
AVL-tree type for Python
Release 1.1

R. McGraw

typeset December 18, 2008

dasnar@fastmail.fm

Abstract

This document describes how to use the avl extension module (dynamically loadable library) for Python, which
implements a dual-personality object using AVL trees. AVL trees (named after the inventors, Adel’son-Vel’skiı̆ and
Landis) are balanced binary search trees. While these objects can be seen as implementing ordered containers,
allowing fast lookup and deletion of any item, they can also act as sequential lists. The avl module is based on a C
written library. It is based on an extension module by Sam Rushing ([1]) and on Ben Pfaff’s libavl ([2]).

Contents

1 avl — AVL-tree type for Python 1
1.1 ‘avl_tree’ objects . 2
1.2 Support for the iterator protocol: ‘avl_tree_iterator’ objects . 4
1.3 Example . 5

References 9

Index 10

1 avl — AVL-tree type for Python

The avl module defines dual-personality objects for Python programmers to enjoy. An object of type ‘avl_-
tree’ can be seen as implementing a dictionary, or it can act as a sequential list since the underlying implementation
maintains a RANK field at each node in the tree. Contrary to objects of type ‘dict’ which record key/value pairs,
objects of type ‘avl_tree’ record single values, hereinafter referred to as ‘items’; it’s possible to insert duplicates.

The avl module defines exactly these functions :
new([source[, compare[, unique]]])

Create a new tree. It is created empty if no argument is passed. The optional source argument can
be either of type ‘list’ or ‘avl_tree’ : in the former case, each item from the list is inserted
into the tree; in the latter case, a copy of object is returned. Note that if source is a list which is
known to be sorted with respect to some compare function, it is more efficient to call ‘avl.from_-
iter(iter(source),len(source),compare)’, see below.

The optional compare argument is a Python function that will be used to order the tree instead of the default
built-in mechanism.

If bool==1 and source object is a list, duplicates are removed (default: 0). For example,

>>> import avl
>>> a = avl.new([2,1,2], None, 1)
>>> type(a)
<type ’avl_tree’>
>>> a
[1, 2]

dump(tree,pickler)
Convenience function to pickle a tree, as in tree.dump(pickler). First we pickle the size of the tree as
a PyInt object, then its compare function, then each item in order by pickler.dump(). The cPickle
module has no exported API. The advantage of visiting the tree in inorder is that no comparison is necessary at
unpickling time.

Note that pickler is not type-checked (the function only checks for the existence of a callable ‘dump’ attribute).

load(unpickler)
Convenience function to unpickle a tree which was pickled with the simple method applied by avl.dump (see
above).

Note that unpickler is not type-checked (the function only checks for the existence of a callable ‘load’ attribute).

from_iter(iter[, len],[, compare])
Load a tree from iter if the sequence is in sorted order with respect to some compare function. This can’t
be reproduced in Python since it relies on avl_xload in avl.c (which proceeds recursively like avl_-
slice and has to know the items count in advance). If no len is specified, it will be read by the first call to
iter.next(). It can be specified as an intobject or a longobject. If no compare function is specified,
None is assumed.

A StopIteration exception occurs if len is too large.

Note that iter is not type-checked (the function only checks for the existence of a callable ‘next’ attribute).

exception avl.Error
Exception raised when an operation fails for some avl specific reason. The exception argument is a string
describing the reason for failure or just where it occurred.

1.1 ‘avl_tree’ objects

AVL objects, as returned by new() above, have the following functions Note: functions which do comparisons to
do their work will raise an exception as soon as some comparison procedure fails.

First, here is a function that is included by defining the HAVE_AVL_VERIFY compile flag :
verify()

Verify internal AVL tree structure, including ordering. Return 1 if tree is valid, 0 otherwise.

lookup(item)
Return new reference to an item in the tree that compares equal to passed item. Raise a LookupError excep-
tion if item is not contained in the tree.

insert(item[, index])
Insert item in the tree. If no index is specified, item is inserted based on its rank with respect to the built-in
Python compare function PyObject_Compare(), or a possible user-supplied one. Indeed items of any type
can be inserted as long as they are comparable to one another. If some error occurs during a compare operation,
the tree remains unchanged and an exception is raised. Otherwise insertion is carried out whether or not an item
comparing equal to item is already present in the tree.

Use the call ‘t.insert(o,j)’ to insert o in front of index j in t regardless of order, if it’s what you really
want (an IndexError exception is raised if j is out of range). Note: order may be broken as a result. See
also the span() method.

2 1 avl — AVL-tree type for Python

append(item)
Shortcut to append item to tree regardless of order.

remove(item)
Remove item from the tree. Nothing is done if item is not found.

clear()
Make the tree logically empty in one sweep.

remove_at(index)
Remove item in front of specified index. An IndexError exception is raised if index is out of range.

has_key(item)
Return 1 if item is in tree, 0 otherwise.

index(item)
‘t.index(item)’ returns smallest index j such that t[j] == item, or -1 if item is not in t.

concat(arg)
In-place concatenation : append tree arg to the tree, regardless of order.

min()
Return smallest item in tree, except if it’s empty.

max()
Return greatest item in tree, except if it’s empty.

at_least(item)
Return smallest item that compares greater than or equal to item if any, or raise a ValueError exception.

at_most(item)
Return greatest item that compares less than or equal to item if any, or raise a ValueError exception.

span(o1[, o2])
‘t.span(o1)’ returns a pair of indices (i,j) such that t[i:j] is the longest slice that spans o1 if it’s in t,
otherwise i==j in which ‘t.insert(o1,j)’ puts o1 where it should be with no need to redo comparisons.

‘t.span(o1,o2)’ returns (i,j) such that t[i:j] is the longest slice that spans o1,o2. For example (see
below for slice support),

>>> a= avl.new(map (lambda x: random.randint(0,1000), range(10)))
>>> a
[28, 66, 82, 95, 109, 114, 268, 335, 761, 851]
>>> a.span(100,500)
(4, 8)
>>> a[4:8]
[109, 114, 268, 335]
>>> a.span(500,100)
(4, 8)
>>> a.span(900,950)
(10, 10)
>>> len(a)
10
>>> a.span(a[0],a[-1])
(0, 10)
>>> a.span(95,109)
(3, 5)

dump(pickler)
See avl.dump module function.

iter([pre_or_post])

1.1 ‘avl_tree’ objects 3

Return a new iterator over the items in this tree, either in pre-position if pre_or_post is zero/false (the default),
or in post-position.

There is support for the sequence protocol.

• ‘len(t)’ returns the size of tree t.

• ‘a+b’ returns a new tree object resulting from the concatenation of trees ‘a’ and ‘b’. This is done regardless
of order.

• The repeat operation is undefined.

• ‘t[j]’ returns a new reference to the item whose inorder index in t is j (starting from 0). The usual defaults
apply : j should be in range [-len(t):len(t)], otherwise an IndexError exception is raised.

• A slice of a tree can be obtained as a new tree, with the usual defaults. Thus ‘b = a[:]’ is equivalent to ‘b
= avl.new(a)’. No exception.

• Item and slice assignments are undefined.

• ‘o in t’ is equivalent to ‘t.has_key(o)’.

• To perform in-place concatenation please call ‘a += b’ or ‘a.concat(b)’.

1.2 Support for the iterator protocol: ‘avl_tree_iterator’ objects

See Also:

PEP 234, “Iterators”
New protocol in Python 2.2

The avl module implements the iterator protocol. Objects of type ‘avl_tree_iterator’ are implicitly called
upon if a for loop is used to iterate over a tree, like in ‘for o in t: print o’. This is more efficient than
retrieving the ith item for all i.

There are also a couple of explicit methods.

To get a new iterator (in pre-position) for some tree t, say ‘iter(t)’ in Python :

>>> j = iter(t)
>>> type(j)
<type ’avl_tree_iterator’>

Note that it increments the tree object’s refcount.

To obtain an iterator in either pre- or post-position, use the iter instance method, see above. The call ‘t.iter()’
is equivalent to ‘iter(t)’.

Here are the methods :

next()
Return new reference to next item if there is one, or raise a StopIteration exception. This is part of the
protocol.

prev()
Symmetrically, return new reference to previous item. This is not part of the protocol.

index()
Return inorder index of current item in iteration, or -1 if it’s in ‘pre-position’, i.e. right before the first item, or
tree’s len if it’s in ‘post-position’.

4 1 avl — AVL-tree type for Python

Since the tree implementation maintains a parent pointer for each node, any iterator remains able to proceed if inser-
tions are done while it’s in use, or if any item other than the current one is deleted via the remove() tree object
method. The module provides another iterator method :

remove()
Remove current item in iteration, or raise an avl.Error exception. Current iterator position is set to next
position or in post-position. This is not part of the protocol.

1.3 Example

The following example demonstrates usage of the avl module.

Python 2.3 (#1, Sep 13 2003, 00:49:11)
[GCC 3.3 20030304 (Apple Computer, Inc. build 1495)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import random
>>> import avl

Create new avl_tree:
>>> t = avl.new()
>>> type(t)
<type ’avl_tree’>

Insert new items:
>>> for x in range(20): t.insert(random.randint(0, 100))
...
verify() --> 1 if tree is valid, 0 otherwise
>>> t.verify()
1
>>> t
[2, 5, 9, 18, 24, 25, 29, 42, 45, 51, 58, 58, 60, 64, 66, 80, 85, 87, 92, 99]

Lookup by index with usual syntax:
>>> t[0], t.min()
(2, 2)
>>> t[-1], t.max()
(99, 99)
>>> t[4], t[-16]
(24, 24)

Create a tree from list of items:
>>> list = [3,8,3,5,1,2,8,7]
>>> u = avl.new(list)
As a result, list is sorted ; this is an _unstable_ sort
>>> u
[1, 2, 3, 3, 5, 7, 8, 8]
A second optional argument to new() is a Python compare function:
>>> u= avl.new(list, None)
>>> u
[1, 2, 3, 3, 5, 7, 8, 8]
Same as above except duplicates are removed:
>>> u = avl.new(list, None, 1)
>>> u
[1, 2, 3, 5, 7, 8]

Lookup by key:
>>> t.lookup(42)
42
Failure:
>>> t.lookup(36)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

1.3 Example 5

LookupError: 36

Smallest index of item, or -1:
>>> t.index(58)
10
>>> i,j = t.span(58); i,j
(10, 12)
>>> t[10:12]
[58, 58]
>>> t.span(36)
(7, 7)
Put it where it should be without comparing:
>>> t.insert(36,7); t.verify()
1
>>> t.index(36)
7

Slices with usual defaults:
>>> u = t[:10]
>>> type(u)
<type ’avl_tree’>
>>> u
[2, 5, 9, 18, 24, 25, 29, 36, 42, 45]
>>> 42 in u
True
otherwise put:
>>> u.has_key(42)
1

new() accepts a tree as argument
this is equivalent to ‘a = u[:]’:
>>> a = avl.new(u)
>>> a.verify()
1
>>> b = avl.new(range(60,70))

Concatenation with usual syntax:
>>> c = a + b
>>> c.verify()
1
>>> c
[2, 5, 9, 18, 24, 25, 29, 36, 42, 45, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]

Concatenation is done regardless of order:
>>> avl.new([5,1,2]) + avl.new([2,8,6])
[1, 2, 5, 2, 6, 8]

In-place concatenation:
>>> a.concat(b)
>>> a
[2, 5, 9, 18, 24, 25, 29, 36, 42, 45, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]

ITERATION:
>>> n = 0
>>> for o in u:
... print n, ":", o
... n += 1
...
0 : 2
1 : 5
2 : 9
3 : 18
4 : 24
5 : 25
6 : 29

6 1 avl — AVL-tree type for Python

7 : 36
8 : 42
9 : 45

Explicit iteration:
>>> j = iter(u)
>>> type(j)
<type ’avl_tree_iterator’>
>>> j.next()
2
>>> j.next()
5
>>> u
[2, 5, 9, 18, 24, 25, 29, 36, 42, 45]
>>> j.index()
1
>>> u[2]
9
>>> u.insert(11)
>>> j.next()
9
>>> j.next()
11
>>> j.cur()
11
>>> j.remove()
>>> j.next()
18
>>> 11 in u
False
>>> u.verify()
1
Get previous item:
>>> j.prev()
9

Removing items:

Remove u[3]:
>>> u.remove_at(3)
>>> u.verify()
1
Remove by key:
>>> u.remove(24)
>>> u.remove(36)
>>> u
[2, 5, 9, 25, 29, 42, 45]
>>> u.verify()
1
Nothing is done if item not found:
>>> u.remove(20)
>>> u
[2, 5, 9, 25, 29, 42, 45]

at_least() and at_most(), with exceptions:
>>> u.at_least(30)
42
>>> u.at_most(30)
29
>>> u.at_least(50)
Traceback (most recent call last):
File "<input>", line 1, in ?

ValueError: 50

>>> u.span(1,9)

1.3 Example 7

(0, 3)
>>> u[0:3]
[2, 5, 9]
>>> u.span(2,8)
(0, 2)
>>> u.span(30,35)
(5, 5)
>>> u[5]
42
>>> u.span(25,44)
(3, 6)
>>> u[3:6]
[25, 29, 42]
>>> u.span(24,44)
(3, 6)
>>> u.span(24, 45)
(3, 7)
>>> u[3:7]
[25, 29, 42, 45]
>>> u.span(26,45)
(4, 7)
>>>

8 1 avl — AVL-tree type for Python

References

[1] Sam Rushing’s own iterative C implementation, on which this one is based, is to be found at http://www.
python.org/ftp/python/contrib-09-Dec-1999/DataStructures/avl.README

[2] Good ideas came from browsing Ben Pfaff’s GNU libavl home at http://adtinfo.org/

[3] Adel’son-Vel’skiı̆ (G.M.) and Landis (E.M.) — An algorithm for the organization of information. Soviet Mathe-
matics Doklady, vol. 3, 1962, pp. 1259–1263

References 9

http://www.python.org/ftp/python/contrib-09-Dec-1999/DataStructures/avl.README
http://www.python.org/ftp/python/contrib-09-Dec-1999/DataStructures/avl.README
http://adtinfo.org/

Index
append() (avl_tree method), 3
at_least() (avl_tree method), 3
at_most() (avl_tree method), 3
avl (extension module), 1, 1
avl.Error (exception in avl), 2

clear() (avl_tree method), 3
concat() (avl_tree method), 3

dump() (avl_tree method), 3
dump() (in module avl), 2

from_iter() (in module avl), 2

has_key() (avl_tree method), 3

index() (avl_tree method), 3
index() (avl_tree_iterator method), 4
insert() (avl_tree method), 2
iter() (avl_tree method), 3

load() (in module avl), 2
lookup() (avl_tree method), 2

max() (avl_tree method), 3
min() (avl_tree method), 3

new() (in module avl), 1
next() (avl_tree_iterator method), 4

prev() (avl_tree_iterator method), 4
Python Enhancement Proposals

PEP 234, 4

remove() (avl_tree method), 3
remove() (avl_tree_iterator method), 5
remove_at() (avl_tree method), 3

span() (avl_tree method), 3

verify() (avl_tree method), 2

10

	1 avl --- AVL-tree type for Python
	1.1 `avl_tree' objects
	1.2 Support for the iterator protocol: `avl_tree_iterator' objects
	1.3 Example

	References
	Index

