need to be
including, otherwise the range would be empty. This forbids a unit-definition like:
unit empty Integer (1 ... 1].
Severity: error

U06 If the upper bound of an integer unit is greater by only one, then at least one of
the braces has to be including, otherwise the range would be empty. This forbids
a unit-definition like: unit empty Integer (0 ... 1).
Severity: error

4.4.2 SPL Context Conditions

The context conditions of the SPL make sure, that variables are declared correctly be-
fore they are used (S01 – S03), that functions are present (S04), that the types of
expressions match the variable types in assignments and parameter types in function
calls (S05, S06). They check that operators in expressions work with correctly typed
operands and that all other statements are type-correct (S07 - S14). All context condi-
tions have severity level error.

The blocks in if-/ elif-/ else-statement, while-statement and for-statement each intro-
duce a new scope. The variables of an outer scope are hidden by variables in an inner
scope with the same name.

S01 Variables with the same name can be declared only once in every scope.
Severity: error

S02 It is not allowed to use or assign variables, that are not declared, since SPL is
statically typed and the type of an undeclared variable is unknown.
Severity: error

S03 The declaration of a variable must be prior to its first use or reassignment. This
includes, that a variable can not be used in its initial assignment in the declara-
tion.
Severity: error
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Identifying properties of a function in SPL are both its full-qualified name and the num-
ber of its parameters. Other GPLs have stricter rules, e.g. C does not allow two func-
tions with the same name, and others allow more ways to overload functions by in-
cluding parameter types as an identifying property. The way SPL identifies functions is
sufficient for most standard situations, helps to understand the control flow, since ar-
gument and parameter types need not be compared, and reduces the resolving effort.

S04 Functions that are called in an SPL program need to be defined.
Severity: error

The type of a mathematical expression can either be integer or real and the type of
a logical expression is boolean. String concatenation has the type string. The types
of a variable and an expression match, if they are the same or if the expression type
can be converted into the variable type without loss of information. This conversion is
only possible from an integer expression to a real variable, since the value set of real
numbers is (theoretically) a superset of the integer numbers.

S05 In an assignment the type of the expression must match the type of the variable
that gets assigned.
Severity: error

S06 When a function is called, the types of the arguments must match the types of
the function parameters.
Severity: error

The SPL grammar allows to put any number of +, − and ~ signs in front of a factor,
like ~−x. Multiple occurrences of one type of symbol or simultaneous presence of plus
and minus in front of a factor does not increase expressiveness of the language, but
decreases readability.

S07 Factors are allowed to have at most one occurrence of any +, − and ~ sign. Si-
multaneous presence of plus and minus is forbidden.
Severity: error

S08 The unary operator ~, the binary operators |, ^, &, <<, >> and % only allow
operands of type integer.
Severity: error

S09 The unary operator not, the binary operators or and and only allow operands of
type boolean.
Severity: error

If an expression contains a string expression or some string concatenation, the type of
the whole expression is string. A string can be concatenated to string expressions, to
numeric expressions or to boolean expressions with the + sign. Other string operations
are not provided.

S10 Concatenation of a string with something different than a string expression, nu-
meric expression or boolean expression is not allowed.
Severity: error
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S11 Other operators than the + sign can not be used with a string expression as
operand, e.g. "Hello"* 5 is not permitted.
Severity: error

S12 The type of the test in an if-, elif- and while-statement must be of type boolean.
Severity: error

S13 The variable in a for-loop statement must be of type real or integer.
Severity: error

S14 The type of the start and end expression and the step value in a for-loop must
match the variable type.
Severity: error

4.4.3 NESTML Context Conditions

This section contains the NESTML specific context conditions. Since NESTML is com-
posed of the UnitDSL and SPL, the context conditions of them are valid for NESTML,
too.

N01 The package nestml is reserved for predefined units and components and is im-
ported automatically in every NESTML model. Users can not name their packages
nestml, so that types defined inside their package do not get imported uninten-
tionally in other models.
Severity: error

N02 The qualified name in an import statement must be a valid package or type name.
Severity: error

N03 Units, neurons and components can not have the same full-qualified name, since
they all are types in NESTML.
Severity: error

N04 There can be at most one state-variable-block, one parameter-variable-block, one
internal-variable-block and one structure definition in every component and neu-
ron.
Severity: error

N05 The parameter and internal variables are not supposed to change during simu-
lation time, so reassigning them outside their appropriate setter-function should
emit a warning.
Severity: warning

N06 State, parameter or internal variables of a component or neuron can not have
the same name, because they live in the same scope. Beside the scopes that are
spanned from SPL statements, new scopes are spanned from neuron, component,
dynamics and function definitions.
Severity: error

N07 Variables can not have the same name like a unit, neuron or component, whose
base name is visible in the same scope or some surrounding scope.
Severity: error
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N08 The declaration of a state, parameter or internal variable must be prior to its first
use in an assignment of other state, parameter or internal variables. This in-
cludes, that a variable can not be used in its initial assignment in the declaration.
Additionally, state, parameter or internal variable can only use variables from its
own variable block or from the parameter block.
Severity: error

N09 In the declaration of an alias variable, it is forbidden to declare more than one
variable. Those variables represent an alternative handle for the associated ex-
pression and multiple aliases for the same expression does not increase expres-
siveness or readability.
Severity: error

N10 All alias variables need a setter-function in the same neuron or component of
the form: function set_<variable−name>(x <variable−type>). This setter is internally
used, to handle assignments to these alias variable. Therefore, the setter-function
should manipulate the variables inside the alias expression, so that on the next
usage of that alias variable the assigned value is returned. Those functions can
not be anticipated, since the assigned expression can contain various variables
that might need to be assigned in the setter-function.
Severity: error

N11 Variables, alias variables, function parameters and function return types can only
have one of the following types: string, boolean or any unit. Neuron, component or
reference types are not allowed. They can only be used in a use statement.
Severity: error

N12 Components are not used as individual parts of a neuronal network and thus have
no output.
Severity: error

N13 Neurons can have at most one type of output. This can be either spike events or
current events.
Severity: error

N14 Neurons should have some output. If no output is defined, the neuron can not
contribute to its neuronal network.
Severity: warning

N15 Neurons should have at most one input statements with one or more declarations
of inputs. If no input is defined, the neuron can not receive events from the
neuronal network.
Severity: warning

N16 Components are not used as individual parts of a neuronal network and thus have
no input.
Severity: error

N17 When a use statement does not declare a new component, then the referenced
model must be a component. It is not allowed to reference a unit, a neuron or
another reference.
Severity: error
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N18 The buffer from an input statement can not be reassigned in any function. These
buffers can only be used, to get the input events of a specific time by invoking
the appropriate function.
Severity: error

N19 Functions inside a neuron or component are identified by their name and their
number of parameters. Functions with the same name and number of parameters
in the same neuron or component are not allowed. This makes function definitions
in NESTML consistent with function usage in SPL (S04).
Severity: error

N20 Components are not used as individual parts of a neuronal network and thus have
no dynamics function.
Severity: error

N21 Every neuron has exactly one dynamics function, that describes their simulation
behavior, i.e. how it they integrate their inputs and decide, whether an output is
emitted.
Severity: error

N22 The timestep variant of the dynamics function must have exactly one parameter
of type units.time.ms. This can be used inside the dynamics function to determine
the current simulation time in milliseconds.
Severity: error

N23 The parameter-variables of functions and dynamics belong to the outermost scope
of the associated SPL block and can not be hidden by local variables defined in
this scope. In deeper scopes of that block hiding is again possible (see context
condition S01).
Severity: error

The following context conditions are simulator dependent and are needed for correct
code generation. They are specified in terms of the NEST simulator. Generating code
for other simulators requires similar context conditions.

N24 If code for the NEST simulator should be generated, the following function names
are reserved, since they are internally used by NEST: update, calibrate, handle,
connect_sender, check_connection, get_status, set_status, init_state_, init_buffers_,
get_instance.
Severity: error

N25 If code for the NEST simulator should be generated, getter-function for every
state, parameter or internal variable are generated. Thus, functions of the form
get_<variable−type>() are not allowed.
Severity: error

N26 If code for the NEST simulator should be generated, setter-function for every non-
alias state, parameter or internal variable are generated. Thus, functions of the
form set_<variable−type>(x <variable−type>) are not allowed.
Severity: error
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Chapter 5

Implementation

This chapter covers the implementation of NESTML, SPL and UnitDSL. This part give an
overview over the implementation, while detailed aspects are illustrated in the subse-
quent sections: Section 5.1 shows the symbol table structure, its set-up and its usage.
Section 5.2 describes, how the type of an expression is calculated and how this type
can be used in context conditions. In Section 5.3 the code generation for the NEST
simulator is outlined.

Every language is developed in an own MontiCore project to separate concerns. The
project nestml-core contains the literals language and cross-project auxiliary classes.
Everything that concerns the UnitDSL and the SPL is located in the projects nestml-
unitFE and nestml-splFE, respectively. The Project nestmlFE contains the NESTML lan-
guage and the composition of the UnitDSL and the SPL into NESTML. Furthermore, the
project contains the code generation for the NEST simulator. A library for basic units
and predefined components is located in the project nestmlLib. The dependencies be-
tween the projects can be seen in Figure 5.1 with nestml-core as the basis and depend-
ing projects on top of it.

nestml-core
literals grammar; cross-project auxiliary classes

nestml-splFE
SPL grammar, CoCos, symbol table

nestmlFE
NESTML grammar, CoCos, symbol table

integration of SPL and UnitDSL; code generation

nestmlLib
predefined models for NESTML

nestml-unitFE
UnitDSL grammar, CoCos, symbol table

Figure 5.1: The dependencies between projects. The project nestml-core is the basis
and all further projects depend on it. The projects nestml-unitFE and nestml-splFE do
not overlap, but both are integrated into nestmlFE. The models in the project nestmlLib
are processed by the NESTMLTool in nestmlFE.
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All languages shall have some common syntax elements, e.g. line breaks can be used
as statement delimiter, continuous blocks of code are started with a colon and con-
cluded with the keyword end. This means that some predefined concepts of MontiCore
can not be used and have to be redesigned.

When line breaks can be used as statement delimiters, single-line comments represent
statement delimiters, too, because they continue until the end of the line. The pre-
defined behavior of MontiCore is to skip all white space, including line breaks, and all
comments. Hence, to disable this behavior and to enable line breaks and single-line
comments as statement delimiter, every language gets the options nows (no whites-
pace) and noslcomments (no single-line comments). The literals language contains the
new tokens EOL and SL_COMMENT that represent line breaks and single-line comment
and contains a WS token that makes sure, that all other white space will be skipped
as usual. For consistency, the delimiter for continuous blocks of code are represented
by the tokens BLOCK_OPEN and BLOCK_CLOSE. Listing 5.1 shows the productions for these
tokens.

1 token WS = ( ’ ’ | ’ \ t ’ | ’ \ f ’ )+
2 {_ttype = Token. SKIP ;}; / / change the token type to skip a l l those
3 / / white space
4 / / allow EOL to be a statement delimiter
5 token EOL = ( options {generateAmbigWarnings=false ;}:
6 " \ r \n" / / DOS
7 | ’ \ r ’ / / Macintosh
8 | ’ \n ’ / / Unix
9 ) { newline ( ) ; }; / / do not skip l ine breaks

10
11 token SL_COMMENT = " / / " (~( ’ \n ’ | ’ \ r ’ ) )* ( ’ \n ’ ! | ’ \ r ’ ! ( ’ \n ’ ! )?)?
12 { newline ( ) ; } / / do not skip l ine breaks
13 { / / omitted part , that l inks the comment to surrounding nodes
14 };
15
16 token BLOCK_OPEN = " : " ; / / token that starts a continuous block of code
17 token BLOCK_CLOSE = "end" ; / / token that concludes a continuous block of code

Listing 5.1: Tokens for white space, line breaks and single-line comments.

As a central point of entry, every set of modeling language based on a grammar has
a corresponding implementation of the class interfaces2.language.ModelingLanguage
that summarizes all relevant parts of that language. This class has all related workflows
of the language registered and it provides the related root class, root factory and file-
name extension. Additionally, it provides an individual LanguageComponent, which has
classes related to symbol table processing and context condition checking registered
to it. See Figure 5.2 as an example for this structure.

The DSLTool of each language implements a command-line interface for users of that
language. Therefore, it has a set of ModelingLanguages that defines, which languages
the tool can process – see language aggregation in Section 2.5.3. Additional classes
that are needed to glue the languages and symbol tables together are registered di-
rectly to the tool. Furthermore, the set of relevant context conditions are specified for
the tool. Finally, the parameter processing of the command-line interface is defined
inside the tool.

The context condition processing is done very similar in all languages and the follow-
ing names have a prefix according to the language. Special checker interfaces are
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defined inside a package checkers, e.g. nestml.ets.checkers for all NESTML checkers.
These interfaces contain a single check function for an appropriate AST node. In the
package cocos and its sub-packages reside all context conditions of a language. A con-
text condition that performs a check on a specific node, e.g. on ASTUnit, extends the
class ContextCondition and implements the appropriate interface, e.g. the interface
checkers.IUnitChecker.

A default set of context conditions for a specific language can be obtained from its
DefaultContextConditionCreator in the check package. In addition, the check package
contains the CheckVisitor that, upon creation, gets a set of context conditions and
sorts them according to their checker interface. Every time the context conditions
should be checked, it traverses every node of the AST and performs the check functions
of all relevant context conditions on that node. A CheckVisitor is registered to its
corresponding LanguageComponent and the context conditions are registered to the tool.
Figure 5.2 illustrates the relationships between the DSLTool, the ModelingLanguage, the
LanguageComponent and the context conditions using the example of the UnitDSL.

 
 

nestml.unit.
UnitTool

 
 

nestml.unit.ets.language.
UnitLanguage

 
 

nestml.unit.ets.language.
UnitLanguageComponent

Register 
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Figure 5.2: Overview of the relationships between the building blocks of a language
processing tool with the example of the UnitDSL.

While the previous packages contain grammars and classes to process different lan-
guages, the project nestmlLib is a library of predefined components and units that are
necessary for NESTML. The types nestml.string and nestml.boolean are provided to
represent string and boolean values. The package units.unitless contains the basic
types for integer and real numbers. Mathematical functions and constants are provided
via the component nestml.Math. The component nestml.Time contains time related
functions and constants that are important in the context of neuronal simulations. The
component nestml.Spiking contains functionality to emit spikes and the component
nestml.Buffer contains the types for input and functionality to process the received
spikes. The packages units.time and units.electric contain time and electric related
units.

The workflow nestml.workflows.AddImportsWorkflow adds import statements for the
packages nestml.* and units.unitless.*, if they are not already present, to make
sure that all basic types are always available with their base name.
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5.1 Symbol Table and Namespaces

The symbol tables of a programming language provide uniform access to all symbols of
some program. Those symbols are identified by their name within the namespace they
are defined in. MontiCore features a comprehensive framework for creating, processing
and serializing symbol tables and entries, and we decided to use as much as possible
of this framework. See Section 2.5.2 for more detailed information. Firstly, this section
gives an overview of the symbol table and namespace structure of NESTML and its
associated languages. Then it describes the different types of symbol table entries
and how they are exchanged among the languages. Finally, some conflicts with the
MontiCore symbol table framework, regarding the serialization of symbol tables and
the look-up of not yet parsed models, are addressed.

MontiCore has a concept called compilationunit that extends a DSL’s syntax with a
package definition and import statements similar to Java and simplifies symbol table
related tasks. We decided to use a different package declaration syntax in NESTML
(Section 4.1 and Section 4.3) and introduced the APackage-production in the literals
language as a common package production for the UnitDSL and NESTML. To conform to
the compilationunit concept, the package name and the list of import statements must
be set in the corresponding root object. A PackageNameWorkflow for each language sets
the package name and the AddImportsWorkflow sets the list of imports.

To implement the variable scoping of SPL and NESTML (Section 4.2 and Section 4.3) and
to organize neuron models, units and components in a hierarchical way (requirement
F14), some appropriate AST nodes are declared as namespace establishing nodes in
the corresponding LanguageComponent. The namespace of such a node contains the
symbol tables with the symbols that are defined in subsequent nodes. When a symbol
should be looked-up, the designated resolvers first check the current namespace for a
matching name. If non is found, they look in the parent namespaces, until the topmost
namespace is reached.

Each namespace in MontiCore contains four types of symbol tables [Völ11], of which
two are used by NESTML: In NESTML all types, functions and most variables are pub-
lic and visible for other models, so those entries are in the exported symbol tables.
Symbols that are imported via the import statement and variables inside function def-
initions should not be visible to other models, so those entries are in the imported
symbol tables.

Each language has its own symbol table entries. Figure 5.3 shows all language related
entries. Every entry extends the AbstractSTEntry, which contains some common vari-
ables, e.g. the name, and functionality, e.g. equality and serialization. The UnitDSL
only provides new unit types and, hence, it has only type entries. NESTML and SPL
provide type, variable and method entries that embrace various types of context infor-
mation, e.g. at which position a variable is defined or which functions a type contains.
Each entry is created from a designated entry visitor that traverses the AST, creates
symbol table entries, when a proper node is visited and stores them in the symbol table
of the appropriate namespace.

To exchange entries between languages, NESTML has several adapters [Gam+95]. The
UnitEntry2NESTMLEntry_Adapter makes units defined in the UnitDSL available as types
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Figure 5.3: The symbol table entries.

in NESTML. Appropriate qualifiers create these adapters for every UnitEntry in a sym-
bol table. The context conditions from SPL should check correctness of SPL blocks in
NESTML, but they require SPL entries. Hence, the package nestml.nestml2spl contains
adapters that make types, methods and variables from NESTML available as corre-
sponding SPL entries. Appropriate entry resolvers in the same package create these
adapters, whenever an SPL entry is required. The adapter principle is illustrated in the
Figure 5.4.

It is inefficient to hold the symbol tables for every model in memory or to parse the
whole model again, if only some information of a symbol is required. Therefore, the
symbols are serialized in symbol table files. MontiCore provides an annotation based
STEntrySerializer that automatically transforms a correctly annotated entry into a
predefined symbol table entry format. Corresponding deserializer reverse the transfor-
mation and extract a symbol table entry from the predefined format.

MontiCore’s symbol table framework expects a certain structure for handling models
defined in any DSL that uses the compilationunit concept. These structures are very
similar to Java’s handling of classes and interfaces. The structures are:

• Every file has a single top-level model with a name. The symbol table entry of
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Figure 5.4: The adapter principle using the example of the
UnitEntry2NESTMLEntry_Adapter.

this model is serialized in a single file inside the symbol table directory:
<symtab>/package/name/modelName.st

• The file has the same name as the top-level model and is stored in a folder struc-
ture corresponding to its package name. This helps to find symbols of not yet
parsed files by looking up all model-paths.

Since we want to use the framework, but do not have those strict requirements, some
of the serializing and look-up workflows are adapted. NESTML and the UnitDSL allow
defining multiple top-level models in a single file, so the variable isTopLevelEntry of
the class AbstractSTEntry states, whether an entry should be serialized. A modified
SerializeWorkflow iterates all exported symbol tables and serializes all entries with
isTopLevelEntry equals true.

NESTML has no restrictions on file naming and storage positions of files. To find sym-
bols of not yet parsed files, a level of indirection is introduced. Before the NESTMLTool
starts parsing and processing files, it executes the NESTMLModelNameTool that pro-
cess all files in the model path. This tool uses the ModelNameWorkflowWithFilename to
generate so-called model-name files at the correct path – according to the package
of the model – inside the symbol table directory for every top-level entry. This file
is named after the top-level entry and contains the full path to the file that declares
this model. For example, a component with full-qualified name sample.components.A
defined inside the file /Users/Name/models/severalComponents.nestml would produce
a model-name file A-NESTML.mn in the directory <symtab>/sample/components with
the path /Users/Name/models/severalComponents.nestml as content.

Whenever a symbol that is defined outside the current file should be looked-up, the
NESTMLModelLoader looks, whether a symbol table entry is already defined in the symbol
table directory. If not, it looks for the model-name file of that symbol, extracts the
contained path and parses the file that is defined by the path. This generates the
symbol table entries for future look-ups.

5.2 Type Calculation with an Attribute Grammar

Many context conditions require that the type of some part of an expression or of the
whole expression is calculated and compared to some other type. For example the
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argument type of a function has to match the corresponding parameter type (context
condition S06) and the binary operator | (bitwise OR) requires its operands to be of
integer type (context condition S08).

Attribute grammars are well suited for type calculations, because of their ability to
calculate synthesized attributes of the AST bottom-up (see Section 2.5.4). Figure 5.5
shows a reduced AST for the expression 3.5∗(a+rand()). This attribute grammar solely
has the synthesized attribute type. The synthesized rules for the different expression
productions will be informally discussed in the following. The implementation of these
rules for SPL expressions will be discussed afterwards.

*

+

()literal: 3.5

variable: a funcall: 
rand()

type : real

type : integer type : integer

type : integer

type : integer

type : real AST

Figure 5.5: A reduced AST for the expression 3.5 ∗ (a + rand()) with the synthesized
attribute type. The variable a is of type integer and the function rand() has the return
type integer, too.

The type of the leaf of an expression can be calculated very easily: If it is a literal, the
type corresponds to the literal type. The leftmost leaf of Figure 5.5 is the real literal
3.5 and thus of type real. If the leaf is a variable, the type of the leaf corresponds to
the variable type. In Figure 5.5 the variable a is of type integer and thus the leaf is of
type integer. Finally, if the leaf is a function call, the type of the leaf corresponds to the
return type of the function.

a b −a / +a ∼ a a+ b a ∗ ∗b a op1 b a op2 b

integer integer integer integer integer real integer integer
integer real integer integer real real real error
integer string integer integer string error error error
real string real error string error error error
real numeric real error real real real error

string __ error error string error error error

Table 5.1: The resulting type of mathematical operations with a and b and op1 ∈
{−, ∗, /} and op2 ∈ {%,�,�, |,&,∧}. Other types of a and b result in errors. The
type numeric can either be integer or real.

To calculate the type of the node of an unary and binary operator, the type of its
operands has to be considered. Figure 5.1 contains the rules for unary and binary
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mathematical operators with different types for the operands a and b. Figure 5.2 con-
tains similar rules for comparissons and unary and binary boolean operators. All other,
intermediate nodes just pass the type of child nodes up to the parent node.

a b not a a op1 b a op2 b

numeric numeric error boolean error
boolean boolean boolean error boolean

Table 5.2: The resulting type of boolean and comparisson operations with a and b and
op1 ∈ {<,<=, >,>=,==, ! =, <>} and op2 ∈ {and, or}. Other types of a and b result in
errors. The type numeric can either be integer or real.

Since only the SPL has relevant expression productions, the implementation of the at-
tribute grammar is mostly located here. Listing 5.2 shows the definition of the at-
tributes and its corresponding calculators in the SPL grammar and language file. It has
a global attribute SymbolTable to resolve the type of variables and function calls. Every
node has the synthesized attribute typeEntry that represents the type of the associated
expression.

1 / / in the grammar
2 concept attributes {
3 / / define the synthesized attribute typeEntry of type SPLTypeEntry
4 syn typeEntry : / nestml . spl . ets . entries . SPLTypeEntry ;
5
6 / / many rules require the type of some symbol , hence the grammar gets
7 / / the global attribute SymbolTable , to resolve symbols
8 global SymbolTable : / interfaces2 . helper . SymbolTableInterface ;
9 }

10 / / in the language f i l e
11 concept Attributes {
12 SymbolTable { / / global attr ibuts do not get a calculator
13 nestml . spl .SPL .SymbolTable
14 }
15 TypeEntry { / / specify the calculator for the TypeEntry attribute
16 nestml . spl .SPL . typeEntry = /nestml . spl . attr ibute . TypeEntryCalculator
17 }
18 }

Listing 5.2: Definition of the attributes in the SPL grammar and language file.

All the above-mentioned rules are implemented inside the TypeEntryCalculator. The
TypeChecker performs type comparisons. The SPLToolConcreteStorageConnector caches
the calculated attributes of every node. If the attribute of some node is requested, but
this attribute is not yet calculated, it forwards the calculation to the TypeEntryCalculator.
The InitAttributeStorageWorkflow initializes an instance of this storage connector
with a SymbolTableInterface and stores the connector as an annotation in the cor-
responding root object. The SymbolTableInterface is necessary to resolve the type of
a variable or the return type of a function with help of the symbol table. Whenever
the type of an expression is needed, the connector for that node can be received from
the SPLStorageConnectorHelper and its getTypeEntry(ASTNode) function will return the
type of the passed node.

The tool for NESTML contains a similar infrastructure to calculate types, but actual type
calculations are forwarded to the SPL infrastructure. Type translations from NESTML to
SPL are done with the adapters and appropriate resolvers described in Section 5.1. The
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SPL type returned from the SPL type calculations is converted into an NESTML type by
either extracting the adoptee, if the SPL type is actually an adapter, or by creating a
corresponding NESTML type for the SPL type, e.g. an SPL integer becomes a NESTML
units.unitless.integer.

5.3 NEST – Code Generation

This section illustrates the code generation capabilities of the NESTML processing tool.
As a first target platform we decided to generate code for the NEST simulator. This
means that a neuron model described in NESTML can be transformed into a neuron
model that the NEST simulator can use to simulate its dynamics. This is described
in Section 5.3.4. Furthermore, NESTML allows describing other entities, such as units
and components. Adequate transformations for them are described in Section 5.3.2
and Section 5.3.4. For convenient usage of the generated code, the tool offers two
generation modes, which are described in Section 5.3.1. An overview over the code
generation is given in Figure 5.6.
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nest::ArchivingNode

NEST simulator

code generation
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Figure 5.6: Overview over the code generation for NEST.

The NESTMLTool is a subclass of the GenerationTool, which is provided by the MontiCore
framework (see Section 2.5.5). The GenerationTool contains a generic CodegenWorkflow
with a generic CodegenVisitor. The tool specifies combinations of AST nodes and
FreeMarker templates, and whenever the visitor traverses one of those nodes, it ex-
ecutes the corresponding template.

The NEST simulator is a high performance neuronal network simulator implemented
in the programming language C++ (see Section 2.2). Thus, most of the upcoming
templates will contain C++ code with FreeMarker code embedded. All templates for the
NESTML code generation reside in the package nestml.nest and have the file ending
ftl. The package prefix and the file ending are omitted for the following template
names.
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5.3.1 Module Infrastructure

The NEST simulator has two methods to introduce new neuron models to its simula-
tion kernel. First, the files for new neuron model and all auxiliary files are copied into
the models-folder inside of NEST’s source directory. Then the generated files have to be
registered in the file Makefile.am of the models-folder, so that they are eventually com-
piled. Next, the new models have to be registered within the file modelsmodule.cpp to
be available to the simulation kernel. Finally, the NEST simulator has to be re-compiled.

The second approach is to create a plug-in or module, which the NEST simulator can
dynamically load at runtime. This has the advantage that the code base of the NEST
simulator does not have to be modified, all configuration and build files can be gen-
erated from a neuron model and the module infrastructure is already implemented
on the NEST side. This module infrastructure has some prerequisites. It requires a
successful installation of the NEST simulator, with its source and installation directory
accessible. It requires the installation of a current version of the GNU Autotools and the
environment variable NEST_INSTALL_DIR set to the path, to which the NEST simulator is
installed. Compiling the generated module simply requires the following commands to
be executed in the terminal:

1 $ cd <into the module folder> # go to the module folder
2 $ . / bootstrap . sh # this bootstraps the building infrastructure
3 $ cd . .
4 $ mkdir <new−folder−name> # create a new folder , in which the compilation
5 $ cd <new−folder−name> # output should go and change into that folder
6 $ ../ <Module−folder−name>/configure −−with−nest=${NEST_INSTALL_DIR}/bin / nest−config
7 $ make # start the compilation with the usual configure ,
8 $ make ins ta l l # make, make ins ta l l commands

A NEST module basically consists of five files. The file bootstrap.sh contains code to
bootstrap the building environment with the help of the GNU Autotools. The file Make-
file.am contains amongst others the names of the source files that should be compiled.
The file configure.ac contains the code for the build configuration. The last two files will
be used during the bootstrap to create appropriate makefiles and configuration files. Fi-
nally, the module contains the header and the implementation file of the module class.
This class is the interface for the simulation kernel and is responsible for registering the
new neuron models. Figure 5.7 contains an overview of a complete module of name
MyModule. The module header and the implementation file is named after the module
name, but with lowercase letters only.

The central template for the module infrastructure is the ModuleMain, which will be
called whenever a package node of the AST is traversed. It sets various global variables
that are needed by all subsequent templates, including the name of the module, which
can be specified as a command line argument (see Section 6.1). Since the generation of
the module infrastructure is not mandatory and to reduce repetitive generation of the
module for every NESTML file, the template makes sure that the module is generated
at most once.

The Makefile.am and the module class require to know, which sources will be there
to compile and which neuron models have to be registered, before the module can
be generated – potentially before all NESTML models are processed. Therefore, the
template ModuleMain executes the ModuleNamesCalculator that scans the symbol table
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Figure 5.7: Overview of a complete, generated module with name MyModule. These
files become generated inside the folder MyModule. All further generated files end-up
in the same folder MyModule.

directory for all model-name files (Section 5.1). Those are created for all models, before
the first model is actually processed. The names of those models are stored in the
variable module_names. In addition to the path of the NESTML file, any model-name file
contains the type of a model: Either neuron, component or unit. Hence, the variable
neuron_names stores all neuron names that have to be registered in the module class.

Within the template ModuleMain the templates for the above-described files will be
called. Each file will be generated in a folder named after the module inside the output
directory. The templates module.Bootstrap, module.Configure and module.ModuleHeader
are responsible for generating the files Makefile.am, configure.ac and the module header
file. The content of those files is very similar for any module and with FreeMarker only
some names are adjusted to the module name.

1 ${lowerModuleName}_la_SOURCES= ${lowerModuleName}.cpp ${lowerModuleName}.h \
2 <#l ist module_names as name>
3 ${name?replace ( " . " , " / " )}.cpp ${name?replace ( " . " , " / " )}.h \
4 </#l ist>
5 # last l ine can not be empty, because of the last \ of the sources

Listing 5.3: Add all relevant source files to the Makefile template.

The template module.Makefile is responsible for generating the file Makefile.am. Be-
sides adjusting names to the module name, it lists the source files that should be com-
piled. Listing 5.3 contains the relevant part, that iterates through all model names
and adds the exact position of its header and implementation source to the variable
${lowerModuleName}_la_SOURCES.

The template module.ModuleClass is responsible for generating the implementation file
of the module class. Like the header file, the implementation file is named after the
module in lower case letters. The module class itself has the same name as the module,
hence most FreeMarker code adjust names in the implementation file. There are two
spots in the template that iterate all neuron names: At the top of the template the
header files of the neuron models are included and inside the init-function at the end
all neuron models are registered to the NEST kernel.

59



5.3.2 UnitDSL Code Generation

This section describes the translation from a unit defined with the UnitDSL to a repre-
sentation of that unit for the NEST simulator. Units are used as numeric types in NESTML
and all mathematical operations are performed on them. In the NEST simulator units
can either be modeled as primitive types of C++ or as separate classes. Representing
units with classes has several drawbacks. Performing mathematical operations on ob-
jects involves a function call for every operation and the object size can vary between
compilers. This decreases the overall execution performance and increases the mem-
ory footprint. This is contrary to requirement NF07. Hence, units are represented as
primitive types of C++. The unit name is used in a typedef statement as the alias for a
type specified by the domain.

sample.h

sample.cpp

unit sample ...
UDSL

UnitMain.ftl
FM

UnitClass.ftl
FM

UnitHeader.ftl
FM

calls

calls

generates

generates

1. 2.

3.

T

Figure 5.8: Overview over the generation templates for unit definitions.

As a starting point, the template UnitMain is called for every unit definition (1. arrow
in Figure 5.8). It calls the unit.UnitClass and unit.UnitHeader templates (2. and 3.
arrow) and performs common calculations. The DomainCalculator specifies the exact
type of the unit representation according to the unit domain: A unit with the Integer
domain has the type nest::long_t and the Real domain has the type nest::double_t.
The OperationCalculator calculates C++ representations of the unit range limits and
appropriate comparison operators. Those are used in a check-function that verifies, if
some value is in the unit range.

1 <#i f op. cal lCalculator ( "nestml .codegen. units . UnitPrettyPrintCalculator ")>
2 / / ${UNIT_MODEL} / / print f u l l unit def in it ion as comment
3 </#if>
4 typedef ${type} ${ast .getUnitName()} _t ; / / le t the unit name be an al ias for ${type}

Listing 5.4: Type definition for a unit definition.

The template unit.UnitHeader contains the type definition and the prototype of the
check-function inside a namespace that matches the unit package. Listing 5.4 shows
the type definition. Since a unit definition is rather short, the complete unit definition is
pretty-printed by the UnitPrettyPrintCalculator (line 1) and included as a comment
(line 2).

The template unit.UnitClass contains the implementation of the check-function, which
can be seen in Listing 5.5. The namespace is stored in the nspPrefix variable. The com-
parison operators are stored in the variables from_op and to_op and the left and right
limits of the range are stored in the variables from_value and to_value. The generated
files are stored in a folder hierarchy according to the units package inside the module
package, if the module is generated. The file names correspond to the unit name.

The generated code for a single unit definition – in this case for the sampleUnit in List-
ing E.1 – can be seen in Listing E.2, which contains the generated header file, and

60



Listing E.4, which contains the generated implementation file.

1 bool ${nspPrefix }: :check_${ast .getUnitName()} / / separate check function for a l l units
2 (const ${nspPrefix }: :${ast .getUnitName()} _t &var ) {
3 / / assume var is inside the range
4 bool result = true ;
5 <#i f ! ast . isFromInf ( ) > / / i f l e f t l imi t i s not in f i n i t y
6 / / test , i f var is smaller than le f t l imi t
7 i f ( var ${from_op} ${from_value} ) { result = false ; }
8 </#if>
9

10 <#i f ! ast . isToInf ( ) > / / i f r ight l imi t i s not in f i n i t y
11 / / test , i f var is bigger than right l imi t
12 i f ( var ${to_op} ${to_value} ) { result = false ; }
13 </#if>
14 return result ;
15 }

Listing 5.5: Implementation of the unit range check-function.

5.3.3 SPL translation

This section describes the translation of SPL statements into corresponding C++ state-
ments. NESTML uses blocks of SPL code and SPL declarations in various positions. First,
the translation of SPL expressions and tests is described. After that the translation of
the simple statements declaration, assignment, function calls and return statements is
discussed. Finally, the translation of the compound statements for-loop, if-branching
and while-loop are described.

Many SPL statements contain mathematical expressions and boolean tests. Each ex-
pression and test is translated with the spl.ExprStatement and spl.TestStatement tem-
plates, respectively. Both have a hierarchical order in the abstract syntax, which is
reflected in the templates. For every production in the grammar of an expression, a
template in the package spl.expr exists. Likewise, the package spl.test contains a
template for every production in the grammar of a test.

1 <#−−XOR_Expr = AND_Expr ( "^" AND_Expr)*;−−> / / the XOR_Expr production as comment
2 <#assign sep = "">
3 <#l ist ast .getAND_Expr ( ) as and> / / i terate a l l sub−expressions
4 ${sep} / / after the f i r s t ’and ’ insert the sign and ca l l
5 / / the corresponding template for the sub−expression
6 ${op. includeTemplates ( "nestml . nest . spl . expr .ANDExpr" , and)}
7 <#assign sep = " ^ ">
8 </#l ist>

Listing 5.6: The template for XOR expressions.

The structure of the expression and test templates is very similar. If a production has
only a single sign between the operands, like the XOR_Expr production, the template it-
erates all operands, puts the correct sign between them and calls the template for the
operands. Listing 5.6 shows the full spl.expr.XORExpr-template. If the production dif-
ferentiates two or more signs between operands, like the Term production, its template
calls the template for the first operand. If the production continues, it calls a corre-
sponding template for all further operands that determines the correct sign between
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the operands and calls the template for the operands. Listing 5.7 shows the templates
spl.expr.TermExpr and spl.expr.TermExprEnd for the productions Term and TermEnd.

1 / / Term. f t l :
2 <#−−Term = Factor (TermEnd)*;−−> / / the Term production as comment
3 / / ca l l template for f i r s t operand
4 ${op. includeTemplates ( "nestml . nest . spl . expr . FactorExpr" , ast . getFactor ())}
5 <#i f ast .getTermEnd()??> / / i f expression continues with terms ,
6 / / ca l l End−template for every TermEnd in the ast .getTermEnd()− l i s t
7 ${op. includeTemplates ( "nestml . nest . spl . expr .TermExprEnd" , ast .getTermEnd())}
8 </#if>
9

10 / / TermExprEnd. f t l :
11 <#−−TermEnd = sign : [ "*" | " / " | "%" ] Factor;−−> / / the TermEnd production as comment
12 <#i f op. cal lCalculator ( "nestml .codegen. spl . SignCalculator ")>
13 ${SIGN_OP} / / le t SignCalculator determine the sign
14 / / and ca l l template for sub−expressions
15 ${op. includeTemplates ( "nestml . nest . spl . expr . FactorExpr" , ast . getFactor ())}
16 </#if>

Listing 5.7: The template for Term-expressions.

The templates for the productions Atom and the NOT_Test basically route to the template
that correspond to the Atom- or NOT_Test-type. Literals are rendered through the tem-
plate spl.expr.LiteralExpr with the help of the LiteralCalculator. For boolean and
numeric literals the LiteralCalculator simply returns the source from the SPL code,
but string literals are converted to std::string objects, so that string concatenation is
simplified.

Variable names are rendered with the template spl.expr.VarExpr, which uses the cal-
culator VarNameCalculator to access the variable correctly: Local variables are ac-
cessed through their name. Member variables of a neuron or component are ac-
cessed through their getter-function. Section 5.3.4 discusses these getter-function in
more detail. Function calls are rendered with the spl.expr.FunCallExpr template that
uses the FunctionCallCalculator to get the full function-name and calls the template
spl.ExprStatement for every argument. For bracket terms and inside comparisons the
spl.ExprStatement template is called.

Almost all operators in SPL have a corresponding operator in C++, which in most cases
even have the same name. The differences are:

• C++ does not have the potentiation operator, so the function pow from math.h is
used.

• The operator and, or and not translate to &&, || and !, respectively.

• Concatenation of strings takes advantage from the overloaded + method of the
class std::string. Concatenation of strings and a integer, real or boolean value
uses separate + methods.

Whenever a block of SPL code should be translated into a block of C++ code, the
template spl.BlockStatement is called (1. arrow in Figure 5.9). It basically iterates
all contained statements and calls the template spl.Statment for each statement (2.
arrow). The template spl.Statment and subsequent templates route to the template
that corresponds to the statement type (3. – 7. arrow).
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Figure 5.9: Overview over the generation templates for SPL blocks.

Declarations of local variables are rendered with the template spl.DeclStatement. The
DeclarationCalculator calculates the corresponding NEST type of the variables and
renders for every variable a C++ variable declaration. If the SPL declaration assigns
an initial expression to the variables, this expression is printed for every C++ variable
declaration, too.

Assignments to variables are rendered with the template spl.AssignStatement. The
calculator VarNameCalculator is again used to access the variable correctly: Local vari-
ables get the expression assigned directly and member variables of a neuron or com-
ponent get the expression assigned through their setter-function.

Function calls as separate statements are rendered similar to function calls in expres-
sions. The spl.FunCallStatement template uses the FunctionCallCalculator to get the
full function-name and calls the spl.ExprStatement template for every argument. The
difference is that this template handles indentation correctly and ends the statement
with a semicolon.

1 <#−−ReturnStmt = "return" (Expr | Test);−−> / / the return production
2 ${indent}<@compress single_l ine=true> / / use indent−variable to indent
3 return / / correctly and use @compress directive , to render the following
4 <#i f ast . getExpr()??> / / in one l ine ( these comments are not part of the template
5 ${op. includeTemplates ( "ExprStatement" , ast . getExpr ())} / / render expression
6 <#elseif ast . getTest()??>
7 ${op. includeTemplates ( "TestStatement" , ast . getTest ())} / / or test
8 </#if> ; / / end of return statement
9 </@compress>

Listing 5.8: The template for return-statements.
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The return statement is rendered with the template spl.ReturnStatement and forwards
the rendering of the expression or test to the appropriate template. All simple state-
ments can be indented correctly, if the variable indent contains the whitespace for
indentation. See Listing 5.8 as an example for indentation of simple statements.

SPL for statements are translated into a C++ for statements via the spl.forStatement
template and the ForCalculator. The from expression is assigned to the variable name
in the initialisation part of the C++ for loop. In the testing part of the C++ for loop the
variable is compared to the to expression – depending on the step value, either > or <
is used. Finally, the variable is increased by the step value. The loop body is rendered
via the template spl.BlockStatement.

SPL if statements are translated into a C++ if statements via the spl.ifStatement
template. All tests are rendered with the template spl.TestStatement and all branch
bodies are rendered via the template spl.BlockStatement.

SPL while statements are translated into a C++ while statements via the template
spl.whileStatement. The test is rendered with the template spl.TestStatement and
the loop body is rendered with the template spl.BlockStatement. Additionally, all tem-
plates of compound statements render their statements with correct indentation. When
the template for a compound statement is called, the variable indent should be de-
clared previously and should contain the whitespace for indentation. Listing 5.9 illus-
trates the indentation in the spl.whileStatement.

1 / / indent while loop with previously defined indent−variable
2 ${indent}while (${op. includeTemplates ( "TestStatement" , ast . getTest ( ) )}) {
3 ${op. setValue ( " indent" , indent + " ")} / / increase indent inside loop
4 ${op. includeTemplates ( "BlockStatement" , ast . getBlock ())} / / render loop body
5 ${op. setValue ( " indent" , indent?substring (2))} / / decrease indent outside loop
6 ${indent}} /* while end */

Listing 5.9: The template for while-statements.

5.3.4 Neuron Models

In this section the translation of a neuron model in NESTML to a neuron model for the
NEST simulator is described. Neuron models for the NEST simulator are basically C++
classes, which extend the class nest::Node. The nest::Node represents a single ele-
ment in a neuronal network that is connected to other nodes. It provides the interface
for updating the dynamic state of an object, connecting to other nodes, using particu-
lar Events, accepting connection requests and handling incoming events. The subclass
nest::Archiving_Node extends the capabilities of nodes by recording and managing a
spike history for later evaluation.

First, the generation of NEST neuron classes in general is described. Then the transla-
tion of variable blocks into corresponding struct with initialization and appropriate get-
ter- and setter-functions is outlined. Afterwards the function generation is illustrated
and the necessary code for output and input is depicted. Later, the translation of the
dynamics into the update function is described. Finally, the generation of components
and more general and NEST related issues are described.
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The Listing C.1 contains the full implementation of the integrate-and-fire neuron model
in NESTML as described in Section 6.2. The complete, generated header and imple-
mentation files for this model can be seen in Listing D.1 and Listing D.14, respectively
– for comparison with the below described generation steps.

neuron MyNeuron ...
NESTML

component MyComponent ...
NESTML

NeuronMain.ftl
FM

ComponentMain.ftl
FM

NeuronHeader.ftl
FM

NeuronClass.ftl
FM

ComponentHeader.ftl
FM

ComponentClass.ftl
FM

calls

calls

MyNeuron.cpp

MyNeuron.h

MyComponent.cpp

MyComponent.h

generates

generates

generates

generates
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Figure 5.10: Overview over the generation templates for NESTML neurons and compo-
nents.

The template NeuronMain is the main entry point for the code generation of NEST neuron
models (1. arrow in Figure 5.10) and is called for every NESTML neuron model. It
performs common calculations, e.g. it determines the package name, which is used
as the namespace of that neuron model. It calls the templates neuron.NeuronHeader
and neuron.NeuronClass (2. and 3. arrow), which are responsible for generating the
class header and class implementation files for that neuron model (arrow 4. and 5.).
The generated files are stored in a folder hierarchy according to the neuron package
inside the module package, if the module is generated. The file names correspond to
the neuron name.

state:
  V_m mV = …
end

NESTML

Included in Header.ftl:
MemberVariableGetterSetter.ftl
MemberDeclaration.ftl
StructGetterSetter.ftl
ParameterDocumentation.ftl
WriteInDictionary.ftl
ReadFromDictionary.ftl

FM

Included in Class.ftl:
RecordCallback.ftl
MemberInitialisation.ftl
Calibrate.ftl
WriteInDictionary.ftl
ReadFromDictionary.ftl

FM

ExprStatement.ftl
FMincludes

T

Figure 5.11: Overview over the responsible templates for variable blocks in neurons
and components.

Inside the template neuron.NeuronHeader the class header of the neuron model is ren-
dered. The class has the same name as the NESTML neuron model and extends the
class nest::Archiving_Node. It resides in a namespace corresponding to the package
name of NESTML neuron model. The structure of the class is based on other NEST neu-
ron models. The template neuron.NeuronClass contains the implementation for every
function prototype that is defined in the header and contains additional functionality to
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enable the archiving capabilities of the archiving node.

Every variable block of a NESTML neuron model has a corresponding C++ struct that
groups the variables. The states variable block has a struct named State_, the param-
eters variable block has a struct named Parameter_ and the internals variable block
has a struct named Variables_. The class has a private member variable for every
struct. This allows easily exchanging states or parameters variables, which is often
done in the NEST simulator. An overview over the templates responsible for the pro-
cessing of variables in variable blocks is given in Figure 5.11. These templates are
included in either the neuron.NeuronHeader or the neuron.NeuronClass or both.

These structs contain variable declarations for every non-alias variable of the corre-
sponding block. Each is rendered by the template spl.MemberDeclaration, which uses
the same DeclarationCalculator as SPL to determine the correct NEST type of that
variable. Additionally, a struct gets a getter- and setter-function all its variables. The
template function.StructGetterSetter uses the VariableCalculator to render the get-
ter- and setter-functions as inline functions inside the struct definition.

1 state :
2 foo units . e lectr ics .mV = 13.0 / / declare state variable foo
3 alias bar units . e lectr ics .mV = foo * 2 / / declare al ias bar
4 end

Listing 5.10: Exemplary state variable block.

1 struct State_ { / / the State_ struct inside the neuron class
2 units : : e lectr ics : :mV_t foo_ ; / / generate non−al ias variables
3
4 State_ ( ) ; / / constructor
5 void get (DictionaryDatum&) const ; / / get− and set−functions for SLI compatibil ity
6 void set (const DictionaryDatum&); / / implementation in the class f i l e
7
8 / / generated getter and setter for non−al ias variables , e .g. foo
9 inline units : : e lectr ics : :mV_t get_foo ( ) const { return foo_ ; }

10 inline void set_foo (const units : : e lectr ics : :mV_t v) { foo_ = v ; }
11 };
12
13 / / inside class def in it ion :
14 State_ S_ ; / / class has private variable S_ for the struct
15
16 / / generate getter and setter for non−al ias variables
17 inline units : : e lectr ics : :mV_t get_foo ( ) const { return S_ . get_foo ( ) ; }
18 inline void set_foo (const units : : e lectr ics : :mV_t v) { S_ . set_foo ( v ) ; }
19
20 / / and generate getters for al ias variables
21 inline units : : e lectr ics : :mV_t get_bar ( ) const { return get_foo ( ) * 2.0; }
22
23 / / inside implementation f i l e :
24 <neuron−name>::State_ : : State_ ( ) : foo_ ( 13.0 ) / / generate constructor with
25 {} / / i n i t i a l i za t i on of member variables

Listing 5.11: Generated code for the variable block in Listing 5.10.

Besides the getter- and setter-function in the struct, additional getter- and setter-
functions for any variable in a struct are generated on the class level through the tem-
plate function.MemberVariableGetterSetter. The same template renders at this point
alias variables as getter-functions, too. This allows a uniform access to all state, pa-
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rameter and internal variables in the translations of SPL expressions. The Listing 5.11
shows generated code for the exemplary state variable block in Listing 5.10.

Initialization of variables in these structs happens at different places. While non-alias
state and parameter variables are initialized in their constructor, which is generated
by the template spl.MemberInitialisation, the internal variables might relay on some
of their values. Hence, they are initialized inside the calibrate-function. This code is
rendered by the template function.Calibrate.

function foo ...
NESTML FunctionHeader.ftl

FM

FunctionImplementation.ftl
FM

BlockStatement.ftl
FMincludes

1.

2.
3.

T

Figure 5.12: Overview over the responsible templates for function definitions in neurons
and components.

The functions defined in a NESTML neuron model are transformed in equivalent, public
member functions of the NEST neuron class. In the neuron.NeuronHeader template the
prototypes of the function are declared with the template function.FunctionHeader (1.
arrow in Figure 5.12). At the end of the neuron.NeuronClass template the implementa-
tions of the functions are rendered by the template function.FunctionImplementation
(2. arrow). Both templates use the FunctionCalculator to determine the correct return
type. Additionally, the calculator transforms the NESTML parameter list into a C++
parameter list and provides it as a string. The body of a function is rendered with
the template spl.BlockStatement (3. arrow). Listing 5.12 shows the template for the
function implementation.

1 <#−−Function implements BodyElement =
2 " function" Name " ( " Parameters? " ) " ( returnType :DottedName)?
3 BLOCK_OPEN!
4 Block / / the function production as a comment
5 BLOCK_CLOSE!;−−>
6
7 / / ca l l the calculator that provides the RETURN_TYPE and the PARAMETER_STRING
8 <#i f op. cal lCalculator ( "nestml .codegen. FunctionCalculator ")>
9 ${RETURN_TYPE?replace ( " . " , " : : " )} / / C++ types have : : name−separator

10 ${nspPrefix }: :${ast .getName()} / / the function name needs namespace prefix
11 (${PARAMETER_STRING?replace ( " . " , " : : " )}) / / use provided PARAMETER_STRING
12 {${op. setValue ( " indent" , " " )} / / make correct indentations
13 / / render body
14 ${op. includeTemplates ( "nestml . nest . spl . BlockStatement" , ast . getBlock ())}
15 }
16 </#if>

Listing 5.12: The FreeMarker template for function implementations

A NESTML neuron model can have at most one output type (context condition N13)
and in most case a neuron models emits spikes – other output types are possible, e.g.
currents. For NEST neuron classes this has several consequences. The class communi-
cates with other nodes in the neuronal network via events. In the case of spikes these
are SpikeEvents. The receiving nodes and the transmitting synapse must be able to
handle these events. Therefore, NEST neurons have to implement a check_connection
function that performs the validation, if connection and receiver accept the specified
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event. The function is rendered in the template neuron.NeuronHeader as an inline func-
tion.

The emitting of a spike in NESTML is performed by calling the function emitSpike from
the predefined component nestml.Spiking in the dynamics body. To emit a spike event
in the NEST simulator involves creating a SpikeEvent object and sending it via the
network. To record the spike history the nest::Archiving_Node provides the func-
tion set_spiketime, which should be called for every spike emitting. The calculator
FunctionCallCalculator creates the necessary code whenever the function emitSpike
is called. Other output types are not implemented yet.

foo <- inhibitory excitatory spike
NESTML

BufferGetter.ftl
FM

BufferDeclaration.ftl
FM

BufferFill.ftl
FM

BufferInit.ftl
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Figure 5.13: Overview over the responsible templates for inputs in neurons.

A NESTML neuron model can have several input declarations. A NEST neuron class gets
a RingBuffer for every input declaration (1. arrow in Figure 5.13) that collects received
events of the specified input type. These RingBuffer are grouped in the struct Buffer_
with corresponding getter-functions (2. arrow), similar to state, parameter and internal
variables. All buffers are initialized in the function init_buffers_ and the code for that
is rendered by the template buffer.BufferInit (3. arrow).

Incoming events are processed in an appropriate handle function, which is created in
the template neuron.NeuronClass. The code to add an event to the correct buffer is
generated by the template buffer.BufferFill (4. arrow). As the check_connection-
function above suggests, a NEST neuron class has a function that assures that it can
handle certain events. This function is called connect_sender and is generated for every
input type at the end of the template neuron.NeuronHeader.

1 <#i f op. cal lCalculator ( "nestml .codegen. TimestepDynamicsCalculator")>
2 / / time step dynamics has a single parameter of type units . time .ms
3 / / the TimestepDynamicsCalculator provides the parameter type and name
4 ${PARAMETER_TYPE?replace ( " . " , " : : " )} ${PARAMETER_NAME}; / / specify the dynamics parameter
5 for ( nest : : long_t lag = from ; lag < to ; ++lag ) / / execute dynamics for every
6 { / / time step in the s l ice
7 / / set parameter to current ms time
8 ${PARAMETER_NAME} = nest : : Time(nest : : Time : : step ( lag ) ) . get_ms( ) + origin .get_ms ( ) ;
9

10 / / render dynamics body
11 ${op. includeTemplates ( "nestml . nest . spl . BlockStatement" , ast . getBlock ())}
12 } /* for end */
13 </#if>

Listing 5.13: Template for the time step dynamics. Some NEST specific code is omitted.
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The dynamics of a NESTML neuron model is implemented in the update-function of a
NEST neuron class. The purpose of the update-function is to advance the dynamic
state of a neuron by a certain time slice in steps of the simulation resolution. The time
step dynamics of a neuron is supposed to advance the dynamic state of a neuron by
one time step of the simulation resolution, hence the code of the dynamics-function
has to be executed multiple times in the update-function. Figure 5.14 shows the tem-
plates involved in generating the neuron dynamics and Listing 5.13 shows the template
function.TimestepDynamics, which renders the body of the update-function for the time
step dynamics. The dynamics body is executed for every time step inside the for-loop.
Other dynamics types are not implemented yet.

dynamics timestep ...
NESTML

DynamicsImplementation.ftl
FM

TimestepDynamics.ftl
FM

BlockStatement.ftl
FMincludes includes

T

Figure 5.14: Responsible templates for generating the dynamics in neurons.

NESTML models can use components in two ways. Either they use an individual in-
stance of a component or they use a global instance. For the NEST simulator compo-
nents are generated as plain C++ classes by the templates component.ComponentHeader
and component.ComponentClass (6. and 7. arrow in Figure 5.10). They have the same
structure for functions and state, parameter and internal variables as neurons. Addi-
tionally, component classes have a singleton global object that can be accessed via the
static function get_instance to resemble the usage of global instances of the compo-
nent. If a neuron uses an individual instance of a component, a member variable and
appropriate getter-functions are generated.

In C++ the header of all used types has to be included at the top of the source file. Since
NESTML allows using full-qualified names in its files without importing that name, it is
not sufficient to only include the headers of types mentioned in the import-statements.
The IncludeCalculator uses the IncludeVisitor to traverse the AST and collect the
full-qualified names of all mentioned types. These names are then used to generate all
includes.

The NEST simulator has the feature to record arbitrary numeric values of neurons
during simulations. This is done with specialized nest::RecordablesMaps that store
a set of key-callback-pairs for a neuron class. In every recording step the results of
the callbacks are stored in the map with their corresponding key. In the implemen-
tation file a singleton nest::RecordablesMap object for this neuron model is created.
The most interesting values of a neuron are its dynamic state, so all state getter-
functions are registered as callbacks. This registration is rendered by the template
function.RecordCallback.

Some functions and variables of predefined components have native counterparts in
C++ or NEST and the calculators VarNameCalculator and FunctionCallCalculator have
the responsibility, to return the native handle for those functions and variables. For
example the component nestml.Math has the variable PI, but in C++ there is no math-
class and the value for π is obtained through the constant M_PI form the header math.h.
Since there are only a few predefined components, these translations are performed in
the mentioned calculators.
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The user interface for the NEST simulator is implemented via the simulation language
interpreter (SLI). The SLI is able to gather information and values from neuron models
and can change parameters of neurons. This exchange is performed with dictionaries
that contain key-value-pairs for the requested information or changes. The dictionaries
are processed in get_status- and set_status-functions of a NEST class, which forward
the calls to the get- and set-functions of the state and parameter structs. The tem-
plates functions.WriteInDictionary and functions.ReadFromDictionary generate the
code to fill and read-out the dictionaries.

The NEST simulator uses a documentation comment at the start of any neuron model
class to generate a html based documentation for all models during its compilation
process. For now, the generation process documents all states and parameters inside
this documentation with the template comments.ParameterDocumentation (see lines 46
– 87 in Listing D.1).
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Chapter 6

Application Scenario

This chapter first explains the usage of the NESTMLTool and how the generated code
has to be processed to create a module for the NEST simulator (Section 6.1). Afterwards
the leaky integrate-and-fire neuron model is derived and the implementation in NESTML
is explained (Section 6.2).

6.1 Tool Usage

While the previous sections explain the inner structure of NESTML’s implementation,
this section describes the usage of the tool for developers of neuron model in NESTML.
The file ending nestml identifies models defined in the NESTML language. There are no
other naming conventions for nestml-files and no hierarchical folder structure, like in
Java, is required.

1 NESTML Help Message
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Use l ike :
4 nestml . jar <Input f i l e / dir> [<options>]
5
6 Options :
7 −help , −h, −? This help message.
8 −out <outputdir> Set the directory , to which a l l generated f i l e s are written .
9 Standard is : output

10 −symtabdir <dir> Set the directory , to which a l l symbol table f i l e s are written .
11 Standard is : symtab
12 −mp <modulepath> Add a directory , in which the tool looks for NESTML models .
13 −prettyprint Generate pretty printed versions of sources into <outputdir>.
14 −module <ModuleName> Groups the generated f i l e s into a module, i f possible .
15 −generate (<Target>)+ Generate output for the specified target .
16 Possible values are : NEST

Listing 6.1: The help message for the NESTML tool.

The class NESTMLTool implements a command-line interface for the tool to process
nestml-files. The Listing 6.1 shows the help-message of this tool, which will be shown,
whenever something is wrong with command-line arguments or when one of the help
options is stated. The first argument to the tool is the file or directory that should be
processed. When models in different directories are reused in one of these files, the
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path to those models has to be added to the model-paths with the option -mp. Each
path has to be added separately with an own -mp statement.

The options -out and -symtabdir can be used to specify different directories for gener-
ated and symbol table related files, respectively. The tool can pretty print the models
that should be processed with the option -prettyprint. The pretty-printed files are cor-
rectly indented and have a standard structure for nestml files: First all imports, then
all units, components and neurons. Inside a neuron or component first the states, pa-
rameter and internal variables are stated, then inputs, outputs and use statements
and finally, all functions and dynamics. The pretty-printed files are written to the out
directory.

Code for a simulator is generated with the option -generate. Different targets can
be specified one after another. At this development stage the only possible target is
NEST for code generation for the NEST simulator. All code will be generated inside the
out directory. If a module name is specified with the option module the NEST code is
generated inside a folder with the same name in the out directory. Additionally, the
infrastructure for NEST modules will be generated (see Section 5.3.1).

Some requirements have to be fulfilled for using the generated NEST code. If no module
infrastructure is generated, the neuron model and all auxiliary files have to be copied
into the models-folder inside of NEST’s source directory. Then the generated files have
to be registered in the file Makefile.am of the models-folder, so that they are compiled.
Next, the new models have to be registered within the file modelsmodule.cpp to be
available to the simulation kernel. Finally, the NEST simulator has to be re-compiled.

If the module infrastructure is generated, a successful installation of the NEST simu-
lator is required, with its source and installation directory accessible. It requires the
installation of a current version of the GNU Autotools and the environment variable
NEST_INSTALL_DIR set to the path, to which the NEST simulator is installed. Compiling
the generated module simply requires the following commands to be executed in the
terminal:

1 $ cd <into the module folder> # go to the module folder
2 $ . / bootstrap . sh # this bootstraps the building infrastructure
3 $ cd . .
4 $ mkdir <new−folder−name> # create a new folder , in which the compilation
5 $ cd <new−folder−name> # output should go and change into that folder
6 $ ../ <Module−folder−name>/configure −−with−nest=${NEST_INSTALL_DIR}/bin / nest−config
7 $ make # start the compilation with the usual configure ,
8 $ make ins ta l l # make, make ins ta l l commands

6.2 Leaky Integrate and Fire Neuron Model

The leaky integrate-and-fire neuron model is probably the best-known example of a for-
mal spiking neuron model. It abstracts a real neuron to a single compartment that can
be stimulated either by external current or by synaptic input of presynaptic neurons.
The internal dynamics and the spiking behavior is characterized by the results of many
in vivo and in vitro experiments in different areas of the brain and in different species.

The left image of Figure 6.1 shows a sketch of the neuron membrane. It consists of
a bi-lipid layer, which is impermeable for ions and larger molecules. The built-in ion

72



Figure 6.1: On the left a cross section of membrane and on the left the corresponding
electrical circuit [Epp10].

pumps and channels regulate the transition of certain ions, to keep the membrane
potential at its resting level. The leaky integrate-and-fire neuron model realizes the
neuron membrane as an electrical circuit, which can be seen on the right image of
Figure 6.1. The membrane itself separates the inside from the outside and is modeled
as a capacitor. The channels are modeled as resistors. If an input current I is injected
into the cell, it may add further charge on the capacitor, or leak through the channels
in the cell membrane. If the membrane potential exceeds a certain threshold, a spike
is emitted and the membrane potential is reset to its resting potential. During the
refractory time after the emitting of a spike the membrane potential is fixed to this
resting potential and only afterwards it starts to integrate again.

The membrane potential V in the electrical circuit can be described with the differential
equation in Equation 6.1 by applying current preservation laws [Epp10; Han+10b]. All
potentials in this model are relative to the resting potential, which is set to 0 mV .

C
δV

δt
= −V

R
+ I ⇔ δV

δt
= − V

RC
+
I

C
⇒ δV

δt
= − V

τm
+
Isyn + Iex

Cm
(6.1)

δδη

δtδt
+ 2a

δη

δt
+ a2η = 0, η(0) = 0,

δη

δt
(0) = η̇0

⇒ η(t) = η̇0 t e
−a t (explicit form)

⇒ η(t) =
e

τsyn
t e
− t
τsyn (parameters set)

(6.2)

Resting potential V0 = Vreset = 0 mV
Membrane time constant τm = 10 ms
Membrane capacitance Cm = 250 pF
Spike threshold Θ = 20 mV
Refractory period tref = 2 ms
External current Iex = 0 mV
Synaptic time constant τsyn = 2 ms
Constant external current Iex = 0 mV

Table 6.1: Typical values for the integrate-and-fire neuron model.
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Figure 6.2: The curve of an alpha-function from Equation 6.2 with τsyn = 2 ms.

If another neuron emits an action potential, the postsynaptic neuron receives the synap-
tic input current Isyn via the receptors of the synapse (Section 2.1). One way to model
the postsynaptic current would be to shape the input current with an appropriate al-
pha-function. The explicit form of an alpha-function can be seen in Equation 6.2 with η̇0

and a chosen in a way, so that the alpha-function has its peek, when the spike arrives
(t = τsyn) and the amplitude of a synapse of weight one is 1 mV [RD99]. Figure 6.2
shows an example for an alpha-function with τsyn = 2 ms. Figure 6.2 contains typical
values for the leaky integrate-and-fire neuron model.

Exact solutions for the linear differential equations Equation 6.1 and Equation 6.2 can
be found through exact integration [RD99; Han+10b] and advancing a system of linear
differential equations like:

δy

δt
= Ay + x

on a fixed time grid is done with the iteration formula [RD99]:

yk+1 = eA∆yk + xk+1

The entries of the propagator matrix eA∆ are taken from the NEST implementation of
the leaky integrate-and-fire neuron and xk+1 consists of the time dependent current
input from spikes, constant external current and other current stimuli.

These equations are sufficient to describe the charging and leaking of the membrane,
but the concepts threshold crossing, refractory period and spike emitting have to be
implemented explicitly. Listing C.1 contains a full NESTML implementation of the leaky
integrate-and-fire neuron model. For comparison purposes, the implementation struc-
ture is similar to the leaky integrate-and-fire neuron in NEST1. The variable y0 rep-
resents the external current stimulus, y1 and y2 are necessary for the alpha shape
post-synaptic current calculations, and y3 represents the relative membrane potential.
The variables in the parameter block have been described previously. The variables
starting with P in the internals block represent the propagator matrix.

Inside the dynamics function the threshold crossing is implemented in lines 68 – 73: If
the membrane potential y3 exceeds the threshold Theta, the neuron is set refractory

1Compare models/iaf_neuron.h and models/iaf_neuron.cpp in the NEST simulator version 2.2.2 .
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(line 69), i.e. the counter r is set to the number of simulation steps equal to the re-
fractory time, the membrane potential is set to its reset value delta_V_reset (line 70)
and a spike is emitted (line 72). Lines 53 – 58 implement the membrane charging and
the refractory period: If the neuron is not refractory, i.e. the counter r is zero, the
membrane potential can be charged (line 55), otherwise the counter r is decreased.

In a line-of-code (LOC) comparison, the NESTML version has 69 LOC without comments
and empty lines. The NEST version without comments and empty lines has about ∼310
LOC (∼180 LOC in cpp-file and ∼130 LOC in the h-file), which is more than four times
the NEST version. At this point the feature to encapsulate often used functionality
into reusable components has not been utilized, which would reduce the model code
further.

This model description can be used to generate NEST code (see Section 6.1). The code
for the module infrastructure is always very similar and corresponds to the module
example in the NEST code base – see Section 5.3.1 for the generated module code.
The model uses some of the predefined units, hence the generated code for them is
included for this module – see Section 5.3.2 for the generated unit code. The complete
and tidied up header- and implementation-file that are generated for the neuron model
can be seen Listing D.1 and Listing D.14, respectively.
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Chapter 7

Related Work

This chapter describes modeling languages and processing tools in the computational
neuroscience field related to NESTML. Section 7.1 presents the NineML modeling lan-
guage and Section 7.2 presents the NeuroML modeling language. Both are similar to
NESTML in their modeling scope and processing capabilities and are analysed in de-
tail. Section 7.3 presents PyNN, which is a common interface for modeling neuronal
networks and controlling various simulators, and describes a possible cooperation be-
tween PyNN and NESTML. Finally, Section 7.4 shortly presents other interesting model-
ing languages and tools.

7.1 NineML – Unambiguous Description of Neuronal Net-
work Model

The modeling language NineML (Network Interchange for Neuroscience Modeling Lan-
guage) provides an unambiguous description of spiking neurons networks for efficient
model sharing and reusability. The description of NineML in this section is roughly
based on Gorchetchnikov et al. [Gor+11]. This specification defines a common object
model that describes the different elements of a model in a neuronal network (this cor-
responds to its abstract syntax, see Section 2.3) and uses XML [Bra+08] as its concrete
syntax (see Section 2.3). Models in NineML should be simulator agnostic, i.e. they
should only provide those information necessary for any simulator to instantiate net-
work models. For example, they only provide the neuron membrane equation, but do
not state how to solve it.

Different implementations in Java, Python and Chicken Scheme can import and create
those XML descriptions and can generate code to simulate those models in different
simulators. Up to this writing, it is possible to fully or partly describe:

• spiking neurons

• post-synaptic membrane current mechanisms

• short-term synaptic dynamics

• long-term synaptic modifications
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NineML consists of two semantic layers. The abstract layer describes the core concepts
of a model, along with its mathematical description, parameter and state variables and
state update rules. In the user layer, on the other hand, the state and parameter
variables can be described and initial or default values can be defined. Additionally,
unit definitions can be defined in the user layer.

ComponentClass

Dynamics Interface

 theta (parameter)

 iSyn (analog input)

 U (analog output)
 spikeOutput (event output)

Figure 7.1: Overview over the ComponentClass as defined in Listing 7.1. It consists
of a Dynamics block (an example can be seen in Figure 7.2) and an Interface block,
which exposes various ports and parameters to other components. The arrows indi-
cate incoming and outgoing analog and event ports. The line with the dot indicates a
parameter. [Gor+11]

In the abstract layer a ComponentClass represented each network model, e.g. a neu-
ron or a synapse model. The ComponentClass is composed of a Dynamics block and a
set of Interfaces. The Dynamics block contains the internal dynamics of that model,
e.g. state variables and update rules, and the Interfaces contain the parameters that
can be set from the user layer and different ports that allow this ComponentClass to
communicate with other network elements. Figure 7.1 contains an overview of the
ComponentClass as defined in Listing 7.1.

1 <ComponentClass name="MyNeuronModel">
2 <Parameter name="theta" dimension="voltage" />
3 <AnalogPort name="iSyn" mode="reduce" reduce_op="+" dimension="current" />
4 <AnalogPort name="U" mode="send" dimension="none" />
5 <EventPort name="spikeOutput" mode="send" />
6
7 <Dynamics>
8 <!−− . . . −−>
9 </Dynamics>

10 </ComponentClass>

Listing 7.1: Definition of MyNeuronModel in NineML (excerpt) (content of Dynamics block
missing, see Listing 7.2).

The Interfaces define what input and output the component exposes to other compo-
nents (AnalogPort and EventPort) and what parameters can be set from the user layer
(Parameter). A Parameter has a name and a dimension, line 2 in Listing 7.1. AnalogPorts
transmit or receive continues values, e.g. iSyn in line 3 receives current. They have
a name, a dimension and a mode, which indicates whether it is a sending or receiving
port. A reduce port, like in line 3, can receive data from multiple sending ports and
combines the incoming data with a specified reduce operations. EventPorts transmit
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or receive discrete events, e.g. they can indicate the emitting of an action potential
from a spiking neuron model.

Inside the Dynamics the internal state is defined with StateVariables and Aliases. The
state update rules are modeled with a set of Regimes with transitions between them,
similar to a finite-state machine [Aho+06]. StateVariables, like parameters, have a
name and a dimension, line 2 and 3 in Listing 7.2. Aliases represent an alternative
handle for a mathematical expression, line 4 – 5, and have a name a dimension and a
mathematical expression (MathInline).

1 <Dynamics>
2 <StateVariable name="V" dimension="voltage" />
3 <StateVariable name="U" dimension="voltage per time" />
4 <Alias name="rv" dimension="none">
5 <MathInline>V*U</MathInline>
6 </ Alias>
7 <Regime name="subthresholdRegime">
8 <TimeDerivative variable="U">
9 <MathInline>a*(b*V − U)</MathInline>

10 </TimeDerivative>
11 <TimeDerivative variable="V">
12 <MathInline>0.04*V*V + 5*V + 140.0 − U + iSyn</MathInline>
13 </TimeDerivative>
14 <OnCondition>
15 <Trigger>
16 <MathInline>V > theta </MathInline>
17 </Trigger>
18 <StateAssignment variable="V" >
19 <MathInline>c</MathInline>
20 </StateAssignment>
21 <StateAssignment variable="U" >
22 <MathInline>U+d</MathInline>
23 </StateAssignment>
24 <EventOut port="spikeOutput" />
25 </OnCondition>
26 </Regime>
27 </Dynamics>

Listing 7.2: The Dynamics of MyNeuronModel from Listing 7.1.

A Dynamics can have several named Regimes, each containing differential equations
(TimeDerivative lines 8 – 13) for all StateVariable. This means, if the neuron is in
a certain Regime, its StateVariables advance according to the TimeDerivates of that
Regime – if no TimeDerivate is given for a certain StateVariable, it is assumed to be
zero. The transitions between Regimes are defined either by conditions (OnCondition
lines 14 – 25) or by events (OnEvent) in the source Regime. The target Regime can be de-
fined with the attribute target_regime – if no target is stated, it stays in its Regime. The
OnCondition transition has to define a Trigger (lines 15 – 17) and the OnEvent transition
has to define the responsible input event port. Both can modify StateVariable through
StateAssignments (lines 18 – 23) and emit events via a specified event port through the
EventOut statement (line 25).

On the user layer each parameter and sending analog port of a component can be fully
described and initialized. The abstract layer of the component is defined in the block
definition, lines 2 – 3 in Listing 7.3. Then every parameter and sending analog port is
described via a property block with the corresponding name, lines 5 – 10. The quantity
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defines the initial value and corresponding unit (lines 6 – 8) and the note block allows a
short description of the property (line 9).

1 <component name="My neuron model">
2 <definition language="NineML">
3 http: / /www.NineML. org /neurons /MyNeuronModel.9ml <!−− abstract layer −−>
4 </ definition>
5 <property name="theta">
6 <quantity>
7 <value> <scalar>50</scalar> <unit>mV</unit> </value>
8 </quantity>
9 <note><String>Parameter value ( spike amplitude)</String></note>

10 </property>
11 . . .
12 </component>

Listing 7.3: User layer definition of MyNeuronModel from Listing 7.2.

NineML is more general in comparison to NESTML. This has the advantage that a Com-
ponentClass is not limited to only model neurons – any kind of network element could
possibly be modeled. The drawback is that it is not possible to see, which kind of model
is described by the ComponentClass and the relation to domain concepts is less visible.
NESTML makes it more obvious, whether it is a neuron model or an auxiliary compo-
nent, uses concrete domain concepts and well known syntax for a procedural descrip-
tion of neuron dynamics. Extensions for NESTML are planned so that it can describe
any kind of network model in the future.

State Variables: X, Y, Z

Regime Graph:

Regime: regime1

dX/dt = (5-X)/2
dY/dt = (X-Y)/5
dZ/dt = (1-XZ)

Regime: regime1

dX/dt = (5-X)/2
dY/dt = 0
dZ/dt = -Z

Regime: regime3

dX/dt = 0
dY/dt = (X-Y)/5
dZ/dt = 0

Transition: t4Tr
an

si
tio

n:
 t3

Transition: t5

Transition: t1

Transition: t2

Figure 7.2: Example dynamics of NineML with three state variables, three Regimes and
directed transitions between the Regime. [Gor+11]
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The parameter, ports and state variables in NineML have corresponding counterparts in
NESTML – the state and parameter variable blocks and the input and output statements
–, but their definition with unit and initial value is separated over the abstract and user
layer, which makes it more difficult to understand the complete model.

To make NineML descriptions simulator agnostic, only differential equations can be
used to advance the dynamic state of a model. When neuron models have exact so-
lutions for their differential equations, e.g. the integrate-and-fire neuron model from
6.2, this might lead to generating unnecessary complex and inefficient code for a sim-
ulator. The approach to model the neuron dynamics as a finite-state automaton with
regimes and transitions is a great way to visualize the dynamics (when the dynamics
is transformed into a picture like Figure 7.2), but for developing new neuron models a
procedural definition of the dynamic is more common and can be clearer.

Finally, the decision to use XML as concrete syntax is controversial. XML is intended to
be easy to create and process by programs [Bra+08] and as a well established stan-
dard, many processing libraries for XML exist, so no additional lexer and parsers have
to be developed – except for processing MathInline statements. Eventually, those have
to be processed separately to ensure semantic correctness of the model, e.g. context
conditions similar to S02. Further, the verbosity of XML makes writing and reading
NineML models more difficult [Che01].

7.2 NeuroML – Model Descriptions for Computational Neu-
roscience

Figure 7.3: Overview over the levels of NeuroML. [Gle+10]

NeuroML (Neural Open Markup Language) is an open source project based on XML
[Bra+08]. The description of NeuroML in this section is roughly based on Gleeson et al.
[Gle+10]. NeuroML is intended as a common description language for biophysically de-
tailed neuronal and network models and should enable interoperability across multiple
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simulation environments. Neuronal models can have complex neuronal morphologies,
descriptions of voltage- and ligand-gated conductances, synaptic mechanisms and the
network models contain the positions of cells and synaptic connections in a 3D net-
work structure. It also supports basic integrate-and-fire neuron model. However, more
advanced types of reduced model such as exponential integrate and fire or Izhikevich
spiking neurons are not yet supported.

The language itself is separated into three levels responsible for describing different
scales of biological detail, as shown in Figure 7.3. Level 1 describes the morphology
of a neuronal model with the sub-language MorphML, i.e. the number and 3D position
of compartments, their size and shape. Additionally, it provides mechanisms to state
relevant background date (metadata). Level 2 uses the ChannelML to describe voltage-
gated membrane conductances together with static and plastic synaptic conductance
processes and extends level 1 descriptions by specifying the location and density of
these membrane conductances in the cell model. Level 3 describes neuronal networks
with 3D locations of individual neurons (in populations), synaptic connections between
neurons (in projections) and external electrical inputs via the NetworkML.

1 <neuroml> <!−− missing: import schemes −−>
2 <cells>
3 <cell name = "HH_Cell">
4 <meta:notes>A Simple ce l l with HH channels</meta:notes>
5 <mml:segments>
6 <mml:segment id = "0" name = "Soma" cable = "0">
7 <mml:proximal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0" />
8 <mml:distal x = "0.0" y = "10.0" z = "0.0" diameter = "16.0" />
9 </mml:segment>

10 </mml:segments>
11
12 <mml:cables>
13 <mml:cable id = "0" name = "Soma">
14 <meta:group>a l l</meta:group>
15 <meta:group>soma_group</meta:group>
16 </mml:cable>
17 </mml:cables>
18
19 <!−− Adding the biophysical parameters from level 2 −−>
20 <biophysics units =" Physiological Units ">
21 <bio:mechanism name = "NaConductance" type = "Channel Mechanism">
22 <bio:parameter name = "gmax" value = "120.0">
23 <bio:group>a l l</bio:group>
24 </bio:parameter>
25 </bio:mechanism>
26 <!−− missing: other mechanics −−>
27 </biophysics>
28 </ cell>
29 </ cells>
30 </neuroml>

Listing 7.4: Excerpt of a cell with Hodgkin-Huxley channels defined in MorphML.
[Gle+10]

The MorphML XML scheme in level 1 allows defining the morphology of a cell. There-
fore, the definition of a cell (lines 3 – 29 in Listing 7.4) requires a name and a list of
its segments, which can be combined to form cables. Each segment can further be
described by an identifying name and its proximal and distal dimension and diameter
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(lines 7 and 8). One or more segment elements can create a cable and so define the
3D path of the cable. Associated to the level 1 of NeuroML is the meta XML scheme
to supply relevant background data, e.g. notes, the original author of the model or a
reference to the publication. Furthermore, the cell definition contains the biophysics
element (lines 20 – 27) from level 2, which specifies the used membrane channel me-
chanics of the cell and in which cable they are located (line 23).

1 <channelml> <!−− missing: import schemes −−>
2 <channel_type name="NaConductance">
3 <status value="stable " />
4
5 <current_voltage_relation cond_law="ohmic" ion="na" default_erev="50"
6 default_gmax="120">
7 <gate name="m" instances="3">
8 <closed_state id="m0" />
9 <open_state id="m" />

10
11 <transition name="alpha" from="m0" to="m" expr_form="exp_linear " rate="1"
12 scale="10" midpoint="−40" />
13 <transition name="beta" from="m" to="m0" expr_form="exponential " rate="4"
14 scale="−18" midpoint="−65" />
15 </gate>
16
17 <gate name="h" instances="1">
18 <closed_state id="h0" />
19 <open_state id="h" />
20 <transition name="alpha" from="h0" to="h" expr_form="exponential " rate="0.07"
21 scale="−20" midpoint="−65" />
22 <transition name="beta" from="h" to="h0" expr_form="sigmoid" rate="1"
23 scale="−10" midpoint="−35" />
24 </gate>
25 </current_voltage_relation>
26
27 </channel_type>
28 </channelml>

Listing 7.5: ChannelML file containing a single Na+ channel description. [Gle+10]

Besides the biophysics element in the cell description, level 2 contains the ChannelML
XML scheme that allows defining the individual conductance mechanisms. It can de-
scribe those conductance mechanisms that arise at the channels, which are distributed
over the cell membrane, and those conductance mechanisms that arise at synaptic
contacts. Listing 7.5 shows the definition of an Na+ channel for a Hodgkin-Huxley
cell [HH52]. Its name (line 1) corresponds to the name in the bio:mechanism element.
The current_voltage_relation element (lines 5 – 25) lists the relevant gates of the con-
ductance, which in turn specify the transitions from opening to closing state and vice
versa. To specify a synaptic mechanism, the synapse_type element allows parameter-
izing various typical synaptic conductances, e.g. the doub_exp_syn elements describes
a conductance change with exponentially rising and decaying time courses.

With the NetworkML in level 3, the 3D anatomical structure and synaptic connectivity of
a network of cells is defined and the external input that is used to drive the network can
be specified. Listing 7.6 displays the definition of a simple network with two populations
of HH_Cells. First, a list of named popolations are defined (lines 11 – 19). Each cell
instance of a population has the same cell_type and its 3D location has to be specified.
Besides this direct definition of instances, it is also possible to define populations with
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predefined generation algorithms, e.g. place 300 cells randomly inside a certain 3D
region. When the populations are defined, projections are used to specify a connecting
synapse type and the connections between cells (lines 21 – 33). Finally, the inputs
element lists the external electrical inputs (lines 35 – 46), e.g. a random input with the
random_stim element. Further the location, to which cells the inputs should be applied
is given with the target element for the target population and the sites for the actual
target cells inside that population.

1 <networkml> <!−− missing: import schemes −−>
2 <populations>
3 <population name="PopA" cell_type="HH_Cell">
4 <instances size="2">
5 <!−− L is t a l l nodes with 3D location −−>
6 <instance id="0"> <location x="0" y="0" z="0" /> </ instance>
7 <instance id="1"> <location x="100" y="0" z="0" /> </ instance>
8 </ instances>
9 </population>

10
11 <population name="PopB" cell_type="HH_Cell">
12 <instances size="3">
13 <!−− L is t a l l nodes with 3D location −−>
14 <instance id="0"> <location x="0" y="100" z="0" /> </ instance>
15 <instance id="1"> <location x="100" y="100" z="0" /> </ instance>
16 <instance id="2"> <location x="200" y="100" z="0" /> </ instance>
17 </ instances>
18 </population>
19 </populations>
20
21 <projections units=" Physiological Units ">
22 <projection name="NetworkConnection" source="PopA" target="PopB">
23 <synapse_props synapse_type="DoubleExpSynapse" internal_delay="5"
24 threshold="−20" />
25
26 <connections><!−− Al l connection between cel ls specified −−>
27 <connection id="0" pre_cel l_ id="0" post_cel l_ id="1" />
28 <connection id="1" pre_cel l_ id="1" post_cel l_ id="0">
29 <properties weight="0.5" />
30 </connection>
31 </connections>
32 </projection>
33 </projections>
34
35 <inputs units=" SI Units ">
36 <!−− adjusted value −−>
37 <input name="RandomInput">
38 <random_stim frequency="50" synaptic_mechanism="DoubleExpSynapse" />
39 <target population="PopA">
40 <sites>
41 <site ce l l _ id="0" />
42 <site ce l l _ id="1" />
43 </ sites>
44 </target>
45 </ input>
46 </ inputs>
47 </networkml>

Listing 7.6: A simple network, where instances of cell populations, connections and
inputs are specified. [Gle+10]

84



The NeuroML covers a wider application range than NESTML, since whole neuronal net-
works can be described with the NetworkML. On this account comparing only level 1
and level 2 of NeuroML with NESTML is more appropriate here. NeuroML can define
complex single and multi-compartment neuron model with various biophysical mech-
anisms by using appropriate elements for segments, channel mechanisms or synapse
mechanisms. On the one hand, this results in definitions of models that is compact,
e.g. by outsourcing and reusing mechanism definitions, and clear. On the other hand,
this limited set of possible language elements reduces the expressiveness of NeuroML,
e.g. models that do not use Hodgkin-Huxley channels, like an integrate-and-fire neuron
model, can only be specified, if corresponding elements exist. Defining more mecha-
nisms requires changes to the language definition itself. NESTML in turn can specify
a new mechanism via a component in a procedural manner and reuse those neuron
models.

Since NeuroML also use XML as its concrete syntax, the same arguments as for NineML
in Section 7.1 apply. A benefit over the NineML XML scheme is that NeuroML if fully XML
conform, e.g. it does not need dedicated processing for MathInline expressions.

7.3 PyNN – A Common Interface for Neuronal Network
Simulators

PyNN is a Python-based interface for setting up, specifying and simulating neuronal net-
work models on different simulators [Dav+09]. This allows writing a simulation script
once and run it without modification on all supported simulators. Since simulators
for neuronal networks have either native interpreter, e.g. HOC for NEURON or SLI for
NEST, or a Python interface, e.g. Brain, or both to drive their simulations, PyNN basi-
cally defines a common Python API and the simulators implement this API in terms of
their interpreter. By this means, various interactions between PyNN and a supported
simulator are possible.

PyNN contains a library of network elements that are common to at least two sup-
ported simulators. This includes common neuron models, like single compartment
integrate-and-fire neuron model or Hodgkin-Huxley models, common synapse models
and synaptic plasticity. It can create individual or whole populations of cells, change
their parameters and connect them using different strategies. Projections connect
two populations of cells using predefined Connectors, e.g. FixedProbabilityConnector
or AllToAllConnector. The connect function connects two individual cells, which allows
defining own connection algorithms.

When the network is set up, the developer specifies the properties, which should be
recorded. The function record of a population causes the recording of spike times
and record_v causes the recording of membrane potentials. Finally, the call of the
run function starts the simulation. When the simulation finishes, calls to the functions
getSpikes and get_v give access to the recorded data. Listing 7.7 shows an example
script for PyNN.

PyNN is not supposed to define new neuron models, it rather is supposed to define
neuronal networks with predefined models and drive a simulator for that network. This
means, comparing NESTML and PyNN is not appropriate, but they can complement
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each other in the future, if PyNN would allow the cell or population creation of neuron
models, which are defined in NESTML. Then the execution of the NESTMLTool would
generate the corresponding source code for the selected simulator. Finally, the gener-
ated code needed to be compiled and dynamically loaded into the simulator. This is
subject for future investigation.

1 from pyNN. nest2 import * # import implementation for NEST simulator
2
3 # specify common parameters for ce l ls
4 cell_params = { ’tau_m ’ : 20.0 , ’ v_rest ’ : −49.0, . . . }
5 # setup simulator infrastructure
6 setup ( )
7 # create populations for excitatory and inhibitory ,
8 # conductance based IF ( integrat−and−f i r e ) ce l ls
9 pE = Population(4000, IF_cond_exp , cell_params , label="Excitatory " )

10 pI = Population(1000, IF_cond_exp , cell_params , label=" Inhibitory " )
11
12 # connect cel ls with probabil ity 2%, a delay of 0.1ms and different , stat ic weights
13 FPC = FixedProbabilityConnector
14 exc_conn = FPC(0.02 , weights=0.004, delays=0.1)
15 inh_conn = FPC(0.02 , weights=0.051, delays=0.1)
16
17 # connect populations with above defined connectors
18 e2e = Projection (pE, pE, exc_conn , target=’ excitatory ’ )
19 e2i = Projection (pE, pI , exc_conn , target=’ excitatory ’ )
20 i2e = Projection ( pI , pE, inh_conn , target=’ inhibitory ’ )
21 i2 i = Projection ( pI , pI , inh_conn , target=’ inhibitory ’ )
22
23 pE. record(1000) # record spike times of 1000 random cel ls in pE
24 pI . record ( ) # record spike times a l l ce l ls in pI
25 pE. record_v ( [pE[0] , pE[1] ] ) # record membrane potential of f i r s t two cel ls in pE
26
27 run(1000.0) # run simulation for 1000ms
28 pI . getSpikes ( ) [ : 5 ] # get f i r s t 5 spike times
29 pE. get_v ( ) [ : 5 ] # get f i r s t 5 membrane potentials
30 end( ) # fin ish simulation , release infrastructure

Listing 7.7: Example PyNN script that simulates two populations of randomly connected
cells.

7.4 Others

Besides the above-described languages, there are various other languages and tools
related to neuron modeling, neuronal networks and simulation of those. Some of them
will be shortly introduced in this section.

SBML (Systems Biology Markup Language) [Huc+03] and CellML [Cue+03] are other
XML-based modeling languages. SBML can be used for modeling biochemical reaction
networks, like cell signaling pathways, metabolic pathways and gene regulation, and
has several software tools that support creation, import, export, simulation and other
processing of SBML models. CellML supports various electrophysiological, mechanical,
signal transduction, and metabolic pathway models and has own tools for simulation
and creation. Both have a very similar scope, which is much wider then neuron model-
ing, and conversion from one model description into the other is possible [Sch+06].
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The Chicken Scheme-based language nemo [Rai13] reads in ion channel descriptions
and can generate corresponding simulation code for different simulation environments.

Topographica [Bed09] is a Python-based simulator with extensive presentation, analy-
sis and plotting tools. It is able to bridge between multiple simulators to analyze large-
scale, detailed models of topographic maps. Therefore, Topographica partitions the
cortical surface into topographic, two-dimensional maps, where populations of similar
neurons are organized in Sheets. Multiple Sheets can be used for each neural area and
can be stacked for three-dimensional representation of the cortex. A Sheet has to ac-
cept and generate Events, has a fixed area and density of neurons and has to be able to
generate activity pattern arrays. Once those details for a new Sheet are available, e.g.
by simulation with an external simulator, nearly all of Topographica’s analysis and plot-
ting code can be used with the new Sheet type. The definition of new Sheets is possible
in Topographica itself by wrapping external simulators similar to PyNN (Section 7.3).

The simulators Brian [GB08] and NEURON [HC97; Hin93], as described in Section 2.2,
both have a dedicated modeling language to describe their neuron models and they
simulate those models with their simulation infrastructure. Brian describes neuron
models with their differentials equation in Python and NEURON uses the HOC modeling
language. These languages are not usable for other simulators.
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Chapter 8

Conclusion

This thesis describes the design and implementation of the domain specific language
NESTML and a corresponding processing tool. NESTML allows modeling point neuron
models in a concise and clear manner (F01). The processing tool checks the models
for programmatically correctness (NF06) and can generate code for the NEST simulator
to simulate the neuron model within a biological neuronal network (NF05, F15 – F17).
The language and the processing tool are developed with the design goal of easy ex-
tensibility (NF04) so that the scope of the language can easily be extended (NF04.1 –
NF04.3) and code for more target simulators can be generated (NF05).

While no formal investigations have been done yet, we claim that NESTML drastically
reduces the workload to develop new neuron models. In comparison to C++ models
for the NEST simulator, a corresponding NESTML model has less than four times the
amount of code (see Chapter 6). Further, it reduces the work to maintain models for a
simulator, since only the code generation part of the processing tool has to be altered
and not every individual model. With the possibility to target more simulators in the
future, NESTML models can be reused and findings can easily be reproduced on other
simulators.

Chapter 1 introduces the topic of computational neuroscience and the simulation of
neuronal networks, and motivates the development of a new modeling language for
neuron models. In Chapter 2 the fundamental entities relevant to this thesis are in-
troduced. On the one hand, it describes the microscopic building blocks of the brain,
especially neurons, and the interaction between neurons. The transition from actual
biological neuronal networks to the simulation of such networks is outlined. On the
other hand, a short introduction into programming and modeling languages is given,
and compilers in general are described. The chapter concludes with a an in depth
description of the MontiCore framework [Grö+08], which is used to develop NESTML.

Chapter 3 lists the functional and non-functional requirements for the modeling lan-
guage NESTML and its processing tool – as identified during interviews with the re-
searchers behind the NEST simulator [GD07] and extensive research of related model-
ing languages [Gor+11; Gle+10; GB08; Hin93; Rai13; Cue+03; Huc+03; Bed09].

In Chapter 4 the design of NESTML and its sub-languages is described. The UnitDSL can
model physical units (F06), which in turn can be used in NESTML to model biophysical
mechanisms with more detail. The simple procedural language (SPL) allows specifying
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neuron model behavior and biophysical mechanisms in a procedural way (F11) with a
clear and concise syntax (F11.3) similar to Python’s. Since Python is widely used in
the neuroscience community, we believe NESTML’s similarity to Python improves its
adoption. NESTML itself makes use of the UnitDSL and the SPL, and can model spiking
point neuron models (F01) with dynamic state (F02), parameters (F04) and neuron
dynamics for distinct time-step simulations (F03). Functionality can be modularized
with functions (F12) and components (F13). Units, components and neuron models
are organized in a hierarchical structure (F14). Each of the described languages has
various context conditions, which ensure programmatically correct models (NF06) and
support developers in writing new neuron models (NF02).

Chapter 5 covers implementation aspects of NESTML, SPL, UnitDSL and its processing
tool. It includes a description of their symbol table structure, the currently supported
type calculations of expressions and its code generation capabilities. The tool is able to
generate corresponding neuron models for the NEST simulator (F15) with additional
code for auxiliary components (F16) and the complete NEST module infrastructure
(F17), which simplifies further processing of the generated code. The project layout,
MontiCore’s grammar format, the encapsulated design for context conditions and code
generation makes NESTML and its tool easy to maintain and extend (NF04, NF05).

The usage of the processing tool and the derivation a complete neuron model is ex-
plained in detail in Chapter 6 on the example of the integrate-and-fire neuron model.
Related work and similar modeling languages are described in Chapter 7. Finally, this
chapter concludes this thesis and gives an outlook on future work.

8.1 Future Work

NESTML already allows modeling a large set of spiking point neuron models and the
processing tool can catch many severe errors in the static analysis of a NESTML model
and generate simulation code for those models for the NEST simulator. Thought, many
extensions to the language and the processing tool are imaginable and an embedding
into the computational neuroscience software landscape would be desirable.

The ability to model multi-compartment models (NF04.1) would be one future exten-
sion to NESTML. Components with own membrane potential, inputs and outputs and
dynamics could be used as segments or compartments. Connected in a designated
structure-statement they could model parts of a neuron or of a neuron’s dendrite or
axon.

If NESTML can model the dynamic behavior of neurons in different ways, it would give
developers more flexibility in creating and describing neuron models. Spikes and ex-
ternal currents can be interpreted as distinct events that arrive at a neuron, so an
event-based description of the neuron dynamics could enhance the expressiveness of
NESTML (NF04.2). In addition, the dynamics of many neuron models can be described
through a set of ordinary differential equations (ODE). It would be beneficial, if this set
of ODEs could be used in NESTML to describe the neuron dynamics (NF04.3).

Besides neuron models, biological neuronal networks need models for synapses. Natu-
rally, extending NESTML to allow modeling of synapse models is a goal for future work.
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Extensions to the processing tool include support for more target simulators (NF05) and
more context conditions. An interesting target simulator could be SpiNNakkar [Pai+13],
since it is relatively new and has only a few neuron models implemented yet. Future
context conditions, for example, need to check correct usage and reachability of re-
turn-statements in functions. Type-checking can be extended to calculate the correct
physical unit of an expression: for now it is sufficient that the expression 15.5mV

ms ∗ 5ms
is a real type, but the actual type would mV .

Incorporating NESTML into PyNN [Dav+09] is another interesting topic for future work,
since it would simplify the workflow of specifying and simulating neuronal networks of
neurons described in NESTML. The necessary operations to process the NESTML model,
generate the code for the specified simulator and compile and load this code into the
simulator could be performed by PyNN. When findings should be shared, it would be
sufficient, to only distribute the PyNN script.

Finally, usage and usability studies with neuron model developers testing NESTML need
to be conducted, so that evidence supporting our previously mentioned claim (that
NESTML drastically reduces the workload of developers) can be gathered.
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Appendix A

Abbreviations

Some of the diagrams in this thesis contain special comments that explain the formal
meaning of the elements in the diagram or explain, what kind of element is used. Ad-
ditionally, the text contains some abbreviations of longer and often used terms. This
chapter shortly explains each of the used abbreviations.

GPL General Purpose Languages, see Section 2.3.

DSL Domain Specific Languages, see Section 2.3.

AST Abstract Syntax Tree, see Section 2.4.

ODE Ordinary Differential Equation.
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CD This diagram is a UML class diagram according to OMG [OMG11a;
OMG11b].

CpD This diagram is a UML class diagram according to OMG [OMG11a;
OMG11b].

AST
This diagram shows an abstract syntax tree as described in Section 2.4.
Possibly, the nodes can have attributes next them as described in Sec-
tion 2.5.4.

T
This diagram shows the calling hierarchy of FreeMarker templates with the
triggering element. The elements of this diagram have additional abbre-
viations explaining, which kind of element they are.

FM This element represents a FreeMarker template.

ARG This element represent the usage of a certain command-line argument.

UDSL This element represents a model written in the UnitDSL.

SPL This element represents a production from the SPL.

NESTML This element represents a production from the NESTML.
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Appendix B

Language Grammars

1 package nestml . l i t e ra l s ;
2
3 grammar L i tera ls {
4
5 options {
6 parser lookahead=3
7 lexer lookahead=3
8 nostring noident nows noslcomments
9 }

10
11 interface IPackage ;
12 ast IPackage = packageName:DottedName;
13
14 APackage implements IPackage = "package" packageName:DottedName;
15
16 token BLOCK_OPEN = " : " ;
17
18 token BLOCK_CLOSE = "end" ;
19
20 DottedName = names:Name ( " . " names:Name)* ;
21 ast DottedName =
22 method public String toString ( ) {
23 return com. google .common.base . Joiner .on( " . " ) . jo in (getNames( ) ) ;
24 };
25
26 token Name
27 options{testL i tera ls=true ;} = / / check Li tera ls f i r s t
28 ( ’a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ _ ’ | ’$ ’ )
29 ( ’a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ _ ’ | ’0 ’ . . ’9 ’ | ’$ ’ ) * ;
30
31
32 / / allow EOL to be a expression delimiter
33 token WS = ( ’ ’ | ’ \ t ’ | ’ \ f ’ )+ {_ttype = Token. SKIP ;};
34 token EOL = ( options {generateAmbigWarnings=false ;}:
35 " \ r \n" / / DOS
36 | ’ \ r ’ / / Macintosh
37 | ’ \n ’ / / Unix
38 ) { newline ( ) ;} ;

Listing B.1: The Literals grammar. Many parts are omitted, since they are equal to
mc.literals.Literals. (Part 1 of 2)
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1 token SL_COMMENT = " / / " (~( ’ \n ’ | ’ \ r ’ ) )* ( ’ \n ’ ! | ’ \ r ’ ! ( ’ \n ’ ! )?)?
2 {newline ();}{
3 i f (getCompiler ( ) != nul l ) {
4 Token _token_comment = makeToken( _ttype ) ;
5 _token_comment . setText (new String ( text . getBuffer ( ) , _begin ,
6 text . length ( ) − _begin ) ) ;
7 mc.ast .Comment _comment = new mc.ast .Comment(_token_comment . getText ( ) ) ;
8 _comment. set_SourcePositionStart (new mc.ast . SourcePosition (
9 _token_comment . getLine ( ) , _token_comment .getColumn ( ) ) ) ;

10 _comment. set_SourcePositionEnd (
11 mc. antlr . MC_LLkParser . computeEndPosition(_token_comment ) ) ;
12 getCompiler ( ) .addComment(_comment) ;
13 }};
14 }

Listing B.2: The Literals grammar. Many parts are omitted, since they are equal to
mc.literals.Literals. (Part 2 of 2)

1 package nestml . unit ;
2
3 grammar Unit extends nestml . l i t e ra l s . L i tera ls {
4 options {
5 nostring noident nows noslcomments
6 }
7
8 ast Unit = method public String toString ( ) {
9 return org .apache.commons. lang .

10 builder . ToStringBuilder . reflectionToString ( this ) ;
11 };
12
13 Package = APackage BLOCK_OPEN Units BLOCK_CLOSE;
14
15 Units = (SL_COMMENT! | EOL!)* UnitLine
16 ( ( (SL_COMMENT! | EOL!)+ " unit " ) => ((SL_COMMENT! | EOL!)+ UnitLine )
17 | SL_COMMENT!
18 | EOL! ) * ;
19
20 UnitLine = Unit (options {greedy=true ;}: " ; " Unit )* ( " ; " )? ;
21
22 Unit = " unit " unitName:Name ([ real : "Real" ] | [ integer : " Integer " ] )
23 ( [ le f t Inc lus ive : " [ " ] | [ leftExclusive : " ( " ] )
24 (from: SignedNumericLiteral | [ fromInf : "−in f " ] )
25 " . . . "
26 ( to : SignedNumericLiteral | [ toInf : " in f " ] )
27 ( [ r ightInclusive : " ] " ] | [ rightExclusive : " ) " ] ) ;
28 }

Listing B.3: The grammar for the UnitDSL.
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1 package nestml . spl ;
2
3 /* Small Procedual Language */
4 grammar SPL extends nestml . l i t e ra l s . L i tera ls {
5 options {
6 nostring noident nows noslcomments
7 }
8
9 concept attributes {

10 syn typeEntry : / nestml . spl . ets . entries . SPLTypeEntry ;
11
12 global SymbolTable : / interfaces2 . helper . SymbolTableInterface ;
13 global Level : /mc. ProblemReport .Type;
14 }
15
16 SPLFile = Block ;
17
18 Block = (
19 ( " i f " | " for " | "while" |Name|DottedName) => Stmt
20 | SL_COMMENT! | EOL!
21 )* ;
22
23 Stmt = Simple_Stmt (SL_COMMENT! | EOL! | EOF)
24 | Compound_Stmt;
25
26 Compound_Stmt = IF_Stmt
27 | FOR_Stmt
28 | WHILE_Stmt;
29
30 Simple_Stmt = Small_Stmt (options {greedy=true ;}: " ; " Small_Stmt)* ( " ; " )? ;
31
32 Small_Stmt = (DottedName "=" ) => Assignment
33 | (DottedName " ( " ) => FunctionCall
34 | Declaration
35 | ReturnStmt ;
36
37 Assignment = DottedName "=" Expr ;
38
39 Declaration = vars :Name ( " , " vars :Name)* type :DottedName ( "=" Expr )? ;
40
41 ReturnStmt = "return" (Expr | Test ) ;
42
43 IF_Stmt = " i f " Test BLOCK_OPEN Block ELIF_Clause* (ELSE_Clause)? BLOCK_CLOSE;
44
45 ELIF_Clause = " e l i f " Test BLOCK_OPEN Block ;
46
47 ELSE_Clause = "else" BLOCK_OPEN Block ;
48
49 FOR_Stmt = " for " var :Name " in " from:Expr " . . . " to : Expr
50 ( "step" step : SignedNumericLiteral )?
51 BLOCK_OPEN Block BLOCK_CLOSE;
52
53 WHILE_Stmt = "while" Test BLOCK_OPEN Block BLOCK_CLOSE;
54
55 Test = OR_Test ;
56
57 OR_Test = AND_Test ( "or" AND_Test ) * ;

Listing B.4: The grammar for the SPL. (Part 1 of 2)
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1 AND_Test = NOT_Test ( "and" NOT_Test ) * ;
2
3 NOT_Test = "not" NOT_Test
4 | (Expr ( "<" | "<=" | "==" | "!=" | "<>" | ">=" | ">" ) ) => Comparison
5 | (DottedName " ( " ) => FunctionCall
6 | DottedName / / bool variable
7 | BooleanLiteral ; / / true & false
8
9 Comparison = " ( " Test " ) "

10 | l e f t : Expr op : [ "<" | "<=" | "==" | "!=" | "<>" | ">=" | ">" ] r ight : Expr ;
11
12 Expr = XOR_Expr ( " | " XOR_Expr) * ;
13
14 XOR_Expr = AND_Expr ( "^" AND_Expr) * ;
15
16 AND_Expr = SHIFT_Expr ( "&" SHIFT_Expr ) * ;
17
18 SHIFT_Expr = ARITH_Expr (SHIFT_ExprEnd )* ;
19 SHIFT_ExprEnd = sign : [ "<<" | ">>" ] ARITH_Expr ;
20
21 ARITH_Expr = Term (ARITH_ExprEnd)* ;
22 ARITH_ExprEnd = sign : [ "+" | "−" ] Term;
23
24 Term = Factor (TermEnd)* ;
25 TermEnd = sign : [ "*" | " / " | "%" ] Factor ;
26
27 Factor = sign : [ "+" | "−" | "~" ] Factor
28 | Power;
29
30 Power = Atom (options {greedy=true ;}: "**" Factor )? ;
31
32 Atom = " ( " Expr " ) "
33 | (DottedName " ( " ) => FunctionCall
34 | DottedName / / variables
35 | NumericLiteral
36 | Str ingLiteral
37 | BooleanLiteral ;
38
39 FunctionCall = DottedName " ( " ArgList " ) " ;
40
41 ArgList = (args :Expr ( " , " args :Expr )* )? ;
42 }

Listing B.5: The grammar for the SPL. (Part 2 of 2)
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1 package nestml ;
2
3 grammar NESTML extends nestml . l i t e ra l s . L i tera ls {
4 options {
5 nostring noident nows noslcomments
6 lexer lookahead = 5
7 }
8
9 concept attributes {

10 global SPLConnector : / nestml . spl . _ast . SPLToolConcreteStorageConnector ;
11
12 syn typeEntry : / nestml . ets . entries .NESTMLTypeEntry;
13 }
14
15 external Block ;
16 external Declaration ;
17 external UnitLine ;
18
19 Package = (SL_COMMENT! | EOL!)*
20 APackage BLOCK_OPEN!
21 ( SL_COMMENT! | EOL! | Statment)*
22 BLOCK_CLOSE!
23 (SL_COMMENT! | EOL! ) * ;
24
25 Statment = ( "import" | " unit " ) => (Simple_Stmt (SL_COMMENT! | EOL! | EOF) )
26 | Compound_Stmt;
27
28 Compound_Stmt = Neuron
29 | Component;
30
31 Simple_Stmt = Import
32 | UnitLine ;
33
34 Import = "import" DottedName ([ isStar : " .* " ] )? ( " ; " )? ;
35 ast Import = method public String toString ( ) {
36 i f ( isStar ) {
37 return " import " + getDottedName() + " .* " ;
38 }
39 return " import " + getDottedName( ) ;
40 };
41
42 Neuron = "neuron" Name Body;
43
44 Component = "component" Name Body;
45
46 interface BodyElement;
47
48 / Body = BLOCK_OPEN! ( SL_COMMENT! | EOL! | BodyElement)* BLOCK_CLOSE! ;
49
50 USE_Stmt implements BodyElement = "use" name:DottedName "as" al ias :Name;

Listing B.6: The grammar for NESTML. (Part 1 of 2)
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1 Var_Block implements BodyElement =
2 ( [ state : " state" ] | [ para : "parameter" ] | [ internal : " internal " ] )
3 BLOCK_OPEN
4 ( ( ( " al ias " )? Name) =>
5 AliasDecl (options {greedy=true ;}: " ; " AliasDecl )* ( " ; " )?
6 | SL_COMMENT! | EOL!)*
7 BLOCK_CLOSE;
8
9 AliasDecl = ( [ al ias : " al ias " ])? Declaration ;

10
11 Input implements BodyElement = " input"
12 BLOCK_OPEN!
13 ( InputLine | SL_COMMENT! | EOL!)*
14 BLOCK_CLOSE! ;
15
16 InputLine = Name "<−" InputType* ( [ spike : "spike" ] | [ current : "current" ] ) ;
17
18 InputType = ([ inh : " inhibitory " ] | [ exc : "excitatory " ] ) ;
19
20 Output implements BodyElement =
21 "output" BLOCK_OPEN! ( [ spike : "spike" ] | [ current : "current" ] ) ;
22
23 Structure implements BodyElement = "structure "
24 BLOCK_OPEN!
25 ( StructureLine | SL_COMMENT! | EOL!)*
26 BLOCK_CLOSE! ;
27
28 StructureLine = compartments:DottedName ( "−" compartments:DottedName) ;
29
30 Function implements BodyElement =
31 " function" Name " ( " Parameters? " ) " ( returnType :DottedName)?
32 BLOCK_OPEN!
33 Block
34 BLOCK_CLOSE! ;
35
36 Parameters = Parameter ( " , " Parameter ) * ;
37 ast Parameters = method public String toString ( ) {
38 return com. google .common.base . Joiner .on( " , " ) . jo in (getParameter ( ) ) ;
39 };
40
41 Parameter = Name type :DottedName;
42 ast Parameter = method public String toString ( ) {
43 return name + " " + type . toString ( ) ;
44 };
45
46 Dynamics implements BodyElement = "dynamics" (MinDelay | TimeStep)
47 " ( " Parameters? " ) "
48 BLOCK_OPEN! Block BLOCK_CLOSE! ;
49
50 MinDelay = "minDelay" ;
51
52 TimeStep = "timestep" ;
53 }

Listing B.7: The grammar for NESTML. (Part 2 of 2)
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Appendix C

Example NESTML neuron

1 package models :
2 import units . e lectr ics .*
3 import units . time .*
4
5 neuron iaf_neuron :
6 state :
7 y0 mV / / external current
8 y1 mV / / y1 and y2 are used in order to
9 y2 mV / / calculate alpha shape

10 y3 mV / / relat ive membrane potential
11 r integer / / refractory steps to go
12 alias V_m mV = y3 + E_L / / actual Membrane potential .
13 end
14
15 parameter:
16 C_m pF = 250 / / Capacity of the membrane.
17 tau_m ms = 10 / / Membrane time constant .
18 tau_syn ms = 2 / / Time constant of synaptic current .
19 t_ref ms = 2 / / Refractory period .
20 E_L mV = −70 / / actual Resting potential .
21 delta_V_reset mV = −70 − E_L / / relat ive Resting potential . => 0
22 Theta mV = −55 − E_L / / relat ive threshold
23 I_e pA = 0 / / constant external current .
24
25 / / some aliases
26 alias V_th mV = Theta + E_L / / actual Threshold .
27 alias V_reset mV = delta_V_reset + E_L / / Reset value of the membrane potential .
28 end
29
30 internal :
31 h ms = Time. resolution ( ) / / get simulation resolution
32 / / propagator matrix
33 P11 real = Math.E ** (−h / tau_syn)
34 P22 real = P11
35 P33 real = Math.E ** (−h / tau_m)
36 P21 real = h * P11
37 P30 real = 1 / C_m * (1 − P33) * tau_m
38 P31 real = 1 / C_m * ( (P11 − P33) / (−1/tau_syn + 1/tau_m) − h * P11) /
39 ↪→(−1/tau_m + 1/tau_syn)

Listing C.1: Implementation of the integrate-and-fire neuron in NESTML. (Part 1 of 2)
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40 P32 real = 1 / C_m * (P33 − P11) / (−1/tau_m − −1/tau_syn)
41
42 PSCInitialValue mV = 1 * Math.E / tau_syn
43 RefractoryCounts integer = Time. steps ( t_ref ) / / convert time into steps
44 end
45
46 input :
47 spikeBuffer <− inhibitory excitatory spike / / put a l l spikes into one buffer
48 currentBuffer <− current / / put external current stimulus into buffer
49 end
50
51 output : spike / / iaf_neuron emits spikes
52
53 dynamics timestep( t ms) : / / advance state by one time−step h to t
54 i f r == 0: / / not refractory
55 y3 = P30 * (y0 + I_e ) + P31 * y1 + P32 * y2 + P33 * y3
56 else :
57 r = r − 1
58 end
59
60 / / alpha shape PSCs
61 y2 = P21 * y1 + P22 * y2
62 y1 = y1 * P11
63
64 / / Apply spikes delivered in step t
65 y1 = y1 + PSCInitialValue * spikeBuffer .getSum( t )
66
67 / / threshold crossing
68 i f y3 >= Theta :
69 r = RefractoryCounts
70 y3 = delta_V_reset
71
72 Spiking . emitSpike ( )
73 end
74
75 / / set new input current
76 y0 = currentBuffer .getSum( t ) ;
77 end
78
79 / / setter functions for alias−variables
80 function set_V_th (v mV) :
81 Theta = v − E_L
82 end
83
84 function set_V_reset (v mV) :
85 delta_V_reset = v − E_L
86 end
87
88 function set_V_m(v mV) :
89 y3 = v − E_L
90 end
91 end
92 end

Listing C.2: Implementation of the integrate-and-fire neuron in NESTML. (Part 2 of 2)
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Appendix D

Generated NEST Code (neuron)

1 /* generated from model models . iaf_neuron */
2 /* generated by template nestml . nest .neuron .NeuronHeader*/
3 /*
4 * iaf_neuron .h
5 *
6 * This f i l e is part of NEST.
7 *
8 * Copyright (C) 2004 The NEST In i t i a t i ve
9 *

10 * NEST is free software : you can redistr ibute i t and/ or modify
11 * i t under the terms of the GNU General Public License as published by
12 * the Free Software Foundation , either version 2 of the License , or
13 * ( at your option ) any later version .
14 *
15 * NEST is distributed in the hope that i t w i l l be useful ,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more detai ls .
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with NEST. I f not , see <http : / /www.gnu. org / licenses />.
22 *
23 */
24
25 #ifndef MODELS_IAF_NEURON_H
26 #define MODELS_IAF_NEURON_H
27
28 #include "nest .h"
29 #include "event .h"
30 #include "archiving_node .h"
31 #include "connection .h"
32 #include "universal_data_logger .h"
33 #include "dictdatum .h"
34
35 #include " units / unitless / real .h"
36 #include " units / e lectr ics /mV.h"
37 #include " units / time /ms.h"
38 #include " ring_buffer .h"
39 #include " units / e lectr ics /pA.h"

Listing D.1: Generated header of the integrate-and-fire neuron in NESTML in Listing C.1.
(Part 1 of 13)
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40 #include <cmath>
41 #include " units / unitless / integer .h"
42 #include " units / e lectr ics /pF .h"
43
44 namespace models {
45
46 /* BeginDocumentation
47 Name: iaf_neuron .
48
49 Description :
50 Empty. TODO
51
52 Parameters :
53 y0 nest : : double_t − external current In mV_t.
54 y1 nest : : double_t − y1 and y2 are used in order to In mV_t.
55 y2 nest : : double_t − calculate alpha shape In mV_t.
56 y3 nest : : double_t − relat ive membrane potential In mV_t.
57 r nest : : long_t − refractory steps to go In integer_t .
58 V_m nest : : double_t − Membrane potential . In mV_t.
59
60 C_m nest : : double_t − Capacity of the membrane. In pF_t .
61 tau_m nest : : double_t − Membrane time constant . In ms_t .
62 tau_syn nest : : double_t − Time constant of synaptic current . In ms_t .
63 t_ref nest : : double_t − Refractory period . In ms_t .
64 E_L nest : : double_t − Resting potential . In mV_t.
65 delta_V_reset nest : : double_t − relat ive Resting potential . => 0 In mV_t.
66 Theta nest : : double_t − elative threshold In mV_t.
67 I_e nest : : double_t − constant external current . In pA_t .
68 V_th nest : : double_t − some aliases In mV_t.
69 V_reset nest : : double_t − Reset value of the membrane potential . In mV_t.
70
71
72 Remarks:
73 Empty
74
75 References :
76 Empty
77
78 Sends: nest : : SpikeEvent
79
80 Receives : Spike , Current , DataLoggingRequest
81
82 Author :
83 TODO
84
85 SeeAlso :
86 Empty
87 */
88
89 class iaf_neuron : public nest : : Archiving_Node
90 {
91 public :
92 /* *
93 * The constructor is only used to create the model prototype in the model manager.
94 */
95 iaf_neuron ( ) ;

Listing D.2: Generated header of the integrate-and-fire neuron in NESTML in Listing C.1.
(Part 2 of 13)
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96 /* *
97 * The copy constructor is used to create model copies and instances of the model .
98 * @node The copy constructor needs to i n i t i a l i z e the parameters and the state .
99 * In i t i a l i za t i on of buffers and interal variables is deferred to

100 * @c ini t_buffers_ ( ) and @c calibrate ( ) .
101 */
102 iaf_neuron (const iaf_neuron&);
103
104 /* *
105 * Import sets of overloaded vir tual functions .
106 * This is necessary to ensure proper overload and overriding resolution .
107 * @see http : / /www.gotw.ca /gotw/005.htm.
108 */
109 using nest : :Node: : connect_sender ;
110 using nest : :Node: : handle ;
111
112 /* *
113 * Used to validate that we can send nest : : SpikeEvent to desired target : port .
114 */
115 nest : : port check_connection (nest : : Connection&, nest : : port ) ;
116
117 /* *
118 * @defgroup mynest_handle Functions handling incoming events .
119 * We t e l l nest that we can handle incoming events of various types by
120 * defining @c handle ( ) and @c connect_sender ( ) for the given event .
121 * @{
122 */
123 void handle(nest : : SpikeEvent &); / / ! accept spikes
124 void handle(nest : : CurrentEvent &); / / ! accept input current
125 void handle(nest : : DataLoggingRequest &); / / ! allow recording with multimeter
126
127 nest : : port connect_sender (nest : : SpikeEvent&, nest : : port ) ;
128 nest : : port connect_sender (nest : : CurrentEvent&, nest : : port ) ;
129 nest : : port connect_sender (nest : : DataLoggingRequest&, nest : : port ) ;
130 /* * @} */
131
132 / / SLI communication functions :
133 void get_status (DictionaryDatum &) const ;
134 void set_status (const DictionaryDatum &);
135
136 / / Generate function header
137 /* generated by template nestml . nest . function . FunctionHeader*/
138 void set_V_th ( units : : e lectr ics : :mV_t v ) ;
139 /* generated by template nestml . nest . function . FunctionHeader*/
140 void set_V_reset ( units : : e lectr ics : :mV_t v ) ;
141 /* generated by template nestml . nest . function . FunctionHeader*/
142 void set_V_m ( units : : e lectr ics : :mV_t v ) ;
143
144
145 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
146 inline units : : e lectr ics : :mV_t get_y0 ( ) const { return S_ . get_y0 ( ) ; }
147 inline void set_y0 (const units : : e lectr ics : :mV_t v) { S_ . set_y0 ( v ) ; }
148
149 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
150 inline units : : e lectr ics : :mV_t get_y1 ( ) const { return S_ . get_y1 ( ) ; }
151 inline void set_y1 (const units : : e lectr ics : :mV_t v) { S_ . set_y1 ( v ) ; }

Listing D.3: Generated header of the integrate-and-fire neuron in NESTML in Listing C.1.
(Part 3 of 13)
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152 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
153 inline units : : e lectr ics : :mV_t get_y2 ( ) const { return S_ . get_y2 ( ) ; }
154 inline void set_y2 (const units : : e lectr ics : :mV_t v) { S_ . set_y2 ( v ) ; }
155
156 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
157 inline units : : e lectr ics : :mV_t get_y3 ( ) const { return S_ . get_y3 ( ) ; }
158 inline void set_y3 (const units : : e lectr ics : :mV_t v) { S_ . set_y3 ( v ) ; }
159
160 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
161 inline units : : unit less : : integer_t get_r ( ) const { return S_ . get_r ( ) ; }
162 inline void set_r (const units : : unit less : : integer_t v) { S_ . set_r ( v ) ; }
163
164 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
165 inline units : : e lectr ics : :mV_t get_V_m() const { return get_y3 ( ) + get_E_L ( ) ; }
166
167
168 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
169 inline units : : e lectr ics : : pF_t get_C_m() const { return P_ .get_C_m() ; }
170 inline void set_C_m(const units : : e lectr ics : : pF_t v) { P_ .set_C_m( v ) ; }
171
172 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
173 inline units : : time : : ms_t get_tau_m() const { return P_ .get_tau_m() ; }
174 inline void set_tau_m(const units : : time : : ms_t v) { P_ . set_tau_m( v ) ; }
175
176 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
177 inline units : : time : : ms_t get_tau_syn ( ) const { return P_ . get_tau_syn ( ) ; }
178 inline void set_tau_syn (const units : : time : : ms_t v) { P_ . set_tau_syn ( v ) ; }
179
180 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
181 inline units : : time : : ms_t get_t_ref ( ) const { return P_ . get_t_ref ( ) ; }
182 inline void set_t_ref (const units : : time : : ms_t v) { P_ . set_t_ref ( v ) ; }
183
184 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
185 inline units : : e lectr ics : :mV_t get_E_L ( ) const { return P_ . get_E_L ( ) ; }
186 inline void set_E_L (const units : : e lectr ics : :mV_t v) { P_ . set_E_L ( v ) ; }
187
188 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
189 inline units : : e lectr ics : :mV_t get_delta_V_reset ( ) const
190 { return P_ . get_delta_V_reset ( ) ; }
191 inline void set_delta_V_reset (const units : : e lectr ics : :mV_t v)
192 { P_ . set_delta_V_reset ( v ) ; }
193
194 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
195 inline units : : e lectr ics : :mV_t get_Theta ( ) const { return P_ . get_Theta ( ) ; }
196 inline void set_Theta (const units : : e lectr ics : :mV_t v) { P_ . set_Theta ( v ) ; }
197
198 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
199 inline units : : e lectr ics : : pA_t get_I_e ( ) const { return P_ . get_I_e ( ) ; }
200 inline void set_I_e (const units : : e lectr ics : : pA_t v) { P_ . set_I_e ( v ) ; }
201
202 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
203 inline units : : e lectr ics : :mV_t get_V_th ( ) const { return get_Theta ( ) + get_E_L ( ) ; }
204
205 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
206 inline units : : e lectr ics : :mV_t get_V_reset ( ) const
207 { return get_delta_V_reset ( ) + get_E_L ( ) ; }

Listing D.4: Generated header of the integrate-and-fire neuron in NESTML in Listing C.1.
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208 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
209 inline units : : time : : ms_t get_h ( ) const { return V_ . get_h ( ) ; }
210 inline void set_h (const units : : time : : ms_t v) { V_ . set_h ( v ) ; }
211
212 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
213 inline units : : unit less : : real_t get_P11 ( ) const { return V_ . get_P11 ( ) ; }
214 inline void set_P11(const units : : unit less : : real_t v) { V_ . set_P11( v ) ; }
215
216 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
217 inline units : : unit less : : real_t get_P22 ( ) const { return V_ . get_P22 ( ) ; }
218 inline void set_P22(const units : : unit less : : real_t v) { V_ . set_P22( v ) ; }
219
220 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
221 inline units : : unit less : : real_t get_P33 ( ) const { return V_ . get_P33 ( ) ; }
222 inline void set_P33(const units : : unit less : : real_t v) { V_ . set_P33( v ) ; }
223
224 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
225 inline units : : unit less : : real_t get_P21 ( ) const { return V_ . get_P21 ( ) ; }
226 inline void set_P21(const units : : unit less : : real_t v) { V_ . set_P21( v ) ; }
227
228 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
229 inline units : : unit less : : real_t get_P30 ( ) const { return V_ . get_P30 ( ) ; }
230 inline void set_P30(const units : : unit less : : real_t v) { V_ . set_P30( v ) ; }
231
232 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
233 inline units : : unit less : : real_t get_P31 ( ) const { return V_ . get_P31 ( ) ; }
234 inline void set_P31(const units : : unit less : : real_t v) { V_ . set_P31( v ) ; }
235
236 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
237 inline units : : unit less : : real_t get_P32 ( ) const { return V_ . get_P32 ( ) ; }
238 inline void set_P32(const units : : unit less : : real_t v) { V_ . set_P32( v ) ; }
239
240 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
241 inline units : : e lectr ics : :mV_t get_PSCInitialValue ( ) const
242 { return V_ . get_PSCInitialValue ( ) ; }
243 inline void set_PSCInitialValue (const units : : e lectr ics : :mV_t v)
244 { V_ . set_PSCInitialValue ( v ) ; }
245
246 /* generated by template nestml . nest . function . MemberVariableGetterSetter */
247 inline units : : unit less : : integer_t get_RefractoryCounts ( ) const
248 { return V_ . get_RefractoryCounts ( ) ; }
249 inline void set_RefractoryCounts (const units : : unit less : : integer_t v)
250 { V_ . set_RefractoryCounts ( v ) ; }
251
252
253
254 /* generated by template nestml . nest . function . BufferGetter */
255 inline nest : : RingBuffer& get_spikeBuffer ( ) { return B_ . get_spikeBuffer ( ) ; }
256 /* generated by template nestml . nest . function . BufferGetter */
257 inline nest : : RingBuffer& get_currentBuffer ( ) { return B_ . get_currentBuffer ( ) ; }
258
259
260 private :
261
262 / / ! Reset parameters and state of neuron .
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263 / / ! Reset state of neuron .
264 void in i t_state_ (const Node& proto ) ;
265
266 / / ! Reset internal buffers of neuron .
267 void in i t_buffers_ ( ) ;
268
269 / / ! I n i t i a l i z e auxi l iary quantities , leave parameters and state untouched .
270 void calibrate ( ) ;
271
272 / / ! Take neuron through given time interval
273 void update(nest : : Time const &, const nest : : long_t , const nest : : long_t ) ;
274
275 / / The next two classes need to be friends to access the State_ class /member
276 friend class nest : : RecordablesMap<iaf_neuron>;
277 friend class nest : : UniversalDataLogger<iaf_neuron>;
278
279 /* *
280 * Dynamic state of the neuron .
281 *
282 * These are the state variables that are advanced in time by cal ls to
283 * @c update ( ) . In many models , some or a l l of them can be set by the user
284 * through @c SetStatus . The state variables are in i t i a l i zed from the model
285 * prototype when the node is created . State variables are reset by @c
286 * ResetNetwork .
287 *
288 * @note State_ need neither copy constructor nor @c operator=() , since
289 * a l l i t s members are copied properly by the default copy constructor
290 * and assignment operator . Important :
291 * − I f State_ contained @c Time members, you need to define the
292 * assignment operator to recalibrate a l l members of type @c Time . You
293 * may also want to define the assignment operator .
294 * − I f State_ contained members that can not copy themselves , such
295 * as C−style arrays , you need to define the copy constructor and
296 * assignment operator to copy those members.
297 */
298 struct State_ {
299 /* generated by template nestml . nest . spl .MemberDeclaration*/
300 units : : e lectr ics : :mV_t y0_ ;
301
302 /* generated by template nestml . nest . spl .MemberDeclaration*/
303 units : : e lectr ics : :mV_t y1_ ;
304
305 /* generated by template nestml . nest . spl .MemberDeclaration*/
306 units : : e lectr ics : :mV_t y2_ ;
307
308 /* generated by template nestml . nest . spl .MemberDeclaration*/
309 units : : e lectr ics : :mV_t y3_ ;
310
311 /* generated by template nestml . nest . spl .MemberDeclaration*/
312 units : : unit less : : integer_t r_ ;
313
314 State_ ( ) ;
315
316 /* * Store state values in dictionary . * /
317 void get (DictionaryDatum&) const ;

Listing D.6: Generated header of the integrate-and-fire neuron in NESTML in Listing C.1.
(Part 6 of 13)

114



318 /* *
319 * Set state values from dictionary .
320 */
321 void set (const DictionaryDatum&);
322
323
324 /* generated by template nestml . nest . function . StructGetterSetter */
325 inline units : : e lectr ics : :mV_t get_y0 ( ) const { return y0_ ; }
326 inline void set_y0 (const units : : e lectr ics : :mV_t v) { y0_ = v ; }
327
328 /* generated by template nestml . nest . function . StructGetterSetter */
329 inline units : : e lectr ics : :mV_t get_y1 ( ) const { return y1_ ; }
330 inline void set_y1 (const units : : e lectr ics : :mV_t v) { y1_ = v ; }
331
332 /* generated by template nestml . nest . function . StructGetterSetter */
333 inline units : : e lectr ics : :mV_t get_y2 ( ) const { return y2_ ; }
334 inline void set_y2 (const units : : e lectr ics : :mV_t v) { y2_ = v ; }
335
336 /* generated by template nestml . nest . function . StructGetterSetter */
337 inline units : : e lectr ics : :mV_t get_y3 ( ) const { return y3_ ; }
338 inline void set_y3 (const units : : e lectr ics : :mV_t v) { y3_ = v ; }
339
340 /* generated by template nestml . nest . function . StructGetterSetter */
341 inline units : : unit less : : integer_t get_r ( ) const { return r_ ; }
342 inline void set_r (const units : : unit less : : integer_t v) { r_ = v ; }
343
344
345 };
346
347 /* *
348 * Free parameters of the neuron .
349 *
350 * These are the parameters that can be set by the user through @c SetStatus .
351 * They are in i t i a l i zed from the model prototype when the node is created .
352 * Parameters do not change during cal ls to @c update ( ) and are not reset by
353 * @c ResetNetwork .
354 *
355 * @note Parameters_ need neither copy constructor nor @c operator=() , since
356 * a l l i t s members are copied properly by the default copy constructor
357 * and assignment operator . Important :
358 * − I f Parameters_ contained @c Time members, you need to define the
359 * assignment operator to recalibrate a l l members of type @c Time . You
360 * may also want to define the assignment operator .
361 * − I f Parameters_ contained members that can not copy themselves , such
362 * as C−style arrays , you need to define the copy constructor and
363 * assignment operator to copy those members.
364 */
365 struct Parameters_ {
366 /* generated by template nestml . nest . spl .MemberDeclaration*/
367 units : : e lectr ics : : pF_t C_m_;
368
369 /* generated by template nestml . nest . spl .MemberDeclaration*/
370 units : : time : : ms_t tau_m_;
371
372 /* generated by template nestml . nest . spl .MemberDeclaration*/
373 units : : time : : ms_t tau_syn_ ;
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374 /* generated by template nestml . nest . spl .MemberDeclaration*/
375 units : : time : : ms_t t_ref_ ;
376
377 /* generated by template nestml . nest . spl .MemberDeclaration*/
378 units : : e lectr ics : :mV_t E_L_ ;
379
380 /* generated by template nestml . nest . spl .MemberDeclaration*/
381 units : : e lectr ics : :mV_t delta_V_reset_ ;
382
383 /* generated by template nestml . nest . spl .MemberDeclaration*/
384 units : : e lectr ics : :mV_t Theta_ ;
385
386 /* generated by template nestml . nest . spl .MemberDeclaration*/
387 units : : e lectr ics : : pA_t I_e_ ;
388
389 /* * I n i t i a l i z e parameters to their default values . * /
390 Parameters_ ( ) ;
391
392 /* * Store parameter values in dictionary . * /
393 void get (DictionaryDatum&) const ;
394
395 /* * Set parameter values from dictionary . * /
396 void set (const DictionaryDatum&);
397
398 /* generated by template nestml . nest . function . StructGetterSetter */
399 inline units : : e lectr ics : : pF_t get_C_m() const { return C_m_ ; }
400 inline void set_C_m(const units : : e lectr ics : : pF_t v) { C_m_ = v ; }
401
402 /* generated by template nestml . nest . function . StructGetterSetter */
403 inline units : : time : : ms_t get_tau_m() const { return tau_m_ ; }
404 inline void set_tau_m(const units : : time : : ms_t v) { tau_m_ = v ; }
405
406 /* generated by template nestml . nest . function . StructGetterSetter */
407 inline units : : time : : ms_t get_tau_syn ( ) const { return tau_syn_ ; }
408 inline void set_tau_syn (const units : : time : : ms_t v) { tau_syn_ = v ; }
409
410 /* generated by template nestml . nest . function . StructGetterSetter */
411 inline units : : time : : ms_t get_t_ref ( ) const { return t_ref_ ; }
412 inline void set_t_ref (const units : : time : : ms_t v) { t_ref_ = v ; }
413
414 /* generated by template nestml . nest . function . StructGetterSetter */
415 inline units : : e lectr ics : :mV_t get_E_L ( ) const { return E_L_ ; }
416 inline void set_E_L (const units : : e lectr ics : :mV_t v) { E_L_ = v ; }
417
418 /* generated by template nestml . nest . function . StructGetterSetter */
419 inline units : : e lectr ics : :mV_t get_delta_V_reset ( ) const
420 { return delta_V_reset_ ; }
421 inline void set_delta_V_reset (const units : : e lectr ics : :mV_t v)
422 { delta_V_reset_ = v ; }
423
424 /* generated by template nestml . nest . function . StructGetterSetter */
425 inline units : : e lectr ics : :mV_t get_Theta ( ) const { return Theta_ ; }
426 inline void set_Theta (const units : : e lectr ics : :mV_t v) { Theta_ = v ; }
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427 /* generated by template nestml . nest . function . StructGetterSetter */
428 inline units : : e lectr ics : : pA_t get_I_e ( ) const { return I_e_ ; }
429 inline void set_I_e (const units : : e lectr ics : : pA_t v) { I_e_ = v ; }
430 };
431
432 /* *
433 * Internal variables of the neuron .
434 * These variables must be in i t i a l i zed by @c calibrate , which is called before
435 * the f i r s t ca l l to @c update ( ) upon each ca l l to @c Simulate .
436 * @node Variables_ needs neither constructor , copy constructor or assignment
437 * operator , since i t i s i n i t i a l i zed by @c calibrate ( ) . I f Variables_
438 * has members that can not destroy themselves , Variables_ w i l l need a
439 * destructor .
440 */
441 struct Variables_ {
442 /* generated by template nestml . nest . spl .MemberDeclaration*/
443 units : : time : : ms_t h_ ;
444
445 /* generated by template nestml . nest . spl .MemberDeclaration*/
446 units : : unit less : : real_t P11_ ;
447
448 /* generated by template nestml . nest . spl .MemberDeclaration*/
449 units : : unit less : : real_t P22_ ;
450
451 /* generated by template nestml . nest . spl .MemberDeclaration*/
452 units : : unit less : : real_t P33_ ;
453
454 /* generated by template nestml . nest . spl .MemberDeclaration*/
455 units : : unit less : : real_t P21_ ;
456
457 /* generated by template nestml . nest . spl .MemberDeclaration*/
458 units : : unit less : : real_t P30_ ;
459
460 /* generated by template nestml . nest . spl .MemberDeclaration*/
461 units : : unit less : : real_t P31_ ;
462
463 /* generated by template nestml . nest . spl .MemberDeclaration*/
464 units : : unit less : : real_t P32_ ;
465
466 /* generated by template nestml . nest . spl .MemberDeclaration*/
467 units : : e lectr ics : :mV_t PSCInitialValue_ ;
468
469 /* generated by template nestml . nest . spl .MemberDeclaration*/
470 units : : unit less : : integer_t RefractoryCounts_ ;
471
472 /* generated by template nestml . nest . function . StructGetterSetter */
473 inline units : : time : : ms_t get_h ( ) const { return h_ ; }
474 inline void set_h (const units : : time : : ms_t v) { h_ = v ; }
475
476 /* generated by template nestml . nest . function . StructGetterSetter */
477 inline units : : unit less : : real_t get_P11 ( ) const { return P11_ ; }
478 inline void set_P11(const units : : unit less : : real_t v) { P11_ = v ; }
479
480 /* generated by template nestml . nest . function . StructGetterSetter */
481 inline units : : unit less : : real_t get_P22 ( ) const { return P22_ ; }
482 inline void set_P22(const units : : unit less : : real_t v) { P22_ = v ; }
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483 /* generated by template nestml . nest . function . StructGetterSetter */
484 inline units : : unit less : : real_t get_P33 ( ) const { return P33_ ; }
485 inline void set_P33(const units : : unit less : : real_t v) { P33_ = v ; }
486
487 /* generated by template nestml . nest . function . StructGetterSetter */
488 inline units : : unit less : : real_t get_P21 ( ) const { return P21_ ; }
489 inline void set_P21(const units : : unit less : : real_t v) { P21_ = v ; }
490
491 /* generated by template nestml . nest . function . StructGetterSetter */
492 inline units : : unit less : : real_t get_P30 ( ) const { return P30_ ; }
493 inline void set_P30(const units : : unit less : : real_t v) { P30_ = v ; }
494
495 /* generated by template nestml . nest . function . StructGetterSetter */
496 inline units : : unit less : : real_t get_P31 ( ) const { return P31_ ; }
497 inline void set_P31(const units : : unit less : : real_t v) { P31_ = v ; }
498
499 /* generated by template nestml . nest . function . StructGetterSetter */
500 inline units : : unit less : : real_t get_P32 ( ) const { return P32_ ; }
501 inline void set_P32(const units : : unit less : : real_t v) { P32_ = v ; }
502
503 /* generated by template nestml . nest . function . StructGetterSetter */
504 inline units : : e lectr ics : :mV_t get_PSCInitialValue ( ) const
505 { return PSCInitialValue_ ; }
506 inline void set_PSCInitialValue (const units : : e lectr ics : :mV_t v)
507 { PSCInitialValue_ = v ; }
508
509 /* generated by template nestml . nest . function . StructGetterSetter */
510 inline units : : unit less : : integer_t get_RefractoryCounts ( ) const
511 { return RefractoryCounts_ ; }
512 inline void set_RefractoryCounts (const units : : unit less : : integer_t v)
513 { RefractoryCounts_ = v ; }
514 };
515
516 /* *
517 * Buffers of the neuron .
518 * Ususally buffers for incoming spikes and data logged for analog recorders .
519 * Buffers must be in i t i a l i zed by @c ini t_buffers_ ( ) , which is called before
520 * @c calibrate ( ) on the f i r s t ca l l to @c Simulate after the start of NEST,
521 * ResetKernel or ResetNetwork .
522 * @node Buffers_ needs neither constructor , copy constructor or assignment
523 * operator , since i t i s i n i t i a l i zed by @c init_nodes_ ( ) . I f Buffers_
524 * has members that can not destroy themselves , Buffers_ w i l l need a
525 * destructor .
526 */
527 struct Buffers_ {
528 Buffers_ ( iaf_neuron&);
529 Buffers_ (const Buffers_ &, iaf_neuron&);
530
531 /* generated by template nestml . nest . buffer . BufferDeclaration */
532 nest : : RingBuffer spikeBuffer_ ;
533 / / !< Buffer incoming spikes through delay , as sum
534
535 /* generated by template nestml . nest . buffer . BufferDeclaration */
536 nest : : RingBuffer currentBuffer_ ;
537 / / !< Buffer incoming currents through delay , as sum
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538 /* * Logger for a l l analog data */
539 nest : : UniversalDataLogger<iaf_neuron> logger_ ;
540
541 /* generated by template nestml . nest . function . BufferGetter */
542 inline nest : : RingBuffer& get_spikeBuffer ( ) { return spikeBuffer_ ; }
543 /* generated by template nestml . nest . function . BufferGetter */
544 inline nest : : RingBuffer& get_currentBuffer ( ) { return currentBuffer_ ; }
545 };
546
547 /* *
548 * @defgroup pif_members Member variables of neuron model .
549 * Each model neuron should have precisely the following four data members,
550 * which are one instance each of the parameters , state , buffers and variables
551 * structures . Experience indicates that the state and variables member should
552 * be next to each other to achieve good eff iciency (caching ) .
553 * @note Devices require one additional data member, an instance of the @c Device
554 * child class they belong to .
555 * @{
556 */
557 Parameters_ P_ ; / / !< Free parameters .
558 State_ S_ ; / / !< Dynamic state .
559 Variables_ V_ ; / / !< Internal Variables
560 Buffers_ B_ ; / / !< Buffers .
561
562 / / ! Mapping of recordables names to access functions
563 static nest : : RecordablesMap<iaf_neuron> recordablesMap_ ;
564 /* * @} */
565 }; /* neuron iaf_neuron */
566 } /* namespace models */
567
568 inline
569 nest : : port models : : iaf_neuron : : check_connection (nest : : Connection& c ,
570 nest : : port receptor_type )
571 {
572 / / You should usually not change the code in this function .
573 / / I t confirms that the target of connection @c c accepts @c nest : : SpikeEvent on
574 / / the given @c receptor_type .
575 nest : : SpikeEvent e;
576 e. set_sender (* this ) ;
577 c . check_event(e ) ;
578 return c . get_target()−>connect_sender (e , receptor_type ) ;
579 }
580
581 inline
582 nest : : port models : : iaf_neuron : : connect_sender (nest : : SpikeEvent&,
583 nest : : port receptor_type )
584 {
585 / / You should usually not change the code in this function .
586 / / I t confirms to the connection management system that we are able
587 / / to handle @c SpikeEvent on port 0. You need to extend the function
588 / / i f you want to dif ferent iate between input ports .
589 i f ( receptor_type != 0)
590 throw nest : : UnknownReceptorType( receptor_type , get_name( ) ) ;
591 return 0;
592 }
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593 inline
594 nest : : port models : : iaf_neuron : : connect_sender (nest : : CurrentEvent&,
595 nest : : port receptor_type )
596 {
597 / / You should usually not change the code in this function .
598 / / I t confirms to the connection management system that we are able
599 / / to handle @c CurrentEvent on port 0. You need to extend the function
600 / / i f you want to dif ferent iate between input ports .
601 i f ( receptor_type != 0)
602 throw nest : : UnknownReceptorType( receptor_type , get_name( ) ) ;
603 return 0;
604 }
605
606 inline
607 nest : : port models : : iaf_neuron : : connect_sender (nest : : DataLoggingRequest& dlr ,
608 nest : : port receptor_type )
609 {
610 / / You should usually not change the code in this function .
611 / / I t confirms to the connection management system that we are able
612 / / to handle @c DataLoggingRequest on port 0.
613 / / The function also te l l s the bui lt−in UniversalDataLogger that this node
614 / / i s recorded from and that i t thus needs to col lect data during simulation .
615 i f ( receptor_type != 0)
616 throw nest : : UnknownReceptorType( receptor_type , get_name( ) ) ;
617
618 return B_ . logger_ . connect_logging_device ( dlr , recordablesMap_ ) ;
619 }
620
621
622 inline
623 void models : : iaf_neuron : : get_status (DictionaryDatum &d) const
624 {
625 P_ . get (d ) ;
626
627 /* generated by template nestml . nest . function . WriteInDictionary */
628 def<units : : e lectr ics : :mV_t>(d, "V_th" , get_V_th ( ) ) ;
629 /* generated by template nestml . nest . function . WriteInDictionary */
630 def<units : : e lectr ics : :mV_t>(d, "V_reset" , get_V_reset ( ) ) ;
631
632 S_ . get (d ) ;
633
634 /* generated by template nestml . nest . function . WriteInDictionary */
635 def<units : : e lectr ics : :mV_t>(d, "V_m" , get_V_m ( ) ) ;
636 (*d) [ nest : :names: : recordables ] = recordablesMap_ . get_ l i s t ( ) ;
637 }
638
639 inline
640 void models : : iaf_neuron : : set_status (const DictionaryDatum &d)
641 {
642 Parameters_ ptmp = P_ ; / / temporary copy in case of errors
643 ptmp. set (d ) ; / / throws i f BadProperty
644
645 /* generated by template nestml . nest . function . ReadFromDictionary*/
646 units : : e lectr ics : :mV_t tmp_V_th ;
647 updateValue<units : : e lectr ics : :mV_t>(d, "V_th" , tmp_V_th ) ;
648 set_V_th (tmp_V_th ) ;
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649 /* generated by template nestml . nest . function . ReadFromDictionary*/
650 units : : e lectr ics : :mV_t tmp_V_reset ;
651 updateValue<units : : e lectr ics : :mV_t>(d, "V_reset" , tmp_V_reset ) ;
652 set_V_reset ( tmp_V_reset ) ;
653
654
655 State_ stmp = S_ ; / / temporary copy in case of errors
656 stmp. set (d ) ; / / throws i f BadProperty
657
658 /* generated by template nestml . nest . function . ReadFromDictionary*/
659 units : : e lectr ics : :mV_t tmp_V_m;
660 updateValue<units : : e lectr ics : :mV_t>(d, "V_m" , tmp_V_m) ;
661 set_V_m(tmp_V_m) ;
662
663 / / i f we get here , temporaries contain consistent set of properties
664 P_ = ptmp;
665 S_ = stmp;
666 }
667
668 #endif /* #ifndef MODELS_IAF_NEURON_H */
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1 /* generated from model models . iaf_neuron */
2 /* generated by template nestml . nest .neuron . NeuronClass*/
3 /*
4 * iaf_neuron .cpp
5 *
6 * This f i l e is part of NEST.
7 *
8 * Copyright (C) 2004 The NEST In i t i a t i ve
9 *

10 * NEST is free software : you can redistr ibute i t and/ or modify
11 * i t under the terms of the GNU General Public License as published by
12 * the Free Software Foundation , either version 2 of the License , or
13 * ( at your option ) any later version .
14 *
15 * NEST is distributed in the hope that i t w i l l be useful ,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more detai ls .
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with NEST. I f not , see <http : / /www.gnu. org / licenses />.
22 *
23 */
24
25 #include "exceptions .h"
26 #include "network .h"
27 #include " dict .h"
28 #include "integerdatum .h"
29 #include "doubledatum.h"
30 #include " d i c tu t i l s .h"
31 #include "numerics .h"
32 #include "universal_data_logger_impl .h"
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33 #include <limits>
34
35 #include "models / iaf_neuron .h"
36
37 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 * Recordables map
39 * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
40
41 nest : : RecordablesMap<models : : iaf_neuron> models : : iaf_neuron : : recordablesMap_ ;
42
43 namespace nest
44 {
45 / / Override the create ( ) method with one ca l l to RecordablesMap : : insert_ ( )
46 / / for each quantity to be recorded .
47 template <>
48 void RecordablesMap<models : : iaf_neuron >::create ( )
49 {
50 / / use standard names whereever you can for consistency !
51 /* generated by template nestml . nest . function . RecordCallback */
52 insert_ ( "y0" , &models : : iaf_neuron : : get_y0 ) ;
53 /* generated by template nestml . nest . function . RecordCallback */
54 insert_ ( "y1" , &models : : iaf_neuron : : get_y1 ) ;
55 /* generated by template nestml . nest . function . RecordCallback */
56 insert_ ( "y2" , &models : : iaf_neuron : : get_y2 ) ;
57 /* generated by template nestml . nest . function . RecordCallback */
58 insert_ ( "y3" , &models : : iaf_neuron : : get_y3 ) ;
59 /* generated by template nestml . nest . function . RecordCallback */
60 insert_ ( "V_m" , &models : : iaf_neuron : : get_V_m) ;
61 }
62 }
63
64 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 * Default constructors defining default parameters and state
66 * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
67
68 models : : iaf_neuron : : Parameters_ : : Parameters_ ( )
69 /* generated by template nestml . nest . spl . MemberInitialisation */
70 : C_m_( 250 ) / / pF
71 , tau_m_( 10 ) / / ms
72 , tau_syn_ ( 2 ) / / ms
73 , t_ref_ ( 2 ) / / ms
74 , E_L_ ( − 70 ) / / mV
75 , delta_V_reset_ ( − 70 − get_E_L ( ) ) / / mV
76 , Theta_ ( − 55 − get_E_L ( ) ) / / mV
77 , I_e_ ( 0 ) / / pA
78 {}
79
80 models : : iaf_neuron : : State_ : : State_ ( )
81 /* generated by template nestml . nest . spl . MemberInitialisation */
82 : y0_ ( ) / / mV
83 , y1_ ( ) / / mV
84 , y2_ ( ) / / mV
85 , y3_ ( ) / / mV
86 , r_ ( ) / / integer
87 {}

Listing D.15: Generated implementation of the integrate-and-fire neuron in NESTML in
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88 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 * Parameter and state extractions and manipulation functions
90 * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
91
92 void
93 models : : iaf_neuron : : Parameters_ : : get (DictionaryDatum &d) const
94 {
95 /* generated by template nestml . nest . function . WriteInDictionary */
96 def<units : : e lectr ics : : pF_t>(d, "C_m" , get_C_m ( ) ) ;
97
98 /* generated by template nestml . nest . function . WriteInDictionary */
99 def<units : : time : : ms_t>(d, "tau_m" , get_tau_m ( ) ) ;

100
101 /* generated by template nestml . nest . function . WriteInDictionary */
102 def<units : : time : : ms_t>(d, "tau_syn" , get_tau_syn ( ) ) ;
103
104 /* generated by template nestml . nest . function . WriteInDictionary */
105 def<units : : time : : ms_t>(d, " t_ref " , get_t_ref ( ) ) ;
106
107 /* generated by template nestml . nest . function . WriteInDictionary */
108 def<units : : e lectr ics : :mV_t>(d, "E_L" , get_E_L ( ) ) ;
109
110 /* generated by template nestml . nest . function . WriteInDictionary */
111 def<units : : e lectr ics : :mV_t>(d, "delta_V_reset " , get_delta_V_reset ( ) ) ;
112
113 /* generated by template nestml . nest . function . WriteInDictionary */
114 def<units : : e lectr ics : :mV_t>(d, "Theta" , get_Theta ( ) ) ;
115
116 /* generated by template nestml . nest . function . WriteInDictionary */
117 def<units : : e lectr ics : : pA_t>(d, " I_e " , get_I_e ( ) ) ;
118 }
119
120 void
121 models : : iaf_neuron : : Parameters_ : : set (const DictionaryDatum& d)
122 {
123 /* generated by template nestml . nest . function . ReadFromDictionary*/
124 units : : e lectr ics : : pF_t tmp_C_m;
125 updateValue<units : : e lectr ics : : pF_t>(d, "C_m" , tmp_C_m) ;
126 set_C_m(tmp_C_m) ;
127
128 /* generated by template nestml . nest . function . ReadFromDictionary*/
129 units : : time : : ms_t tmp_tau_m;
130 updateValue<units : : time : : ms_t>(d, "tau_m" , tmp_tau_m) ;
131 set_tau_m(tmp_tau_m) ;
132
133 /* generated by template nestml . nest . function . ReadFromDictionary*/
134 units : : time : : ms_t tmp_tau_syn ;
135 updateValue<units : : time : : ms_t>(d, "tau_syn" , tmp_tau_syn ) ;
136 set_tau_syn (tmp_tau_syn ) ;
137
138 /* generated by template nestml . nest . function . ReadFromDictionary*/
139 units : : time : : ms_t tmp_t_ref ;
140 updateValue<units : : time : : ms_t>(d, " t_ref " , tmp_t_ref ) ;
141 set_t_ref ( tmp_t_ref ) ;

Listing D.16: Generated implementation of the integrate-and-fire neuron in NESTML in
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142 /* generated by template nestml . nest . function . ReadFromDictionary*/
143 units : : e lectr ics : :mV_t tmp_E_L;
144 updateValue<units : : e lectr ics : :mV_t>(d, "E_L" , tmp_E_L ) ;
145 set_E_L (tmp_E_L ) ;
146
147 /* generated by template nestml . nest . function . ReadFromDictionary*/
148 units : : e lectr ics : :mV_t tmp_delta_V_reset ;
149 updateValue<units : : e lectr ics : :mV_t>(d, "delta_V_reset " , tmp_delta_V_reset ) ;
150 set_delta_V_reset ( tmp_delta_V_reset ) ;
151
152 /* generated by template nestml . nest . function . ReadFromDictionary*/
153 units : : e lectr ics : :mV_t tmp_Theta ;
154 updateValue<units : : e lectr ics : :mV_t>(d, "Theta" , tmp_Theta ) ;
155 set_Theta (tmp_Theta ) ;
156
157 /* generated by template nestml . nest . function . ReadFromDictionary*/
158 units : : e lectr ics : : pA_t tmp_I_e ;
159 updateValue<units : : e lectr ics : : pA_t>(d, " I_e " , tmp_I_e ) ;
160 set_I_e ( tmp_I_e ) ;
161 }
162
163 void
164 models : : iaf_neuron : : State_ : : get (DictionaryDatum &d) const
165 {
166 /* generated by template nestml . nest . function . WriteInDictionary */
167 def<units : : e lectr ics : :mV_t>(d, "y0" , get_y0 ( ) ) ;
168
169 /* generated by template nestml . nest . function . WriteInDictionary */
170 def<units : : e lectr ics : :mV_t>(d, "y1" , get_y1 ( ) ) ;
171
172 /* generated by template nestml . nest . function . WriteInDictionary */
173 def<units : : e lectr ics : :mV_t>(d, "y2" , get_y2 ( ) ) ;
174
175 /* generated by template nestml . nest . function . WriteInDictionary */
176 def<units : : e lectr ics : :mV_t>(d, "y3" , get_y3 ( ) ) ;
177
178 /* generated by template nestml . nest . function . WriteInDictionary */
179 def<units : : unit less : : integer_t>(d, " r " , get_r ( ) ) ;
180 }
181
182 void
183 models : : iaf_neuron : : State_ : : set (const DictionaryDatum& d)
184 {
185 /* generated by template nestml . nest . function . ReadFromDictionary*/
186 units : : e lectr ics : :mV_t tmp_y0;
187 updateValue<units : : e lectr ics : :mV_t>(d, "y0" , tmp_y0) ;
188 set_y0 (tmp_y0) ;
189
190 /* generated by template nestml . nest . function . ReadFromDictionary*/
191 units : : e lectr ics : :mV_t tmp_y1;
192 updateValue<units : : e lectr ics : :mV_t>(d, "y1" , tmp_y1) ;
193 set_y1 (tmp_y1) ;

Listing D.17: Generated implementation of the integrate-and-fire neuron in NESTML in
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194 /* generated by template nestml . nest . function . ReadFromDictionary*/
195 units : : e lectr ics : :mV_t tmp_y2;
196 updateValue<units : : e lectr ics : :mV_t>(d, "y2" , tmp_y2) ;
197 set_y2 (tmp_y2) ;
198
199 /* generated by template nestml . nest . function . ReadFromDictionary*/
200 units : : e lectr ics : :mV_t tmp_y3;
201 updateValue<units : : e lectr ics : :mV_t>(d, "y3" , tmp_y3) ;
202 set_y3 (tmp_y3) ;
203
204 /* generated by template nestml . nest . function . ReadFromDictionary*/
205 units : : unit less : : integer_t tmp_r ;
206 updateValue<units : : unit less : : integer_t>(d, " r " , tmp_r ) ;
207 set_r (tmp_r ) ;
208 }
209
210 models : : iaf_neuron : : Buffers_ : : Buffers_ ( iaf_neuron &n)
211 : logger_ (n)
212 {}
213
214 models : : iaf_neuron : : Buffers_ : : Buffers_ (const Buffers_ &, iaf_neuron &n)
215 : logger_ (n)
216 {}
217
218
219 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
220 * Default and copy constructor for node
221 * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
222
223 models : : iaf_neuron : : iaf_neuron ( )
224 : Archiving_Node ( ) ,
225 P_ ( ) ,
226 S_ ( ) ,
227 B_(* this )
228 {
229 recordablesMap_ . create ( ) ;
230 }
231
232 models : : iaf_neuron : : iaf_neuron (const iaf_neuron& n)
233 : Archiving_Node(n) ,
234 P_(n. P_ ) ,
235 S_(n. S_ ) ,
236 B_(n.B_ , *this )
237 {}
238
239 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
240 * Node in i t i a l i za t i on functions
241 * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
242
243 void
244 models : : iaf_neuron : : in i t_state_ (const Node& proto )
245 {
246 const iaf_neuron& pr = downcast<iaf_neuron>(proto ) ;
247 S_ = pr . S_ ;
248 }

Listing D.18: Generated implementation of the integrate-and-fire neuron in NESTML in
Listing C.1. (Part 5 of 8)

125



249 void
250 models : : iaf_neuron : : in i t_buffers_ ( )
251 {
252 /* generated by template nestml . nest . buffer . Buffer In i t * /
253 get_spikeBuffer ( ) . clear ( ) ; / / includes resize
254
255 /* generated by template nestml . nest . buffer . Buffer In i t * /
256 get_currentBuffer ( ) . clear ( ) ; / / includes resize
257
258 B_ . logger_ . reset ( ) ; / / includes resize
259 Archiving_Node : : clear_history ( ) ;
260 }
261
262 void
263 models : : iaf_neuron : : calibrate ( )
264 {
265 B_ . logger_ . i n i t ( ) ;
266
267 /* generated by template nestml . nest . function . Calibrate */
268 set_h ( nest : : Time : : get_resolution ( ) . get_ms( ) ) ;
269 /* generated by template nestml . nest . function . Calibrate */
270 set_P11( std : :pow( M_E , ( − get_h ( ) / get_tau_syn ( ) ) ) ) ;
271 /* generated by template nestml . nest . function . Calibrate */
272 set_P22( get_P11 ( ) ) ;
273 /* generated by template nestml . nest . function . Calibrate */
274 set_P33( std : :pow( M_E , ( − get_h ( ) / get_tau_m() ) ) ) ;
275 /* generated by template nestml . nest . function . Calibrate */
276 set_P21( get_h ( ) * get_P11 ( ) ) ;
277 /* generated by template nestml . nest . function . Calibrate */
278 set_P30( 1 / get_C_m() * ( 1 − get_P33 ( ) ) * get_tau_m() ) ;
279 /* generated by template nestml . nest . function . Calibrate */
280 set_P31( 1 / get_C_m() * (
281 ( get_P11 ( ) − get_P33 ( ) ) / ( − 1 / get_tau_syn ( ) − − 1 / get_tau_m() )
282 − get_h ( ) * get_P11 ( ) ) / ( − 1 / get_tau_m() − − 1 / get_tau_syn ( ) ) ) ;
283 /* generated by template nestml . nest . function . Calibrate */
284 set_P32( 1 / get_C_m() * ( get_P33 ( ) − get_P11 ( ) ) /
285 ( − 1 / get_tau_m() − − 1 / get_tau_syn ( ) ) ) ;
286 /* generated by template nestml . nest . function . Calibrate */
287 set_PSCInitialValue ( 1 * M_E / get_tau_syn ( ) ) ;
288 /* generated by template nestml . nest . function . Calibrate */
289 set_RefractoryCounts ( nest : : Time(nest : : Time : :ms( get_t_ref ( ) ) ) . get_steps ( ) ) ;
290
291 }
292
293 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 * Update and spike handling functions
295 * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
296
297 void
298 models : : iaf_neuron : : update(nest : : Time const & origin , const nest : : long_t from,
299 const nest : : long_t to )
300 {
301 /* generated by template nestml . nest . function .DynamicsImplementation*/
302 /* generated by template nestml . nest . function .TimestepDynamics*/
303 assert ( to >= 0 && (nest : : delay ) from < nest : : Scheduler : : get_min_delay ( ) ) ;
304 assert (from < to ) ;

Listing D.19: Generated implementation of the integrate-and-fire neuron in NESTML in
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305 units : : time : : ms_t t ;
306 for ( nest : : long_t lag = from ; lag < to ; ++lag )
307 {
308 t = nest : : Time(nest : : Time : : step ( lag ) ) . get_ms( ) + origin .get_ms ( ) ;
309 /* generated by template nestml . nest . spl . BlockStatement*/
310 i f ( get_r ( ) == 0) {
311 set_y3 ( get_P30 ( ) * ( get_y0 ( ) + get_I_e ( ) ) + get_P31 ( ) * get_y1 ( )
312 + get_P32 ( ) * get_y2 ( ) + get_P33 ( ) * get_y3 ( ) ) ;
313 } else {
314 set_r ( get_r ( ) − 1 ) ;
315 } /* i f end */
316
317 set_y2 ( get_P21 ( ) * get_y1 ( ) + get_P22 ( ) * get_y2 ( ) ) ;
318 set_y1 ( get_y1 ( ) * get_P11 ( ) ) ;
319 set_y1 ( get_y1 ( ) + get_PSCInitialValue ( ) * get_spikeBuffer ( ) . get_value (
320 nest : : Time(nest : : Time : :ms( t − origin .get_ms( ) ) ) . get_steps ( ) ) ) ;
321
322 i f (get_y3 ( ) >= get_Theta ( ) ) {
323 set_r ( get_RefractoryCounts ( ) ) ;
324 set_y3 ( get_delta_V_reset ( ) ) ;
325
326 set_spiketime (nest : : Time : : step ( origin . get_steps()+lag+1));
327 nest : : SpikeEvent se ;
328 network()−>send(* this , se , lag ) ;
329
330 } /* i f end */
331
332 set_y0 ( get_currentBuffer ( ) . get_value (
333 nest : : Time(nest : : Time : :ms( t − origin .get_ms( ) ) ) . get_steps ( ) ) ) ;
334
335 / / voltage logging
336 B_ . logger_ . record_data ( origin . get_steps()+lag ) ;
337 } /* for end */
338 }
339
340 void
341 models : : iaf_neuron : : handle(nest : : SpikeEvent & e)
342 {
343 assert (e . get_delay ( ) > 0);
344
345 const double_t weight = e. get_weight ( ) ;
346 const double_t mult ip l ic i ty = e. get_mult ipl ic ity ( ) ;
347
348 /* generated by template nestml . nest . buffer . Buf fe rF i l l * /
349 / / excitatory && inhibitory
350 get_spikeBuffer ( ) . add_value(e . get_rel_delivery_steps ( network()−>get_sl ice_origin ( ) ) ,
351 weight * mult ip l ic i ty ) ;
352 }
353
354 void
355 models : : iaf_neuron : : handle(nest : : CurrentEvent& e)
356 {
357 assert (e . get_delay ( ) > 0);
358
359 const double_t current=e. get_current ( ) ;
360 const double_t weight=e. get_weight ( ) ;
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361 /* generated by template nestml . nest . buffer . Buf fe rF i l l * /
362 get_currentBuffer ( ) . add_value(e . get_rel_delivery_steps (
363 network()−>get_sl ice_origin ( ) ) , weight * current ) ;
364 }
365
366 void
367 models : : iaf_neuron : : handle(nest : : DataLoggingRequest& e)
368 {
369 B_ . logger_ . handle(e ) ;
370 }
371
372 /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
373 * Additional functions
374 * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
375
376 /* generated by template nestml . nest . function . FunctionImplementation */
377 void
378 models : : iaf_neuron : : set_V_th ( units : : e lectr ics : :mV_t v)
379 {
380 /* generated by template nestml . nest . spl . BlockStatement*/
381 set_Theta ( v − get_E_L ( ) ) ;
382 }
383
384 /* generated by template nestml . nest . function . FunctionImplementation */
385 void
386 models : : iaf_neuron : : set_V_reset ( units : : e lectr ics : :mV_t v)
387 {
388 /* generated by template nestml . nest . spl . BlockStatement*/
389 set_delta_V_reset ( v − get_E_L ( ) ) ;
390 }
391
392 /* generated by template nestml . nest . function . FunctionImplementation */
393 void
394 models : : iaf_neuron : : set_V_m ( units : : e lectr ics : :mV_t v)
395 {
396 /* generated by template nestml . nest . spl . BlockStatement*/
397 set_y3 ( v − get_E_L ( ) ) ;
398 }

Listing D.21: Generated implementation of the integrate-and-fire neuron in NESTML in
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Appendix E

Generated NEST Code (unit)

1 package units :
2 unit sampleUnit Real ( −13.67 . . . 17e4 ]
3 end

Listing E.1: The sampleUnit model in NESTML.

1 /*
2 * sampleUnit .h
3 *
4 * This f i l e is part of NEST.
5 *
6 * Copyright (C) 2004 The NEST In i t i a t i ve
7 *
8 * NEST is free software : you can redistr ibute i t and/ or modify
9 * i t under the terms of the GNU General Public License as published by

10 * the Free Software Foundation , either version 2 of the License , or
11 * ( at your option ) any later version .
12 *
13 * NEST is distributed in the hope that i t w i l l be useful ,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more detai ls .
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with NEST. I f not , see <http : / /www.gnu. org / licenses />.
20 *
21 */
22
23 #ifndef UNITS_SAMPLEUNIT_H
24 #define UNITS_SAMPLEUNIT_H
25
26 #include "nest .h"
27
28 namespace units {
29
30 / / unit sampleUnit Real ( −13.67 . . . 17e4 ]
31 typedef nest : : double_t sampleUnit_t ;

Listing E.2: Generated header of the sampleUnit in Listing E.1. (Part 1 of 2)
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1 /*
2 * Checks , whether the argument is in the range of a sampleUnit .
3 * @return : 0 i f argument not in range
4 * 1 otherwise
5 */
6 bool check_sampleUnit (const sampleUnit_t &);
7
8 } /* namespace units */
9

10 #endif
11 /* #ifndef UNITS_SAMPLEUNIT_H */

Listing E.3: Generated header of the sampleUnit in Listing E.1. (Part 2 of 2)

1 /*
2 * sampleUnit .cpp
3 *
4 * This f i l e is part of NEST.
5 *
6 * Copyright (C) 2004 The NEST In i t i a t i ve
7 *
8 * NEST is free software : you can redistr ibute i t and/ or modify
9 * i t under the terms of the GNU General Public License as published by

10 * the Free Software Foundation , either version 2 of the License , or
11 * ( at your option ) any later version .
12 *
13 * NEST is distributed in the hope that i t w i l l be useful ,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more detai ls .
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with NEST. I f not , see <http : / /www.gnu. org / licenses />.
20 *
21 */
22
23 #include " units / sampleUnit .h"
24
25 bool
26 units : : check_sampleUnit (const units : : sampleUnit_t &var )
27 {
28 / / assume var is inside the range
29 bool result = true ;
30 / / test , i f var is smaller than le f t l imi t
31 i f ( var <= −13.67 )
32 {
33 result = false ;
34 }
35
36 / / test , i f var is bigger than right l imi t
37 i f ( var > 17e4 )
38 {
39 result = false ;
40 }
41
42 return result ;
43 }

Listing E.4: Generated implementation of the sampleUnit in Listing E.1
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