PyPedal:

Software for pedigree analysis
Release 2.0.0al16

John B. Cole, Ph.D.

May 03, 2005

USDA Animal Improvement Programs Laboratory, Bldg 005 R&®6 BARC-West, 10300
Baltimore Avenue, Beltsville, MD 20705-2350

Legal Notice

Copyright (c) 2002, 2003, 2004, 2005. John B. Cole. All rigigserved.

Permission to use, copy, modify, and distribute this soféifar any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any saftevwhich is or includes a copy or modification of this
software and in all copies of the supporting documentatosfich software.

Disclaimer

The author of this software does not make any warranty, esgreimplied, or assume any liability or responsibility for
the accuracy, completeness, or usefulness of any infoomatpparatus, product, or process disclosed, or reprisgnt

its use would not infringe privately-owned rights. Refaremerein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otsengbes not necessarily constitute or imply its endorsemen
recommendation, or favoring by the United States Govertiroethe author. The views and opinions of authors
expressed herein do not necessarily state or reflect thabe dfnited States Government and shall not be used for
advertising or product endorsement purposes.

CONTENTS

PyPedal 1
Introduction 5
1.1 Implemented Features L 6
1.2 Planned Features e e e 6
1.3 Wheretogetinformationandcode 7
1.4 Acknowledgments e e 7
Installing PyPedal 9
2.1 Testingthe Pythoninstallation 9
2.2 Testing the Numarray Python Extension Installation 9
2.3 Installing PyPedal e e 10
2.4 Testing the PyPedal Python Extension Installation 11
2.5 AttheSourceForge... e e 12
High-Level Overview 13
3.1 ThePyPedal ObjectModel. 13
3.2 PedigreeFormatCodes e 14
Tutorial 15
4.1 AFewImportantConcepts e e e e 15
4.2 AGentle Introductionto PyPedal 15
API 19
5.1 SomeBackground e e e 19
5.2 PYRCIASSES o 19
5.3 pypdemog e e 21
5.4 pypgraphics e e 22
5.5 PYRLIO .. e e 24
5.6 PYRMELNCS o e 26
5.7 PYRNEWCIASSES e 31
5.8 PYRLNIM L e e 35
5.9 pypuutils . . . 38
Glossary 43

Part |

PyPedal

PyPedal (“PyPedal”) provides pedigree analysis tools fghé&. This part contains all you need to know about
“PyPedal” pedigrees and the functions that operate upan.the

CHAPTER
ONE

Introduction

This chapter introduces the PyPedal extensionto Pythomwattides the rest of the document.

PyPedal Python Pedgree Aralysis) is a tool for analyzing animal pedigree files. It caitas several quantitative
measures of allelic and genoytpic diversity from pedigreesduding average coefficients of inbreeding and relation
ship, effective number of founders, and effective numbemafestors. Some qualitative checks are performed in order
to catch some common mistakes, such as parents with moret rigicdndates or ID numbers than their offspring.
Currently, PyPedal only makes use of information on pedigteucture. Allelotypes can be assigned to founders (or
read from the pedigree file) for use in genedropping to compffective number of founder genomes, but no other
measures of alleic diversity are currently supported. Stooks for non-interactive pedigree visualization are also
provided.

Routines are also provided for the decompositiomadnd the direct formation afi’ with and without accounting
for inbreeding. These are of academic interest rather tihactipal interest, but if a simple script is needed for the
inversion of a reasonably-sized pedigree PyPedal is upettagk.

PyPedal is a PythonKttp://www.python.org/))language module that may beezhlby other Python programs or
used interactively from the Python interpreter. You mustehBython 2.4 installed in order to use PyPedal() because
PyPedal() makes use of some features found only in versibrT®e Numarray module must be installed in order for
you to use PyPedal(), and may be foundhih://www.stsci.edu/resources/software_hardware/numarray. In addition,
PyPedal() will make use of the following modules if they arstalled:

« Graphviz (http://www.research.att.com/swi/tools/graphviz/))ngsithe PyDot (http://dkbza.org/pydot.html))
module is needed by the drapedigree() routine.

« matplotlib (http://matplotlib.sourceforge.net/)) is used to drawdgsams and line graphs.

« The Python Imaging Library(ittp://www.pythonware.com/products/pil/)) is used tsualize numerator rela-
tionship matrices.

This document is the “official” documentation for pypedalisl both a tutorial and the most authoritative source of
information about pypedal with the exception of the soummgec The tutorial material will walk you through a set of
manipulations of a simple pedigree. All users of PyPedatammuraged to follow the tutorial with a working PyPedal
installation, working the examples. The best way to lealyisloing — the aim of this tutorial is to guide you along
this "doing.”

This manual contains:

Installing PyPedal Chapter 2 provides information on testing Python and itistaPyPedal.

PyPedal Tutorial Chapter 4 provides information on testing Python and itistaPyPedal.

High-Level Overview Chapter?? gives a high-level overview of the components of the PyPgglstem as a whole.

Glossary Appendix 6 gives a glossary of terms.

1.1 Implemented Features

PyPedal is currently capable of doing the following things:

« Reading pedigree files in several formats;

» Checking pedigree integrity (duplicate IDs, parents yganthan offspring, etc.);

« Generating summary information such as frequency of ajppea in the pedigree file;

« Computation of the numerator relationship matei) from a pedigree file using the tabular method;

« Inbreeding calculations for large pedigrees using Var@R&d1992) recursive algorithm;

< Computation of average total and average individual ctiefits of inbreeding and relationship;

» Decomposition ofd into 7" and D such thatd = T DT’;

< Computation of the direct inverse df (not accounting for inbreeding) using the method of Henule({4976);
« Computation of the direct inverse df (accounting for inbreeding) using the method of Quaas (976

« Storage ofd and its inverse between user sessions as persistent Pyifemisousing the pickle module to avoid
unnecessary calculations;

« Computation of effective founder number using the exagbidthm of Lacy (1989);

« Computation of effective founder number using the apprate algorithm of Boichard et al. (1996);
« Computation of effective ancestor number using the allgoriof Boichard et al. (1996);

 Selection of subpedigrees containing all ancestors ohana;

« ldentification of the common relatives of two animals;

» Output to ASCII text files, including matrices, coefficiemf inbreeding and relationship, and summary infor-
mation;

« Reordering and renumbering of pedigree files.

1.2 Planned Features

The following features are not yet implemented in PyPedalyill probably be added in a future release:

« Direct calculation of the inverse of accounting for inbreeding using the method of Luo and Mesens
 Calculation of theoretical effective population size;
 Calculation of actual effective population size basedhmndhange in population average inbreeding;

 Calculation of some measure of effective family numbesgined by a post of D. Gianola’s to the Animal
Geneticists Discussion Group email list on 30 January 2001)

* Representation of pedigrees as an algebraic structereyfaphs);
« Identification of disconnected subgroups (if any) in a geek;

« Fast operations on graphs;

6 Chapter 1. Introduction

1.3 Where to get information and code

PyPedal and its documentation are available at the authetssite (sourceforge.net). The Numarray web site is:
http://numpy.sourceforge.net/. The Python web site isttp://www.python.org/.

1.4 Acknowledgments

PyPedal was initially written to support the author’s ditaton research while at Louisiana State University, Bato
Rouge http://www.Isu.edu/). It sat fallow for some time and has recently come undervaatevelopment again. This
is due in part to a request from colleagues at the Universilfionesota that led to the inclusion of new functionality
in PyPedal. The author wishes to thank Dr. Paul VanRadendiyr kelpful suggestions for improving the ability of
PyPedal to handle certain computations in very large pedgr

Some of the text in this manual is taken verbatim from the Nuayamanual.

1.3. Where to get information and code 7

CHAPTER
TWO

Installing PyPedal

This chapter explains how to install and test PyPedal fraheethe source distribution or from the binary
distribution.

Before we can begin the tutorial, we need to make sure thatgounstall and test Python, the Numeric or Numarray
extension, and the PyPedal extension.

2.1 Testing the Python installation

The first step is to install Python if you haven't already. eyt is available from the Python project page at
http://sourceforge.net/projects/python/. Click on the link corresponding to your platform, and felithe instructions
described there. PyPedal requires version 2.3 as a minindéimen installed, starting Python by typing python at the
shell or double-clicking on the Python interpreter shoul@é@ prompt such as:

Python 2.3.3 (#2, Feb 17 2004, 11:45: 40)
[GCC 3.3.2 (Mandrake Linux 10.0 3.3.2-6ndk)] on linux2
Type "hel p", "copyright", "credits" or "license" for nore infornmation.

If you have problems getting Python to work, consider catmgcyour local support person or e-mailing python-
help@python.org for help. If neither solution works, calesiposting on the comp.lang.python newsgroup (details on
the newsgroup/mailing list are availablehatp://www.python.org/psa/MailingLists. html#clp).

2.2 Testing the Numarray Python Extension Installation

The standard Python distribution does not come, as of thigwyrwith the numarray Python extensions installed, but
your system administrator may have installed them alre@dyfind out if your Python interpreter has numarray in-
stalled, typei nport numar r ay’ at the Python prompt. You'll see one of two behaviors (thglbout this document
user input and python interpreter output will be emphasaeghown in the block below):

>>> jnport numarray

Traceback (innernost |ast):

File "<stdin>", line 1, in ?

I nportError: No nodul e naned nunarray

indicating that you don’t have numarray installed, or:

>>> jnport numarray
>>> nunarray. __version__
0.9

indicating that numarray is installed. If it is installedpw can skip the next section and go ahead to section
2.3. If you don'’t, you have to get and install the numarrayeastons as described on the Numarray website at
http://www.stsci.edu/resources/software_hardware/numarray.

2.3 Installing PyPedal

In order to get PyPedal, visit the official websitehatp://sourceforge.net/projects/pypedal. Click on the "PyPedal”
release and you will be presented with a list of the availéilds. The files whose names end in ".tar.gz” are source
code releases. The other files are binaries for a given phatfid any are available).

It is possible to get the latest sources directly from our G¥Sository using the facilities described at SourceForge.
Note that while every effort is made to ensure that the réposis always “good”, direct use of the repository is
subject to more errors than using a standard release.

2.3.1 Installing on Unix, Linux, and Mac OSX

The source distribution should be uncompressed and ungaskillows (for example):

gunzi p pypedal -2.0.0al2.tar.gz
tar xf pypedal -2.0.0al2.tar.gz

Follow the instructions in the top-level directory for coitagion and installation. Note that there are options yowstnu
consider before beginning. Installation is usually as $&nas:

python setup. py install

or.
python setupall.py install

There are currently no extra packages for PyPedal.

Important Tip Just like all Python modules and packages, the PyPedal madu be invoked using either the
‘i nport PyPedal ' form, or the from PyPedal inport ...’ form. Because most of the functions we’ll
talk about are in the numarray module, in this document, falhe code samples will assume that they have been
preceded by a statement:

>>> from numarray PyPedal =

10 Chapter 2. Installing PyPedal

2.3.2 Installing on Windows

To install numarray, you need to be in an account with Adntiater privileges. As a general rule, always remove (or
hide) any old version of PyPedal before installing the nexsion.

Please note that we haiOT tested PyPedal on any Win-32 platforms! However, PyPedallghinstall and run
properly on Win-32 as long as the dependencies mentionegae satisfied.

Installation from source

1. Unpack the distribution: (NOTE: You may have to downloadanzipping” utility)

C.\> unzi p PyPedal . zip
C:\> cd PyPedal

2. Build it using the distutils defaults:

C:\ pyPedal > pyt hon setup.py install

This installs PyPedal i€: \pyt honXX where XX is the version number of your python installationy. €0,
21, etc.

Installation from self-installing executable

1. Click on the executable’s icon to run the installer.

2. Click "next” several times. | have not experimented witlstomizing the installation directory and don'’t rec-
ommend changing any of the installation defaults. If you dd have problems, let us know.

3. Assuming everything else goes smoothly, click "finish”.

Installation on Cygwin

No information on installing PyPedal on Cygwin is availatifeyou manage to get it working, let us know.

2.4 Testing the PyPedal Python Extension Installation

To find out if you have correctly installed PyPedal, typeport PyPedal ' at the Python prompt. You'll see one
of two behaviors (throughout this document user input antiétyinterpreter output will be emphasized as shown in
the block below):

>>> jnport PyPedal

Traceback (innernost |ast):

File "<stdin>", line 1, in ?

I nportError: No nodul e named PyPedal

indicating that you don’t have PyPedal installed, or:

2.4. Testing the PyPedal Python Extension Installation 11

>>> jnport PyPedal
>>> PyPedal . __version__
'2.0.0al’

indicating that PyPedal is installed.

2.5 Atthe SourceForge...

The SourceForge project page for numarray ist@t//sourceforge.net/projects/pyedal. On this project page you will
find links to:

The PyPedal Discussion ListYou can subscribe to a discussion list about PyPedal usieg pitoject page
at SourceForge. The list is a good place to ask questions amdhglp. Send mail to pyedal-
discussion@lists.sourceforge.net. There is also a pyqasiaussion group that you may join.

The Web Site Click on "home page” to get to the PyPedal Home Page, whicHihks to documentation and other
resources.

Bugs and PatchesBug tracking and patch-management facilities is providethe SourceForge project page.

FTP Site The FTP Site contains this documentation in several fornpais maybe some other goodies we have lying
around.

12 Chapter 2. Installing PyPedal

CHAPTER
THREE

High-Level Overview

In this chapter, a high-level overview of PyPedal is prodidgiving the reader the definitions of the key
components of the system. This section defines the concepdshy the remaining sections.

3.1 The PyPedal Object Model

At the heart of PyPedal are four different types of objectsese objects combine data and the code that operate on
those data into one convenient package. Although most RyBedrs will only work directly with one or two of these
objects it is worthwhile to know what they are. An instancétefNewPedigreeclass stores a pedigree read from an
input file as well as metadata about that pedigree. The pegligra Python list oNewAnimal objects. Information
about the pedigree, such as the number and identity of faanidecontained in an instance of tRedigreeMetadata
class.

The fourth PyPedal classiewAMatrix , is used to manipulate numerator relationship matricesyINRVhen working
with large pedigrees it can take a long time to compute theehs of a NRM, and having an easy way to save and
restore them is quite convenient.

U1’
Here is an example of Python code using the NewPedigreetdepeanpl es/ new_l acy. py):
inport pyp_newcl asses, pyp_nrm pyp_netrics

frompyp_utils inmport pyp_nice_tine

options = {}

opti ons[’ messages’] = 'verbose’
options[’renunber’'] =0
options[’counter’'] =5

if name =="'_min__":

_pri nt ' Starti ng pypedal .py at %' % (pyp_nice_tinme())

Exanpl e taken from Lacy (1989), Appendix A

options[’pedfile’] = 'new_| acy. ped’
options[’ pedformat’] = 'asd’
options[’ pednane’] = 'Lacy Pedi gree’

exanpl e = pyp_newcl asses. NewPedi gr ee(opti ons)
exanpl e. | oad()
if exanple. kw’' messages’] == 'verbose’:
print "[INFQ: Calling pyp_mnetrics.effective founders_ lacy at %’ % (pyp_nice_tine())
pyp_netrics. effective_founders_I| acy(exanpl e)

13

See section 2.3.1.

3.2 Pedigree Format Codes

Pedigree format codes consisting of a string of charactersised to describe the contents of a pedigree file. The
codes currently recognized by PyPedal are:

* a=animal (REQUIRED)

s = sire (REQUIRED)

d = dam (REQUIRED)
e g =generation

* X=sex

b = birthyear (YYYY)

« f=inbreeding
e r=breed
* n=name

y = birthdate in "MMDDYYYY” format

| = alive (1) or dead (0)

- e=age

A = alleles (two alleles separated by a non-null character)

As noted, all pedigrees must contain columns corresporidiagimals, sires, and dams.

Ufuncs are covered in detail in "Ufuncs” on page

14 Chapter 3. High-Level Overview

CHAPTER
FOUR

Tutorial

This chapter provides a tutorial for PyPedal. The samplégpee files may be found in the directory in
the distribution!

We are going to start the actual tutorial in this chaptersti-inowever, we will describe some key concepts that will

help you work successfully with PyPedal. You can find a motaitéal explanation of PyPedal components in chapter
?2?.

4.1 A Few Important Concepts

To make the most of PyPedal you, the user, need to have a salierstanding of your dataset as well as of the
PyPedal API. While Python is an object-oriented prograngntémguage, PyPedal is at heart a procedural tool. One
of the exceptions to this rule is what PyPedal terms a peéjgrich is a Python list containing Animal() objects.
The first step in most PyPedal analyses is to read your pedigi@ PyPedal from a textfile. After that, you will spend
most of your time passing your pedigree from one proceduaeddher. But always remember that the elements in the
pedigree are objects!

4.2 A Gentle Introduction to PyPedal

For this tutorial we are going to use a sample pedigree fromil ldad Clark’a (1989) "Principles of Population
Genetics (Second Edition)” (Figure 5, p. 242). The pedigseprovided ashartl.ped in the distribution in the
t ut ori al subdirectory, There is also an accompanying Python progrartl.py .

4.2.1 The Anatomy of a Pedigree File

Obviously you need a pedigree file in order to work with PyRPetlaere are a couple of things that you need to know
about pedigree files and at least one thing that is helpfuhtmk Pedigree files must contain a format code, and the
format codemust precede the first animal record. A complete list of pedigmeges appears in section 3.2. Each
animal record must appear on a separate line in the pedi¢gedfi animal record consists of at least an animal ID,
a sire ID, and a dam ID; the IDs are separated by a delimitegllysa comma or a space. More information may be
required on a linde depending on the pedigree format usedsiiMj parents should be coded as ‘0. Parents do not
need to have their own entry in the pedigree if THEIR parergsiaknown; ther epr ocess() procedureis clever
enough to add the needed records automatically. Commest Mrhich begin with ‘#, may appear anywhere in the
file; they are ignored by the preprocessor.

1please let me know of any additions to this tutorial that yeel fvould be helpful.

15

Geat tit pedigree fromHartl and Cark (1989), figure 5, p. 242.
Used in PyPedal tutorial.

% asd

00

[EnY
U wWwWErPr oo
OO R~ABMNMNNOO

[
[N
© 00 N

0
0
11
13 12 7
14 10 11
15 13 14

This pedigree contains fifteen animals, including threenftars (animals with neither parent known), in the familiar
‘animal sire dam’ format.

4.2.2 The Anatomy of a Program

Thehartl.ped program is fairly simple, but it demonstrates some of theghithat you can easily do with PyPedal.
Please note that while | have placed these comamnds in adilegan also walk through the steps using the Python
command line. Most of the print statements are there to geoféedback while the program is running. It is not a
big deal with a small pedigree, but it is nice to know that stitimg is happening when you throw a large pedigree
at PyPedal(). | have put in line numbers for ease os referdnutef you are working along with the tutorial at the
command line you should not type in the line numbers.

16 Chapter 4. Tutorial

001 print "Starting pypedal.py at %' %asctine(localtinme(time()))

002 print "\tPreprocessing pedigree at %' % asctine(localtime(tinme()))

003 exanpl e = preprocess(’ hartl.ped’, sepchar=" ")

004 exanpl e = renunber (exanpl e,’ exanpl e’ ,io="yes")

005 print "\tCalling set_ancestor _flag at %’ % asctinme(localtime(time()))

006 set_ancestor_fl ag(exanpl e,’ exanpl e’ ,io="yes’)

007 print "\tCollecting pedigree netadata at %’ % asctinme(localtine(tine()))

008 exanpl e_neta = Pedi gree(exanpl e,’ exanpl e. ped’,’ exanpl e_neta’)

009 print "\tCalling a_effective_founders_lacy() at %' %asctine(localtime(tine()))

010 a_effective_founders_|l acy(exanple,fil etag="exanple’)

011 print "\tCalling a_effective_founders_boichard() at %' % asctine(localtime(tinme()))
012 a_effective_founders_boi chard(exanple, fil etag="exanple’)

013 print "\tCalling a _effective_ancestors_definite() at %' %asctinme(localtime(tinme()))
014 a_effective_ancestors_definite(exanple,filetag="exanple’)

015 print '"\tCalling a_effective_ancestors_indefinite() at %’ %asctinme(localtime(time()))
016 a_effective_ancestors_indefinite(exanple,filetag=" exanple' ,n=10)

017 print "\tCalling related_aninmals() at %' % asctinme(localtime(tinme()))

018 list_a = rel ated_ani nal s(exanpl e[14] . ani mal | D, exanpl e)

019 print list_a

020 print "\tCalling related_aninmal s() at %’ % asctinme(localtime(time()))

021 list_b = rel ated_ani nal s(exanpl e[9] . ani mal | D, exanpl e)

022 print list_b

023 print "\tCalling common_ancestors() at %' %asctime(localtinme(tine()))

024 list_r = comon_ancest or s(exanpl e[14] . ani mal | D, exanpl e[9] . ani nal | D, exanpl e)

025 print list_r

026 print 'Stopping pypedal .py at %' % asctine(localtime(tine()))

4.2. A Gentle Introduction to PyPedal 17

4.2.3 Reading PyPedal Output

Starting pypedal .py at Mon Apr 19 15:28:53 2004
Preprocessing pedigree at Mon Apr 19 15:28:53 2004
Calling set_ancestor_flag at Mon Apr 19 15:28:53 2004
Col | ecting pedigree netadata at Mon Apr 19 15:28:53 2004
PEDI GREE exanpl e_net a (exanpl e. ped)

Recor ds: 15
Uni que Sires: 9
Uni que Dans: 7
Uni que Gens: 1
Uni que Years: 1
Uni que Founders: 3

Pedi gr ee Code: asd
Cal l'ing inbreeding() at Mon Apr 19 15:28:53 2004

{1. 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.0, 6: 0.0, 7: 0.0, 8 0.0, 9: 0.0, 10: 0.0, 11: 0.0, 12: 0.015¢
Calling a_effective_founders_lacy() at Mon Apr 19 15:28:53 2004

ani mal s: 15
f ounders: 3
descendant s: 12
f_e: 7. 205

Cal ling a_effective_founders_boichard() at Mon Apr 19 15:28:53 2004

ani mal s: 15
f ounders: 3
descendant s: 12
f_e: 5. 856

Calling a_effective_ancestors_definite() at Mon Apr 19 15:28:53 2004

ani mal s: 15
f ounders: 0
descendant s: 15
f_a: 0. 000

Calling a_effective_ancestors_indefinite() at Mon Apr 19 15:28:53 2004

WARNI NG (pyp_netrics/a_effective_ancestors_indefinite()): Setting n (10) to be equal to the actual

ani mal s: 15
f ounders: 0
descendant s: 15
f_I: 0. 000
f_u: 1. 000

Calling related_ani mal s() at Mon Apr 19 15:28:53 2004
[15, 13, 7, 3, 4, 1, 2, 12, 9, 6, 11, 8, 5, 14, 10]

Calling related_ani mal s() at Mon Apr 19 15:28:53 2004
[10, 7, 3, 4, 1, 2]

Cal |l i ng cormon_ancestors() at Mon Apr 19 15:28:53 2004
[1, 2, 3, 4, 7, 10]
St oppi ng pypedal . py at Mon Apr 19 15:28:53 2004

18 Chapter 4. Tutorial

CHAPTER
FIVE

API

This chapter provides an overview of the PyPedal Applicefimgramming Interface (API). More simply,
it is a reference to the various classes, methods, and proegthat make up the PyPedal module.

5.1 Some Background

Erm...

5.2 pyp_classes

pyp_classes contains two base classes that are used by PyPedahimal() class and the Pedigree() class. What
most PyPedal routines recognize as a pedigree is actualiyajiython list of Animal() objects. An instance of a
Pedigree() object is a collection of METADATA about a listAriimals(). | know that this is confusing, and it is going
to change by the time that PyPedal 2.0.0 final is released.

Module Contents

Animal(animallD, sirelD, damID, gen="0’, by=1900, sex="u, fa=0., name="u’, alleles=[", "], breed="u’, age=-999, dive=-999) (c
]

The Animal() class is holds animals records read from a pedifile.
For more information about this class, Sée Animal Class.

Pedigree(myped, inputfile, name, pedcode="asd’, reord=0enum=0, debug=0) (class) [#]

The Pedigree() class stores metadata about pedigrees.
For more information about this class, Sée Pedigree Class.

The Animal Class

Animal(animallD, sirelD, damID, gen="0’, by=1900, sex="u, fa=0., name="u’, alleles=[", "], breed="u’, age=-999, dive=-999) (c
]

The Animal() class is holds animals records read from a pedifjle.

__init __(animallD, sirelD, damID, gen="0’, by=1900, sex="u’, fa=0, name="u’, alleles=[", "], breed="u’, age=-999, alive=999)
]

__init__() initializes an Animal() object.

19

self Reference to the current Animal() object

animallD Animal ID number

sirelD Sire ID number

damID Dam ID number

gen Generation to which the animal belongs

by Birthyear of the animal

sex Sex of the animal (m—f—u)

fa Coefficient of inbreeding of the animal

name Name of animal

alleles A two-element array of strings, which represent allelog/pe
breed Breed of animal

age Age of animal

alive Status of animal (alive or dead)

Returns: An instance of an Animal() object populated with data

pad_id() ⇒ integer [#]

pad_id() takes an Animal ID, pads it to fifteen digits, and prepgtite birthyear (or 1950 if the birth year is
unknown). The order of elements is: birthyear, animallDyrdwf zeros, zeros.

self Reference to the current Animal() object
Returns: A padded ID number that is supposed to be unique across animal

printme() [#]
printme() prints a summary of the data stored in the Aninabect.

self Reference to the current Animal() object

stringme() [#]
stringme() returns a summary of the data stored in the Arfjrodject as a string.

self Reference to the current Animal() object

trap() [# |
trap() checks for common errors in Animal() objects

self Reference to the current Animal() object

The Pedigree Class

Pedigree(myped, inputfile, name, pedcode="asd’, reord=0enum=0, debug=0) (class) [#]
The Pedigree() class stores metadata about pedigreesfullppleis will help improve performance in some
procedures, as well as provide some useful summary data.

__init __(myped, inputfile, name, pedcode="asd’, reord=0, renum=0jebug=0) ⇒ object [#]
—_init__() initializes a Pedigree metata object.

self Reference to the current Pedigree() object

myped A PyPedal pedigree

inputfile The name of the file from which the pedigree was loaded
name The name assigned to the PyPedal pedigree

20 Chapter 5. API

pedcode The format code for the PyPedal pedigree

reord Flag indicating whether or not the pedigree is reordered{p—
renum Flag indicating whether or not the pedigree is renumberedl(0
Returns: An instance of a Pedigree() object populated with data

fileme() [#]
fileme() writes the metada stored in the Pedigree() objedisin

self Reference to the current Pedigree() object

nud() ⇒ integer-and-list [#]
nud() returns the number of unique dams in the pedigree aldthca list of the dams

self Reference to the current Pedigree() object
Returns: The number of unique dams in the pedigree and a list of thass da

nuf() ⇒ integer-and-list [#]
nuf() returns the number of unique founders in the pedigi@sgawith a list of the founders

self Reference to the current Pedigree() object
Returns: The number of unique founders in the pedigree and a list ;iettiounders

nug() ⇒ integer-and-list [#]
nug() returns the number of unique generations in the pediglong with a list of the generations

self Reference to the current Pedigree() object
Returns: The number of unique generations in the pedigree and a Ithiosk generations

nus() ⇒ integer-and-list [#]
nus() returns the number of unique sires in the pedigreegaldth a list of the sires

self Reference to the current Pedigree() object
Returns: The number of unique sires in the pedigree and a list of thiose s

nuy() ⇒ integer-and-list[#]
nuy() returns the number of unique birthyears in the pe@igteng with a list of the birthyears

self Reference to the current Pedigree() object
Returns: The number of unique birthyears in the pedigree and a lidtade birthyears

printme() [#]
printme() prints a summary of the metadata stored in thegPeelf) object.

self Reference to the current Pedigree() object

stringme() [#]
stringme() returns a summary of the metadata stored in ttige as a string.

self Reference to the current Pedigree() object

5.3 pyp_demog

pyp_demog contains a set of procedures for demographic calmutadn the population describe in a pedigree.

5.3. pyp_demog 21

Module Contents

age_distribution(myped, verbose=1, sex=1) [#]
age distribution() computes histograms of the age distributibmales and females in the population. You can
also stratify by sex to get individual histograms.
myped A PyPedal pedigree.
verbose Print or suppress output. (??7?)
sex A flag which determines whether or not to stratify by sex.

founders_by_year(pedobj) ⇒ dictionary [#]
foundersby_year() returns a dictionary containing the number of fouadie each birthyear.

pedobj A PyPedal pedigree object.
Returns: dict A dictionary containing entries for each sex/genderdecodefined in the global
SEX_CODE_MAP.
set_age_units(units="year’) ⇒ None [# |
set_age_units() defines a global variable, BASEEMOGRAPHIC_UNIT.

units The base unit for age computations ('year—'month’—'day’)
Returns: None

set_base year(year=1950) ⇒ None [#]
set_base year() defines a global variable, BASBEMOGRAPHIC_YEAR.

year The year to be used as a base for computing ages.
Returns: None

sex_ratio(myped, verbose=1) ⇒ dictionary [#]
sex_ratio() returns a dictionary containing the proportion ailes and females in the population.

year The year to be used as a base for computing ages.

Returns: dict A dictionary containing entries for each sex/genderdecodefined in the global
SEX_CODE_MAP.

5.4 pyp_graphics

pyp—graphics contains for working with graphics in PyPedal, hsuas creating directed graphs
from pedigrees using PyDot and visualizing relationship trioes using Rick Muller's spy and
pcolor routines Ifttp://aspn.activestate.com/ASPN/Cookbook/Python/). The Python Imaging Li-
brary (ttp://www.pythonware.com/products/pil/), matplotlib (ttp://matplotlib.sourceforge.net/), Graphviz
(http://www.graphviz.org/), and pydot kttp://dkbza.org/pydot.html) are required by one or more routines in this
module. They ARE NOT distributed with PyPedal and must bé&alkel by the end-user! Note that the matplotlib
functionality in PyPedal requires only the Agg backend,ahhineans that you do not have to install GTK/PyGTK
or WxWidgets/PyWxWidgets just to use PyPedal. Please dbtisel sites above for licensing and installation
information.

22 Chapter 5. API

Module Contents

draw_pedigree(myped, dgfilename="pedigree’, gtittle="My_Pedigree’, gformat="jpg’, gsize=f’, gdot="1") ⇒ in teger [#
]
draw_pedigree() uses the pydot bindings to the graphviz libraifythey are available on your system — to
produce a directed graph of your pedigree with paths of itdrese as edges and animals as nodes. If there is
more than one generation in the pedigree as determind bygth@ ‘attributes of the anumals in the pedigree,
draw_pedigree() will use subgraphs to try and group animals irsttree generation together in the drawing.
myped A PyPedal pedigree object.
gfilename The name of the file to which the pedigree should be drawn
gtitle The title of the graph.
gsize The size of the graph: 'f’: full-size, 'I': letter-sized pag
gdot Whether or not to write the dot code for the pedigree graphfile é&can produce large files).
Returns: A 1 for success and a O for failure.

plot_founders_by_year(pedobj, gfilename="founders by_year’, gtitle="Founders by Birthyear’) ⇒ integer [#
]

founders by_year() uses matplotlib — if available on your system — to piedha bar graph of the number (count)
of founders in each birthyear.
pedobj A PyPedal pedigree object.
gfilename The name of the file to which the pedigree should be drawn
gtitle The title of the graph.
Returns: A 1 for success and a 0 for failure.
plot_founders_pct_by_year(pedobj, gfilename="founders pct_by_year’, gtitte="Founders by Birthyear’) ⇒ integer [#
]

founders pct_by_year() uses matplotlib — if available on your system —to pisda line graph of the frequency
(percentage) of founders in each birthyear.

pedobj A PyPedal pedigree object.

gfilename The name of the file to which the pedigree should be drawn

gtitle The title of the graph.

Returns: A 1 for success and a O for failure.

rmuller _get_color(a, cmin, cmax) ⇒ integer [#]
rmuller_get_color() Converts a float value to one of a continuous rangeotifrs using recipe 9.10 from the
Python Cookbook.
a Float value to convert to a color.
cmin Minimum value in array (?).
cmax Maximum value in array (?).
Returns: An RGB triplet.

rmuller _pcolor_matrix _pil(A, fname="tmp.png’, do _outline=0, height=300, width=300) ⇒ lists [#]

rmuller_pcolor_matrix_pil() implements a matlab-like 'pcolor’ function to disgighe large elements of a ma-
trix in pseudocolor using the Python Imaging Library.

A Input Numpy matrix (such as a numerator relationship matrix
fname Output filename to which to dump the graphics (default 'tmg’p

5.4. pyp_graphics 23

do_outline Whether or not to print an outline around the block (defajlt 0
height The height of the image (default 300)

width The width of the image (default 300)

Returns: A list of Animal() objects; a pedigree metadata object.

rmuller _spy_matrix _pil(A, fname="tmp.png’, cutoff=0.1, do_outline=0, height=300, width=300) &rAxrr; lists [#

]

rmuller_spy_matrix_pil() implements a matlab-like 'spy’ function to displayetisparsity of a matrix using the
Python Imaging Library.

A Input Numpy matrix (such as a numerator relationship matrix

fname Output filename to which to dump the graphics (default 'trng’jp

cutoff Threshold value for printing an element (default 0.1)

do_outline Whether or not to print an outline around the block (defaylt O

height The height of the image (default 300)

width The width of the image (default 300)

Returns: A list of Animal() objects; a pedigree metadata object.

5.5 pyp_io

pyp_io contains several procedures for writing structures t r@ading them from disc (e.g. using pickle() to store
and retrieve A and A-inverse). It also includes a set of fiomst used to render strings as HTML or plaintext for use
in generating output files.

Module Contents

a_inverse_from _file(inputfile) ⇒ matrix [#]

a_inverse from_file() uses the Python pickle system for persistent objectead the inverse of a relationship
matrix from a file.

inputfile The name of the input file.
Returns: The inverse of a numerator relationship matrix.

a_inverse_to_file(myped, filetag="_pickled_’, ainv=") [#]

a_inverse_to_file() uses the Python pickle system for persistent objextsrite the inverse of a relationship
matrix to a file.

myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.

a_matrix _from _file(inputfile) ⇒ matrix [#]

a_matrix_from_file() uses the Python pickle system for persistent objectead a relationship matrix from a
file.

inputfile The name of the input file.
Returns: A numerator relationship matrix.

24

Chapter 5. API

a_matrix _from _text_file() [#]
a_matrix_from_text file() is a placeholder. The anatrix() procedure currently writes A to a text file after A
is formed and before the function returns. It would be hawdyave a nice procedure to suck that back into an
object.

a_matrix _to_file(myped, filetag="_pickled_’, a=") [#]
a_matrix_to_file() uses the Python pickle system for persistent objectgrite a relationship matrix to a file.
This works well for small pedigrees, not so well for large igeees; large pedigrees will eat some serious disc
space.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
save Flag to indicate whether or not the relationship matrix igten to a file.

dissertation_pedigree_to_file(myped, filetag="_diss’) [#]
dissertationpedigreeto_file() takes a pedigree in 'asdxfg’ format and writes is to e.fil

myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.

dissertation_pedigree_to_pedig_format(myped, filetag="_diss’) [#]
dissertationpedigree to_pedig format() takes a pedigree in 'asdbxfg’ format, formats fbithe form used by
Didier Boichard'’s 'pedig’ suite of programs, and writesdtd file.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.

dissertation_pedigree_to_pedig_format _mask(myped, filetag=_diss_mask’) [#]

dissertationpedigreeto_pedig_format_mask() Takes a pedigree in 'asdbxfg’ format, formats it ithie form
used by Didier Boichard’s 'pedig’ suite of programs, andtesiit to a file. THIS FUNCTION MASKS THE
GENERATION ID WITH A FAKE BIRTH YEAR AND WRITES THE FAKE BIRTHYEAR TO THE FILE
INSTEAD OF THE TRUE BIRTH YEAR. THIS IS AN ATTEMPT TO FOOL PE TO GET f e, f_aetal.
BY GENERATION.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

dissertation_pedigree_to_pedig_interest_format(myped, filetag="_diss’) [#]
dissertationpedigreeto_pedig_interest format() takes a pedigree in "asdbxfg’ format, formatstoithe form
used by Didier Boichard’s parente program for the studiediduals file.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.

id_map_from _file(inputfile) ⇒ dictionary [#]
id_map_from_file() reads an ID map from the file generated by pyfils/renumber() into a dictionary. There
is a VERY similar function, pyputils/load_id_map(), that is preferred because it is more robust that tiois p
cedure.
inputfile The name of the file from which the ID map should be read.
Returns: A dictionary whose keys are renumbered IDs and whose vaheasrigginal IDs.

pyp_file_footer(ofhandle, caller="Unknown PyPedal routine”) [#]
pyp_file_footer()

5.5. pyp-_io 25

ofhandle A Python file handle.
caller A string indicating the name of the calling routine.
Returns: None

pyp_file_header(ofhandle, caller="Unknown PyPedal routine”) [#]
pyp_file_header()

ofhandle A Python file handle.
caller A string indicating the name of the calling routine.
Returns: None

renderTitle(title _string, title _level="1") [#]
renderTitle() ... Produced HTML output by default.

5.6 pyp_metrics

pyp_metrics contains a set of procedures for calculating meticPyPedal pedigree objects. These metrics include
coefficients of inbreeding and relationship as well as ¢ffedounder number, effective population size, and effect
ancestor number.

Module Contents

a_coefficients(myped, filetag="coefficients’, a=", method="nrm’) [#]
a_coefficients() writes population average coefficients dr@geding and relationship to a file, as well as in-
dividual animal IDs and coefficients of inbreeding. Someigesks are too large for fast_matrix() or
fast_.a_matrix_r() — an array that large cannot be allocated due to memotsiatiens — and will result in a
value of -999.9 for all outputs.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
a A numerator relationship matrix (optional).
method If no relationship matrix is passed, determines which pdace should be called to build one

(nrm—frm).
a_effective_ancestors(myped, filetag='f_a ', a=", gen=", n=25) ⇒ float [#]

a_effective_ancestors() calls either_affective_ancestorsdefinite() or aeffective_ancestorsindefinite()
based on pedigree size using an arbitrarily-assignedhbig®f 1,000 animals. For small pedigrees {%
1,000) the exact computation is performed. For larger peéig an approximate computation is carried out
based on inexact lower and upper bounds @f fsee Boichard et al. (1996) pp.9-10). If no number of ancest
is specified in the call to_zeffective_ancestors() and the indef- inite routine is used, a defdubads used.
Boichard’s algorithms require information about the GEMHERON of animals. If you do not provide an input
pedigree with generations things may not work. By defadtrttost recent generation — the generation with the
largest generation ID — will be used as the reference pdpulat

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

a A numerator relationship matrix (optional).

gen Generation of interest.

gen Number of ancestors to use with the indefinite routine.

26 Chapter 5. API

Returns: The effective founder number.

a_effective_ancestors definite(myped, filetag="_f_a_definite_’, a=", gen=") ⇒ float [#]

a_effective_ancestorsdefinite() uses the algorithm in Appendix B of Boichard et @l996) to compute the
effective ancestor number for a myped pedigree. NOTE: Ooblem here is that if you pass a pedigree
WITHOUT generations and error is not thrown. You simply epdwth a list of generations that contains the
default value for Animal() objects, 0. Boichard’s algonttrequires information about the GENERATION of
animals. If you do not provide an input pedigree with generatthings may not work. By default the most
recent generation — the generation with the largest gaoani — will be used as the reference population.
myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

a A numerator relationship matrix (optional).

gen Generation of interest.

Returns: The effective founder number.

a_effective_ancestors. indefinite(myped, filetag="_f_a_definite_’, a=", gen=", n=25) ⇒ float [#]

a_effective_ancestorsindefinite() uses the approach outlined on pages 9 and 10ich&al et al. (1996) to
compute approximate upper and lower bounds far. fThis is much more tractable for large pedigrees than the
exact computation provided in affective_ancestorsdefinite(). NOTE: One problem here is that if you pass a
pedigree WITHOUT generations and error is not thrown. Yooy end up wth a list of generations that con-
tains the default value for Animal() objects, 0. NOTE: If yoass a value of n that is greater than the actual num-
ber of ancestors in the pedigree then strange things hapysea.stop-gap, aeffective_ancestorsindefinite()

will detect that case and replace n with the number of foumedér Boichard’s algorithm requires information
about the GENERATION of animals. If you do not provide an inpedigree with generations things may not
work. By default the most recent generation — the generatitinthe largest generation ID — will be used as the
reference population.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

a A numerator relationship matrix (optional).

gen Generation of interest.

Returns: The effective founder number.

a_effective_founders_boichard(myped, filetag="_f_e_boichard_’, a=", gen=") ⇒ float [#]

a_effective_founders.boichard() uses the algorithm in Appendix A of Boichard et @996) to compute the
effective founder number for myped. Note that results frbig function will not necessarily match those from
a_effective_founderslacy(). Boichard’s algorithm requires information abdu¢ {tGENERATION of animals.

If you do not provide an input pedigree with generationsdkimay not work. By default the most recent
generation — the generation with the largest generationwill-be used as the reference population.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

a A numerator relationship matrix (optional).

gen Generation of interest.

Returns: The effective founder number.

a_effective_founders_lacy(myped, filetag="_f_e_lacy_’, a=") ⇒ float [#]

a_effective_founderslacy() calculates the number of effective founders in a greedi using the exact method
of Lacy.

myped A PyPedal pedigree object.

5.6. pyp_metrics 27

filetag A descriptor prepended to output file names.
a A numerator relationship matrix (optional).
Returns: The effective founder number.

common_ancestors(anin,a, anim_b, myped, filetag="_steps_’) ⇒ list [#]

common_ancestors() returns a list of the ancestors that two anigtelse in common.

anim_a The renumbered ID of the first animal, a.
anim_b The renumbered ID of the second animal, b.
myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.
Returns: A list of animals related to anina AND anim_b

descendants(anid, myped, desc) ⇒ list [#]

descendants() uses pedigree metadata to walk a pedigreetanda list of all of the descendants of a given
animal.

anid An animal ID

myped A Python list of PyPedal Animal() objects.

_desc A Python dictionary of descendants of animal anid.

Returns: A list of descendants of anid.

effective_founder_genomes(myped, filetag="gene_drop_’, rounds=10, verbose=0, quiet=1) ⇒ float [#]

effective_founder_ genomes() simulates the random segregation of founddesltarough a pedigree. At
present only two alleles are simulated for each founder. rBary statistics are computed on the most recent
generation.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

rounds The number of times to simulate segregation through theeepédigree.

verbose A flag to indicate whether or not diagnostic/debugging infation is printed.

Returns: The effective number of founder genomes over based on '®gsthe-drop simulations.

effective_founders_lacy(pedobj) ⇒ float [#]

effective_founders.lacy() calculates the number of effective founders in a giedi using the exact method of
Lacy. This version of the routine_affective_founderslacy() is designed to work with larger pedigrees as it
forms “familywise” relationship matrices rather than a fydationwise” relationship matrix.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

a A numerator relationship matrix (optional).

Returns: The effective founder number.

fast_a_coefficients(myped, filetag="coefficients_’, a=", method="nrm’, debug=0) [#]

a_fast _coefficients() writes population average coefficients df@eding and relationship to a file, as well as
individual animal IDs and coefficients of inbreeding.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

a A numerator relationship matrix (optional).

28

Chapter 5. API

method If no relationship matrix is passed, determines which pdace should be called to build one
(nrm—frm).
founder_descendants(pedobj) ⇒ dictionary [#]
founder_descendants() returns a dictionary containing a list ofeledants of each founder in the pedigree.

pedojb An instance of a PyPedal NewPedigree object.

generation_lengths(myped, filetag="_generation_lengths_’, debug=0, quiet=0, units=y’) ⇒ dictionary [#

generationlengths() computes the average age of parents at the timietiofdb their first offspring. This is
implies that selection decisions are made at the time di birof the first offspring. Average ages are computed
for each of four paths: sire-son, sire-daughter, dam-sodh dam-daughter. An overall mean is computed, as
well. IT IS IMPORTANT to note that if you DO NOT provide birtlears in your pedigree file that the returned
dictionary will contain only zeroes! This is because whenhinthyer is provided a default value (1900) is
assigned to all animals in the pedigree.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
rounds The number of times to simulate segregation through theeepédigree.
debug A flag to indicate whether or not diagnostic/debugging infation is printed.
units A character indicating the units in which the generatiorgtés should be returned.
Returns: A dictionary containing the five average ages.

generation_lengths_all(myped, filetag="_generation_lengths_’, debug=0, quiet=0, units=y’) ⇒ dictionary [#
]

generationlengths all() computes the average age of parents at the time of diirtheir offspring. The com-
putation is made using birth years for all known offspringinés and dams, which implies discrete generations.
Average ages are computed for each of four paths: sire-geadaughter, dam-son, and dam-daughter. An
overall mean is computed, as well. IT IS IMPORTANT to notettifigou DO NOT provide birthyears in your
pedigree file that the returned dictionary will contain omgroes! This is because when no birthyer is provided
a default value (1900) is assigned to all animals in the pedig

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

rounds The number of times to simulate segregation through theespédigree.

debug A flag to indicate whether or not diagnostic/debugging infation is printed.

units A character indicating the units in which the generatiorgtés should be returned.

Returns: A dictionary containing the five average ages.

mating_coi(anim_a, anim_b, myped, filetag="_mating_coi_") ⇒ float [#]
mating_coi() returns the coefficient of inbreeding of offspring ofreating between two animals, anim and
anim_b.
anim_a The renumbered ID of an animal, a.
anim_b The renumbered ID of an animal, b.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
Returns: The coefficient of relationship of anina and animb

5.6. pyp_metrics 29

min_max_f(myped, filetag="_min_max_f_’, a=", n=10) ⇒ list[#]

min_max_f() takes a pedigree and returns a list of the individualfiwhe n largest and n smallest coefficients
of inbreeding.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

a A numerator relationship matrix (optional).

n An integer (optional, default is 10).

Returns: A list of the individuals with the n largest and the n smallésl in the pedigree.

num_equiv_gens(myped, filetag="_num_traced_gen_’, debug=0, quiet=0) ⇒ dictionary [#]

num_equiv_gens() computes the number of equivalent generations asithef (1/2)°n, where n is the number
of generations separating an individual and each of its knamcestors.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

rounds The number of times to simulate segregation through theespédigree.

debug A flag to indicate whether or not diagnostic/debugging infation is printed.

Returns: A dictionary containing the five average ages.

num_traced_gens(myped, filetag="_num_traced_gen_’, debug=0, quiet=0) ⇒ dictionary [#]

num_traced_gens() is computed as the number of generations separdtspgiog from the oldest known an-
cestor in in each selection path. Ancestors with unknowemtarare assigned to generation 0. See: Valera, M.,
Molina, A., Gutierrez, J. P., Gomez, J., and Goyache, F. 2B@dligree analysis in the Andalusian horse: pop-
ulation structure, genetic variability and the influencehe Carthusian strain. Livestock Production Science.
(Article in Press).

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

rounds The number of times to simulate segregation through theeepédigree.

debug A flag to indicate whether or not diagnostic/debugging infation is printed.

Returns: A dictionary containing the five average ages.

partial _inbreeding(myped, filetag="_num_traced_gen_’, debug=0, quiet=0) ⇒ dictionary [#]

partiaLinbreeding() computes the number of equivalent generatisithe sum of (1/2)"n, where n is the number
of generations separating an individual and each of its knamcestors.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

rounds The number of times to simulate segregation through theeepédigree.

debug A flag to indicate whether or not diagnostic/debugging infation is printed.

Returns: A dictionary containing the five average ages.

pedigree_completeness(myped, filetag="pedigree_completeness’, gens=4, verbose=1, debug=0) [#

pedigreecompleteness() computes the proportion of known ancesidi®e pedigree of each animal in the
population for a user-determined number of generationso Ahe mean pedcomps for all animals and for all
animals that are not founders are computed as summaryistatis

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

30

Chapter 5. API

gens The number of generations the pedigree should be tracedfopleteness.
verbose Request (1) or suppress (0) output (1 is default).

related_animals(anim_a, myped, filetag="_related_") ⇒ list [#]
related_animals() returns a list of the ancestors of an animal.

anim_a The renumbered ID of an animal, a.
myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.
Returns: A list of animals related to anina

relationship(anim_a, anim_b, myped, filetag="_relationship_’) ⇒ float [#]
relationship() returns the coefficient of relationshiptiwo animals, anima and animb.

anim_a The renumbered ID of an animal, a.

anim_b The renumbered ID of an animal, b.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.
Returns: The coefficient of relationship of anina and animb

theoretical_ne_from _metadata(metaped, filetag="ne_from _metadata_’) [#]
theoreticalne_from_metadata() computes the theoretical effective populaimambased on the number of sires
and dams contained in a pedigree metadata object. Writeksés an output file.
metaped A PyPedal pedigree metadata object.
filetag A descriptor prepended to output file names.

5.7 pyp_newclasses

pyp_newclasses contains the new class structure that will betafpRyPedal 2.0.0Final. It includes a master class to
which most of the computational routines will be bound ashods, a NewAnimal() class, and a PedigreeMetadata()
class.

Module Contents

NewAMatrix(kw) (class) [#]

NewAMatrix provides an instance of a numerator relatiopshatrix as a Numarray array of floats with some
convenience methods.

For more information about this class, sBe NewAMatrix Class.

NewAnimal(locations, data, mykw) (class) [#]
The NewAnimal() class is holds animals records read fromcigpee file.
For more information about this class, S&e NewAnimal Class .

NewPedigree(kw) (class) [#
The NewPedigree class is the main data structure for PyBFRrtl.
For more information about this class, Sée NewPedigree Class .

PedigreeMetadata(myped, kw) (class) [#
The PedigreeMetadata() class stores metadata about @esligr
For more information about this class, Sée PedigreeMetadata Class .

5.7. pyp_newclasses 31

The NewAMatrix Class

NewAMatrix(kw) (class) [#]

NewAMatrix provides an instance of a numerator relatiopshatrix as a Numarray array of floats with some
convenience methods. The idea here is to provide a wrappendia NRM so that it is easier to work with. For
large pedigrees it can take a long time to compute the elenoé®, so there is real value in providing an easy
way to save and retrieve a NRM once it has been formed.

fast_a_matrix(pedigree) ⇒ integer [#]

fast_a_matrix() calls pyp.nrm/fast.a_matrix() to form a NRM from a pedigree.

pedigree The pedigree used to form the NRM.
Returns: A NRM on success, 0 on failure.

fast_a_matrix _r(pedigree) ⇒ integer [#]
fast_a_matrix_r() calls pyp_nrm/fast.a_matrix_r() to form a NRM from a pedigree.

pedigree The pedigree used to form the NRM.
Returns: A NRM on success, 0 on failure.

info() ⇒ None [#]

info() uses the info() method of Numarray arrays to dump samf@mation about the NRM. This is of use
predominantly for debugging.

None
Returns: None

load(nrm_filename) ⇒ integer [#]
load() uses the Numarray Array Function “fromfile()” to loalarray from a binary file. If the load is successful,
self.nrm contains the matrix.
nrm_filename The file from which the matrix should be read.
Returns: A load status indicator (O: failed, 1: success).

save(nrm_filename) ⇒ integer [#]
save() uses the Numarray method “tofile()” to save an arrattimary file.

nrm_filename The file to which the matrix should be written.
Returns: A save status indicator (O: failed, 1. success).

The NewAnimal Class

NewAnimal(locations, data, mykw) (class) [#]
The NewAnimal() class is holds animals records read fromcigpee file.

__init __(locations, data, mykw) ⇒ object [#]
__init__() initializes a NewAnimal() object.
locations A dictionary containing the locations of variables in thputline.

data The line of input read from the pedigree file.
Returns: An instance of a NewAnimal() object populated with data

32 Chapter 5. API

pad_id() ⇒ integer [#]
pad_id() takes an Animal ID, pads it to fifteen digits, and prepgtite birthyear (or 1950 if the birth year is
unknown). The order of elements is: birthyear, animallDyrdwf zeros, zeros.
self Reference to the current Animal() object
Returns: A padded ID number that is supposed to be unique across animal

printme() [#]
printme() prints a summary of the data stored in the Animatb{ect.

self Reference to the current Animal() object

stringme() [#]
stringme() returns a summary of the data stored in the Arfjrodject as a string.

self Reference to the current Animal() object

trap() [# |
trap() checks for common errors in Animal() objects

self Reference to the current Animal() object

The NewPedigree Class

NewPedigree(kw) (class) [#
The NewPedigree class is the main data structure for PyBRrtal.

load() ⇒ None [#]
load() wraps several processes useful for loading and prepa pedigree for use in an analysis, including
reading the animals into a list of animal objects, formirggdiof sires and dams, checking for common errors,
setting ancestor flags, and renumbering the pedigree.
renum Flag to indicate whether or not the pedigree is to be renuether

alleles Flag to indicate whether or not pymetrics/effectivefounder_ genomes() should be called for a single
round to assign alleles.

Returns: None

preprocess() ⇒ None [#]
preprocess() processes a pedigree file, which includeggetite animals into a list of animal objects, forming
lists of sires and dams, and checking for common errors.
None
Returns: None

renumber() ⇒ None [#]
renumber() updates the ID map after a pedigree has been bemedso that all references are to renumbered
rather than original IDs.
None
Returns: None

save(filename=", outformat="0’, idformat="0’) ⇒ int eger [#]

save() writes a PyPedal pedigree to a user-specified file.s@had pedigree includes all fields recognized by
PyPedal, not just the original fields read from the input gesk file.

5.7. pyp—_newclasses 33

filename The file to which the pedigree should be written.

outformat The formatin which the pedigree should be written: "o’ foigimal (as read) and 'I' for long version
(all available variables).

idformat Write 'o’ (original) or r’ (renumbered) animal, sire, anéuh IDs.
Returns: A save status indicator (O: failed, 1: success)

updateidmap() ⇒ None [#]

updateidmap() updates the ID map after a pedigree has be@mbered so that all references are to renumbered
rather than original IDs.

None
Returns: None

The PedigreeMetadata Class

PedigreeMetadata(myped, kw) (class) [#

The PedigreeMetadata() class stores metadata about @esligiopefully this will help improve performance
in some procedures, as well as provide some useful summtay da

__init __(myped, kw) ⇒ object [#]
__init__() initializes a PedigreeMetadata object.
self Reference to the current Pedigree() object
myped A PyPedal pedigree.
kw A dictionary of options.
Returns: An instance of a Pedigree() object populated with data

fileme() [#]
fileme() writes the metada stored in the Pedigree() objedisin

self Reference to the current Pedigree() object
nud() ⇒ integer-and-list[#]
nud() returns the number of unique dams in the pedigree aldthca list of the dams

self Reference to the current Pedigree() object
Returns: The number of unique dams in the pedigree and a list of thass da
nuf() ⇒ integer-and-list [#]
nuf() returns the number of unique founders in the pedigi@sgawith a list of the founders
self Reference to the current Pedigree() object
Returns: The number of unique founders in the pedigree and a list ;feiounders
nug() ⇒ integer-and-list [# |
nug() returns the number of unique generations in the pediglong with a list of the generations
self Reference to the current Pedigree() object
Returns: The number of unique generations in the pedigree and a Ithiosk generations
nus() ⇒ integer-and-list [#]
nus() returns the number of unique sires in the pedigreeyaiath a list of the sires

34 Chapter 5. API

self Reference to the current Pedigree() object
Returns: The number of unique sires in the pedigree and a list of thiose s

nuy() ⇒ integer-and-list [#]
nuy() returns the number of unique birthyears in the pedigteng with a list of the birthyears

self Reference to the current Pedigree() object
Returns: The number of unique birthyears in the pedigree and a lidiadgd birthyears

printme() [#]
printme() prints a summary of the metadata stored in thegPeelf) object.

self Reference to the current Pedigree() object

stringme() [#]
stringme() returns a summary of the metadata stored in ttigee as a string.

self Reference to the current Pedigree() object

5.8 pyp_nrm

pyp_nrm contains several procedures for computing numeraetioaship matrices and for performing operations on
those matrices. It also contains routines for computingd@ddarge pedigrees using the recursive method of VanRaden
(1992).

Module Contents

a_decompose(myped, filetag="a_decompose’) ⇒ matrices [#]
Form the decomposed form of A, TDT’, directly from a pedigfaéier Henderson, 1976; Thompson, 1977,
Mrode, 1996). Return D, a diagonal matrix, and T, a lowegtiar matrix such that A= TDT".
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
Returns: A diagonal matrix, D, and a lower triangular matrix, T.

a_inverse_df(myped, filetag="_a_inverse_df ") ⇒ matrix [#]
Directly form the inverse of A from the pedigree file - accaufdr inbreeding - using the method of Quaas
(1976).
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
Returns: The inverse of the NRM, A, accounting for inbreeding.

a_inverse_dnf(myped, filetag="_a_inverse_dnf_’") ⇒ matrix [#]
Form the inverse of A directly using the method of Henderd&®Y6) which does not account for inbreeding.

myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
Returns: The inverse of the NRM, A, not accounting for inbreeding.

5.8. pyp_nrm 35

a_matrix(myped, filetag="_a_matrix _', save=0) ⇒ array [#]
a_matrix() is used to form a numerator relationship matrixnirea pedigree. DEPRECATED. use
fast_a_matrix() instead.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
save Flag to indicate whether or not the relationship matrix igten to a file.
Returns: The NRM as a numarray matrix.

fast_a_matrix(myped, filetag="_new_a_matrix _', save=0, debug=0) ⇒ matrix [#]
Form a numerator relationship matrix from a pedigree. _fasmatrix() is a hacked version of_matrix()
modified to try and improve performance. Lists of animalesand dam IDs are formed and accessed rather
than myped as it is much faster to access a member of a simptatler than an attribute of an object in a list.
Further note that only the diagonal and uppef off diagona afe populated. This is done to save n(n+1) / 2
matix writes. For a 1000-element array, this saves 500,5063v
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
save Flag to indicate whether or not the relationship matrix igten to a file.

Returns: The NRM as Numarray matrix.

fast_a_matrix _r(myped, filetag="_a_matrix _r _’, save=0) ⇒ matrix [#]
Form a relationship matrix from a pedigree. famtmatrix_r() differs from fast.a_matrix() in that the coeffi-
cients of relationship are corrected for the inbreedindhefgarents.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
save Flag to indicate whether or not the relationship matrix igten to a file.
Returns: A relationship as Numarray matrix.

form _d_nof(myped) ⇒ matrix [#]
Form the diagonal matrix, D, used in decomposing A and fognire direct inverse of A. This function does
not write output to a file - if you need D in a file, use thed@compose() function. fornd() is a convenience
function used by other functions. Note that inbreeding iscomsidered in the formation of D.
myped A PyPedal pedigree object.
Returns: A diagonal matrix, D.

inbreeding(myped, filetag="inbreeding’, method="tabula’) ⇒ dictionary [#]
inbreeding() is a proxy function used to dispatch pedigtedhe appropriate function for computing Col. By
default, small pedigrees 10,000 animals) are processed with the tabular methodtlyir€or larger pedigrees,
or if requested, the recursive method of VanRaden (1992&d8 u
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
method Keyword indicating which method of computing Col should Ised (tabular—vanraden).
Returns: A dictionary of Col keyed to renumbered animal IDs.

inbreeding_tabular(myped, filetag="_inbreeding_") ⇒ dictionary [#]

inbreeding tabular() computes Col using the tabular method by callasy & matrix() to form the NRM di-
rectly. In order for this routine to return successfullyuegs that you are able to allocate a matrix of floats of
dimension len(myped)**2.

36 Chapter 5. API

myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
Returns: A dictionary of Col keyed to renumbered animal IDs

inbreeding_vanraden(myped, filetag=__inbreeding_’, debug=0, cleanmaps=1) ⇒ dictionary [#]
inbreeding vanraden() uses VanRaden’s (1992) method for computinfficieats of inbreeding in a large
pedigree. The method works as follows: 1. Take a large pedignd order it from youngest animal to oldest
(n, n-1, ..., 1); 2. Recurse through the pedigree to find athefancestors of that animal n; 3. Reorder and
renumber that “subpedigree”; 4. Compute coefficients oféelling for that “subpedigree” using the tabular
method (Emik and Terrill, 1949); 5. Put the coefficients dfrieeding in a dictionary; 6. Repeat 2 - 5 for
animals n-1 through 1; the process is slowest for the eadjgpees and fastest for the later pedigrees.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.

debug A flag passed to pymrm/renumber() which indicates whether or not progressnteghould be printed
to stdout.

cleanmaps Flag to denote whether or not subpedigree ID maps shouldIbtedster they are used (0—1)
Returns: A dictionary of Col keyed to renumbered animal IDs

recurse_pedigree(myped, anid,_ped) ⇒ list [#]
recursepedigree() performs the recursion needed to build the sligpees used by inbreedinganraden(). For
the animal with animallD anid recurspedigree() will recurse through the pedigree myped and efédlences
to the relatives of anid to the temporary pedigreged.
myped A PyPedal pedigree.
anid The ID of the animal whose relatives are being located.
_ped A temporary PyPedal pedigree that stores references tivesdaf anid.
Returns: A list of references to the relatives of anid contained in sgp

recurse_pedigree_idonly(myped, anid, _ped) ⇒ list [#]
recurse pedigreeidonly() performs the recursion needed to build subpeeigire

myped A PyPedal pedigree.

anid The ID of the animal whose relatives are being located.

_ped A PyPedal list that stores the animallDs of relatives of anid
Returns: A list of animallDs of the relatives of anid contained in mype

recurse_pedigree_n(myped, anid, _ped, depth=3) ⇒ list [#]
recursepedigreen() recurses to build a pedigree of depth n. A depth less thatutns the animal whose
relatives were to be identified.
myped A PyPedal pedigree.
anid The ID of the animal whose relatives are being located.
_ped A temporary PyPedal pedigree that stores references tivesdaf anid.
depth The depth of the pedigree to return.
Returns: A list of references to the relatives of anid contained in BYyp

recurse_pedigree_onesided(myped, anid,_ped, side) ⇒ list [#]
recursepedigreeonsided() recurses to build a subpedigree from either teeosidam side of a pedigree.

myped A PyPedal pedigree.

5.8. pyp_nrm 37

side The side to build: 's’ for sire and 'd’ for dam.

anid The ID of the animal whose relatives are being located.

_ped A temporary PyPedal pedigree that stores references tivesdaf anid.
Returns: A list of references to the relatives of anid contained in Byp

5.9 pyp_utils

pyp_utils contains a set of procedures for creating and opeyatinPyPedal pedigrees. This includes routines for
reordering and renumbering pedigrees, as well as for miogjfyedigrees.

Module Contents

assign_offspring(myped, debug=0) [#]
assign offspring() assigns offspring to their parent(s)’'s unkmasex offspring list (well, dictionary).

myped A renumbered and reordered PyPedal pedigree object.
debug Flag to indicate whether or not progress messages are mtdtistdout.

assign_sexes(myped, debug=0) [#
assign sexes() assigns a sex to every animal in the pedigree usengrsi daughter lists for improved accuracy.

myped A renumbered and reordered PyPedal pedigree object.
debug Flag to indicate whether or not progress messages are mitdtistdout.

delete_id _map(filetag="_renumbered_") ⇒ integer [#]
delete_id_map() checks to see if an ID map for the given filetag existihdffile exists, it is deleted.

filetag A descriptor prepended to output file names that is used eym@ie name of the file to delete.
Returns: A flag indicating whether or not the file was successfully thelg0—1)

fast_reorder(myped, filetag="_new_reordered_’, io="no’, debug=0) ⇒ list [#]
fast_reorder() renumbers a pedigree such that parents preceideffispring in the pedigree. In order to min-
imize overhead as much as is reasonably possible, a listiofahhDs that have already been seen is kept.
Whenever a parent that is not in the seen list is encounttreaffspring of that parent is moved to the end of
the pedigree. This should ensure that the pedigree is gyaggmated such that all parents precede their offspring.
myped is reordered in place. faseorder() uses dictionaries to renumber the pedigree lmaspdddedIDs.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
io Indicates whether or not to write the reordered pedigreefile &es—no).
debug Flag to indicate whether or not debugging messages arewtitSTDOUT.
Returns: A reordered PyPedal pedigree.

id _map_new_to_old(id _map, new_id) ⇒ integer [#]
id_map_new_to_old() takes an ID from a renumbered pedigree and an ID mapyetmdns the original ID
number.
id_map A dictionary mapping renumbered animallDs to original aalifDs.
new_id A renumbered animallD.
Returns: A dictionary whose keys are renumbered IDs and whose vaheesrginal IDs.

38 Chapter 5. API

load_id_map(filetag="_renumbered_") ⇒ dictionary [#]
load_id_map() reads an ID map from the file generated by_pytjts/renumber() into a dictionary. There is a
VERY similar function, pyp.io/id_map_from_file(), that is deprecated because it is much more fragilettiis
procedure.
filetag A descriptor prepended to output file names that is used grm@te the input file name.
Returns: A dictionary whose keys are renumbered IDs and whose vaheesriginal IDs.
load_pedigree(inputfile, filetag="_load_pedigree_’, sepchar=";", debug=0, io="no’, renum=1, outformat="0’, name="Pedigree M
]

load_pedigree() wraps several processes useful for loading egpghpng a pedigree for use in an analysis,
including reading the animals into a list of animal objefasming lists of sires and dams, checking for common
errors, setting ancestor flags, and renumbering the pedigre

inputfile Name of the file from which the pedigree is to be read.

filetag A descriptor prepended to output file names.

sepchar Indicates which character is used to separate entries ipetligree file (default is CSV).

debug Flag to indicate whether or not progress messages are mdtistdout.

io Indicates whether or not to write an ancestor list to a file..

renum Flag to indicate whether or not the pedigree is to be renuether

outformat Flag to indicate whether or not to write an asd pedigree (@)foil pedigree (1).

name The name of the pedigree (descriptive).

alleles Flag to indicate whether or not pymetrics/effectivefounder genomes() should be called for a single
round to assign alleles.

progress Flag to indicate whether or not to print progress messagesTfoOUT when loading very large
pedigrees.

Returns: A list of Animal() objects; a pedigree metadata object.

new_preprocess(**kw) ⇒ list [#]
new_preprocess() processes a pedigree file, which includesnge#ite animals into a list of animal objects,
forming lists of sires and dams, and checking for commornrsrro
inputfile Name of the file from which the pedigree is to be read.
sepchar What character separates entries in the pedigree file (tefaSV).
debug Flag to indicate whether or not progress messages are mtdtistdout.
Returns: A list of Animal() objects; this is what PyPedal calls a pedig

pedigree_range(myped, n) ⇒ list [#]
pedigreerange() takes a renumbered pedigree and removes all indigidvith a renumbered ID- n. The
reduced pedigree is returned. Assumes that the input pesligisorted on animal key in ascending order.
myped A PyPedal pedigree object.
n A renumbered animallD.
Returns: A pedigree containing only animals born in the given birtye

preprocess(inputfile, sepchar=";, debug=0, progress=@rArr; list [#]

preprocess() processes a pedigree file, which includesgttk animals into a list of animal objects, forming
lists of sires and dams, and checking for common errors.

inputfile Name of the file from which the pedigree is to be read.

5.9. pyp-_utils 39

sepchar Indicates which character is used to separate entries ipettiigree file (defaultis CSV).
debug Flag to indicate whether or not progress messages are mtdtistdout.

progress Flag to indicate whether or not to print progress messagesTfoOUT when loading very large
pedigrees.

Returns: A list of Animal() objects; this is what PyPedal calls a pedig

pyp_nice_time() ⇒ string [#]
pyp_nice_time() returns the current date and time formatted as, \/gd, Mar 30 10:26:31 2005.

Returns: A string containg the formatted date and time.

renumber(myped, filetag="_renumbered_’, io="no’, outformat="0’, debug=0) ⇒ list [#]
renumber() takes a pedigree as input and renumbers it satth#holdest animal in the pedigree has an ID of
"1’ and the n-th animal has an ID of 'n’. If the pedigree is notlered from oldest to youngest such that all
offspring precede their offspring, the pedigree will berdmyed. The renumbered pedigree is written to disc in
'asd’ format and a map file that associates sequential IDsaviginal IDs is also written.
myped A PyPedal pedigree object.
filetag A descriptor prepended to output file names.
io Indicates whether or not to write the renumbered pedigredfile (yes—no).
outformat Flag to indicate whether or not ro write an asd pedigree (@) foil pedigree (1).
debug Flag to indicate whether or not progress messages are mitttgtdout.
Returns: A reordered PyPedal pedigree.

reorder(myped, filetag="_reordered_’, io="no’) ⇒ list [#]

reorder() renumbers a pedigree such that parents preceidetispring in the pedigree. In order to minimize
overhead as much as is reasonably possible, a list of anidsdhit have already been seen is kept. Whenever a
parent that is not in the seen list is encountered, the dffgmf that parent is moved to the end of the pedigree.
This should ensure that the pedigree is properly sorted thathall parents precede their offspring. myped is
reordered in place. reorder() is VERY slow, but | am prettsedhat it works correctly.

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

io Indicates whether or not to write the reordered pedigredile yes—no).

Returns: A reordered PyPedal pedigree.

reverse_string(mystring) ⇒ string [#]
reversestring() reverses the input string and returns the reversesion.
mystring A non-empty Python string.
Returns: The input string with the order of its characters reversed.

set_age(myped) [#]

set_age() Computes ages for all animals in a pedigree based agidhal BASE_DEMOGRAPHIC_YEAR
defined in pypdemog.py. If the by is unknown, the inferred generation isdudf the inferred generation is
unknown, the age is set to -999.

myped A PyPedal pedigree object.

set_ancestor_flag(myped, filetag="_ancestor_’, io="no’, debug=0) ⇒ integer [#]

set_ancestorflag() loops through a pedigree to build a dictionary of altleé parents in the pedigree. It then
sets the ancestor flags for the parents. It assumes that thgree is reordered and renumbered. NOTE:
set_ancestorflag() expects a reordered and renumbered pedigree as input!

40 Chapter 5. API

myped A PyPedal pedigree object.

filetag A descriptor prepended to output file names.

io Indicates whether or not to write an ancestor list to a file.
Returns: O for failure and 1 for success.

set_generation(myped) [#]

set_generation() Works through a pedigree to infer the germrati which an animal belongs based on founders
belonging to generation 1. The igen assigned to an animdleakatger of sire.igen+1 and dam.igen+1. This
routine assumes that myped is reordered and renumbered.

myped A PyPedal pedigree object.

set_species(myped, species="U’) [#
set_species() assigns a specie to every animal in the pedigree.

myped A PyPedal pedigree object.
species A PyPedal string.

simple_histogram_dictionary(mydict, histchar="*", histstep=5) ⇒ dic tionary [#]

simple_histogram.dictionary() returns a dictionary containing a simple tteistogram. The input dictionary is
assumed to contain keys which are distinct levels and vahagsre counts.

mydict A non-empty Python dictionary.
histchar The character used to draw the histogram (default is ™*’).

histstep Used to determine the number of bins (stars) in the diagram.
Returns: A dictionary containing the histogram by level.

sort_dict_by_keys(mydict) ⇒ dictionary [#]

sort_dict_by_keys() returns a dictionary where the values in the dictipivathe order obtained by sorting the
keys. Taken from the routine sortedDictValues3 in the “Bytookbook”, p. 39.

mydict A non-empty Python dictionary.
Returns: The input dictionary with keys sorted in ascending order.
trim _pedigree_to_year(myped, year) ⇒ list [#]
trim_pedigreeto_year() takes pedigrees and removes all individuals who wetéorn in birthyear 'year'.
myped A PyPedal pedigree object.
year A birthyear.
Returns: A pedigree containing only animals born in the given birdaye

5.9. pyp-utils 41

42

CHAPTER
SIX

Glossary

This chapter provides a glossary of terins.
coefficient of inbreeding ...
coefficient of relationship ...
effective ancestor number...
effective founder number ...
effective population size...
founder ...
numerator relationship matrix ...

pedigree A PyPedal pedigree consists of a Python list containingimsts of PyPedal Animal objects.

1please let me know of any additions to this list which you feelild be helpful.

43

