
EMC: Monte Carlo Simulations
A General Simulation Package

EMC version 9.4.4, 1 August, 2023

Pieter J. in ’t Veld

This manual is for EMC (version 9.4.4, 1 August, 2023), a simulation package that can build
and simulate both atomistic and coarse-grained systems using Monte Carlo techniques.

Copyright c© 2007-2023 Pieter J. in ’t Veld.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being "A GNU Manual," and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
"GNU Free Documentation License."

(a) The FSF’s Back-Cover Text is: "You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development."

i

Table of Contents

1 Introduction . 1
1.1 General Introduction . 1
1.2 Distribution Content . 1

2 Methodology . 3
2.1 Lists . 3
2.2 Force Fields . 3

3 Program Structure . 6
3.1 Molecular Representation . 6

3.1.1 Sites . 6
3.1.2 Groups . 6
3.1.3 Clusters . 6

3.2 Molecular Interactions . 7
3.2.1 Types . 7
3.2.2 Forces . 7

3.3 Systems . 7
3.4 Configurational Moves . 7
3.5 Measurements . 7

4 Simulation Setup . 8
4.1 General . 8
4.2 Setup Usage . 9
4.3 Extensions . 10
4.4 Enviroment Options . 12
4.5 Chemistry Options . 15
4.6 File Formats . 35

4.6.1 Environment File . 35
4.6.2 Chemistry File . 38

4.6.2.1 General . 38
4.6.2.2 Shorthand . 40
4.6.2.3 Groups . 40
4.6.2.4 Clusters . 41
4.6.2.5 Polymers . 45
4.6.2.6 DPD Additions . 46

4.6.3 Field File . 48
4.6.3.1 General . 48
4.6.3.2 Define . 49

4.6.4 References File . 52
4.6.5 Parameters File . 53

4.7 Examples . 54
4.7.1 References . 54

ii

4.7.2 Chemistry Mode . 54
4.7.2.1 Bulk Mixture . 55
4.7.2.2 Force Fields . 58
4.7.2.3 Record . 59
4.7.2.4 Polymers . 61
4.7.2.5 Multiphase Systems . 64
4.7.2.6 Surfaces . 66

4.7.3 Environment Mode . 68
4.7.3.1 User-Defined Force Fields . 69
4.7.3.2 Shear . 72

4.8 Help Output . 77

5 Scripting Commands . 85
5.1 Build . 86

5.1.1 Syntax . 86
5.1.2 Usage . 88
5.1.3 Default . 88
5.1.4 Examples . 88

5.2 Cancel . 90
5.2.1 Syntax . 90
5.2.2 Usage . 90
5.2.3 Default . 90

5.3 Carve . 91
5.3.1 Syntax . 91
5.3.2 Usage . 91
5.3.3 Default . 91
5.3.4 Examples . 92

5.4 Clusters . 93
5.4.1 Syntax . 93
5.4.2 Usage . 94
5.4.3 Default . 94
5.4.4 Examples . 94

5.5 Crystal . 97
5.5.1 Syntax . 97
5.5.2 Usage . 97
5.5.3 Default . 97
5.5.4 Examples . 97

5.6 Cut . 99
5.6.1 Syntax . 99
5.6.2 Usage . 99
5.6.3 Default . 99
5.6.4 Examples . 99

5.7 Deform . 100
5.7.1 Syntax . 100
5.7.2 Usage . 100
5.7.3 Default . 100
5.7.4 Examples . 100

5.8 Delete . 101

iii

5.8.1 Syntax . 101
5.8.2 Usage . 101
5.8.3 Default . 101

5.9 Duplicate . 102
5.9.1 Syntax . 102
5.9.2 Usage . 102

5.10 Export . 103
5.10.1 Syntax . 103
5.10.2 Usage . 103
5.10.3 Default . 103
5.10.4 Examples . 103
5.10.5 Data Interpretation . 103

5.11 Field . 106
5.11.1 Syntax . 106
5.11.2 Usage . 107
5.11.3 Formats . 107
5.11.4 Default . 110

5.12 Flag . 111
5.12.1 Syntax . 111
5.12.2 Usage . 111
5.12.3 Default . 112

5.13 Focus (Command) . 113
5.13.1 Syntax . 113
5.13.2 Usage . 113
5.13.3 Default . 113

5.14 Force . 114
5.14.1 Syntax . 114
5.14.2 Usage . 114
5.14.3 Default . 114

5.15 Former . 115
5.15.1 Syntax . 115
5.15.2 Usage . 115
5.15.3 Default . 115

5.16 Get . 116
5.16.1 Syntax . 116
5.16.2 Usage . 116
5.16.3 Default . 116

5.17 Groups . 117
5.17.1 Syntax . 117
5.17.2 Usage . 118
5.17.3 Default . 118
5.17.4 Examples . 119

5.18 Insight . 121
5.18.1 Syntax . 121
5.18.2 Usage . 122
5.18.3 Default . 122
5.18.4 References . 122

5.19 Lammps . 123

iv

5.19.1 Syntax . 123
5.19.2 Usage . 124
5.19.3 Default . 124
5.19.4 Examples . 124
5.19.5 References . 125

5.20 Memory . 126
5.20.1 Syntax . 126
5.20.2 Usage . 126
5.20.3 Default . 126
5.20.4 Examples . 126

5.21 Moves . 127
5.21.1 Syntax . 127
5.21.2 Usage . 127
5.21.3 Default . 127

5.22 PDB . 128
5.22.1 Syntax . 128
5.22.2 Usage . 130
5.22.3 Default . 130
5.22.4 References . 130

5.23 Put . 131
5.23.1 Syntax . 131
5.23.2 Usage . 131
5.23.3 Default . 131

5.24 Rename . 132
5.24.1 Syntax . 132
5.24.2 Usage . 132
5.24.3 Default . 132
5.24.4 Examples . 132

5.25 Remove . 133
5.25.1 Syntax . 133
5.25.2 Usage . 133
5.25.3 Default . 133
5.25.4 Examples . 133

5.26 Reset . 135
5.26.1 Syntax . 135
5.26.2 Usage . 135
5.26.3 Default . 135

5.27 Restart . 136
5.27.1 Syntax . 136
5.27.2 Usage . 136
5.27.3 Default . 136

5.28 Retype . 137
5.28.1 Syntax . 137
5.28.2 Usage . 138
5.28.3 Default . 138
5.28.4 Examples . 138

5.29 Run . 139
5.29.1 Syntax . 139

v

5.29.2 Usage . 139
5.29.3 Default . 139

5.30 Sample . 140
5.30.1 Syntax . 140
5.30.2 Usage . 140
5.30.3 Default . 140
5.30.4 References . 140

5.31 Shell . 141
5.31.1 Syntax . 141
5.31.2 Usage . 141
5.31.3 Default . 141

5.32 Sites . 142
5.32.1 Syntax . 142
5.32.2 Usage . 142
5.32.3 Default . 142
5.32.4 Examples . 142

5.33 Simulation . 143
5.33.1 Syntax . 143
5.33.2 Usage . 143
5.33.3 Examples . 143

5.34 Split . 145
5.34.1 Syntax . 145
5.34.2 Usage . 145
5.34.3 Default . 145

5.35 Terminate . 146
5.35.1 Syntax . 146
5.35.2 Usage . 146
5.35.3 Default . 146

5.36 Timing . 147
5.36.1 Syntax . 147
5.36.2 Usage . 147
5.36.3 Default . 147

5.37 Traject . 148
5.37.1 Syntax . 148
5.37.2 Usage . 148
5.37.3 Default . 148
5.37.4 Examples . 149

5.38 Translate . 150
5.38.1 Syntax . 150
5.38.2 Usage . 150
5.38.3 Default . 150
5.38.4 Examples . 150

5.39 Types . 151
5.39.1 Syntax . 151
5.39.2 Usage . 152
5.39.3 Default . 152

5.40 Variables . 153
5.40.1 Syntax . 153

vi

5.40.2 Usage . 153
5.40.3 Examples . 153

5.41 XYZ . 154
5.41.1 Syntax . 154
5.41.2 Usage . 154
5.41.3 Default . 155
5.41.4 References . 155

6 Sampling Tools . 156
6.1 Bond . 157

6.1.1 Syntax . 157
6.1.2 Usage . 157
6.1.3 Default . 157
6.1.4 Example . 158

6.2 Cavity . 160
6.2.1 Syntax . 160
6.2.2 Usage . 161
6.2.3 Default . 161
6.2.4 Example . 162
6.2.5 References . 164

6.3 Gr . 165
6.3.1 Syntax . 165
6.3.2 Usage . 165
6.3.3 Default . 165
6.3.4 Pair Correlation Functions . 166
6.3.5 Definition . 166
6.3.6 Relations Involving g(r) . 167

6.3.6.1 Structure Factor . 167
6.3.6.2 Compressibility Equation . 168
6.3.6.3 Potential of Mean Force . 168
6.3.6.4 Energy Equation . 169
6.3.6.5 Pressure Equation of State . 169
6.3.6.6 Thermodynamic Properties . 169

6.3.7 References . 169
6.4 Gyration . 170

6.4.1 Syntax . 170
6.4.2 Usage . 170
6.4.3 Default . 170
6.4.4 Theory . 171
6.4.5 References . 171

6.5 Interaction . 172
6.5.1 Syntax . 172
6.5.2 Usage . 173
6.5.3 Default . 173

6.6 Profiles . 175
6.7 Examples . 176

vii

7 Variable Descriptions . 177
7.1 Constants . 179

7.1.1 Syntax . 179
7.1.2 Usage . 179
7.1.3 Default . 179

7.2 System Flags . 180
7.2.1 Syntax . 180
7.2.2 Default . 180

7.3 Focus . 181
7.3.1 Syntax . 181
7.3.2 Usage . 181
7.3.3 Default . 181

7.4 Moves . 182
7.4.1 Syntax . 182
7.4.2 Usage . 182
7.4.3 Default . 182
7.4.4 References . 183
7.4.5 Deform Move . 184

7.4.5.1 Syntax . 184
7.4.5.2 Usage . 184
7.4.5.3 Default . 184

7.4.6 Displace . 185
7.4.6.1 Syntax . 185
7.4.6.2 Usage . 185
7.4.6.3 Default . 185

7.4.7 Endbridge . 186
7.4.7.1 Syntax . 186
7.4.7.2 Usage . 186
7.4.7.3 Default . 186

7.4.8 Migrate . 188
7.4.8.1 Syntax . 188
7.4.8.2 Usage . 188
7.4.8.3 Default . 188

7.4.9 Rebridge . 189
7.4.9.1 Syntax . 189
7.4.9.2 Usage . 189
7.4.9.3 Default . 189

7.4.10 Reptate . 190
7.4.10.1 Syntax . 190
7.4.10.2 Usage . 190
7.4.10.3 Default . 190

7.4.11 Rotate . 191
7.4.11.1 Syntax . 191
7.4.11.2 Usage . 191
7.4.11.3 Default . 191

7.4.12 Surface . 192
7.4.12.1 Syntax . 192
7.4.12.2 Usage . 192

viii

7.4.12.3 Default . 192
7.4.13 Temper . 193

7.4.13.1 Syntax . 193
7.4.13.2 Usage . 193
7.4.13.3 Default . 193

7.5 Port . 194
7.5.1 Syntax . 194
7.5.2 Default . 194

7.6 Profiles . 195
7.6.1 Syntax . 195
7.6.2 Usage . 195
7.6.3 Default . 195

7.7 Region . 196
7.7.1 Syntax . 196
7.7.2 Usage . 196
7.7.3 Default . 196

7.8 SMILES . 197
7.8.1 Syntax . 197
7.8.2 Usage . 197
7.8.3 Examples . 198

7.9 Splines . 199
7.9.1 Introduction1 . 199
7.9.2 Linear Spline . 199
7.9.3 Cubic Spline . 199
7.9.4 References . 200

7.10 System Flags . 201
7.10.1 Syntax . 201
7.10.2 Default . 201

7.11 Systems . 202
7.11.1 Syntax . 202
7.11.2 Usage . 202
7.11.3 Default . 203

7.12 Types . 204
7.12.1 Syntax . 204
7.12.2 Usage . 206
7.12.3 Default . 206
7.12.4 Boltzmann . 207

7.12.4.1 Syntax . 207
7.12.4.2 Example . 207
7.12.4.3 References . 208
7.12.4.4 Pair . 209
7.12.4.5 Bond . 210
7.12.4.6 Angle . 211

7.12.5 Born . 212
7.12.5.1 Syntax . 212
7.12.5.2 Example . 212
7.12.5.3 References . 213
7.12.5.4 Pair . 214

ix

7.12.5.5 Bond . 216
7.12.5.6 Angle . 217
7.12.5.7 Torsion . 218
7.12.5.8 Improper . 219

7.12.6 CFF . 220
7.12.6.1 Syntax . 220
7.12.6.2 Examples . 221
7.12.6.3 References . 222
7.12.6.4 Pair . 223
7.12.6.5 Bond . 225
7.12.6.6 Angle . 226
7.12.6.7 Bond-Bond . 227
7.12.6.8 Bond-Angle . 228
7.12.6.9 Torsion . 229
7.12.6.10 End-Bond-Torsion . 230
7.12.6.11 Middle-Bond-Torsion . 231
7.12.6.12 Bond-Bond-13 . 232
7.12.6.13 Angle-Torsion . 233
7.12.6.14 Angle-Angle-Torsion . 234
7.12.6.15 Improper . 235

7.12.7 CHARMM . 236
7.12.7.1 Syntax . 236
7.12.7.2 Examples . 236
7.12.7.3 References . 237
7.12.7.4 Pair . 239
7.12.7.5 Bond . 241
7.12.7.6 Angle . 242
7.12.7.7 Urey . 243
7.12.7.8 Torsion . 244
7.12.7.9 Pair14 . 245
7.12.7.10 Improper . 246

7.12.8 Coarse . 247
7.12.8.1 Syntax . 247
7.12.8.2 Examples . 247
7.12.8.3 References . 248
7.12.8.4 LJ . 249
7.12.8.5 Repulsive . 251
7.12.8.6 Sphere . 253
7.12.8.7 Colloid . 255
7.12.8.8 DPD . 257
7.12.8.9 Charge . 259
7.12.8.10 FENE . 261
7.12.8.11 Angle . 262

7.12.9 Colloid . 263
7.12.9.1 Syntax . 263
7.12.9.2 Example . 263
7.12.9.3 References . 264
7.12.9.4 Pair . 265

x

7.12.9.5 Charge . 267
7.12.9.6 Bond . 269
7.12.9.7 Angle . 270

7.12.10 Coulomb . 271
7.12.10.1 Syntax . 271
7.12.10.2 Examples . 271
7.12.10.3 References . 272
7.12.10.4 Pair . 273
7.12.10.5 Charge . 274

7.12.11 DPD . 275
7.12.11.1 Syntax . 275
7.12.11.2 Example . 275
7.12.11.3 References . 276
7.12.11.4 Pair . 277
7.12.11.5 Bond . 279
7.12.11.6 Angle . 280
7.12.11.7 Torsion . 281
7.12.11.8 Improper . 283

7.12.12 Gauss . 284
7.12.12.1 Syntax . 284
7.12.12.2 Example . 284
7.12.12.3 References . 285
7.12.12.4 Pair . 286
7.12.12.5 Bond . 288
7.12.12.6 Angle . 289
7.12.12.7 Torsion . 290
7.12.12.8 Improper . 292

7.12.13 GROMACS . 293
7.12.13.1 Syntax . 293
7.12.13.2 Example . 293
7.12.13.3 References . 294
7.12.13.4 Pair . 295
7.12.13.5 Bond . 297
7.12.13.6 Angle . 298
7.12.13.7 Torsion . 299
7.12.13.8 Pair14 . 300
7.12.13.9 Improper . 301

7.12.14 MARTINI . 302
7.12.14.1 Syntax . 302
7.12.14.2 Example . 302
7.12.14.3 References . 303
7.12.14.4 Pair . 304
7.12.14.5 Bond . 306
7.12.14.6 Angle . 307
7.12.14.7 Torsion . 308
7.12.14.8 Improper . 309

7.12.15 Mie . 310
7.12.15.1 Syntax . 310

xi

7.12.15.2 Example . 310
7.12.15.3 References . 311
7.12.15.4 Pair . 312
7.12.15.5 Bond . 314
7.12.15.6 Angle . 315
7.12.15.7 Torsion . 316
7.12.15.8 Improper . 318

7.12.16 OPLS . 319
7.12.16.1 Syntax . 319
7.12.16.2 Example . 319
7.12.16.3 References . 320
7.12.16.4 Pair . 321
7.12.16.5 Bond . 323
7.12.16.6 Angle . 324
7.12.16.7 Torsion . 325
7.12.16.8 Pair14 . 326
7.12.16.9 Improper . 327

7.12.17 SDK . 328
7.12.17.1 Syntax . 328
7.12.17.2 Example . 328
7.12.17.3 References . 329
7.12.17.4 Pair . 330
7.12.17.5 Bond . 332
7.12.17.6 Angle . 333
7.12.17.7 Torsion . 334
7.12.17.8 Pair14 . 335
7.12.17.9 Improper . 336

7.12.18 Spline . 337
7.12.18.1 Syntax . 337
7.12.18.2 Bond . 337
7.12.18.3 Angle . 338
7.12.18.4 Torsion . 338
7.12.18.5 Pair . 339
7.12.18.6 Example . 340
7.12.18.7 References . 340

7.12.19 Standard . 341
7.12.19.1 Syntax . 341
7.12.19.2 Example . 341
7.12.19.3 References . 342
7.12.19.4 Pair . 343
7.12.19.5 Bond . 345
7.12.19.6 Angle . 346
7.12.19.7 Torsion . 347
7.12.19.8 Improper . 349

7.12.20 Table . 350
7.12.20.1 Syntax . 350
7.12.20.2 Table Syntax . 350
7.12.20.3 Example . 351

xii

7.12.20.4 Pair . 352
7.12.20.5 Bond . 353
7.12.20.6 Angle . 354
7.12.20.7 Torsion . 355

7.12.21 TraPPE . 356
7.12.21.1 Syntax . 356
7.12.21.2 Example . 356
7.12.21.3 References . 357
7.12.21.4 Pair . 358
7.12.21.5 Bond . 360
7.12.21.6 Angle . 361
7.12.21.7 Torsion . 362
7.12.21.8 Improper . 363

7.13 Units . 364
7.13.1 Syntax . 364
7.13.2 Usage . 364
7.13.3 Default . 365

7.14 Vector . 366
7.14.1 Syntax . 366
7.14.2 Usage . 366
7.14.3 Default . 366

7.15 Voigt . 367
7.15.1 Syntax . 367
7.15.2 Usage . 367
7.15.3 Default . 367

Index . 368

1

1 Introduction

1.1 General Introduction

Monte Carlo simulation techniques are wide spread through branches of scientific research
and financial industry. It finds its application in statistical sampling of complex functional
descriptions, giving numerical solutions to theoretically unsolvable equations. Typically
codes using Monte Carlo techniques are written with a specific purpose in mind. These
approaches include scientific implementations where versatility and not expandability is the
main design goal. The latter finds an example in Towhee, a code which offers a wide array
of force fields and sampling techniques, but encounters challenges when the need arises for
implementation of new techniques. The code presented here does not try to offer the same
breath, but rather follows a strategy of expandability. Strict modular design isolates key
features in separate objects, yet a general parser allows for easy integration of these objects
in a coherent design, thus allowing for a more flexible and expandable design. The purpose
of this paper is to present a design philosophy for simulation engines in general, while
applying this philosophy to the field of scientific Monte Carlo simulations. This is achieved
by the identification of key features, such as input/output features, force field calculation,
and configurational alterations, features which are highlighted in later sections.

Each simulation code hinges around computational efficiency. Gain in speed can be
obtained by an increase in processor speed, but more importantly, by judicious design
of the program framework. This requires the identification of key factors of importance.
Specifically, computational efficiency for this type of simulations is hampered by its serial
nature: atoms or sites are moved one after another and not in a parallel fashion as is the
case with Molecular Dynamics. Efficiency of energy calculations becomes the major concern
when designing Monte Carlo codes for scientific applications. These applications hinge
around the concept of an acceptance rule, in which typically is formed by a combination of
system temperature with the difference in energy as the result of a change in configuration.
This configuration change or move normally entails the displacement of one or a few sites.
The serial nature of these moves necessitates the calculation of configurational energy both
before and after the move. Optimization of energy calculations therefore plays an integral
role in improving computational efficiency, for which this paper offers suggestions.

Alternatively, the speed with which a scientific field is allowed to advance rests on the
foundations on which new developments can be build. Normally, code optimization results
in an increase in code complexity, which in turn creates barriers for non-professional pro-
grammers to implement alterations necessary to test new scientific ideas. Strict separation
of modules, yet flexible integration of concepts, creates a library-type of environment in
which non-professional programmers – with the help of simple development tools – can use
already existing modules as templates for their new ideas, thus creating a canvas on which
only the minimal necessary changes need to be made.

1.2 Distribution Content

This distribution consist of a set of hierarchical directories, each of which represents a
part of the code or documentation. The main directories are ./core, ./emc, ./examples,
./scripts, ./modules, ./lib, and ./texinfo. A general make file ./Makefile governs

Chapter 1: Introduction 2

compilation of separate pieces of this distribution. A ‘make’ in the root directory displays all
compilation options. General routines are grouped under ./core, which has the following
structure

./core

|

+-----+----+-------+------+------+-----+-----+----+------+-----+

| | | | | | | | | | |

forces moves port profiles script types force group list stencil xref

|

+------+-------+-------+-------+------+

| | | | | |

charmm coarse coulomb inverse spline standard

Each subdirectory represents a substructure of main structures. Any module or object
files placed in any of the directories are automatically compiled into each executable, pro-
vided that they conform to a required format associated with the substructure. Definition
of macros based on file headers facilitates automatic compilation. This particular feature
aids programming by example, which means an already existing module can be used as a
template, rather than having to completely write a new model. A copy script to facilitate
this process is provided by ./scripts/cpmod.pl.

Currently, the main program, which includes a scripting front-end, is located in ./emc.
This directory also contains example building and running scripts in ./examples. Upon
compilation through execution of ‘make emc’ generates a new directory ./emc/objects,
which contains all .o files. Examples in ./examples make use of predefined crystal struc-
tures in ./lib.

All documentation is organized in ./texinfo. This PDF document is generated by a
‘make pdf’ in this directory.

3

2 Methodology

2.1 Lists

The presented code employs a combination of cell lists and verlet lists, where a separate
object represents each list. Spatial discretization forms the cell list basis and is determined
by either the largest or the smallest force field cut off, combined with a user supplied skin.
The choice of cut off depends on invoking a conventional cell list, in which case the largest
cut off is selected, or a multi-neighbor cell list, in which case the smallest cut off is chosen
(Intveld2008). Both lists store their members in a linked list, which is accomplished by
the application of a stencil or template. This template describes which cells neighbor the
central cell. A distance criterion – based on the cut off and skin – then decides which sites
are eventually added to a verlet list. Besides an integer vector to neighboring cells, a multi-
neighbor template also contains the minimum distance between the cells containing the each
site contributing to the pair interaction, which enables a primary selection of sites based
on their cut off and therefore negating the initial need of a distance calculation. Inclusion
in a verlet list only then requires a distance calculation when the neighboring particle
falls within the stored minimum distance. Application of the multi-neighbor principle is
optional, although initial tests do not indicate a significant drop in performance compared
conventional cell list implementations.

Verlet lists describe which neighboring sites fall within a certain distance criterion of
a site of interest. These lists are described by linked lists. Cross-linking between verlet
lists has been added to allow for easy removal of a site when performing a Monte Carlo
move. Practically, this means that each verlet list member of one site knows which verlet
list member of another site it is connected to, thus creating members that contain pointers
to child and parent in one particle’s list and a pointer to a member of another particle’s
list. Additionally, the squared distance between the two sites has been added to negate the
need for distance calculations during non-bonded force field evaluation.

Typically, the application of verlet lists in Molecular Dynamics makes use of the principle
of a skin, which is a distance added to the force field cut off, and serves the purpose of
reducing the number of verlet list rebuilds. However, an increase in distance calculations,
as a result of inclusion of more sites in the verlet list, forms the downside of skin application.
Hence, a balance needs to be found between performance gain as a result from less verlet
list builds and performance loss as a result of an increase in distance calculations. Typical
numbers used for the skin are 0.3σ in Lennard-Jones (LJ) units or 1 Å in atomistic units.
An added advantage of the usage of skins is that the decision to rebuild a verlet list can be
coupled to the distance with which a site has moved from when the verlet list was built last
for that site. A safe criterion is to rebuild the list when the site has moved by more than
half the skin. Application of this criterion enables a dynamic update of verlet lists based on
particle positions only and not by an external constraint such as a preset number of passed
time steps or cycles, as is commonly used in packages such as LAMMPS (Plimpton1995).

2.2 Force Fields

Implemented force fields include standard representations of the OPLS force field as de-
scribed by Jorgensen et al. (Jorgensen), the CHARMM force field as described by MacKerell

Chapter 2: Methodology 4

et al. (MacKerell1998), and a Class 2 force field representation used by PCFF or COM-
PASS force fields as described by Sun (Sun1998). A separate module describes coulombic
interaction and allows for the use of either a cut off or Ewald summations to account for the
long-range character (Frenkel). Coarse-grained force fields are provided by a colloidal force
field as described by Everaers and Etjehadi (Everaers2003), which includes additional cross-
terms for interaction between Lennard-Jones and colloidal particles (Grest2007, Veld2008),
and the FENE bond potential as described by Kremer and Grest (Kremer). Pressures
are calculation through standard virial expressions, which were derived when needed. All
interactions can be compounded without significant effects on performance.

Generalization of virial calculations requires a solution to the gradient of a potential
with respect to the cartesian coordinate system, which entails splitting partial derivatives
into a product of linear parts and cartesian parts. For a nonbonded potential dependent on
radius r this results in

∂U(r)

∂~x
=
∂U(r)

∂r

∂r

∂~x
=
∂U(r)

∂r

~x

r
,

where ~x represents the constituent vector of a cartesian axis frame. Consequently, the virial
tensor Wr resulting from this expression becomes

Wr(rij) = −
∂U(r)

∂r
rijΔ~rijΔ~rij.

where rij denotes the distance between site i and site j and Δ~rijΔ~rij denotes a vector
product resulting in a tensor. Bonded potentials potentials depend on bond length lij,
angle θijk, torsion φijkl, and improper ψijkl, which are defined as

Δ~rij =
~rj −~ri
|~rj −~ri|

~nijk =
Δ~rjk ×Δ~rij
|Δ~rkj ×Δ~rji|

,

rij = lij = |~rj −~ri|,

θijk = Δ~rij ·Δ~rjk,

φijkl = ~nijk · ~njkl,

ψijkl = ~nijk · ~nijl.

Note that j represents the center site of impropers. The bond virial tensorWl for potentials
depending on lij is described by

Wl(lij) = −
∂U(lij)

∂lij
lijΔ~rijΔ~rij.

The angular virial tensor Wθ for potentials depending on θijk is described by

Wθ(θijk) = −
∂U(θijk)

∂θijk

1

sin(θijk)
[Δ~rij (Δ~rjk + cos(θijk)Δ~rij) + Δ~rjk (Δ~rij + cos(θijk)Δ~rjk)] .

Chapter 2: Methodology 5

Note that vector product Δ~rijΔ~rjk is noncommunicative, i.e. Δ~rijΔ~rjk 6= Δ~rjkΔ~rij. The
torsional virial tensor Wφ for potentials depending on φijkl is described by

Wφ(φijkl) = −
∂U(φijkl)

∂φijkl

1

sin(φijkl)
[

(cos(φijkl)Δ~rjk × ~nijk +Δ~rjk × ~njkl)Δ~rij
+(cos(φijkl) (Δ~rkl × ~njkl −Δ~rij × ~nijk) + Δ~rkl × ~nijk −Δ~rij × ~njkl)Δ~rjk

− (cos(φijkl)Δ~rjk × ~njkl +Δ~rjk × ~nijk)Δ~rkl] .

The improper virial tensor Wψ for potentials depending on ψijkl is described by

Wψ(ψijkl) = −
∂U(ψijkl)

∂ψijkl

1

sin(ψijkl)
[

(cos(ψijkl)Δ~rjk × ~nijk +Δ~rjk × ~nijl)Δ~rij
+ · · ·

+(cos(ψijkl)Δ~rjk × ~nijl +Δ~rjk × ~nijk)Δ~rkl] .

6

3 Program Structure

This particular Monte Carlo simulation code is modular in approach. While it uses C
as its programming language foundation, it incorporates distinct object oriented features.
Communication by all modules to the outside, it being storage or inter-node communica-
tion, happens through a generalized parsing module, which can be used for both textual
and binary output. Binary output can be either to memory or file. Variables are stored
in a tree structure of pointers with cross-links between branches when so required. The
textual input/output file bears an identical but simplified structure compared to the tree
structure in memory: communication only conveys essential information and cross-links are
implied. The structure ’simulation’ presents the top structure, consisting of pointers to the
structures ’io’, ’identity’, ’clocks’, ’output’, ’units’, ’channels’, ’types’, ’systems’, ’moves’,
’statistics’, ’forces’, ’profiles’, ’clusters’, ’groups’, and ’sites’. These structures are grouped
in the following categories:

− Molecular representation by ’clusters’, ’groups’, and ’sites’

− Molecular interaction by ’types’ and ’forces’

− Simulation parameter definition by ’systems’

− Configuration changes by ’moves’

− Measurements by ’statistics’ and ’profiles’

− Communication by ’io’, ’output’, and ’units’, and ’channels’

− Simulation timing by ’clocks’

− Simulator identification by ’identity’

3.1 Molecular Representation

A need for generality motivates the chosen terminology of ’clusters’, ’groups’, and ’sites’.
Clusters can represent molecules and generally define closed networks of connected sites.
Groups are of the order of repeat unit or protein residue and generally define subsets of
molecules, creating the possibility of group operators when applying configuration changes.
Sites can resemble atoms, but could also represent a more coarse-grained model of a group
of atoms lumped into one site. Sites are the backbone of all interactions. This section
describes the hierarchy from the bottom up, starting with ’sites’, followed by ’groups’ and
’clusters’.

3.1.1 Sites

Description of sites.

3.1.2 Groups

Description of groups.

3.1.3 Clusters

Description of clusters.

Chapter 3: Program Structure 7

3.2 Molecular Interactions

3.2.1 Types

Description of types.

3.2.2 Forces

Description of forces.

3.3 Systems

Description of systems.

3.4 Configurational Moves

Description of moves.

3.5 Measurements

Description of distributions.

8

4 Simulation Setup

4.1 General

EMC provides a setup script emc_setup.pl, which allows for creation of EMC build and
LAMMPS input scripts. The EMC setup script serves as a wrapper around EMC itself,
creating a context for abstraction of EMC scripting commands. In its simplest appearance,
setup scripts only contain a few lines describing simulated chemistry and their quantities,
where subsequent options are defined through the command line. More complex scripts
contain several paragraphs for describing simulation conditions and chemistry. This mode
will be referred to as the chemistry mode (see Section 4.6.2 [Chemistry File], page 38). The
most complex mode creates an environment in which several simulations are defined in one
script, allowing for looping over multiple simulation conditions. This mode will be referred
to as the environment mode (see Section 4.6.1 [Environment File], page 35). EMC environ-
ment setup scripts function as a wrapper around chemistry scripts. An environment setup
script can hold multiple chemistry scripts. Paragraphs use keyword ITEM as demarcation,
where identifiers follow this keyword at the beginning of each paragraphs. Their ending is
marked by ITEM END.

Normal parametrization uses force fields as provided by EMC (see Section 5.11 [Field],
page 106) for typing. These force fields can be found in ${EMC_ROOT}/field/. Optional
references.csv and parameters.csv files can be provided for DPD force fields. The latter
is called from the chemistry file. Alternatively, a more general way in provided by using the
field paragraph (ITEM FIELD) in an environment script. Both produce a force field file with
extension .prm. Force fields are governed over types definitions (see Section 7.12 [Types],
page 204). The EMC setup script can create multiphase initial configuration, but does
not adress the grafting capabilities of the EMC build capabilities. The EMC setup script
displays all available options when called without arguments. It is, in general, called by

emc_setup.pl [-option[=#]] project [phase 1 clusters [+ ...]]

It can also, however, be used as an interpreter, where EMC setup scripts can function
as executables when using EMC in a UNIX-type environment. An interpreter allows for
including all settings and options into an EMC script, thus folding the description of one
simulation or a set of simulations into one comprehensive script.

Chapter 4: Simulation Setup 9

4.2 Setup Usage

Examples can be found in ${EMC_ROOT}/examples/setup/. Creating EMC and LAMMPS
input with these examples occurs in steps. The first step is to convert the example setup
script by means of emc_setup.pl through

emc_setup.pl example.esh

which either creates an input script for EMC, called build.emc by default, and an input
script for LAMMPS, called example.in by default, or sets up an execution environment by
creating subdirectories build, run, analysis, and chemistry. The first three directories
contain bash scripts with the purpose of respectively building input structures, running
molecular dynamics simulations, and analysis of end results. The chemistry directory can
contain force fields, variation in chemistry, polymer make up, etc. Default names can be
altered when desired (see 〈undefined〉 [Enviroment Options], page 〈undefined〉).
The second step involves a call of EMC itself, by for instance for LINUX,

emc_linux build.emc 2>&1 | tee build.out

The latter part of the command allows for writing output to screen and build.out simul-
taneously. Five extra files appear upon completion of this command, i.e. example.pdb,
example.psf, and example.vmd for visualization with VMD, and example.data and
example.params for use with LAMMPS. Visualization supports checking the validity of
the final structure. The call to VMD, when in the user’s path, is facilitated by,

vmd -e example.vmd

The example.vmd file represents a small Tcl script, which contains information about par-
ticle diameters (as defined by the chosen force field) and the type of VMD presentation
to use for visualization. A molecular dynamics simulation with LAMMPS occurs with for
example

lmp_linux <example.in 2>&1 | tee example.out

The example.in LAMMPS script contains all the necessary information for executing
the run. Please note, that the presented examples in the ${EMC_ROOT}/examples/setup/

directory are primarily meant as building examples. Strategies for managing
sets of simulations are provided by the environment mode of emc_setup.pl (see
Section 4.6.1 [Environment File], page 35), for which an example can be found in
${EMC_ROOT}/examples/setup/shear/.

Chapter 4: Simulation Setup 10

4.3 Extensions

A comprehensive mode for EMC Setup is when using environment scripts, which creates a
modeling environment consisting of build, run, and analysis scripts, complemented with a
hierarchical structure for dealing with produced imulation data. The simpler EMC chem-
istry script creates a subset of the more comprehensive environment script, but is useful for
prototyping simulations. Extensions an explanations for scripts and data files produced by
both modes following from EMC Setup, EMC, LAMMPS or postprocessing analysis can be
found in the following table,

Extension Description
.data EMC output containing LAMMPS data file defining coordinates, types, and

topology

.csv Postprocessed data derived from EMC or LAMMPS output resulting from
execution of EMC analysis scripts; normally used for further processing by
user generated scripts (using e.g. Python, Perl, Matlab, or Mathematica)

.density Density profile produced by LAMMPS

.density3d 3D density profile produced by LAMMPS

.emc EMC script as interpreted by EMC itself when produced by emc_setup;
used to create input structures by means of energetic considerations; EMC
produces a comprehensive EMC format with the same extension as output
containing all topological and morphological information

.energy Time-averaged energetic information produced by LAMMPS

.esh EMC Setup script as interpreted by wrapper emc_setup.pl; can be either
a chemistry or an environment script

.in LAMMPS input script according to specifications as made in a EMC chem-
istry file

.params EMC output following from a successful build; input needed by LAMMPS,
containing all paramaters defining a full simulation

.pdb PDB format containing initial coordinates

.pressure Time-averaged pressure information produced by LAMMPS

.prm EMC parameter file as produced by either EMC chemistry or environment
script; used by EMC to set force field energetics

Chapter 4: Simulation Setup 11

.psf PSF format containing types and (initial) topology

.vmd VMD Tcl script used to read in both .pdb and .psf, additionally defining
bead sizes following from the used force field

.volume Time-averaged volume information produced by LAMMPS

Chapter 4: Simulation Setup 12

4.4 Enviroment Options

Option Default Description

analyze_archive true Toggle archiving of file names associated with ana-
lyzed data; file name lists can be used directly or at
a later date for transferring data between computa-
tional clusters and local machines.

analyze_data true Toggle creation of tar archive from exchange
file list; this data is used in combination with
./scripts/run host.sh -exchange to transfer data
from computational clusters to local machines;
archives should not be created when analysis scripts
subsequently submit analysis to queue.

analyze_last false Toggle inclusion of the last trajectory frame during
analysis (deprecated); analysis is transfered to the
analysis paragraph (see Section 4.6.1 [Environment
File], page 35).

analyze_replace true Toggle replacement of already exisiting analysis re-
sults.

analyze_skip 0 Set the number of initial frames to skip during anal-
ysis.

analyze_source - Specify alternate data source directory for analysis
scripts.

analyze_user - Set directory for user analysis scripts, which can
be accessed through an analysis paragraph (see
Section 4.6.1 [Environment File], page 35).

analyze_window 1 Set the number of frames over which to apply a win-
dow averaging during analysis.

modules - Manipulate runtime modules; format is defined by
[command]=module separated by commas.

name_analyze Set the name of job analysis scripts; analysis scripts
are stored in ./analyze/; takes the base name of the
chemistry script when omitted; ignored when "-" is
chosen as name.

Chapter 4: Simulation Setup 13

name_build Set the name of job build scripts; build scripts are
stored in ./build/; takes the base name of the chem-
istry script when omitted; ignored when "-" is chosen
as name.

name_run Set the name of job run scripts; run scripts are stored
in ./run/; takes the base name of the chemistry
script when omitted; ignored when "-" is chosen as
name.

name_scripts - Simultaneously set analysis, build and run script
names.

name_testdir - Set the name of a test directory in which to test
the chemistry paragraph in an environment script; a
setup script is created in ./test/; ignored as default.

nchains - Set the number of chains to be used for executing
LAMMPS jobs; allows for having the next job wait
on the previous (currently only with LSF).

ncores - Set the number of cores for execution of LAMMPS
jobs.

ncorespernode default Set number of cores per node for execution of packed
jobs; equivalent to queue_ppn.

preprocess false Apply C preprocessing to allow for programmatic
flow when interpreting templates; C preprocessing
start at the beginning of a line and are preceeded
by a #-mark; allowed options are define, if, elif,
else, and endif.

project - Set the project name; derived from setup script name
when not given.

queue account=none,

analyze=default,

build=default,

memory=default,

ncores=-,

ppn=default,

run=default,

user=none

Directly set queueing system settings, where option
account sets billing account, analyze sets the anal-
ysis queue, build sets the build queue, memory sets
the amount of memory needed, ncores sets the num-
ber of cores for running, ppn sets the number of pro-
cessors per node, run sets the run queue, and user

sets user options; the latter is dependent on the in-
stalled queueing system.

Chapter 4: Simulation Setup 14

queue_account none Set queue account for billing.

queue_analyze default Set the queue used in analysis scripts; option
default indicates the use of queue, which is set as
system default; option local will sequentially exe-
cute all jobs on local machine.

queue_build default Set the queue used in build scripts; option default

indicates the use of queue, which is set as system
default; option local will sequentially execute all
jobs on local machine.

queue_memory default Set memory per core in gb for executed jobs.

queue_ncores -1 Set the number of cores for execution of MD jobs.

queue_ppn default Set cores per node for executed jobs.

queue_run default Set the queue used in run scripts; option default

indicates the use of queue, which is set as system
default; option local will sequentially execute all
jobs on local machine.

queue_user none Options to be passed directly to queuing system; al-
lowed option are dependent on the installed queueing
system.

quiet - Supress all output generated by this setup script.

replace false Replace or overwrite all written script files.

time_analyze 00:30:00 Set the desired wall time for analysis scripts.

time_build 00:10:00 Set the desired wall time for build scripts.

time_run 24:00:00 Set the desired wall time for run scripts.

workdir - Set the work directory, which is used as a base for
creating the EMC work environment.

Chapter 4: Simulation Setup 15

4.5 Chemistry Options

Option Default Description

angle 5,180 This option can be used to set angle constants in
three ways: 1. set DPD angle constants (k, theta0),
2. provide additional angle table entries through
type1, type2, type3, k, theta0, 3. set force field
handling for angle typing; valid options are ignore,
complete, warn, empty, and error.

auto false Include wildcard mass entry in generated DPD .prm
force field file; options are true or false.

binsize 0.01 Set the general bin size to be used in LAMMPS pro-
files; note, that profiles are recorded in reduced units,
i.e. coordinates run from 0 to 1.

bond 25,1 Set DPD bond constants (k, l0); can also be used
to provide additional bond table entries through
-bond=type1,type2,k,l0.

build build Set build script name.

build_center false Place first site at the origin (see also option build_

origin); options are true or false.

build_dir ../build Set location of build directory for LAMMPS script.

build_order false Build clusters in the order as defined by option
phases; options are random or sequence.

build_origin x=0, y=0, z=0 Set alternate origin at which to place te first site.

build_replace false Toggle replacement of already existing build scripts
and results, which will skip build execution when a
LAMMPS data file exists.

build_theta false Set the minimal insertion angle

charge true Indicator for occurence of charges in
chemistry.csv.

charge_cut 9.5 Set pairwise charge interaction cut off.

Chapter 4: Simulation Setup 16

chunk true Depricated; use chunk approach for computing pro-
files and samples in LAMMPS script; options are
true or false.

communicate false Depricated; use communicate keyword instead of
comm modify in LAMMPS input script; used with
DPD simulations for backwards compatibility with
older versions of LAMMPS; options are true or
false.

core -1 Set particle core diameter; used with Born poten-
tials.

cross false Include nonbond cross terms in LAMMPS params
file; default depends on chosen force field; options
are true or false.

crystal false Let EMC derive a crystal structure based on the
offered import; options are true or false.

cut 9.5 Set pairwise interaction cutoff; options are either
definite positive numbers or repulsive; the latter
transfers the the parameters for a purely repulsive
cut and shift potential to LAMMPS

cutoff center=-1,

charge=9.5,

ghost=-1,

inner=-1,

outer=-1,

pair=9.5,

repulsive=0,

rmax=-1

Set various cutoffs; options are either definite posi-
tive numbers; negative numbers refer to internal de-
faults; the different cutoffs can also be set with single
options charge cut, ghost cut, inner cut, outer cut,
cut, and rmax.

debug - Turn debugging information on; options are true or
false.

deform nblocks=1,

ncycles=100,

type=relative,

xx=1, yy=1,

zz=1, zy=0,

zx=0, yx=0

Invoke affine deformation using Monte Carlo relax-
ation when ncycles is larger than zero; defomation
type can either be absolute or relative.

Chapter 4: Simulation Setup 17

delete phase=1,

fraction=1.0,

thickness=1,

type=relative,

mode=include,

sites=all,

groups=all,

clusters=all

Defines the selection criteria for deleting clusters at
the edges of the box; phase sets the phase to which
to apply deletion; fraction currently is not used;
thickness sets the thickness of the region taken into
consideration; type sets the units of the thickness
(valid options are absolute and relative); mode is
currently not used; sites sets the sites to include
in the selection (valid options are all for all avail-
able sites or a selected list of site types separated by
colons); groups sets the groups to include in the se-
lection (valid options are all for all available groups
or a selected list of group ids separated by colons);
clusters sets the clusters to include in the selection
(valid options are all for all available clusters build
in the set phase or a selected list of cluster ids sepa-
rated by colons); only full clusters are deleted, even
when only one site of these clusters complies with
the set selection.

density 1[,...] Set simulation density; density of separate phases
can be entered through separating values for each
phase by commas; units and default depend on cho-
sen force field type.

depth auto Set the depth with which rings - as defined in groups
- are recursively assigned; options are either auto or
values larger than 2.

dielectric 0.2 or 1 Set dielectric constant of medium; default depends
on chosen force field.

direction x Set direction in which phases in setup scripts with
multiple phases are build; valid options are x, y, or
z.

dtdump 100000 Depricated; frequency with which LAMMPS adds to
trajectory files.

dtrestart 100000 Depricated; frequency with which LAMMPS writes
restart files.

dtthermo 1000 Depricated; frequency with which LAMMPS gener-
ates thermodynamical output.

Chapter 4: Simulation Setup 18

emc true Create EMC build script (.emc file); options are true
or false.

emc_depth 8 Set ring recognition depth in groups paragraph; this
option sets the maximum occuring ring size; valid
input consists of a positive integer.

emc_exclude build=false Exclude specified sections from the resulting EMC
script; excluding build omits morphology genera-
tion, which can be desired when exporting SMILES.

emc_execute - Execute the EMC build script as created by the
setup script; options false or - do not execute; op-
tion true allows EMC setup decide which EMC ver-
sion to use, based on operating system, host option,
and path; any other option value is interpreted as
the location and name of the EMC version to use.

emc_export smiles=false Add export of specified format; smiles controls ex-
port of SMILES for all built clusters in both group-
based and site-based representations;option false

deselects export; other valid options are csv, json,
and math for comma separated values, JSON, and
Mathematica formats respectively.

emc_moves displace=1 Control frequency of selected Monte Carlo move for
positive values; zero or negative values unselect.

emc_output debug=false,

exit=true,

info=true,

warning=true

Control output as generated by EMC scripts; options
for each separate keyword are true or false.

emc_progress build=true,

clusters=false

Control progress indicators resulting from executing
EMC script; keyword build controls progress out-
put during build; keyword cluster controls progress
output during sequencing and cluster construction;
options for each separate keyword are true or false.

Chapter 4: Simulation Setup 19

emc_run nblocks=100,

ncycles=0,

nequil=0,

clusters=all,

groups=all,

sites=all

Execute a Monte Carlo simulation after building for
ncycles; optionally, an equilibration phase is se-
lected when nequil is larger than zero; nblocks se-
lects the frequency with which output is generated;
specific selections can be set when defining either
clusters, groups, or sites separately or in combi-
nation; all indicates that all members of a selection
are considered.

emc_test false Test the validity of an EMC environment script;
checks up to execution of EMC build files, as gen-
erated by EMC environment; options are true or
false.

emc_traject append=true,

frequency=0

Add generation of trajectory file during Monte Carlo
run when frequency is larger than zero.

environment false Interpret EMC shell script (.esh) as an environment
script; options are true and false.

ewald true Switch the electrostatics long-range treatment
through Ewald summations on or off; default de-
pends on the chosen force field; options are true

or false.

exclude true exclude previous phase during build process; op-
tions are wall, soft, true, or false; wall places a
wall between each created phase, avoiding separate
phases blending into neighboring phases; soft and
true allow for edges of phases to blend into neighbor-
ing phases; false does not invoke any restrictions.

expert false Invokes expert mode, which allows for overrides of
certain consistency checks (e.g. nrepeat for poly-
mers); options are true or false.

extension .esh Set the extension of environment scripts; extensions
are derived from given environment scripts, when
not defined.

field opls Set force field type and name based on root location;
more general access to EMC provided force fields
uses the type option below.

Chapter 4: Simulation Setup 20

field_angle - Set error handling for typing of angles; valid options
are complete, empty, error, ignore, and warn.

field_bond - Set error handling for typing of bonds; valid options
are complete, empty, error, ignore, and warn.

field_charge true Check system charge after applying force field; valid
options are true and false.

field_check true Check force field compatibility upon loading of mul-
tiple force fields (i.e. for CHARMM); valid options
are true and false.

field_debug false Set force field debugging options; valid options are
false, true, reduced, and full, whereby the latter
two correspond to reduced and full output respec-
tively.

field_dpd auto=false,

bond=false

Set options influencing the generation of a DPD force
field; possible options are auto and bond with values
of either true or false; auto controls the addition of
wildcard additions to mass and nonbonded force field
paragraphs; bond allows for verbatim transcription
of pair to bond interactions.

field_debug false Set debug option, showing individual typing steps;
valid options are full, reduced, and false; full
outputs verbose debugging information, reduced

generates an abridged selection, and false turns de-
bugging information off.

field_error true Exit upon error (set to false when debugging a force
field).

field_format %15.10e Sets the format of parameters in the produced field;
should be format as is standard for floating point
values when used in combination with printf().

field_group - Set field group option for applying force fields to
groups as defined by their TEMPLATE section.

field_id - Set force field id.

Chapter 4: Simulation Setup 21

field_improper - Set error handling for typing of impropers; valid
options are complete, empty, error, ignore, and
warn.

field_increment - Set error handling for typing of bond increments;
valid options are complete, empty, error, ignore,
and warn.

field_location - Provide force field location; intended for expert use;
use field_type for EMC provided force fields.

field_name - Provide force field name; intended for expert use=
use field_type for EMC provided force fields.

field_nbonded 0 Define the number of sites, that are bonded, but
should be excluded from nonbond interactions, e.g.
a value of 1 excludes 1-2 interactions, a value of 2
excludes 1-2 and 1-3 interactions, etc.; allowed values
are larger or equal than 0; this option only applies
to DPD force fields.

field_reduced false set force field reduced units flag; valid options are
true and false.

field_torsion - Set error handling for typing of torsions; valid op-
tions are complete, empty, error, ignore, and
warn.

field_type opls Provide force field type; invoking this option will au-
tomatically set field, field_location, and field_

name options.

field_write true Interpret and write the force field as defined in the
ITEM FIELD paragraph (see Section 4.6.3 [Field File],
page 48)

focus - List of clusters to focus on.

grace 0.9999, 0.9999,0 Depreciated command, use weight instead; user pro-
vided grace for building procedure; given in order of
nonbonded, bonded, and focussed interactions.

ghost_cut - Set molecular dynamics ghost region size for prop-
erty communication.

Chapter 4: Simulation Setup 22

help - Display script help; option module adds originating
modules to the help output.

host - Set host on which to run EMC and LAMMPS.

info - Turn on information during setup script execution.

inner - Set inner cutoff; use and default depend of chosen
force field; note that inner and outer cutoffs are
interpreted as fractions for colloidal force fields.

insight true Create InsightII CAR and MDF output files.

insight_

compress

true Control compression of produced CAR and MDF
files; options are true or false.

insight_pbc true Toggle application of periodic boundary conditions;
options are true or false.

insight_unwrap clusters Set CAR unwrapping mode; options are none,
clusters, or sites.

kappa 1 or 4 Set long range electrostatics Ewald summation
kappa; default depends on chosen force field; the pro-
vided number needs to be positive definite.

lammps true Create LAMMPS input script (.in file) or set lammps
version using year, e.g. -lammps=2014 (new versions
start at 2015) or keywords old or new; alters the
settings for -communicate and -chunk; default is
new.

lammps_chunk true Use chunk approach for computing profiles and sam-
ples in the input script; options are true or false.

lammps_

communicate

false Use communicate keyword instead of comm modify
in the input script; used with DPD simulations
for backwards compatibility with older versions of
LAMMPS; options are true or false.

lammps_cutoff false Toggle output of pairwise cut off in parameter file;
valid options are true or false.

lammps_dlimit 0.1 Set nve/limit distance used during equilibration.

Chapter 4: Simulation Setup 23

lammps_dtdump 100000 Frequency with which adds to trajectory files.

lammps_

dtrestart

100000 Frequency with which writes restart files.

lammps_dtthermo 1000 Frequency with which generates thermodynamical
output.

lammps_error false Only restart those simulations for which an error oc-
curred; valid options are true or false.

lammps_momentum 100,1,1,1, angular Control zeroing of linear and angular momentum
during execution; order of entries (separated by
commas only!), i.e. N,xflag,yflag,zflag,flag (see
LAMMPS manual); flag is omitted in the LAMMPS
input script when the keyword none is used.

lammps_nsample 1000 Number of configurations used for averaging during
execution of analysis routines.

lammps_pdamp 1000 Set the barostat damping constant for NPT simula-
tions.

lammps_prefix 1000 Set project name as prefix to output files.

lammps_tdamp 100 Set the thermostat damping constant for both NVT
and NPT simulations.

lammps_tequil 1000 Set the equilibration time

lammps_tfreq 10 Number of time steps skipped before adding a con-
figuration to an average as sampled in input scripts.

lammps_thermo_

multi

false set thermo style to multi; valid options are true and
false.

lammps_

triclinic

false Set triclinic mode; needed for simulation of triclinic
boxes; valid options are true and false.

lammps_trun 10000000 Set run time; setting trun to - avoids its addition to
job run scripts, thus not overriding different settings
in subsequent chemistry files.

Chapter 4: Simulation Setup 24

location analyze=.,
field=.,
include=.

Prepend path for locations of analysis scripts,
force field files, and include files; always included
are for 1) analyze: directories . and ${EMC_

ROOT}/scripts/analyze, 2) field: directories .

and ${EMC_ROOT}/field, and 3) include: direc-
tories . and ${WORKDIR}/chemistry/include when
existing; multiple path entries are separated with a
colon.

mass false Assume mass fractions in chemistry.csv input file.

md_restart false, .. Create restart scripts in chemistry file mode; this
option allows setting an alternative data directory
using in job run scripts, from which the most recent
restart file will be used as a starting point; job run
scripts will always try to restart – also when this
option is set to false – from the specified data di-
rectory, creating a new serial directory by adding 1
to the current highest serial; serial numbers start at
00 and currently have a maximum of 99.

md_shake - Either switch off use of shake for select force fields
or set masses, types, bonds, and/or angles for which
to apply the SHAKE algorithm to; allowed key-
words are active, mass, type, bond, angle; con-
tributing types are separated by a colon ’:’, e.g.
to freeze the angle of TraPPE water in LAMMPS
use bond=hw:ow, angle=hw:ow:hw; see ’fix shake’
in LAMMPS manual for shake interpretation; shake
additions are only added when setting active=true.

md_shake_

iterations

20 Set the maximum number of iterations used during
SHAKE.

md_shake_output never Set the output frequency with which SHAKE statis-
tics are written to the LAMMPS log file; options are
integer numbers larger than 0 and never, which is
equivalent to numbers smaller than 1.

md_shake_

tolerance

0.0001 Set the SHAKE tolerance, which defines a successful
SHAKE.

md_shear false Add shear paragraph to LAMMPS input script;
valid options are true and false.

Chapter 4: Simulation Setup 25

md_timestep - Set integration time step; default depends on force
field.

memorypercore default Set memory per core in gigabyte for executed jobs;
equivalent to queue_memory.

mol true Assume mol fractions in chemistry.csv input file.

momentum 100,1,1,1, angular Depricated; control zeroing of linear and angu-
lar momentum during LAMMPS execution; or-
der of entries (separated by commas only!), i.e.
N,xflag,yflag,zflag,flag (see LAMMPS) manual;
flag is omitted in the LAMMPS input script when
the keyword none is used.

moves_cluster active=false,

cut=0.05,

frequency=1,

limit=auto:auto,

max=0:0,

min=auto:auto

Define cluster move settings used to optimize builds;
multiple options are available, where option active

switches the move on or off, cut sets a percentage
of the maximum allowed displacement and rotation
at which to turn the move off, frequency sets the
frequency of the move, limit sets the maximum al-
lowed displacement (in force field units) and rotation
(in rad), max sets estimation for 50% acceptance of
displacement and rotation (0:0 will trigger internal
estimation), and min sets explicit rather than rela-
tive conditions to turn the move off.

msd false Add mean square displacement analysis to
LAMMPS output; options are true or false.

namd false Create NAMD input script and parameter file.

namd_dtcoulomb 1 Set electrostatic interaction update frequency.

namd_dtdcd 10000 Set frequency with which snapshots are written to a
DCD file.

namd_dtnonbond 1 Set nonbond interaction update frequency.

namd_dtrestart 100000 Set output frequency of restart files.

namd_dtthermo 1000 Set output frequency of thermodynamic quantities.

namd_dttiming 10000 Set timing frequency.

Chapter 4: Simulation Setup 26

namd_dtupdate 20 Set update frequency.

namd_pres_decay 50 Set pressure ensemble decay.

namd_pres_

period

100 Set pressure ensemble period.

namd_temp_damp 3 Set temperature ensemble damping.

namd_tminimize 50000 Set number of initial minimization steps.

namd_trun 10000000 Set total number of timesteps for execution run.

niterations 1000 Controls the number of iterations used for inserting
an atom during the build process.

norestart false Control the capability for using run scripts – as re-
sulting from environment scripts – for restarting;
options are true or false; the latter means, that
restarting with the same run script is possible.

nparallel auto Set the number of repeat units in the direction par-
allel to a surface defined in the chemistry file; values
larger than 1 override the auto setting.

nrelax 100 Alter the number of relaxation cycles used during
the EMC building process.

nsample 1000 Depricated; number of configurations used for av-
eraging during execution of LAMMPS analysis rou-
tines.

nthreads 1 set number of cores for per thread for MD jobs.

ntotal 10000 Total number of created sites or atoms.

number false Interpret column 3 of SHORTHAND or CLUSTERS as the
number of desired clusters; this number is an integer
(see Section 4.6.2 [Chemistry File], page 38).

omit false Omit fractions from chemistry file; options are true
or false.

outer - Set outer cutoff; note that inner and outer cutoffs
are interpreted as fractions for colloidal force fields.

Chapter 4: Simulation Setup 27

pair a=25, gamma=4.5,

r=1

Set DPD pair constants; only definite positive values
are allowed.

parameters parameters Alternative parameter file name; the extension .csv

is implied.

params true Create force field parameter file (.prm); currently
only for DPD; options are true or false.

pdamp 1000 Depricated; set the LAMMPS barostat damping
constant for NPT simulations.

pdb true Create PDB and PSF output files.

pdb_atom index Set atom name behavior in PDB and PSF output;
options are detect, index, and series.

pdb_compress true Control compression of produced PDB and PSF files;
options are true or false.

pdb_connect false Add connectivity to PDB; options are true or
false.

pdb_cut false Cut bonds in PSF output, which span the simulation
box; options are true or false.

pdb_extend false Use extended format in PSF output; options are
true or false.

pdb_fixed true exclude flagged fixed sites when unwrapping clusters;
options are true or false.

pdb_hexadecimal false Set hexadecimal output in PDB files; options are
true or false.

pdb_parameters false Toggle output of NAMD parameter file; options are
true or false.

pdb_pbc true Toggle application of periodic boundary conditions;
options are true or false.

pdb_rank false Apply rank evaluation for coarse-grained output; op-
tions are true or false.

Chapter 4: Simulation Setup 28

pdb_residue index Set residue name behavior in PDB and PSF output;
options are detect, index, and series.

pdb_rigid true exclude flagged rigid sites when unwrapping clusters;
options are true or false.

pdb_segment index Set segment name behavior in PDB and PSF output;
options are detect, index, and series.

pdb_unwrap clusters Set PDB unwrapping mode; options are none,
clusters, or sites.

pdb_vdw true Add Van der Waals representation to the VDW
script created by EMC; options are true and false.

percolate false Treat imported structures as percolating InsightII
structures; uses boundary crossing definitions as pro-
vided in the .mdf file; behavior of crystal option
might be preferred; options are true or false.

phases all Sets which clusters to assign to each phase; each
phase is separated by a +-sign; default assigns all
clusters to phase 1; build order is defined by option
build_order

polymer bias=none,

fraction=number,

niterations=-1,

order=list

Set group polymer distribution global defaults; bias
helps in limiting construction time by controlling ex-
clusion of unsuccessful subpolymers during polymer
construction; valid bias options are none for no bias,
binary for exclusion of subpolymers on a binary ba-
sis, and accumulative for exclusion on an accumu-
lative basis; valid fraction options are number for
using number of molecules and mass molecule mass
as distribution entries; valid order options are list
for sequentially and random of randomly interpreting
the provided polymer distribution; the niterations
keyword sets the maximum allowed number of iter-
ations used during polymer sequence determination

polymer_niters -1 Number of iterations for polymer construction.

port - Port EMC setup variables to other applications.

precision 0.001 Provide kspace long range Ewald summation preci-
sion.

Chapter 4: Simulation Setup 29

prefix false Depricated; set project name as prefix to LAMMPS
output files.

pressure false,

direction=

x+y+z, couple

Set the system pressure and invoke an NPT ensem-
ble; optionally specify barostat direction and/or di-
rectional coupling; valid directions are x, y, and z;
valid coupling options are couple, uncouple, true,
and false, where true corresponds to coupled di-
rections; definition of the coupling direction follows
the couple keyword through separation by a colon;
a + sign separates multiple directions, e.g. atomistic
1,couple=y+z sets a pressure of 1 atm in all direc-
tions with coupling in y and z directions; omission
of coupling directions assumes an isotropic barostat.

profile density=false,

density3d=false,

pressure=false

Generate density and/or pressure profiles of all clus-
ters while executing LAMMPS; options are density,
density3d, or pressure, followed by either true or
false, separated by a colon; true is assumed when
omitted; options are separated by a comma.

project - Set the project name; derived from setup script name
when not given.

quiet - Supress all output generated by this setup script.

radius 5 Alter the radius of the spherical volume in which
already built sites are relaxed; used during the EMC
building process.

record cut=false,

frequency=1,

inactive=true,

name="",

pbc=true,

unwrap=true

Defines the record entry in the build paragraph,
which records the build process by outputting a set
of PDBs and PSFs; valid options are cut for cut-
ting bonds in the last recorded frame, frequency

for setting the frequency with which the relaxation
process is written in each separate PDB, inactive
for whether to add inactive entries to PDBs (denoted
by positions (0,0,0)), name for the base name of the
written PDBs and PSFs, pbc for mapping clusters
back into the periodic box by their center of mass,
and unwrap to toggle unwrapping of clusters.

references references Provide an alternative name for the references file;
the extension .csv is implied.

Chapter 4: Simulation Setup 30

region_epsilon 0.1 Set epsilon for excluded regions when importing
structures; the given value is expected to be posi-
tive; other are ignored.

region_sigma 1 Set sigma for excluded regions when importing struc-
tures; the given value is expected to be positive;
other are ignored.

replace false Replace or overwrite all written script files.

restart false,.. Depricated: use md_restart; create LAMMPS
restart scripts in chemistry file mode; this option
allows setting an alternative data directory using in
job run scripts, from which the most recent restart
file will be used as a starting point; job run scripts
will always try to restart – also when this option
is set to false – from the specified data directory,
creating a new serial directory by adding 1 to the
current highest serial; serial numbers start at 00 and
currently have a maximum of 99.

rlength - Provide a reference length; used when selecting non-
dimensional force fields.

rmass - Provide a reference mass; used when selecting non-
dimensional force fields.

rmax -1 Set maximum build cutoff; only applicable to field

dpd and gauss, for which defaults are 1 and 1.5

respectively.

rtype - Provide a reference type; used when selecting non-
dimensional force fields.

Chapter 4: Simulation Setup 31

sample energy=false,

gyration=false,

msd=false,

pressure=true,

volume=false,

green-kubo=false

Set sampling sections in LAMMPS input script for
averaging of energy for itemized energetic contribu-
tions, gyration for radii of gyration distributions,
msd for mean square displacements, pressure for
the pressure tensor, volume for the volume tensor,
or green-kubo for Green-Kubo output concerning
correlations between the off-diagonal pressure ten-
sor contributions as used in viscosity calculations;
output files will have their respecitive identifier as
extension; options are either true or false, expect
for keyword msd which has average as additional
option for time averaged mean square displacement.

script chemistry Set script default file name.

script_ncolums 80 Set number of colums in output scripts.

seed -1 Provide initial random seed; a -1 seed will invoke
the use of the number of seconds since January 1,
1970 as an initial seed.

shake - Depricated: use md_shake; either switch off use of
shake for select force fields or set masses, types,
bonds, and/or angles for which to apply the SHAKE
algorithm to; allowed keywords are active, mass,
type, bond, angle; contributing types are separated
by a colon ’:’, e.g. to freeze the angle of TraPPE wa-
ter in LAMMPS use bond=hw:ow, angle=hw:ow:hw;
see ’fix shake’ in LAMMPS manual for shake inter-
pretation; shake additions are only added when set-
ting active=true..

shake_

iterations

20 Depricated: use md_shake_iterations; set the
maximum number of iterations used during SHAKE.

shake_output never Depricated: use md_shake_output; set the output
frequency with which SHAKE statistics are written
to the LAMMPS log file; options are integer num-
bers larger than 0 and never, which is equivalent to
numbers smaller than 1.

shake_tolerance 0.0001 Depricated: use md_shake_tolerance; set the
SHAKE tolerance, which defines a successful
SHAKE.

Chapter 4: Simulation Setup 32

shape 1 Provide the desired shape of the simulation box; the
shape factor refers to the relative fration of lx/ly.

skin - Depricated: use lammps_skin; set LAMMPS skin.

shear false Depricated: use md_shear; add shear paragraph to
LAMMPS input script; options are true or false.

split phase=1,

fraction=0.5,

thickness=1,

type=relative,

mode=random,

sites=all,

groups=all,

clusters=all

Defines the selection criteria for applying a fractional
split of clusters at the edges of the box; phase sets
the phase to which to apply the split; fraction spec-
ifies the fractional split; thickness sets the thickness
of the region taken into consideration; type sets the
units of the thickness (valid options are absolute

and relative); mode specifies the selections algo-
rithm (valid options are distance and random);
sites sets the sites to include in the selection (valid
options are all for all available sites or a selected list
of site types separated by colons); groups sets the
groups to include in the selection (valid options are
all for all available sites or a selected list of group
ids separated by colons); sites sets the sites to in-
clude in the selection (valid options are all for all
available clusters build in the set phase or a selected
list of cluster ids separated by colons).

suffix _$HOSTNAME Set EMC and LAMMPS suffix.

system charge=true,
geometry=true,
map=true,
pbc=true,
id=main

Perform various system checks or set system id;
charge checks if the total system charge equals to
zero; geometry checks if already exisiting clusters
span newly created volume upon adding of a new
phase; map allows for mapping box geometry to
its minimum image; pbc applies periodic boundary
conditions to existing molecules when changing box
shape; valid options are true and false; id sets the
id used for the targetted system.

system_charge true Check if the total system charge equals to zero; valid
options are true and false.

system_geometry true Checks if already exisiting clusters span newly cre-
ated volume upon adding of a new phase; valid op-
tions are true and false.

Chapter 4: Simulation Setup 33

system_id main Set the EMC system ID; a string is expected.

system_map true Map the active system box to its minimum shape;
valid options are true and false.

system_pbc true Apply periodic boundary conditions after building;
valid options are true and false.

temperature 300 or 1 Provide the simulation temperature; atomistic and
dimensionless force fields use 300 K and 1 respec-
tively as default.

tequil 1000 Depricated: use lammps_tequil; set the LAMMPS
equilibration time

tfreq 10 Depricated: use lammps_tfreq; number of time
steps skipped before adding a configuration to an
average as sampled in LAMMPS input scripts.

thermo_multi false Depricated: use lammps_thermo_multi; set
LAMMPS thermo style to multi.

tighten false Set margin for tightening the simulation box when
importing structures; options are false or a value to
represent the desired margin, e.g. 3 Angstroms for
atomistic systems; note, that tightening only occurs
in the chosen build direction (see direction option).

timestep Provides the LAMMPS MD time step.

timestep - Depricated: use md_timestep; set integration time
step.

trace false Provide function trace upon execution error;

triclinic false Depricated; set LAMMPS triclinic mode; needed for
simulation of triclinic boxes; valid options are true

and false.

trun 10000000 Depricated: use lammps_trun; set LAMMPS run
time; setting trun to - avoids its addition to job
run scripts, thus not overriding different settings in
subsequent chemistry files.

Chapter 4: Simulation Setup 34

types false Output types only.

units - Set type of units; valid options are reduced, real,
and si; alternatively, the outdated option lj can be
used instead of reduced.

units_energy - Set units for energetic scale.

units_length - Set units for length scale.

volume false Assume volume fractions in chemistry.csv file; op-
tions are true or false.

wall 10 Set the thickness of a temporary wall for imposing
walls between phases; valid options are true, false,
or a positive number; true switches wall exclusion on
without altering its value (see also option exclude).

warn true Control output of warning information; options are
true or false.

weight bond=0.0001,

focus=1,

nonbond=0.0001

User provided energetic weight for building proce-
dure controlling nonbonded, bonded, and focussed
interactions; the latter applies to imported struc-
tures.

width false Sets double width for generated output scripts; op-
tions are true for 160 characters or false for 80
characters.

Chapter 4: Simulation Setup 35

4.6 File Formats

All entries within files are pasted into the resulting EMC scripts and force field files. Use of
a chemistry file is mandatory. Use of references and parameters files is optional. All entries
are assumed to be comma separated unless otherwise stated. All ITEM identifiers can be
followed by an optional comment keyword, which can be set to either true or false.

ITEM COMMAND [comment=[true|false]]

The full ITEM paragraph will be ignored until the next ITEM END, when keyword comment is
set to true.

4.6.1 Environment File

The environment file functions as a wrap-around to chemistry files. It allows for setting
up multiple simulations within one file, including looping over variables, thus enabling
setting up series of simulations scanning parameter space. The environment format allows
for defining parameter scans and simulation definition in one succinct file, thus furthering
compact overviews. The keyword ITEM is required to preceede the identifiers listed in the
following table. The identifiers are listed in the preferred order in which the are to appear
in the environment script.

Identifier Description

ANALYSIS Controls the type of analysis performed during execution of analysis scripts
as generated in directory analyze; this paragraph allows to include pre-
defined or user-defined analysis scripts into a project’s analysis; sample
scripts can be found in ${EMC_ROOT}/scripts/analyze; current supported
types are cavity, density, energy, green-kubo, last, pressure, and
volume; option active controls inclusion of the analysis type; valid values
are true or false; options archive, dir, skip, and window are automati-
cally passed to the analysis script, bearing internal settings; these options
can be overridden, but is not advised; options and values are separated
by an equal sign (=); different options are separated by a comma, tab or
space; location of scripts is looked for in ${EMC_ROOT}/scripts/analyze/,
chemistry/analyze, or the path associated with the indicated script

CLUSTERS Sets general cluster definitions which replace the @{CLUSTERS} reference in
the chemistry template in the same STAGE and TRIAL section; CLUSTERS
contents is stored in chemistry/clusters/$stage/trial.dat

COMMENTS Sets the start of a comments section, which can only be terminated by a
matching END

END Marks the end of a paragraph

Chapter 4: Simulation Setup 36

ENVIRONMENT Sets optional variables related to the environment (formerly OPTIONS); en-
vironment options are defined previously (see 〈undefined〉 [Environment
Options], page 〈undefined〉)

FIELD Allows for a direct definition of force field parameters within the environ-
ment concept; the resulting .prm parameter file and .top topology file
are stored in chemistry/field/$stage/project.{prm|top} and should
be refered to by using this location (see Section 4.6.3 [Field File], page 48)

GROUPS Sets general group definitions which replace the @{GROUPS} reference in the
chemistry template in the same STAGE and TRIAL section; GROUPS contents
is stored in chemistry/groups/$stage/trial.dat

INCLUDE Specifies a files to be included containing a subset of commands; the file
name follows INCLUDE directly; INCLUDE is a single line item and is not
closed with an END

LOOPS Lists variables over which to loop; variables are expected to be lower case;
variables stage, trial and copy are reserved; variables can be paired or
coupled by adding :p behind the variable, which couples the current variable
to the previous; add :h in order to hide or exclude the variable from the
data directory structure; an :h automatically implies the variable is paired
with its predecessor; add :d to the predecessor when double occurences are
intended (useful in case of pairing); alternatively, permutations in variables
can be accomplished by adding :2 for pairs, :3 for triplets, and :4 for
quadruplets; focus on on component of the produced list can be obtained by
adding a second colon followed by a number, e.g. name:2:1 would create all
permutations for pairs which include element 1 for variable name; element
counting starts at 0; later reference to any and all variables recorded in
LOOPS are to be preceeded with @, enclosed within curly brackets {}, and
written in all-caps, e.g. @{NAME} refers to variable name; these references
can also be used in subsequent loop variables

PARAMETERS Allows for direct inclusion of DPD parameters; the resulting parame-
ter file is stored under chemistry/field/$stage/parameters.csv (see
Section 4.6.5 [Parameters File], page 53)

POLYMERS Sets general polymer definitions which replace the @{POLYMERS} reference
in the chemistry template in the same STAGE and TRIAL section; POLYMERS
contents is stored in chemistry/polymers/$stage/trial.dat

REFERENCES Allows for direct inclusion of DPD references; the resulting refer-
ence file is stored under chemistry/field/$stage/references.csv (see
Section 4.6.4 [References File], page 52)

Chapter 4: Simulation Setup 37

SHORTHAND Sets general shorthand definitions which replace the @{SHORTHAND} ref-
erence in the chemistry template in the same STAGE and TRIAL section;
CLUSTERS contents is stored in chemistry/shorthand/$stage/trial.dat

STRUCTURES Defines a list of structures, relating directly to trial loop entries; structures
are referred to by @{STRUCTURE}

STAGE Indicates the start of a section relating to loop variable stage; STAGE is
followed by a stage indicator, which should appear in the enumerated loop
variable stage; all following paragraphs relate to the indicated stage; STAGE
is a single line item and is not closed with an END; all identifiers following
STAGE refer to loop variable stage

TEMPLATE Defines a chemistry template; templates are stored in
chemistry/stages/stage.esh; templates are used to create
complete chemistry files upon execution of the associated run script;
references to loop variables start with @{} and are written in all caps;
references are treated as environment variables

TRIAL Indicates the start of a section relating to loop variable trial; TRIAL is a
single line item and is not closed with an END; all identifiers following TRIAL
refer to loop variable trial

VARIABLES Lists extra enviroment variables; environment variables are referred to with
an at symbol @ and are enclosed by curly brackets {}; reserved variables are
@{EMCROOT} for the root location of EMC and @{WORKDIR} for the directory
in which the collection of simulations takes place

WRITE Specify a message line to be written to the output; the written text directly
follows WRITE; WRITE is a single line item and is not closed with an END

EMC setup only assumes environment modus, when the environment variable is set to
true in the first occurring OPTIONS paragraph. Enviroment mode allows for optionally
setting names associated with build, analyze, and run scripts, as well as defining which
queues to be used. Dashes imply undefining parameters. The ncores parameter is manda-
tory. For certain problems, it can be desired to simulate multiple indepedent structures in
order to obtain a correct statistical sample. To this end, a loop variable copy is available,
which creates multiple copies with the same conditions, but executing building with dif-
ferent random seeds, thus creating indepedent initial structures. Note, however, that use
of this features quickly creates many simulations, which harbors the danger of overcrowd-
ing high-performance computing queueing systems and over-requesting available computa-
tional resources. An example for environment mode application can be found in ${EMC_

ROOT}/examples/setup/environment/shear.

Chapter 4: Simulation Setup 38

4.6.2 Chemistry File

The chemistry file – with default file name chemistry.esh – supports environment, new-
style, and legacy formats. Columns can only be separated by commas or tabs. Next line
extension occurs by using an ampersand & at the end of to be extended line.

4.6.2.1 General

The new-style format allows for the definition of polymers, which uses keyword ITEM followed
by an identifier to distinguish between different contributing paragraphs, as described by

Identifier Description

CLUSTERS Sets cluster definitions, using previously defined cluster groups

COMMENTS Sets the start of a comments section, which can only be terminated by a
matching END

EMC Defines a section to be copied verbatim into the EMC build script; op-
tionally, the keyword can be followed by either one or two numeric values,
identifying which phase and where the block verbatim text is to be added
to; alternatively, identifiers phase and spot can be used, followed by an
equal sign (=); valid values are the respective phase for identifier phase and
a number between 0 and 2 for spot to place the defined section at spe-
cific spots in the selected phase section in the EMC build script; defaults
for phase and spot are 1 and 0 respectively when value and identifiers are
omitted;

END Marks the end of a paragraph

FIELD Allows for a direct definition of force field parameters; the resulting .prm

parameter file and .top topology file are stored in the current directory
(see Section 4.6.3 [Field File], page 48)

GROUPS Sets separate group definitions, including polymeric repeat units

INCLUDE Specifies a files to be included containing a subset of commands; the file
name follows INCLUDE directly; INCLUDE is a single line item and is not
closed with an END

Chapter 4: Simulation Setup 39

LAMMPS Defines a section to be copied verbatim into the LAMMPS execution
script, appearing atop the simulation section; alternatively, identifiers
stage and spot can be used, followed by an equal sign (=); allowed op-
tions for stage are – in order of appearance in the LAMMPS execution
script – header, variables, interaction, equilibration, simulation,
integrator, sampling, intermediate, run; allowed options for spot are
head and tail; stage options correspond to the comments in the resulting
LAMMPS execution script; defined additional variables as described above
can be used when captured between ${..}.

OPTIONS Allows for setting all command line options of emc_setup.pl inside chem-
istry files, thus creating the option of consolidating a simulation setup
within one file only; see the previous paragraph; syntax is option,value[,...],
where option refers to any of the options as defined previously (see 〈unde-
fined〉 [Chemistry Options], page 〈undefined〉)

POLYMERS Defines polymers, using previously defined polymeric groups; this para-
graph can be used for defining polymers either through the GROUPS or
CLUSTERS paragraph

PARAMETERS Allows for direct inclusion of DPD parameters; parameters are not stored
but used internally (see Section 4.6.5 [Parameters File], page 53)

PROFILES Defines additional mass profiles, where each line generates an additional
profile; syntax is name, mode[:type[:binsize]], contributor [,...]; mode can
be either cluster or type; type sets the type of profile, which can either
be density, density3d, or pressure; density is assumed when omitted;
binsize sets the individual bin size; the general binsize is assumed when
omitted; contributor refers to either a cluster name or type repectively;
note, that profile coordinates are in reduced units and run from 0 to 1

REFERENCES Allows for direct inclusion of DPD references; references are not stored but
used internally (see Section 4.6.4 [References File], page 52)

SHORTHAND Legacy format, allowing for group and cluster definitions in shorthand no-
tation; polymeric definitions are not possible within this format

VARIABLES Defines additional variables, which are either used by read EMC structures
from the EMC structure library ($EMC ROOT/lib), serve as pass-through
to subsequent simulation packages (e.g. LAMMPS), or are used in the gen-
erated EMC build script; the section identifier VARIABLES can be followed
by keywords head for appearance at the top or tail for appearance at the
bottom of the EMC script variable block

WRITE Specify a message line to be written to the output; the written text directly
follows WRITE; WRITE is a single line item and is not closed with an END

Chapter 4: Simulation Setup 40

4.6.2.2 Shorthand

The SHORTHAND format can be used without a line starting with keyword ITEM, provided its
lines are at the start of the chemistry file. Conversely, the shorthand format also provides
quick definition of non-polymeric molecules without the need of defining groups and clusters.
Its format is given by the following table.

Entry Description

1 Cluster and Sets the group name, which optionally can be followed by
f[ield]=id[,...], m[ass]=#, or t[erm] – separated by colons – where
characters between [] are optional and can be omitted; multiple options can
be set in one line; f[ield]=id sets a specific field id when using multiple
fields for typing, e.g for CHARMM (see Section 5.11 [Field], page 106),
where id can be part of the full identifier; m[ass]=# overrides automated
setting of group mass, where # represents the desired mass; t[erm] marks
group as a terminator (see Section 5.17 [Groups], page 117)

2 Chemical representation in the form of a SMILES string (see Section 7.8
[SMILES], page 197)

3 Fraction or count; can be either molecular, mass, or volume fraction, or
the number of clusters based provided option (see 〈undefined〉 [Chemistry
Options], page 〈undefined〉, for options mass, mol, or number)

4 Molecular mass in g/mol

5 Molecular volume in cc/mol

Column 4 and 5 are optional.

4.6.2.3 Groups

The GROUPS paragraph defines multiple groups, including polymeric groups. Its format is
given by the following table.

Entry Description

1 Sets the group name, which optionally can be followed by f[ield]=id[,...],
m[ass]=#, or t[erm] – separated by colons – where characters between [] are op-
tional and can be omitted; multiple options can be set in one line; f[ield]=id

sets a specific field id when using multiple fields for typing, e.g for CHARMM (see
Section 5.11 [Field], page 106), where id can be part of the full identifier; m[ass]=#
overrides automated setting of group mass, where # represents the desired mass;
t[erm] marks group as a terminator (see Section 5.17 [Groups], page 117); note,
that groups with only one connection are automatically terminators

Chapter 4: Simulation Setup 41

2 Sets the group chemistry using SMILES strings (see Section 7.8 [SMILES], page 197)
or polymer type to turn on polymer mode; in SMILES polymeric connectivity points
are marked with *; valid polymer types are alternate, block, and random; column
3 and onwards are omitted when using groups in polymer mode; the polymer distri-
bution is defined through the POLYMERS paragraph

3 Defines connection index for polymeric groups of current group; indices refer to *

occurences in the previously set SMILES string

4 Defines the connecting group name and corresponding index in the format
name:index

5- Repeats of column 3-4 for subsequent connections

4.6.2.4 Clusters

The CLUSTERS paragraph defines multiple clusters. Options following keyword import in en-
try 2 can be used in any order when superceeded by their respective identifier and separated
by an = sign. Column 4 and onward are optional and have different meaning depending
on the mode in which the cluster option is called. In case of polymeric definitions, column
4 through 5 are used. In case of imported structures, all columns 4 and onward can be
used. Identifiers instead of columns can be used when importing structures. Each identifier
is described in the paragraph and table hereafter. The use of commas or tab as option
separators between entries is advised when defining an import. Its format is given by the
following table, where the identifier column refers to the next table.

Entry Identifier Description

1 - Sets the cluster name

2 - Sets the associated group, the type of polymer – indicated by
alternate, block, or random – or whether to expect a imported struc-
ture from file as incidated by keyword import; consequently, group
names are not allowed to have reserved names alternate, block,
random, or import

3 - or ncells Sets a fraction or count, which can be either a mol, mass, or volume
fraction, or number of clusters, based provided command line option
(see 〈undefined〉 [Chemistry Options], page 〈undefined〉, for options
mass, mol, or number); in case of keyword import in entry 2, this entry
contains the number of repeat units (id ncells)

4 - or name Molecular mass in g/mol or file name (id name) in case of keyword
import in entry 2

Chapter 4: Simulation Setup 42

5 - or mode Molecular volume in cc/mol or import mode (id mode) when selecting
keyword import in entry 2

6 type Optional entry for import type

7 flag Optional entry for setting mobility flags of imported structures

8 density Optional entry for setting the density treatment of imported structures

9 focus Optional entry for marking the imported structure as focus

10 tighten Optional entry to trim or tighten imported structures

11 ntrial Optional entry for setting the number of trials

12 periodic Optional entry for setting periodicity; currently not implemented

13 field Optional entry for enforcing a specific force field for force field typing
of the imported structure;

14 exclude Optional entry for setting an exclusion region

15 depth Optional entry for setting ring recognition recursive depth

16 percolate Optional entry for identifying a percolating crystalline structure

17 unwrap Optional entry for unwrapping imported structures

18 guess Optional entry for guessing unwrap status based on input

19 charges Optional entry for using charges from imported morphologies

20 formal Optional entry for using formal charges from imported morphologies
when available

21 translate Optional entry for translating the all imported sites for a distance into
the growth direction of the simulation box

22 map Optional entry for mapping both sites and box shape unto their peri-
odic minimum image

The following table describes import identifiers, which can be used without having to abide
by strict column sequences. Identifiers and their values are separated by equal signs (=),
omitting any spaces. Examples are mentioned after this table.

Chapter 4: Simulation Setup 43

Identifier Default Description

charges false Use charges from imported structures; allowed values ar true or
false

density mass Sets density treatment of imported structures, which is needed for
calculating correct box dimensions when adding material; allowed
values are mass or number

depth auto Sets the maximum size of rings to be recognized; the provided
input should be a definite positive integer or keyword auto

exclude true Toggles whether to add an repulsive exclusion region around the
imported structure; allowed values ar true or false

field - Enforces a specific force field for force field typing of the imported
structure

flag rigid Sets mobility flag for imported structures; allowed flags are fixed,
rigid, or mobile

focus true Toggles whether to focus on the imported structure, which ex-
cludes its volume for additionally built molecules; allowed values
are true or false

formal true Include formal charges from imported morphologies when pro-
vided in input structure; allowed values are true or false

guess auto Sets optional guessing of unwrapping based on imported struc-
tures; only functions when unwrap is set to auto; allowed values
are auto, true, or false

map false Map both sites and box geometry onto their periodic minimum
image; allowed values are true or false

mode emc Optionally enforce import mode when not using name extensions
in identifier name; allowed modes are emc for EMC files, pdb for
PDB files – providing both .pdb and .psf files, or insight for
Insight II files – providing both .car and .mdf files

name - Sets file name; allowed file name extensions are .emc for EMC
files, .car or .mdf for InsightII files, and .pdb or .psf for PDB
files; default is .emc; extensions override mode defaults

Chapter 4: Simulation Setup 44

ncells 1:auto:auto Sets the number of repeated unit cells along the direction as set
by option direction in the options paragraph (see 〈undefined〉
[Chemistry Options], page 〈undefined〉); repeats in multiple di-
rections can be set when dividing input by colons in order of x,
y, and z direction respectively; default is 1 in the main direction
and auto in the remaining directions, e.g. auto:1:auto for main
direction y

ntrials 10000 Sets the number of trial iterations used for determining the vol-
ume of an import of type=line or structure (see column 6),
which employs a Monte Carlo algorithm; option is a number
larger than zero

percolate auto Sets whether imported structure reflects a percolating crystal;
allowed values are auto, true, or false

periodic - Sets periodicity; currently not implemented

tighten - Set the tightening distance, which effectively shrink-wraps the
box around what is imported; allowed option is a distance; default
is a distance of 1 or 3 for coarse grained or atomistic force fields
respectively

translate - Translate by a length all sites into the direction of box growth; the
entered value represents a scalar, which internally is multiplied
by the unit box vector in the direction of growth; by default no
translation is performed

type surface Sets the imported structure type; allowed types are crystal when
adding no additional sites, surface when adding sites in one
direction as set by option direction in the options paragraph
(see 〈undefined〉 [Chemistry Options], page 〈undefined〉), tube

when adding in two directions, structure when adding in three
directions, or system when importing a previously built system

unwrap false Sets whether to unwrap the imported structure; allowed values
are auto, true, or false

Columns 4 is optional when defining molecules, but mandatory when importing structures.
Importing options defined in columns 3 through 14 can be preceeded by their respective
identifiers, i.e. ncells, name, mode, type, flag, density, focus, tighten, and ntrials,
separated by an equal sign. The order as given in the table above is assumed when omitting
this identifier. The specified default is taken, when the an option is omitted. A formal
example of an import line is given by

surface import, name=$root+"lib/fcc", ncells=8, mode=emc, &

Chapter 4: Simulation Setup 45

type=surface

which creates a surface with cluster name surface, using a nonbonded fcc lattice from the
EMC library, consisting of 8 repeat units in the x-direction. Note, that any given order can
be used, when identifiers are specified. A shorter, but equivalent definition is given by

surface import 8 $root+"lib/fcc" emc

where now the option order matters, therefore creating the need for strictly following the
column order as given in the above table. Alternatively, the import mode can be determined
by EMC setup through adding the file extension, i.e.

surface import name=$root+"lib/fcc.emc" ncells=8 type=surface

or

surface import 8 $root+"lib/fcc.emc"

Note, that a space or comma can also be used as separator. However, this option is not
advised when using a space or comma in the file name. Currently, only one structure at a
time can be imported by EMC.

4.6.2.5 Polymers

In the case of a polymer, the cluster name has to appear in the POLYMERS paragraph, when
defining the type of polymer in column 2. Otherwise, a group name is assumed. The
POLYMERS paragraph describes the composition of one polymer at a time. Each polymer
definition starts with the polymer’s cluster name on a separate line. The polymer name
optionally can be followed by keywords fraction, niterations, or order, separated from
their value by an = sign. Defining any of these keywords overrides global definitions for
the indicated polymer only (see keyword polymer under OPTIONS for globals (see 〈unde-
fined〉 [Chemistry Options], page 〈undefined〉)). Valid fraction options are number for
using number of molecules and mass molecule mass as distribution entries. Valid order

options are list for sequentially and random of randomly interpreting the provided polymer
distribution. The niterations keyword sets the maximum allowed number of iterations
used during polymer sequence determination. Lines following the polymer name define the
polymer’s distribution of contributing groups. Multiple polymer definitions can be privided
within this paragraph. The format of contributing groups is given by the following table.

Entry Description

1 Mol or mass fraction of the polymer cluster defined by this line; mass fractions are
only allowed when defining polymers through groups

Chapter 4: Simulation Setup 46

2 Group name; multiple group names can be given through separation with a ’:’;
weights – with which groups are randomly picked – follow an ’=’ and are separated
by a ’:’, e.g. A:B=1:2; equal weights are assumed when omitted

3 Number of repeat units for the above group

4- Repeats of columns 2-3 for subsequent groups

Capping or end groups should be included in the above list for mass calculation purposes,
although they are neglected by EMC. EMC selects end groups internally.

4.6.2.6 DPD Additions

The following identifiers are valid only, when selecting DPD as force field:

Identifier Description

ANGLES Defines a paragraph for additional specific angle entries, which should be
provided in the order of type1, type2, type3, k, theta

BONDS Defines a paragraph for additional specific bond entries, which should be
provided in the order of type1, type2, k, l

MASSES Defines or – in case of replicas – redefines masses, which should be provided
in the order of type, mass; mass is a definite positive number and has
reduced units when no reference type has been chosen; otherwise, mass is
in units of the reference type (see Section 4.4 [Options], page 12)

NONBONDS Defines a paragraph for nonbond entries, which should be provided in the
order of type1, type2, a[, cutoff[, gamma]]; these entries overwrite already
exisiting entries

REPLICAS Creates duplicates of exisiting nonbond entries, which should be
provided in the order of target[:factor], source[:fraction[:flag]][,
source[:fraction[:flag]][, ...]], offset; interaction constants, mass, cutoff,
and gamma are averaged when multiple sources are provided; offset de-
fines the offset of the new DPD interaction constant aij with respect to the
original; factor defines a multiplication factor with respect to the offset;
factor is set to 1 when omitted; fraction defines which fraction to use of
each contributing component; equal fractions are assumed when omitted;
normalization of fraction is controlled by flag, which can either be true
or false; by default fraction is normalized; fraction is not normalized
when any one flag is set to false

TORSIONS Defines a paragraph for additional specific torsion entries, which should be
provided in the order of type1, type2, type3, type4, k, n, delta, and
optionally following triplets of k, n, and delta

Chapter 4: Simulation Setup 47

Both keyword and identifier must be in all caps and separated by a comma or tab. Currently,
alterations or additions to force field files only function for the DPD force field. Types can
be replicated in order to either create duplicates or compounded types, where

a∗ij = f(a∗ij − 25) + Δ

expresses the new interaction parameter a∗ij . Assume, that a new type AIR is to be created
based on an alkane representation C4, where multiplication factor f = 1.5 and offset Δ = 25.
This would result in the following REPLICAS entry

AIR:1.5 C4 25

For each of the parameter additions (i.e. nonbonds, bonds, angles, or torsions), entries
containing a wildcard * will appear in the AUTO paragraph of the resulting force field file.

Chapter 4: Simulation Setup 48

4.6.3 Field File

The field file – using the extension .define – allows for defining force field parameters and
rules within one file. Translation of this file into an EMC .prm parameter file and .top

topology file occurs by applying field.pl, which can be found in the EMC script directory
${EMC_ROOT}/scripts. This format can also be included in environment and chemistry
files by adding the field definition between identifiers FIELD and END, both preceeded by
keyword ITEM.

4.6.3.1 General

The field format itself also uses keyword ITEM to identify subsequent main functionality
paragraphs, as decribed by

Identifier Description

DEFINE Defines different force field settings as described below; this paragraph is
mandatory

MASSES Defines the types and their associated masses and subsequent definitions;
the syntax is type, mass, element, number of connections, formal charge,
comment ; this paragraph is mandatory

COMMENTS Allows for inclusion of comments specific to the force field’s derivation; this
paragraph is optional

REFERENCES Reports the literature references used to construct the force field; the syntax
is year, volume, page, journal ; this paragraph is optional

PRECEDENCE Defines the precedence table as described below; this paragraph is optional

EQUIVALENCE Describes the equivalences of the force field; equivalences state which type
can be used instead of the official type for abstracting the asociated force
field parameters; the syntax is type, pair, bond, angle, torsion, improper ;
this paragraph is optional

NONBOND Defines the nonbond parameters of the force field; the syntax starts with
type1, type2, followed by the actual parameters (e.g. epsilon, sigma for
Lennard-Jones force fields, and a, cutoff, gamme for a DPD force field);
the expected number of parameters is dependent on the chosen force field
mode; this paragraph is mandatory

BOND Defines the parameters for bond length interactions; the syntax is type1,
type2, k, l0 ; the interaction function depends on the the force field mode,
but is in general harmonic in nature; this paragraph is optional

Chapter 4: Simulation Setup 49

ANGLE Defines the parameters for bond angle interactions; the syntax is type1,
type2, type3 k, theta0 ; the interaction function depends on the the force
field mode, but is in general harmonic in nature; this paragraph is optional

TORSION Defines the parameters for dihedral interactions; the syntax is type1, type2,
type3, type4, k, n, delta[, k, n, delta ...]; the allowed number of additional
parameter entries depends on the chosen force field mode; the interaction
function depends on the the force field mode, but is in general a Fourier
series of cosines (e.g. see Section 7.12.19 [Standard], page 341, Torsion
paragraph); this paragraph is optional

IMPROPER Defines improper interactions; the syntax is type1, type2, type3, type4, k,
psi0 ; the interaction function depends on the the force field mode, but is
in general harmonic in nature; this paragraph is optional

RULES Defines the rules associated with the types as defined by the MASSES para-
graph; the syntax is type, partial charge, rule[, rule ...]; one type can have
multiple rules; a rule describes a unique chemical environment, which de-
fines the type at hand; this paragraph is optional

TEMPLATES Defines templates, which can be used as aliases when defining group chem-
istry; this paragraph is optional

Each entry can be separated by either a TAB, COMMA, or SPACE. A TAB represents the
preferred separator. Wildcards as represented by * can be used for types in parameter
definitions. Partial wildcards are also allowed. The partial wild cards can be understood
by the following example: assume c4 generally describes an SP3 carbon with no hydrogen
attached, c4h with one hydrogen attached, and c4h2 with two hydrogens attached, then
wildcard c4* would describe all three of these types.

4.6.3.2 Define

Specific alternative settings can be defined for force field by using the DEFINE paragraph,
as decribed by the following

Identifier Description

ANGLE Sets the error handling for typing of angle interactions; options are ignore,
complete, warn, empty, and error

CREATED Sets the creation date of the force field

CUTOFF Sets the cut off for all nonbonded interactions

Chapter 4: Simulation Setup 50

DENSITY Sets the unit of length as used by the parameters in the force field; options
are g/cc, kg/m^3, and reduced; both LENGTH and ENERGY are set to reduced
when the latter option is chosen, thus resulting in a force field in reduced
units

ENERGY Sets the unit of length as used by the parameters in the force field; options
are j/mol, kj/mol, cal/mol, kcal/mol, kelvin, and reduced; both LENGTH

and DENSITY are set to reduced when the latter option is chosen, thus
resulting in a force field in reduced units

FFDEPTH Sets the maximum recursive with which to trace the chemical surrounding
of a site during typing; this depth should equal the maximum depth of the
provided rules

FFMODE Sets the name or mode of the force field; options are born, charmm, dpd,
martini, mie, opls, sdk, standard, and trappe

FFTYPE Sets the force field type; options are atomistic, united, and coarse

IMPROP Sets the error handling for typing of improper interactions; options are
ignore, complete, warn, empty, and error

INNER Sets the inner cut off when using a force field with a switching func-
tion for nonboned interactions (e.g. as in the CHARMM force field (see
Section 7.12.7 [CHARMM], page 236))

LENGTH Sets the unit of length as used by the parameters in the force field; op-
tions are angstrom, nanometer, micrometer, meter, and reduced; both
DENSITY and ENERGY are set to reduced when the latter option is chosen,
thus resulting in a force field in reduced units

MIX Sets the mixing rule; options are none, bethelot, arithmetic, geometric,
and sixth_power

NBONDED Sets the number of bonded atoms to exclude from nonbonded interactions;
the number varies by force field

PAIR14 Sets the error handling for typing of 1-4 pair interactions; options are off,
false, exclude, on, true, and include

TORSION Sets the error handling for typing of dihedral interactions; options are
ignore, complete, warn, empty, and error

VERSION Sets the force field version

Chapter 4: Simulation Setup 51

Error handling, as mentioned in the latter options of the above table, can be dealt with
in a number of ways. Any errors can be either fully ignored without any output by EMC
during typing by chosing option ignore. A warning will be generated, when chosing option
warn. An empty parameter entry will be generated without any output to screen when
chosing option empty. EMC will continue after all of these options. However, EMC will
generate warnings for all missing parameters and will cease execution when chosing options
error. Examples of .define files can be found for several force fields as provided in the
${EMC_ROOT}/field/ force field directory (e.g. the CHARMM, OPLS, and TraPPE force
fields).

Chapter 4: Simulation Setup 52

4.6.4 References File

Reference files are optional and are used to create comprehensive EMC force field files (using
.prm extensions). Currently only DPD force fields are used when interpreting the reference
file. Its default file name is references.csv.

Column Description

1 Short ID as referred to in parameters.csv

2 ID as represented in produced .prm force field files

3 Bead mass in g/mol

4 Bead volume in nm3

5 Number of connections that this bead can have

6 Effective charge of bead

7 Number of repeat units represented in this bead (e.g. 3 when 3 ethyleneoxide
monomers are captured by one bead)

8 Comment describing the origin of the bead

Future emc_setup.pl versions are intended to span a wider choice of force fields when using
reference files.

Chapter 4: Simulation Setup 53

4.6.5 Parameters File

Parameter files are optional and are used to provide parameters. Currently they are only
used in case of the DPD force field (see Section 7.12.11 [DPD], page 275). Its default file
name is parameters.csv.

Column Line Description

1 1 Mandatory empty field
2- Alphanumeric type name of bead A (short)

2 1 Mandatory empty field
2- Alphanumeric type name of bead B (short)

3 1 Temperature at which the interaction parameters in this column were
determined.

2- Numerical value refering to the interaction of bead A and B

... Identical to column 3.

Column 4 and subsequent columns can hold parameters determined at different tempera-
tures. Their syntax is the same as for entries in column 3. Future emc_setup.pl versions
are intended to include a wider choice of force field when using parameter files.

Chapter 4: Simulation Setup 54

4.7 Examples

The directory ${EMC_ROOT}/examples/setup/ holds a number of examples with different
complexity, all using emc_setup.pl as a base for creating EMC build and LAMMPS input
scripts. The examples are subdivided in chemistry and environment related examples. This
section describes ways to build bulk systems with a mixture of chemicals, typing of various
force fields, construction of various types of polymers, building multiphase simulations,
and ways to build material between two surfaces. A second set of examples in ${EMC_

ROOT}/examples/build/ illustrate adaptation of EMC scripts directly for specific solutions.
These scripts are not discussed here.

4.7.1 References

1. VMD - Visual Molecular Dynamics, ‘http://www.ks.uiuc.edu/Research/vmd/’

2. Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J.
Molec. Graphics 1996, 14, 33-38

3. LAMMPS - Molecular Dynamics Simulator, ‘http://lammps.sandia.gov/’

4. Plimpton, S., "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J.
Comput. Phys. 1995, 117, 1-19

4.7.2 Chemistry Mode

Chemistry mode examples show how to set up single system simulations using a number of
different common problems, which include setting up bulk systems, systems with different
force fields, polymer systems, systems with multiple phases, and systems with surfaces.
Chemistry examples can be found in ${EMC_ROOT}/examples/setup/chemistry/.

Chapter 4: Simulation Setup 55

4.7.2.1 Bulk Mixture

Assume the desire exists to simulate a system consisting of 45% water, 40% alcohol, 5%
salt, and 10% sugar by mass, where the force field of choice is PCFF and consists of about
2000 particles once built. The setup utility offers multiple ways for setting up a simulation.
The quickest way is to use emc setup.pl’s legacy format. For this format, one first creates
a chemistry.esh file with the following content:

water O,45

alcohol CCO,40

salt [Na+].[Cl-],5

sugar OCC1OC(O)C(O)C(O)C1O,10

Note, that the fraction indications – 45, 40, 5, and 10 – in the last column are normalized
internally, and can therefore be any number. Here, percentages are taken for illustrating
purposes. The next step is to invoke emc_setup.pl,

emc_setup.pl -field=pcff -ntotal=2000 -mass -build_dir=. bulk

where -field selects the force field, -ntotal sets the number of particles, -mass assumes
mass fractions in the chemistry.esh file, and -build_dir sets the origin of the created
files to the current directory. An alternative chemistry file with the name bulk.esh uses
shorthand notation in combination with options. Here all command line options are folded
into the chemistry file, which reads as follows,

#!/usr/bin/env emc_setup.pl

Options

ITEM OPTIONS

replace true

mass true

ntotal 2000

field pcff

density 1

build_dir .

ITEM END

Shorthand

ITEM SHORTHAND

water O,45

alcohol CCO,40

salt [Na+].[Cl-],5

Chapter 4: Simulation Setup 56

sugar OCC1OC(O)C(O)C(O)C1O,10

ITEM END

Amore general way of describing the same simulations is by the use of GROUPS and CLUSTERS.
EMC internally uses sites, groups, and clusters to represent atoms, repeat units, and
molecules respectively. Using groups in case of small molecules makes less sense than using
groups for polymers. However, as a general notation, this problem can also be defined by
the following

#!/usr/bin/env emc_setup.pl

Options

ITEM OPTIONS

replace true

mass true

ntotal 2000

field pcff

density 1

build_dir .

ITEM END

Groups

ITEM GROUPS

water O

alcohol CCO

salt [Na+].[Cl-]

glucose OCC1OC(O)C(O)C(O)C1O

ITEM END

Clusters

ITEM CLUSTERS

water water,45

alcohol alcohol,40

salt salt,5

sugar glucose,10

ITEM END

Chapter 4: Simulation Setup 57

Execution can be performed in one of two ways,

emc_setup.pl bulk

or, in the case of a Unix-like operating system,

./bulk.esh

provided bulk.esh is executable and emc_setup.pl can be found in the shell’s predefined
path. This solution allows for a comprehensive representation of a simulation, without
having a number of separate files describing it. Once executed, emc_setup.pl creates the
EMC build script build.emc and the LAMMPS input script bulk.in. To build an input
structure, the EMC build script needs to be executed using EMC. Assume, that the LINUX
version emc_linux is used, which location is in your path variable $PATH. Then,

emc_linux build.emc

will create input structures in PDB format – bulk.pdb and bulk.psf – and LAMMPS format
– bulk.in. The resulting structure can be inspected by means of VMD (Visual Molecular
Dynamics)1,2 through

vmd -e bulk.vmd

assuming, that vmd is in your path. The advantage of using bulk.vmd, is that this file
contains the correct Van der Waals radii for the simulated beads. A molecular dynamics
simulation with LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)3,4

can be started with

lmp_linux < bulk.in

assuming, that lmp_linux is in your path. A similar example can be found in the ${EMC_

ROOT}/examples/setup/chemistry/bulk directory.

Chapter 4: Simulation Setup 58

4.7.2.2 Force Fields

EMC allows for the use of various force fields. To illustrate this, five examples are included
for commonly used force fields, which are separated into atomistic (CHARMM, OPLS-AA,
PCFF), united atom (OPLS-UA, TrAPPE), and coarse grained (DPD) examples. Force
field choice is indicated by the -field flag of the emc_setup.pl script, which will try to
find a corresponding force field in the ${EMC_ROOT}/field directory. For the latter to
work, it is assumed, that emc_setup.pl is located in the ${EMC_ROOT}/scripts directory.
With exception of the coarse-grained example, all examples use a molar ratio of 1:4 for a
ethanol:water mixture. The corresponding chemistry file chemistry.esh for non coarse-
grained examples contains the following lines

ethanol,CCO,20

water,O,80

Fraction indications do not have to reflect percentages: 1 instead of 20, combined with 4
instead of 80 is equally valid, due to internal normalization. For a system with 1000 atoms
typed with the CHARMM force field and project name solution, the call to emc_setup.pl
is given by

emc_setup.pl -ntotal=1000 -field=charmm -replace solution

where -ntotal indicates the number of atoms, -field specifies the desired force field, and
-replace selects overwriting of possibly existing build and input scripts. An alternative to
chemistry.esh is presented by solution.esh, in which case emc_setup.pl command line
options are integrated into the script by means of an options section. Execution creates
an EMC build.emc and a LAMMPS3,4 solution.in script. A change of force field and
its corresponding typing occurs by altering the -field flag to e.g. -field=trappe, when
desiring TraPPE typing. Note, that each force field only includes chemistries, for which it
was parameterized. This means, that not all chemistries can be typed by all force fields.
Also be aware, that typing is not guaranteed to be correct. It is kindly requested to report
bugs, so that improvements to force fields can be included in next versions. Next steps
for executing EMC and LAMMPS are identical to the steps as mentioned in the previous
section for the bulk mixture example.

Chapter 4: Simulation Setup 59

4.7.2.3 Record

EMC offers the possibility to follow the building process by creating a set of PDB’s and
accompanying PSF’s during building, which is illustrated by the example found in ${EMC_

ROOT}/examples/setup/chemistry/record/. The build of a 60 carbon fullerene has been
chosen to illustrate this option. EMC will produce a set of PDB’s and PSF’s, which are
combined by cat.sh. The latter produces one PDB and PSF file, and one VMD script, after
which it deletes the PDB’s and PSF’s produced by EMC. A exec.sh script illustrates the
work flow. It uses fullerene.esh as the describing chemistry file, which set the following
options,

ITEM OPTIONS

seed -1

ntotal 60

density 0.1

temperature 300

grace 0.999

nrelax 200

radius 9.5

center true

field opls-ua

record "record",10,true

replace true

depth 6

ITEM END

A seed of -1 indicates for EMC to take the system clock as a seed. The total number of sites
is set by ntotal, while the density is chosen to be 0.1 g/cc. The simulation temperature is
set at 300 K. The keyword grace is used to allow for overlap during initial insertion, which
is corrected during relaxation. The number of relaxation moves after insertion, nrelax, is
set to 200, with a site inclusion radius of 0.95 nm. The first inserted site is set at the
center of the box by setting keyword center to true. The chosen force field – as set by
defining field – is OPLS-UA. Recording is switched on by defining record, where PDB’s
and PSF’s are written out for the inserting of each site. The written out files have root
file name "record", where each file contains a trajectory resulting from relaxation. Here,
snapshots are written every 10 cycles. Inactive sites with positions at (0,0,0) are included
in PDB’s. All files are opted to be replaced by setting the replace keyword to true.
Ring recognition normally is automatic. However, this would take unnecesarily long for
fullerenes due to the recursive nature of the underlying algorithm. EMC allows for reducing
the recursion depth of this algorithm. Here, we chose to set the recursion depth to 6, since
none of the rings in a fullerene have more than 6 members.

Fullerene chemistry is defined in the shorthand paragraph by

ITEM SHORTHAND

Chapter 4: Simulation Setup 60

fullerene c12c3c4c5c1c6c7c8c2c9c1c3c2c3c4c4c%10c5c5c6c6c7c7c%11

c8c9c8c9c1c2c1c2c3c4c3c4c%10c5c5c6c6c7c7c%11c8c8c9c1

c1c2c3c2c4c5c6c3c7c8c1c23,1

ITEM END

Intricate connectivity is illustrated by connectivity numbering (see Section 7.8 [SMILES],
page 197). The SMILES for this example as well as for many chemistries can be found in
Wikipedia.1

Execution of this example is best performed by workflow script

./exec.sh

which calls emc_setup.pl, followed by EMC. It also concatenates building trajectories as
produced by EMC into one set of files, which can be viewed with VMD by

vmd -e record.vmd

assuming VMD is in the user’s path.2,3

References

1. N.N., "Buckminsterfullerene", Wikipedia, 1/1/2016.

2. VMD - Visual Molecular Dynamics, ‘http://www.ks.uiuc.edu/Research/vmd/’

3. Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J.
Molec. Graphics 1996, 14, 33-38

Chapter 4: Simulation Setup 61

4.7.2.4 Polymers

Polymers have a wide field of application in chemical industry. EMC offers the
possibility of creating a variety polymer classes. Examples can be found in ${EMC_

ROOT}/examples/setup/chemistry/polymer. The focus in this section lays on building
random, block, and alternate copolymers.

Let us assume, that we would like to study a copolymer consisting of four A beads, four
B beads, and two D terminators. We would like to study a coarse-grained model with 1000
beads, using a general DPD force field with a number density of 3.

The OPTIONS section is defined by (see 〈undefined〉 [Chemistry Options], page 〈unde-
fined〉),

ITEM OPTIONS

project dpd

field dpd/general

auto true

ntotal 1000

density 3

replace true

build_dir .

ITEM END

The first line sets the project name with keyword project, while the second selects the
general DPD force field with keyword field. The option auto toggles the automatic addi-
tion of masses to the force field mass paragraph, in case masses are not provided. The total
number of beads is set with ntotal and the system density with density. The keyword
replace allows for existing files to be overwritten. The current directory is chosen as the
build directory by keyword build_dir.

The generalized DPD form does not require a parameters.csv or reference.csv file,
when not specifically defining pair-wise interactions. With this information, emc_setup.pl
will create dpd.prm in the current directory, which is a DPD force field parameter file. This
force field file is needed by EMC, in order to be able to type the different beads.

A polymer chemistry file cannot use shorthand notation as discussed in the previous
paragraphs. Instead, group, cluster, and polymer specific sections need to be used (see
Section 4.6.2 [Chemistry File], page 38).

First, three contributing groups are defined to describe beads A, B, and D,

ITEM GROUPS

a *A*,1,a:2,2,b:1

b *B*,1,b:2

d *D,1,a:1,1,a:2,1,b:1,1,b:2

ITEM END

Chapter 4: Simulation Setup 62

As with the bulk case, SMILES syntax is used to describe group chemistry. Additionally,
connectivity between the different monomers needs to be defined. This connectivity is
indicates by an asterix *. By definition, a monomer has two or more connections and a
terminator only one. With the connection points defined per monomer, we have to still
define where these connection points connect to. Let us consider group a as an example.
We would like to connect group a to both itself and group b,

A,1,a:2,2,b:1

A indicates the SMILES representation, followed by connection pairs. The first pair 1,a:2
means, that the first occurring * of *A* connects to the second occuring * of group a. The
first pair 2,b:1 means, that the second occurring * of *A* connects to the first occuring *

of group b. The same logic applies for subsequent definitions of groups b and d. The setup
script adds all redundant connections, i.e. when connecting group a to group b with 2,b:1,
a connection on group b reading 1,a:2 is implied and does not have to be defined explicitly.
One could define group b as

B,1,b:2,2,a:1

which would work, but it is not necessary. The defintion of group d through

*D,1,a:1,1,a:2,1,b:1,1,b:2

defines all capping groups to the correct connectors. With the groups defined, we can now
define the type of polymer we would like to build,

ITEM CLUSTERS

poly random,1

ITEM END

The first keyword defines the polymer’s name, poly here. Its name is followed by the type
of polymer. The three available options are random, block, and alternate. Examples are
available for each of these options in ${EMC_ROOT}/examples/polymer. Here we chose to
create a random copolymer. The last entry denotes the polymer’s fraction, here chosen to
be 1. Different clusters and polymers can be added to this paragraph to form any mixture
desired.

Finally, we define the polymer’s morphology. We wanted 4 monomers A, 4 monomers
B, and two terminators D,

ITEM POLYMERS

poly

1 a,4,b,4,d,2

Chapter 4: Simulation Setup 63

ITEM END

Each polymer definition starts with its name as a header on a separate line. This name
refers to the name chosen in the clusters section, here poly. The polymer’s name is followed
by all morphologies associated with this name. Here we only have one morphology, but we
could also define a distribution of polymer morphologies. Each line contains the mol fraction
of each contribution, followed by its morphological definition,

1 a,4,b,4,d,2

A subsequent polymer would start with its name on a separate line, followed by its defini-
tion(s), e.g. this section with two polymers would look like

ITEM POLYMERS

poly

1 a,4,b,4,d,2

another

1 a,2,b,2,d,2

2 a,3,b,3,d,2

1 a,4,b,4,d,2

ITEM END

Here, a polymer called another was added and assumed to have three contributing subpoly-
mers, thus creating a distrubtion of polymer lengths within this polymer. The distribution
uses mol fractions, which means, that the above example has a ditribution of 1:2:1, or
25% of the first entry, 50% of the second, and 25% of the third. The emc_setup.pl script
normalizes fractions in the resulting EMC build script.

Chapter 4: Simulation Setup 64

4.7.2.5 Multiphase Systems

EMC offers the possibility of building multiphase systems by building one phase after an-
other. This allows for setting up systems, for which it is known a priori, that the equilibrated
state phase separates. This then allows for studying mass distribution and interfacial ten-
sion behavior. Let us investigate this possibility by means of an example, in which we study
the behavior of sodium dodecyl sulfate (SDS) in a system of water and oil. This example can
be found in ${EMC_ROOT}/examples/setup/chemistry/multiphase, where the describing
file multiphase.esh resides.

We assume the density of the water, SDS, and oil phase to be 1, 0.8, and 0.8 g/cc respectively.
This system is at a temperature of 300K. We would like to describe the interactions with
the CHARMM force field. The final simulation should have about 5000 particles. These
prerequisites are captures in the OPTIONS paragraph (see 〈undefined〉 [Chemistry Options],
page 〈undefined〉),

ITEM OPTIONS

ntotal 5000

temperature 300

density 1,0.8,0.8

phases water + sds + oil

field charmm/c32b1/all_27_prot_lipid

mass true

profile true

replace true

ITEM END

Here, the keyword ntotal allows for setting the final number of sites to be simulated.
The keyword temperature sets the temperature. The desnity of each phase is defined by
keyword density through separation of each entry by either a comma or a tab. Chemically,
each phase is defined by the keyword phases. Here, each phase is demarcated by the +-
sign. Contributing clusters to each individual phase are separated by either commas, tabs,
or spaces, e.g.

phases water sds + oil

would create two phases: the middle phase would consist of a random mixture of water and
sds, while the outer phase would consist of just oil. The fractions entered in the SHORTHAND
are assumed to be by mass, which is expressed by setting the keyword mass to true in the
OPTIONS section. Furthermore, analysis mass profiles is added to the generated LAMMPS
input script multiphase.in by setting the keyword profile to true. Lastly, replacement
of all scripts and files produced by executing emc_setup.pl are selected to be overwritten
by setting keyword replace to true. Defining the chemical composition can be entered in
the SHORTHAND section (see Section 4.6.2 [Chemistry File], page 38),

ITEM SHORTHAND

Chapter 4: Simulation Setup 65

water O,0.4

oil (C)8,0.4

sds CCCCCCCCCCCCO:S(:O)(:O):O.[Na+],0.2

ITEM END

Here, we select 40% by weight of both water and oil phases, while we add 20% by weight of
SDS. Chemical identities are entered using the SMILES format (see Section 7.8 [SMILES],
page 197).

Steps of execution are described in the usage section (see Section 4.2 [Setup Usage], page 9).

Chapter 4: Simulation Setup 66

4.7.2.6 Surfaces

EMC allows you to set up surfaces and pack material between them. To this
extend, the surface has to be identified by a surface keyword in the CLUSTERS

section of your emc_setup.pl script. An example can be found in ${EMC_

ROOT}/examples/setup/chemistry/surface, where surface.esh provides the input
information and setup.sh the manner in which emc_setup.pl should be called. In this
example, we want to sandwich amorphous 100 decane molecules between two diamond
surfaces, where the density of the decane phase should be 0.8 g/cc at a temperature
of 298K. We have to first define the simulation conditions in the OPTIONS section (see
〈undefined〉 [Chemistry Options], page 〈undefined〉),

ITEM OPTIONS

density 0.8

temperature 298

ntotal 1000

shape 1.5

build_dir .

field opls-ua

charge false

profile true

replace true

ITEM END

Here, we chose the OPLS-UA force field without charges, select a mass profile section to
appear in the LAMMPS input script, and allow for emc_setup.pl output scripts to be
overwritten. The definition of surfaces occurs through predefined EMC input files, of which
a few examples can be found in ./lib. One of these input files is a fully bonded diamond
lattice called diamond_lattice.emc. EMC input files can contain variables, which can be
redefined from an EMC input script. Specific variables need to be redefined, in order to
turn the generic diamond lattice input file into a carbon diamond lattice. This redefintion
occurs in the VARIABLES paragraph (see Section 4.6.2 [Chemistry File], page 38),

ITEM VARIABLES

diamond_chemistry "*C(*)(*)*"

diamond_name "carbon"

diamond_atomistic true

lbond 1.529

ITEM END

Four variables are predefined in the diamond lattice input file: diamond_chemistry,
diamond_name, diamond_atomistic, and lbond. The above defintions overwrite the

Chapter 4: Simulation Setup 67

predefined values. The value for lbond has been taken from the OPLS-UA force field,
where it represents the equilibrium bond distance between two ct types, which is 1.529 A.
With options and variables set, we now need to define the group describing decane,

ITEM GROUPS

decane (C)10

ITEM END

Here, an extension of SMILES was used to depict decane. Proper SMILES would require
CCCCCCCCCC, but EMC allows for an extension to SMILES, for which a number after paren-
thesis is interpreted as the number of times, with which the snippet between the parenthesis
is repeated. Finally, the CLUSTERS cluster section defines both decane and the surface,

ITEM CLUSTERS

decane decane 1

surface import 4 $root+"lib/diamond_bonded" emc

ITEM END

Here, the fraction, 1, of decane molecules is defined, followed by the surface definition.
Both lines start with the name of the cluster. This name is followed by a reference to the
corresponding group for the decane molecules. The second keyword for the surface molecule
is a reserved keyword, which indicates, that this molecule is a surface, which uses the library
file diamond_bonded as a reference file. The different phases are built in the x-direction.
The number 4 indicates the number of surface cells to build into this direction, which defines
the value of internal variable nx.

Chapter 4: Simulation Setup 68

4.7.3 Environment Mode

The environment mode allows creating a multi-simulation environment, conveniently pack-
aged in one clear file. One example dealing with determining shear is included. Environment
examples can be found in ${EMC_ROOT}/examples/setup/environment/.

Chapter 4: Simulation Setup 69

4.7.3.1 User-Defined Force Fields

This example demonstrates the concept of including a force field definition in a chemistry
template, while adding loops in the environment section of the EMC Setup input script.
The example can be found in ${EMC_ROOT}/examples/setup/environment/field. EMC
Setup provides the FIELD section for controlling user-defined force fields. The idea behind
this example is to study the hypothetical influence of branching. To this extend, the number
of branch points and the Lennard-Jones (LJ) interaction constant epsilon is varied. The
work directory ${WORKDIR} is defined by

${EMC_ROOT}/examples/setup/environment/field

later referred to by ${WORKDIR}. The user is advised to maintain a standardized direc-
tory structure when using the environment mode of EMC Setup. This means, that EMC
Setup environment .esh files are stored in ${WORKDIR}/setup. Execution of the setup files
should occur in ${WORKDIR} and not in ${WORKDIR}/setup. Once executed in ${WORKDIR},
EMC Setup creates directories analyze, build, chemistry, run, and optionally test in
${WORKDIR}. A typical convention for setup files is to name them by date, followed by a
serial number, e.g. 2018070100 means, that the setup file was created on July 1, 2018 and
is the first of the series of files created on that date.

Environment

All sections outside the TEMPLATE section define the environment and is considered to be
the environment mode of EMC Setup. This includes the ENVIRONMENT and LOOPS sections
as well as the STAGE designator. The ENVIRONMENT section defines the project name, queue
settings, and high performance computing (HPC) cluster architecture parameters. Addi-
tionally, the name of a test directory can be defined by the option name_testdir (see the
’Execution’ section below).

Loops

Loop variables are defined in the LOOPS section. Variables stage and trial are reserved
keywords. The former indicates the stage of a project, e.g. one likes to study branched and
linear structures. This could be devided in a branched stage and a linear stage. Here,
only the branched variety is considered. Furthermore, the number of branches is indicated
by nbranches and the settings for the LJ interaction constant by epsilon. These variables
are later referred to in the TEMPLATE section by @{NBRANCHES} and @{EPSILON} respectively.

Template

The TEMPLATE section contains the definition of one simulation, here referred to as the
chemistry mode of EMC Setup. In this chemistry template, one can use variables as defined
in the LOOPS section of the environment. A template should at least contain an OPTIONS,
GROUPS, and CLUSTERS section to fully define the simulation setup. Here, an additional
POLYMERS section has been added to control the definition of the to be studied branched
oligomers. Since polymers are requested, connectivity has to be defined in the GROUPS

section. This connectivity is referred to with the ’*’ character. The numbers after the

Chapter 4: Simulation Setup 70

chemical definition through a SMILES refer to the occurence of the ’*’ character in the
SMILES, e.g. the definition of group A

a,1,A:2,1,B:2,1,B:3,2,B:1

means, that the first ’*’ in ’*a*’ connects to the second of group A and the second and third
of group B. The second star in ’*a*’ connects the first of group B.

The CLUSTERS section defines the molecule and the amount of each contributor, i.e. the
solvent is defined by group S and has an 80% occurence. The polymer is defined as a random
copolymer and has a 20% occurence.

The POLYMERS paragraph holds all definitions of polymers as referred to in the CLUSTERS
paragraph. Here, only the polymer polymer exists with 10 repeat units of monomer A as
defined by group A, and a variable amount of monomer B and terminator T. The amount
is defined by @{NBRANCHES} which refers to nbranches in the LOOPS section.

The FIELD section defines the user-provided force fields and contains subsections related
to the subsequent parameter definitions. Mandatory subsections are MASS, NONBOND, and
– in case of connectivity – BOND. Additionally, in the case of this example angle terms are
also defined in the ANGLE subsection. No torsions were needed. Wildcards in the form of
’*’ are allowed in all but the MASS section. In the case of the latter, each type can only
contain one ’*’ character, which has to be at the end of the type. Note that the variable
definition of the LJ epsilon is taken care of by @{EPSILON} in the NONBOND subsection.

Execution

Creation of the simulation environment occurs in ${WORKDIR} through

./setup/2018070100.esh

or, when the above is not executable or emc_setup.pl is not in your path,

${EMC_ROOT}/scripts/emc_setup.pl setup/2018070100.esh

Though the latter being possible, the user is adviced to add both bin and scripts directory
to their path, e.g.

export PATH=${EMC_ROOT}/bin:${EMC_ROOT}/scripts:${PATH}

Once executed, several bash scripts are generated in directories analyze, build, and run

with name 2018070100.sh. Subsequently, the provided test directory name appears as a
subdirectory of ${WORKDIR}/test/, in which the script setup.sh is created. Execution of
the latter creates an instance of the first occurence of each loop variable, i.e. for STAGE =

branched, NBRANCHES = 2, and EPSILON = 0.9. This test directory serves the purpose of
testing the validity of the TEMPLATE section without having to submit to a queueing system.

Before summitting, an option which you would need to set is queue ppn (procs or cores
per node), since it is unknow how many cores can run on one of your nodes. EMC will

Chapter 4: Simulation Setup 71

pack single core build jobs together on a node if it knows the ppn. Similarly, you can set
the memory per core with queue memory.

Submission to a queueing system occurs though ./build/2018070100.sh, followed by
./run/2018070100.sh once all builds as spawned by the former have finished. Chaining of
builds and runs is also possible by executing the run script with build mode included, i.e.

./run/2018070100.sh -build

This spawns build and lets running of the systems LAMMPS wait for the building to finish.

Chapter 4: Simulation Setup 72

4.7.3.2 Shear

The shear example, as found in ${EMC_ROOT}/examples/setup/environment/nemd, illus-
trates the use of the EMC setup environment mode to define a set of simulations, calculating
time dependent pressure tensors for a number of n-alkanes with various shear rates. The
enviroment mode allows for scanning through parameter space, aiding the study of material
response to various conditions. The example defines 40 simulations in total. An environ-
ment script contains multiple distinct sections. A shear simulation needs an equilibrated
non-sheared configuration as a starting point. First, the environment mode needs to be
triggered in the first occurring OPTIONS section,

ITEM OPTIONS

project pure

replace true

environment true

name_analyze date00

name_build date00

name_run date00

queue_build default

queue_analyze default

shear true, true

restart fal

ncores 8

trun -

ITEM END

Besides toggling the environment mode, this section also defines the general project name,
names associated with build, run, and analysis scripts, execution queues, and the number
of cores to execute LAMMPS simulations on. Build, run, and analysis names use the base
name of the chemistry script by as default. Zero shear simulations do not start from a
restart file, but uses the output generated by EMC instead.

Loops can be defined over project stages, trials, and user defined variables in section
LOOPS. This section controls parameter space for which phenomena are to be studied.

ITEM LOOPS

stage pure

trial c-06 c-07 c-08 c-09 c-10 &

c-11 c-12 c-13 c-14 c-16

shear 0.00e0

copy 1

ITEM END

Chapter 4: Simulation Setup 73

Reserved variables stage, trial, and copy are internally defined. Both stage and trial

relate to other sections in the the environment script. Each stage is associated with a
specific chemistry file, which is defined in section TEMPLATE of the environment script.
The definitions for variable trial are associated with section STRUCTURES. The reserved
variable copy supports statistical sampling by creating independent structures (here, as an
example, 1 structure is created). The use of the copy variable should be used with care,
since it functions as a multiplier for the number of simulations, that are considered. In this
example, the defined 11 trials and 4 shears comprise 44 simulations. This would increase
to 440 simulations, when copy is set to 10 instead of 1.

The variable shear is a user defined variable. It is expected to be lower case. Its reference
in the chemistry template is expected to be capitalized. Shell scripts are created after each
LOOPS section. Build and run scripts – with names date00.sh and date10.sh, respectively,
as defined in the previous OPTIONS section – are written in a newly created directory run

in the current work directory. An analysis script with the name date10.sh is created in in
a newly created directory analyze.

Subsequent shear simulations are defined after zero shear simulations. Here, only a few
lines are needed. Non-defined parameters take the value of their definition in previous
OPTIONS sections.

ITEM OPTIONS

name_build -

name_run date10

name_analyze date10

restart true, ../../0.00e0

ITEM END

These subsequent simulations will use equilibrated zero shear simulations as their starting
point. A build script is not needed in this case, which is denoted by defining parameter name_
build with a dash. Restart files are used as starting point, which is triggered by setting
parameter restart and defining the source directory for the restart files, ../../0.00e0 in
this case (the 0.00e0 value refers to the previously set zero shear).

Multiple shear rates are needed to see the shear behavior, intending to reach the New-
tonian plateau at very low shear. Depending on the substance, this plateau might not be
possible to be reached.

ITEM LOOPS

shear 1.00e-4, 1.00e-5, 1.00e-6

ITEM END

Shear rates are expressed in box length per time step. After the definition of this paragraph,
a run shell script with name 2016103120.sh is added to directory run, and an analysis shell

Chapter 4: Simulation Setup 74

script with name 2016103120.sh is added to directory analyze. Note, that the definition
of stage and trial are inherited from the previous definition of section LOOPS.

With all shell scripts defined, now we can define each stage and trial separately by using
sections STAGE and TRIAL respectively. After invoking STAGE and/or trial, all subsequent
sections apply to the defined stage and/or trial. Here, we only need to define a section
STAGE with name pure, relating back to the definition of variable stage in section LOOPS.
Note, that both sections STAGE and TRIAL do not require an ITEM END designation.

ITEM STAGE pure

A template is used to define the actual simulation conditions. A template section is defined
by ITEM TEMPLATE and needs an ITEM END to close. Variables appearing in section LOOPS can
be referred to by starting with @ followed by the variable name in all capitals. A simulation
is defined as usual withing a template section.

OPLS-UA reflects the force field chosen for our n-alkanes. A total of 10000 beads is
requested by setting ntotal. The equilibration time is set to 100000 time steps with tequil.
The initial density is chosen to be 0.85 g/cc. The simulation is run at equal pressure of 1
atm and temperature of 300 K by using an NPT ensemble. Note, that it is possible, that
npt/sllod is not available in all LAMMPS versions, in which case the presure line should be
omitted. Shear rates are set by the shear parameter. Here, @SHEAR refers back to variable
shear in the LOOPS section. All exisiting scripts are overwritten by setting parameter
replace to true. The usage of bond increments depend on the chosen force field. An
empty bond increment is used when non-existing bond increments are encountered. Note,
that OPLS-UA does not use bond increments.

ITEM OPTIONS

replace true

field opls-ua

ntotal 10000

tequil 100000

density 0.85

pressure 1.0

temperature 300

shear @SHEAR,erate

replace true

increment empty

ITEM END

With simulation conditions set, substance definitions are in order. We chose to use a
structure section to define chemical structures. As a consequence, the variable structure

is defined and used to replace all occuring @STRUCTURE instances in the chemistry template.

ITEM SHORTHAND

Chapter 4: Simulation Setup 75

molecule @STRUCTURE,1

ITEM END

The template section is closed with an ITEM END. This template is used to define all simu-
lations. It is stored with name pure.esh in a created directory chemistry/stages within
the current work directory. Also, an adaptation shell script with name pure.sh is stored
in created directory chemistry/scripts.

Finally, desired substances have to be defined. Doing so in section STRUCTURES suffices,
since we are only interested in bulk properties of pure components.

ITEM STRUCTURES

c-06 (C)6

c-07 (C)7

c-08 (C)8

c-09 (C)9

c-10 (C)10

c-11 (C)11

c-12 (C)12

c-13 (C)13

c-14 (C)14

c-15 (C)15

c-16 (C)16

ITEM END

Each structure is stored in a separate file with names as occuring in the first column. These
files are stored in directory chemistry/structures.

Execution of the whole simulation can be done on either the cluster on which the sim-
ulations are to run, or can be done from the machine on which the final results are to
be analyzed. In the former case, each of the three scripts in directories build, run, and
analysis are to be executed sequentially, i.e. build/date00.sh to build all simulations,
subsequently followed by zero shear simulations through run/date00.sh when all build
simulations are completed, an by finite shear simulations through run/date10.sh when all
zero shear simulations are completed. Each script uses run.sh to submit jobs to the queue-
ing system, which can be found in ${EMC_ROOT}/scripts. The run.sh supports LSF and
PBS queueing systems. The run_host.sh script can be found in the same directory allows
remote submission of jobs. It assumes, that the execution directory structure is identical
on both local and remote host machines. run_host.sh can be used to for instance execute
the build shell script remotely through execution of

run_host.sh user@remote.machine.net build/date00.sh

in the current work directory. Log files are created both locally and remotely by
run_host.sh, keeping records of simulation execution. The example above would create

Chapter 4: Simulation Setup 76

build/date00.log. Remote execution of subsequent run scripts would follow each other
sequentially upon completion of its predecessor.

Chapter 4: Simulation Setup 77

4.8 Help Output

The following output appears when invoking emc_setup.pl either without any options,
with a non-exisiting option, or with the -help option. Additionally, using keyword module

adds the originating module to the output (i.e. -help=module).

EMC Setup v5.0 (January 1, 2023), (c) 2004-2023 Pieter J. in ’t Veld

Usage:

emc.pl [-command[=#[,..]]] project [phase 1 clusters [+ ...]]

Commands:

-analyze_archive archive file names associated with analyzed data

[true]

-analyze_data create tar archive from exchange file list [true]

-analyze_last include last trajectory frame (deprecated) [false]

-analyze_replace replace already exisiting analysis results [true]

-analyze_skip set the number of initial frames to skip [0]

-analyze_source set data source directory for analysis scripts

-analyze_user set directory for user analysis scripts

-analyze_window set the number of frames in window average [1]

-angle set DPD angle constants k and theta or set angle

field option (see below) [5,180]

-auto add wildcard entry to mass and nonbond sections in

DPD .prm [false]

-binsize set bin size for LAMMPS profiles [0.01]

-bond set bond constants k,l

-build set build script name [build]

-build_center insert first site at the box center [false]

-build_dir set build directory for LAMMPS script [../build]

-build_order set build order of clusters [random]

-build_origin set build order of clusters [x=0, y=0, z=0]

-build_replace replace already existing build results [false]

-build_theta set the minimal insertion angle [false]

-charge chemistry contains charges [true]

-charge_cut set charge interaction cut off [9.5]

-chunk use chunk approach for profiles in LAMMPS script

(depricated, use lammps_chunk) [true]

-communicate use communicate keyword in LAMMPS script (depricated,

use lammps_communicate) [false]

-core set core diameter [-1]

-cross include nonbond cross terms in LAMMPS params file

[false]

-crystal treat imported structure as a crystal [auto]

-cut set pairwise interaction cut off [9.5]

-cutoff generate output of pairwise cut off in LAMMPS

parameter file (depricated, use lammps_cutoff)

[false]

Chapter 4: Simulation Setup 78

-debug output debugging information [false]

-deform deform system from given density [nblocks=1,

ncycles=100, type=relative, xx=1, yx=0, yy=1, zx=0,

zy=0, zz=1]

-delete sets which clusters to delete; each deletion is

separated by a +-sign; default assigns no clusters to

delete [clusters=all, fraction=1, groups=all,

mode=include, phase=1, sites=all, thickness=1,

type=relative]

-density set simulation density in g/cc for each phase [1]

-dielectric set charge medium dielectric constant [1]

-direction set build direction of phases [x]

-dlimit set LAMMPS nve/limit distance (depricated, use

lammps_dlimit) [0.1]

-dtdump set LAMMPS trajectory file write frequency

(depricated, use lammps_dtdump) [100000]

-dtrestart set LAMMPS restart file frequency (depricated, use

lammps_dtrestart) [100000]

-dtthermo set LAMMPS thermodynamic output frequency

(depricated, use lammps_dtthermo) [1000]

-emc create EMC build script [true]

-emc_depth set ring recognition depth in groups paragraph [8]

-emc_exclude set EMC section to exclude [build=false]

-emc_execute execute EMC build script [false]

-emc_export set EMC section to export [smiles=]

-emc_moves set Monte Carlo moves for after build

[cluster=HASH(0x7fd741241c28),

displace=HASH(0x7fd741241ce8)]

-emc_output set EMC output modes [debug=false, exit=true,

info=true, warning=true]

-emc_progress set progress indicators [build=true, clusters=false]

-emc_run set Monte Carlo run conditions for after build

[clusters=all, groups=all, nblocks=100, ncycles=0,

nequil=0, sites=all]

-emc_test test EMC build script [false]

-emc_traject settings for EMC trajectory [append=true,

frequency=0]

-environment create project environment [false]

-error restart LAMMPS only upon previous error (depricated,

use lammps_error) [false]

-ewald set long range ewald summations [true]

-exclude exclude previous phase during build process [true]

-expert set expert mode to diminish error checking [false]

-extension set environment script extension [.esh]

-field set force field type and name based on root location

-field_angle set angle field option (see below) [-]

-field_bond set bond field option (see below) [-]

Chapter 4: Simulation Setup 79

-field_charge check system charge after applying force field [true]

-field_check check force field compatibility [true]

-field_debug set debug field option [false]

-field_dpd set various DPD options [auto=false, bond=false]

-field_error override field errors (used for debugging) [true]

-field_format parameter format of generated force field [%15.10e]

-field_group set group field option (see below) [-]

-field_id set force field id [opls-ua]

-field_improper set improper field option (see below) [-]

-field_increment set increment field option (see below) [-]

-field_location set force field location [~/emc/v9.4.4/field]

-field_name set force field name

-field_nbonded set number of excluded bonded interactions [0]

-field_reduced set force field reduced units flag [false]

-field_torsion set torsion field option (see below) [-]

-field_type set force field type [opls]

-field_write create field parameter file [true]

-focus list of molecules to focus on [-]

-ghost_cut set pairwise interaction cut off [-1]

-grace (deprecated: use weight) set build relaxation grace

[0.9999,0.9999,0]

-help this message

-host set host on which to run simulations [pro]

-info output standard information [true]

-inner set inner cut off [-1]

-insight create InsightII CAR and MDF output [false]

-insight_compress set InsightII CAR and MDF compression [false]

-insight_pbc apply periodic boundary conditions [false]

-insight_unwrap apply unwrapping [false]

-kappa set electrostatics kappa [4]

-lammps create LAMMPS input script or set LAMMPS version

using year, e.g. -lammps=2014 (new versions start at

2015) [true]

-lammps_chunk use chunk approach for profiles in script [true]

-lammps_communicate use communicate keyword in script [false]

-lammps_cutoff generate output of pairwise cut off in parameter file

[false]

-lammps_dlimit set nve/limit distance [0.1]

-lammps_dtdump set trajectory file write frequency [100000]

-lammps_dtrestart set restart file frequency [100000]

-lammps_dtthermo set thermodynamic output frequency [1000]

-lammps_error restart only upon previous error [false]

-lammps_momentum set zero total momentum [100,1,1,1,angular]

-lammps_nsample number of configuration in profile [1000]

-lammps_pdamp set barostat damping constant [1000]

-lammps_prefix set project name as prefix to output files [false]

-lammps_skin set skin [2]

Chapter 4: Simulation Setup 80

-lammps_tdamp set thermostat damping constant [100]

-lammps_tequil set equilibration time [1000]

-lammps_tfreq set profile sampling frequency [10]

-lammps_thermo_multi set thermo style to multi [false]

-lammps_triclinic set triclinic mode [false]

-lammps_trun set run time [10000000]

-location prepend paths for various file locations

[analyze=.:~/emc/v9.4.4/scripts/analyze,

field=.:~/emc/v9.4.4/field, include=.]

-mass assume mass fractions in chemistry file [false]

-md_restart create MD restart script [false,..]

-md_shake set shake types

-md_shake_iterations set maximum number of shake iterations [20]

-md_shake_output set shake output frequency [never]

-md_shake_tolerance set shake tolerance [0.0001]

-md_shear add shear paragraph to LAMMPS input script [false]

-md_timestep set integration time step [2]

-memorypercore set queue memory per core in gb [default]

-modules manipulate runtime modules in format [command=]module

-mol assume mol fractions in chemistry file [true]

-momentum set zero total momentum in LAMMPS (depricated, use

lammps_momentum) [100,1,1,1,angular]

-moves_cluster define cluster move settings used to optimize build

[active=false, cut=0.05, frequency=1,

limit=auto:auto, max=0:0, min=auto:auto]

-msd set LAMMPS mean square displacement output [false]

-namd create NAMD input script and parameter file [false]

-namd_dtcoulomb set electrostatic interaction update frequency [1]

-namd_dtdcd set output frequency of DCD file [10000]

-namd_dtnonbond set nonbonded interaction update frequency [1]

-namd_dtrestart set output frequency of restart files [100000]

-namd_dtthermo set output frequency of thermodynamic quantities

[1000]

-namd_dttiming set timing frequency [10000]

-namd_dtupdate set update frequency [20]

-namd_extra_bonds set selection for extra bonds [-]

-namd_fixed_atoms set selection for fixed atoms [-]

-namd_pres_decay set pressure ensemble decay [50]

-namd_pres_period set pressure ensemble period [100]

-namd_temp_damp set temperature ensemble damping [3]

-namd_tequil set number of equilibration timesteps [100000]

-namd_tminimize set number of minimization timesteps [50000]

-namd_trun set number of timesteps for running [10000000]

-name_analyze set job analyze script name [chemistry]

-name_build set job build script name [chemistry]

-name_run set job run script name [chemistry]

-name_scripts set analyze, job, and build script names

Chapter 4: Simulation Setup 81

simultaneously

-name_testdir set job test directory as created in ./test/ [-]

-nchains set number of chains for execution of MD jobs

-ncores set number of cores for execution of MD jobs [-1]

-ncorespernode set queue cores per node for packing jobs [default]

-niterations set number of build insertion iterations [1000]

-norestart control possibility of restarting when rerunning

[false]

-nparallel set number of surface parallel repeat unit cells

[auto]

-nrelax set number of build relaxation cycles [100]

-nsample number of configuration in profile (depricated, use

lammps_nsample) [1000]

-nthreads set number of cores for per thread for MD jobs [1]

-ntotal set total number of atoms [10000]

-number assume number of molecules in chemistry file [false]

-omit omit fractions from chemistry file [false]

-options_perl export options, comments, and default values in Perl

syntax [false]

-options_tcl export options, comments, and default values in Tcl

syntax [false]

-outer set outer cut off [-1]

-pair set pair constant defaults [a=25, cutoff=1,

gamma=4.5, r=1]

-parameters set parameters file name [parameters]

-params create field parameter file [true]

-pdamp set LAMMPS barostat damping constant (depricated, use

lammps_pdamp) [1000]

-pdb create PDB and PSF output [true]

-pdb_atom set atom name behavior [index]

-pdb_compress set PDB and PSF compression [true]

-pdb_connect add connectivity information [false]

-pdb_cut cut bonds spanning simulation box [false]

-pdb_extend use extended format for PSF [false]

-pdb_fixed do not unwrap fixed sites [true]

-pdb_hexadecimal set hexadecimal index output in PDB [false]

-pdb_parameters generate NAMD parameter file [false]

-pdb_pbc apply periodic boundary conditions [true]

-pdb_rank apply rank evaluation for coarse-grained output

[false]

-pdb_residue set residue name behavior [index]

-pdb_rigid do not unwrap rigid sites [true]

-pdb_segment set segment name behavior [index]

-pdb_unwrap apply unwrapping [clusters]

-pdb_vdw add Van der Waals representation [false]

-percolate import percolating InsightII structure [false]

-phases sets which clusters to assign to each phase; each

Chapter 4: Simulation Setup 82

phase is separated by a +-sign; default assigns all

clusters to phase 1 [all]

-polymer default polymer settings for groups [bias=none,

connect=ARRAY(0x7fd74123c068), fraction=number,

niterations=-1, order=list]

-polymer_niters number of iterations for polymer construction [-1]

-port port EMC setup variables to other applications

-precision set charge kspace precision [0.001]

-prefix set project name as prefix to LAMMPS output files

(depricated, use lammps_prefix) [false]

-preprocess use gcc to preprocess the input script [false]

-pressure set system pressure and invoke NPT ensemble;

optionally add direction and/or (un)couple for

specifying directional coupling [false,

direction=x+y+z, couple]

-profile set LAMMPS profile output [density=false,

density3d=false, pressure=false]

-project set project name; slashes are used to create

subdirectories

-queue queue settings [account=none, analyze=default,

build=default, memory=default, ncores=-1,

ppn=default, ppt=1, run=default, user=none]

-queue_account set queue account for billing [none]

-queue_analyze set job analyze script queue [default]

-queue_build set job build script queue [default]

-queue_memory set queue memory per core in gb [default]

-queue_ncores set number of cores for execution of MD jobs [-1]

-queue_ppn set queue cores per thread [1]

-queue_run set job run script queue [default]

-queue_user options to be passed directly to queuing system

[none]

-quiet quiet output [false]

-radius set build relaxation radius [5]

-record set record entry in build paragraph [cut=false,

frequency=1, inactive=true, name="", pbc=true,

unwrap=sites]

-references set references file name [references]

-region_epsilon set epsilon to use for exclusion regions [0.1]

-region_sigma set sigma to use for exclusion regions [1]

-replace replace all written scripts as produced by EMC setup

[false]

-restart create MD restart script (depricated, use md_restart)

[false,..]

-rlength set reference length

-rmass set reference mass

-rmax set maximum build cutoff radius [-1]

-rtype set reference type

Chapter 4: Simulation Setup 83

-sample set sampling options [energy=false, green-kubo=false,

gyration=false, msd=false, pressure=true,

volume=false]

-script set script file name [chemistry]

-script_ncolums set number of colums in output scripts [80]

-seed set initial random seed [-1]

-shake set shake types (depricated, use md_shake)

-shake_iterations set maximum number of shake iterations (depricated,

use md_shake_iterations) [20]

-shake_output set shake output frequency (depricated, use

md_shake_output) [never]

-shake_tolerance set shake tolerance (depricated, use

md_shake_tolerance) [0.0001]

-shape set shape factor [1]

-shear add shear paragraph to LAMMPS input script

(depricated, use md_shear) [false]

-skin set LAMMPS skin (depricated, use lammps_skin) [2]

-split sets which clusters to partition; each split is

separated by a +-sign; default assigns no clusters to

split [clusters=all, fraction=0.5, groups=all,

mode=random, phase=1, sites=all, thickness=1,

type=relative]

-suffix set EMC and LAMMPS suffix [_pro]

-system system identification and checks during building

[charge=true, geometry=true, id=main, map=true,

pbc=true]

-system_charge check for charge neutrality after build [true]

-system_geometry check geometry sizing upon building [true]

-system_id check for charge neutrality after build [main]

-system_map map system box before build [true]

-system_pbc apply periodic boundary conditions after build [true]

-tdamp set LAMMPS thermostat damping constant (depricated,

use lammps_tdamp) [100]

-temperature set simulation temperature [300]

-tequil set LAMMPS equilibration time (depricated, use

lammps_tequil) [1000]

-tfreq set LAMMPS profile sampling frequency (depricated,

use lammps_tfreq) [10]

-thermo_multi set LAMMPS thermo style to multi (depricated, use

lammps_thermo_multi) [false]

-tighten set tightening of simulation box for imported

structures [3]

-time_analyze set job analyze script wall time [00:30:00]

-time_build set job build script wall time [00:10:00]

-time_run set job run script wall time [24:00:00]

-timestep set integration time step (depricated, use

md_timestep) [2]

Chapter 4: Simulation Setup 84

-trace provide function trace upon error [false]

-triclinic set LAMMPS triclinic mode (depricated, use

lammps_triclinic) [false]

-trun set LAMMPS run time (depricated, use lammps_trun)

[10000000]

-types output types only [false]

-units set units type [real]

-units_energy set units for energetic scale [-1]

-units_length set units for length scale [-1]

-version output version information [false]

-volume set recalculation based on molecular volume [false]

-wall set temporary exclusion wall thickness [10]

-warn output warnings [true]

-weight set build relaxation energetic weights [bond=0.0001,

focus=1, nonbond=0.0001]

-width use double width in scripts [false]

-workdir set work directory [~/emc/v9.4.4/texinfo/setup]

Notes:

* This script comes with no warrenty of any kind. It is distributed under

the same terms as EMC, which are described in the LICENSE file included

in the EMC distribution.

* A ’+’ sign demarcates clusters for each phase; remaining clusters are

assigned to the first empty phase

* Chemistry and environment file names are assumed to have .esh extensions

* File names with suffixes _chem can be taken as chemistry file names wild

cards

* Reserved environment loop variables are: stage, trial, and copy

* Densities for multiple phases are separated by commas

* Shears are defined in terms of erate; values < 0 turns shear off

* Inner and outer cut offs are interpreted as fractions for colloidal force

fields

* Valid field options are: ignore, complete, warn, empty, or error

* Queue name ’default’ refers to whichever queue is default; queue name

’local’ executes all jobs sequentially on local machine

* Reserved environment loop variables are: stage, trial, and copy

* Reference and parameter file names are assumed to have .csv extensions

85

5 Scripting Commands

EMC is driven through a scripting language that accesses the different predefined routines
driving building and simulation of configurations. EMC requires each script to start with the
text "(* EMC: Script *)" on the first line. Absence of this line will result in an error upon
start up of EMC. The following sections describe the syntax of commands in the current
version. Currently, commands use a variable representation similar to Mathematica. A
change to a function representation is planned in future.

Chapter 5: Scripting Commands 86

5.1 Build

5.1.1 Syntax

build = {

system -> {id -> constant, temperature -> real,

density -> real, geometry -> voigt,

flag -> {charge -> boolean, map -> boolean}},

...

select -> {progress -> boolean, frequency -> long,

message -> option, center -> boolean, origin -> vector,

order -> constant, check -> boolean,

cluster -> {constant, ...}, name -> string,

relax -> {ncycles -> long, radius -> real},

grow -> {method -> constant, check -> constant,

cutoff -> real, grace -> {real, real},

theta -> real, dphi -> real, nbonded -> long,

ntrials -> long, niterations -> long,

include -> {region, ...},

exclude -> {region, ...}}}

...

};

Directive Parameters Description
system struct Defines the system dimensions associated with a build.
id constant Sets identity of system to which to add the build; can be

either textual or numerical.

density real Sets the system density; can either be set to calculate

when chosing or forced when chosing values > 0.0.

geometry voigt Sets the system geometry; used as a fractional size when
density is set, otherwise used as system dimensions from
which a density is calculated (see Section 7.15 [Voigt],
page 367).

flag boolean Control system checks and optimizations.
charge boolean Perform a total charge check of the system and exit on a

non-zero value; options are true or false.

map boolean Map a stretched triclinic cell geometry into its minimal
representation; options are true or false.

Directive Parameters Description
select struct Selects building style and clusters
progress boolean Shows progress indicator; options are bar, list, or none.
frequency long Sets the progress frequency (in percentages), where 0 <=

frequency <= 100.

Chapter 5: Scripting Commands 87

message option Sets the style for energetic output in progress report;
valid options are none, raw, nkt, or n, which corresponds
to energy in no particular units, internal units, units of
nkT or units of n, respectively; internal units correspond
to the units of the selected force field (kcal/mol for COM-
PASS, OPLS, GROMACS and MARTINI).

center boolean Place first inserted site at origin as defined origin option;
options are true or false.

origin {0,0,0} Define origin for first inserted site; used only when
center option is set to true.

order constant Insert clusters in sequence or at random.
check boolean Check for (semi)fixed sites and abort if present; options

are true or false.

cluster array Sets the cluster(s) participating in the build.
name string Sets the output name for generation of an XYZ file upon

error of all active sites of the built system; no output is
generated, when the output name is not set.

relax struct Selects intermediate structure relaxation during the
building process; Monte Carlo is performed on a spher-
ical volume with a radius around the inserted site for
ncycles after each successful insertion.

Directive Parameters Description
grow struct Describes growth method and settings.
method option Sets building style; options are overlap for hard sphere

excluded volume considerations, energetic for ener-
getic considerations, and minimum for energetic minimum
considerations.

check option Sets overlap checking; options are bonded for checking
overlaps up to four bonds away, cluster for checking in-
tramolecular, all for intra- and intermolecular overlaps,
and none for no overlap checking.

cutoff real Sets the energetic cutoff when using method -> minimum,
where decisions are based on boltzmann sampling when
cutoff <= 0.

grace {real, real} Sets the grace fraction, which correlates to how much
overlap is allowed; 0 corresponds to no overlap, while
1 corresponds to full overlap (typically < 0.75); the first
value influences the nonbonded acceptance, while the sec-
ond value influences the bonded acceptance; an energet-
ical building style requires grace < 0.9995 for coherent
energies.

theta real Sets the minimum allowed bond angle.

Chapter 5: Scripting Commands 88

dphi real Sets the maximum allowed torsion angle for for bonded
construction using a Monte Carlo scheme; needed for all
force field definitions beyond bond length interactions
(i.e. it is neglected in case of the existence of bonds only
or when a lower threshold is crossed).

nbonded integer Sets the number of trials moves for bonded construction
using a Monte Carlo scheme.

ntrials integer Sets the number of trial overlap or energetic calculations.
niterations integer Sets the number of iterative trials.
include region Sets inclusion regions (see Section 7.7 [Region], page 196).
exclude region Sets exclusion regions (see Section 7.7 [Region],

page 196).

5.1.2 Usage

The build command enables the build of previously defined clusters (see Section 5.4 [Clus-
ters], page 93) into a desired system. All building modes apply energetic sampling of
bonded potentials during the bond building process. Currently a hard sphere overlap and
an energetic build is available. Note that a system needs to be defined before build mode
can be executed (e.g. define system before select). Note that hard and soft modes regu-
late insertion behavior with respect to exclusion regions. The hard mode applies the region
to all sites of inserted clusters, while the soft mode only applies the region to the first site
of inserted clusters.

5.1.3 Default

The default is given by

build = {

system -> {id -> 0, density -> calculate, geometry -> {1, 1, 1},

flag -> {charge -> true, map -> true}},

select -> {progress -> bar, frequency -> 5, message -> nkt,

center -> false, order -> random, check -> true,

relax -> {

ncycles -> 0},

grow -> {

method -> energetic, check -> all,

grace -> {0.99, 0}, theta -> 0.0,

nbonded -> 20, ntrials -> 20, niterations -> 1000}};

5.1.4 Examples

An example is given by

build = {

system -> {

id -> main,

density -> 0.7,

temperature -> 1

},

select -> {

Chapter 5: Scripting Commands 89

grace -> 0.5,

method -> overlap,

theta -> 0.3*pi,

cluster -> {polymer, solvent}

}

};

Chapter 5: Scripting Commands 90

5.2 Cancel

5.2.1 Syntax

cancel = {style -> option};

Directive Parameters Description
style option Selects cancellation style; options are abort and exit.

5.2.2 Usage

The cancel command is used to stop a running script at the selected position. Its main
application serves debugging purposes. Script debugging can use either abort or exit,
while source code debugging would use abort.

5.2.3 Default

The default is given by

cancel = {style -> exit};

Chapter 5: Scripting Commands 91

5.3 Carve

5.3.1 Syntax

carve = {

mode -> option,

fraction -> {real, ...},

nsites -> {integer, ...},

systems -> {constant, ...},

inside -> region,

outside -> region

};

Directive Parameters Description
mode option Sets mode of operation; options are include and

exclude.

fraction real Sets the fractions in each system of the groups to be
carved out; the value of fraction lies between 0.0 and 1.0;
choses nsites when fraction < 0.0.

nsites integer Sets the number of sites remaining in the selected region
in each system; number of sites in group sites increments.

systems constant Sets target systems; can be one or more systems.
inside region Sets the inner boundary of the region in which sites are

to be deleted (see Section 7.7 [Region], page 196).

outside region Sets the outer boundary of the region in which sites are
to be deleted (see Section 7.7 [Region], page 196).

5.3.2 Usage

The carve command carves a shape out all systems in the currently defined simulation. It
will output the number of retained sites per selected system upon execution as info using
the nsites directive when a fraction for the selected systems is defined. It will use nsites
when the fraction for the selected systems is a number smaller than zero.

5.3.3 Default

The default is given by

carve = {

systems -> 0,

nsites -> 0,

mode -> include,

inside -> {shape -> spheroid, type -> relative,

center -> {0,0,0}, radius -> {0,0,0}},

outside -> {shape -> spheroid, type -> relative,

center -> {0,0,0}, radius -> {0,0,0}}

};

Chapter 5: Scripting Commands 92

5.3.4 Examples

An example is given by

variables = {n -> 20, r1 -> 1/2, r2 -> 1/2-0.75/(2^(2/3)*n)};

carve = {mode -> exclude,

inside -> {shape -> spheroid,

center -> {0, 0, 0}, radius -> {r2, r2, r2}},

outside -> {shape -> spheroid,

center -> {0, 0, 0}, radius -> {r1, r1, r1}}

};

Chapter 5: Scripting Commands 93

5.4 Clusters

5.4.1 Syntax

clusters = {

cluster -> {id -> constant, system -> constant, n -> integer,

[group -> constant | template -> constant]},

...

polymer -> {id -> constant, system -> constant, n -> integer,

type -> option, groups -> {constant, ...},

nrepeat -> {integer, ...}},

...

graft -> {core -> constant, type -> constant, polymer -> constant,

connect -> option},

...

body -> {id -> constant, system -> constant, n -> integer,

density -> real, [surface -> constant,]

core -> constant, region -> region},

...

};

Directive Parameters Description
cluster struct Defines multiple single group clusters.
polymer struct Defines multiple repeating group clusters.
graft struct Defines graft connection to a backbone cluster group.
body struct Defines multiple bodies constrained by a region; particles

consist either one core with multiple surface sites or core
sites only.

id constant Sets identifier, either textual or numerical.
system constant Sets destination system to construct in,
n integer Sets the number of molecules to create.
group constant Sets the contributing group; must be a group without

branches for cluster.

template constant Sets the contributing template as predefined in force field
files (see Section 5.11 [Field], page 106).

nrepeat integer Sets the number of repeat units of each contributing
monomer in the polymer; one nrepeat can be given in
case of multiple groups, which results in assignment of
this one nrepeat to all contributing groups.

groups constant Sets contributing groups; must be branched and con-
nected groups; groups will be terminated with their re-
spective terminators as defined by the groups command
(see Section 5.17 [Groups], page 117).

Chapter 5: Scripting Commands 94

type option Sets the type of polymer; options are block for block
copolymers, alternate for alternating copolymers, and
random statistical copolymers.

core constant Sets the core cluster; must be a cluster without branches
and only one contributing site; density describes core
density when no surface groups are defined.

type constant Sets the grafting type from which to grow branch; only
one grafting type per grafting core is allowed.

connect option Sets the growth starting point; options are head or tail.

surface constant Sets the surface group; must be a group without branches
and only one contributing site; one core particle is as-
sumed; density describes surface density.

region region Sets the region of the particle (see Section 7.7 [Region],
page 196).

5.4.2 Usage

The clusters command creates clusters according to the desired schemes as outlined above,
which populate the desired system as set by the system directive.

5.4.3 Default

The default is given by

clusters = {

cluster -> {id -> 0, system -> 0, n -> 0},

polymer -> {id -> 0, system -> 0, n -> 0},

body -> {id -> 0, system -> 0, n -> 0}

};

5.4.4 Examples

Direct definition of molecules uses the keyword cluster, e.g. a configuration with 1000
water molecules is obtained through

groups = {

group -> {id -> water, chemistry -> "O"}

};

clusters = {

cluster -> {id -> water, system -> 0, n -> 1000, group -> water}

};

Polymers can either display a block, alternating, or random constallation of its constituing
monomers. Assume three monomers, combined with one terminator,

groups = {

group -> {

id -> A,

chemistry -> "*A*",

connects -> {

Chapter 5: Scripting Commands 95

{head, {A, tail}}, {head, {B, tail}}, {head, {C, tail}},

{tail, {A, head}}, {tail, {B, head}}, {tail, {C, head}},

{head, {T, head}}, {tail, {T, head}}

}

},

group -> {

id -> B,

chemistry -> "*B*",

connects -> {

{head, {A, tail}}, {head, {B, tail}}, {head, {C, tail}},

{tail, {A, head}}, {tail, {B, head}}, {tail, {C, head}},

{head, {T, head}}, {tail, {T, head}}

}

},

group -> {

id -> C,

chemistry -> "*C*",

connects -> {

{head, {A, tail}}, {head, {B, tail}}, {head, {C, tail}},

{tail, {A, head}}, {tail, {B, head}}, {tail, {C, head}},

{head, {T, head}}, {tail, {T, head}}

}

},

group -> {

id -> T,

chemistry -> "*T",

connects -> {

{head, {A, head}}, {tail, {B, head}}, {tail, {C, head}},

{head, {A, tail}}, {head, {B, tail}}, {head, {C, tail}}

}

}

};

One hundred homopolymer molecules consisting of 10 A monomers are defined by

clusters = {

polymer -> {id -> polymer, system -> main,

n -> 100, nrepeat -> 10, type -> random, groups -> A}

};

which generates 100 clusters with TAAAAAAAAAAT as a resulting polymer sequence.
Alternatively, these monomers can be combined into three types of copolymers, i.e. random,
block, and alternating coplymers. A random copolymer consisting of 10 A monomers, 20 B
monomers, and 30 C monomers, is defined by

clusters = {

polymer -> {id -> polymer, system -> main,

n -> 100, nrepeat -> {10, 20, 30}, type -> random,

groups -> {A, B, C}}

};

Chapter 5: Scripting Commands 96

in which all monomers are randomly distributed over the polymer backbone. Construction
of a block copolymer consisting of 2 A, 3 B, and 4 C monomers, is obtained through

clusters = {

polymer -> {id -> polymer, system -> main,

n -> 100, nrepeat -> {2, 3, 4}, type -> block,

groups -> {A, B, C}}

};

which generates TAABBBCCCCT as a resulting polymer sequence. Finally, a alternating
copolymer of 2 A, 3 B, and 4 C monomers is constructed through

clusters = {

polymer -> {id -> polymer, system -> main,

n -> 100, nrepeat -> {2, 3, 4}, type -> alternate,

groups -> {A, B, C}}

};

which generates TABCABCBCCT as a resulting polymer sequence. Note the effect as a
result of the unequal numbers when defining monomers.

Chapter 5: Scripting Commands 97

5.5 Crystal

5.5.1 Syntax

crystal = {n -> {x, y, z}, miller -> {h, k, l}, plane -> option,

periodic -> vector};

Directive Parameters Description
n {x, y, z} Sets the number of crystal repeat units in x, y, z integer

increments.

miller {h, k, l} Sets miller crystal plane indices specifying the desired
tilt, where h, k, and l are integers.

plane option Specifies crystalline base plane; this plane is the plane
which creates a crystalline cut; options are a, b, and c,
or x, y, and z, or m100, m010, and m001 respectively.

periodic vector Specifies wether to leave or cut connections through pe-
riodic boundaries, where vector elements x, y, and z are
booleans, for which true leaves and false cuts connec-
tions in the specified direction.

5.5.2 Usage

The crystal command is used to build crystal copies of crystalline unit cells. These unit
cells can either contain unconnected or connected molecules. Miller indices in combination
with a base plane definition creates the possibility to rotate the final cell to any desired
orientation using integer indices h, k, and l. These indices are defined using the usual
conventions. Rotation allows for cleaving a crystal by a desired plane, e.g. miller -> {2,

0, 1} in combination with plane -> m001 uses the plane defined by crystal base vectors ~a
and ~b and rotates the cell to satisfy the miller index vector {2, 0, 1}. Box dimensions are
altered to form a new unit cell which consequently can be used again as a crystalline build-
ing block. The periodic option allows for cutting connections (bonds) through periodic
boundaries, which enables the creation of a free structure when using the carve command
(see Section 5.3 [Carve], page 91). All vector elements are set to the given input when only
one element is set, i.e. periodic -> true equals periodic -> {true, true, true}.

5.5.3 Default

The default is given by

crystal = {

plane -> m100,

n -> {1, 1, 1},

miller -> {1, 0, 0},

periodic -> {false, false, false}

};

5.5.4 Examples

A few examples are

crystal = {

Chapter 5: Scripting Commands 98

plane -> m001,

n -> {5, 4, 9},

miller -> {0, 0, 1},

periodic -> true

};

crystal = {

n -> {n, n, n},

miller -> {0, 0, 1},

plane -> m001,

periodic -> {true, true, false}

};

Chapter 5: Scripting Commands 99

5.6 Cut

5.6.1 Syntax

cut = {n -> integer, mode -> option, nmin -> integer,

region -> region};

Directive Parameters Description
n integer Defines the number clusters to be cut in each active

system.

mode option Selects cutting mode; currently the only option is random.
nmin integer Specifies the minimum allowable number of mobile repeat

units that remain.

region region Specifies in which region in the simulation cell to cut (see
Section 7.7 [Region], page 196).

5.6.2 Usage

The cut command finds its main application in cutting a set of crystalline clusters during
the preparation of semi-crystalline structures. It is, however, not restricted to crystalline
structures alone. The cut command cuts exactly one bond on the specified number of
clusters that fall within the specified region. The cutting mode governs the choice of affected
clusters.

5.6.3 Default

The default is given by

cut = {

n -> 0,

nmin -> 0,

mode -> random,

region -> {shape -> spheroid, type -> relative,

center -> {0,0,0}, radius -> {0,0,0}}

};

5.6.4 Examples

An example is given by

cut = {

n -> 20,

nmin -> 3,

region -> {shape -> cuboid, radius -> {1/2,1/2,1/4}}

};

Chapter 5: Scripting Commands 100

5.7 Deform

5.7.1 Syntax

deform = {mode -> constant, type -> constant, system -> constant,

frequency -> long, density -> real, geometry -> voigt};

Directive Parameters Description
mode constant Sets the deform mode; options are either none or affine

for the site deformation mode.

type constant Sets the type of geometry; options are either relative

for reduced units or absolute for absolute units.

system constant Sets identity of system to be deformed; can be either
textual or numerical.

frequency long Sets the frequency with which to perform incremental de-
formations; can either be set to instant, forcing instan-
taneous deformation, or to a positive integer, expressing
the step size (in system cycles) in which deformation is
gradually applied over the course of a run.

density real Sets the final system density; can either be set to
calculate when chosing or forced when chosing values
> 0.0.

geometry voigt Sets the final system geometry; used as a fractional size
when density is set, otherwise used as system dimen-
sions from which a density is calculated (see Section 7.15
[Voigt], page 367).

5.7.2 Usage

The deform command is used to gradually deform a selected system to the desired target
density over the cause of a run (see Section 5.29 [Run], page 139). Mobile sites are affinely
deformed, rigid sites are deformed with respect of the center of mass of the rigid object,
and fixed sites stay undeformed.

5.7.3 Default

The default is given by

deform = {mode -> none, system -> 0, frequency -> 1,

density -> calculate, geometry -> {1, 1, 1}};

5.7.4 Examples

Examples are given by

deform = {system -> main, frequency -> 2, density -> 0.7};

deform = {system -> main, frequency -> 2, geometry -> {1, 1, 3}};

Chapter 5: Scripting Commands 101

5.8 Delete

5.8.1 Syntax

delete = {mode -> option, unwrap -> boolean, fraction -> real,

focus -> struct, region -> struct};

Directive Parameters Description
mode option Sets wether to include or exclude sites in the selected

region from deletion; options are include and exclude.

unwrap boolean Sets wether to unwrap already existing clusters (only the
first instance before a build should be set to true); op-
tions are true and false.

fraction real Defines the distribution fraction; valid values are between
0 and 1, inclusive the extremes; currently forced to be 1.

focus struct Sets the selection to focus on (see see Section 7.3 [Focus],
page 181).

inside struct Sets the inside region to consider (see see Section 7.7
[Region], page 196).

inside struct Sets the outside region to consider (see see Section 7.7
[Region], page 196).

5.8.2 Usage

The delete command is used to delete clusters at the growing sides of a simulation box.
Specific selection criteria can be set by defining inside and outside regions in which the
center of mass of targetted clusters need to reside. Inside and outside regions can be used
to mimic a core-shell approach. A full region is considered when only the outside region is
defined. Additionally, a focussing selection can be specified based on site types, group ids,
and cluster ids. Undefined focus, inside, outside directives imply considering all active
sites in the system.

5.8.3 Default

The default is given by

delete = {mode -> include, unwrap -> true, fraction -> 1.0};

Chapter 5: Scripting Commands 102

5.9 Duplicate

5.9.1 Syntax

duplicate = {source -> system, destination -> {min, max}};

Directive Parameters Description
source system Defines the source system.
destination {start, end} Defines the destination systems.

5.9.2 Usage

Take source system system and copy it to destination starting at min and ending at max.
Destination systems overlapping with the source system is not allowed.

Chapter 5: Scripting Commands 103

5.10 Export

5.10.1 Syntax

export = {

profile -> {name -> string, type -> option, style -> option},

...

sample -> {name -> string, type -> option, style -> option},

...

};

Directive Parameters Description
profile struct Export settings for profiles.
sample struct Export settings for sampled data.
name string Defines the file name containing exported data.
type option Indicates the type of profile or sample to export; avail-

able profiles are angle, bond, bridge, density, force,
loop, mass, order, and tail; the available sample is
cavity.

style option Export format; options are csv, json, and math for
comma separated value, JSON, and Mathematica for-
mats respectively.

5.10.2 Usage

The export command is used to export data resulting from structure analysis into individual
files, using mathematica or comma seperated value formats. Only distributions resulting
from analyses are exported.

5.10.3 Default

The export command does not have any defaults.

5.10.4 Examples

Examples of the export command are

export = {

profile -> {name -> "density", type -> density, style -> math},

profile -> {name -> "bond", type -> bond, style -> csv},

sample -> {name -> "cavity", type -> cavity, style -> math}

};

5.10.5 Data Interpretation

export a distribution by using the export command, e.g.

export = {name -> "bridge", type -> bridge, style -> csv};

Chapter 5: Scripting Commands 104

which exports the measured tail distribution to file name bridge.csv in comma separated
format. An alternate style is math, which exports to bridge.m in Mathematica format.
EMC output format is equivalent to Mathematica format. I typically use the latter, since
it allows me to create notebooks for evaluation, which can be used within workflows.

For example, the bridge distribution under the profiles header in the output file contains
of a header, followed by a distributions block:

profiles = {

bridge -> {

active -> true, convolute -> false, direction -> 0,

nlevels -> 1, binsize -> 1, ndistributions -> 1, distributions -> {

ncalls -> 101, offset -> 7, nbins -> 645, data -> {

{n -> 101, accu -> 101, weight -> 101},

...

}

}

}

};

The header contains general distribution information, i.e. if the distribution is actively
sampled, whether to convolute the data (when applicable), in which direction was sampled,
how many levels it has, the binsize, and the number of distributions (one for each system).
Levels are used to allow for 3D density sampling.

The distributions also contain a header section, which is followed by a data section.
The header records for each distribution how many calls a distribution has, what offset the
data is recorded at and how many bins the distribution contains. One can construct the x
coordinates by combination of the offset with the bin size and the number of bins, i.e.

xi = (i+ offset)binsize, with 0 ≤ i < nbins.

The data section entries contain the y coordinates in three contributions: the frequency of
calls to this bin, the accumulated scalar data, and the weight with which this data data
was recorded. These three numbers are always the same for histograms (e.g. bridge, loop
and tail distributions) and represent the frequency of a certain length or size, i.e.

yi = n

For order profiles and other slab-wise averages, the accumulated data needs to be divided
by their corresponding weight in order to get a local density or order parameter respectively,
i.e.

yi = accu/weight

Chapter 5: Scripting Commands 105

For density profiles, the accumulated data needs to be divided by the number of distribution
calls (ncalls) in order to get the local density, i.e.

yi = accu/ncalls

Interpretation of cavity distributions is identical as for any histogram distribution. See the
above description for brigde distributions.

Chapter 5: Scripting Commands 106

5.11 Field

5.11.1 Syntax

field = {

id -> identifier,

mode -> option,

name -> {string, ...},

compress -> boolean,

apply -> boolean,

error -> boolean,

debug -> boolean,

angle -> option,

torsion -> option,

improper -> option,

increment -> option,

allow -> option

};

Directive Parameters Description
id constant Sets the subfield identifier, e.g. used in groups to identify

the field relevant for typing.

mode option Sets execution, input, output, or import mode; EMC
standard options are apply, get, and put; options cff,
charmm, dpd, martini, and opls import native and non-
native force field formats.

name string Sets file names of either input or output; all import op-
tions expect a general parameter file followed by an op-
tional topology file.

compress boolean Sets compression flag; options are true or false.
apply boolean Apply force field typing directly after reading; options

are true or false.

error boolean Sets error flag; options are true or false; exits on error
when true.

debug boolean Set debug flag, which controls the output of rule interpre-
tation debugging information; options are true or false.

angle option Sets angle field flag; options are ignore, complete,
warn, empty, or error (see see Section 7.2 [Field Flags],
page 180).

torsion option Sets torsion field flag; options are ignore, complete,
warn, empty, or error (see see Section 7.2 [Field Flags],
page 180).

improper option Set improper field flag; options are ignore, complete,
warn, empty, or error (see see Section 7.2 [Field Flags],
page 180).

Chapter 5: Scripting Commands 107

increment option Set increment field flag; options are ignore, complete,
warn, empty, or error (see see Section 7.2 [Field Flags],
page 180).

allow option Sets which selection is considered during typing; options
are all or template.

5.11.2 Usage

The field command allows for force field typing. A native format governs storage through
get and put modes. The apply mode executes force field typing and should be invoked
after clusters assignment only. Currently field supports the Accelrys BIOSYM force
field format (mode -> cff) for importing force field typing rules (.dat files) and parameter
assignment tables (.frc files). CHARMM, DPD, MARTINI, and OPLS force fields (mode
-> charmm, dpd, martini, or opls respectively) are imported using an EMC native tex-
tual format (.prm and .top files). A conversion script for CHARMM force fields is given
by ./scripts/charmm.pl, for MARTINI force fields by ./scripts/martini.pl, and for
OPLS force fields by ./scripts/opls.pl. Force fields can contain templates, which are
used to define groups (see Section 5.17 [Groups], page 117) and clusters (see Section 5.4
[Clusters], page 93). Force fields are found in ./field and subsequent directories. Note,
that each force field only includes chemistries, for which it was parameterized. This means,
that not all chemistries can be typed by all force fields. Also be aware, that typing is not
guaranteed to be correct. It is kindly requested to report bugs, so that improvements to
force fields can be included in next versions.

Internally, force fields consist of a set of general and specific parameters. General pa-
rameters contain automatic parameters, which are used when specific parameters are not
defined. Aside from parameters, templates can be defined for commonly used chemistries.
Martini force fields use templates to preset the parametrized substances. Note, that the
abovementioned Martini script can add types when doubles occur. Here, the use of tem-
plates is advised to avoid the selection of wrong types.

5.11.3 Formats

Modes get and put support an EMC-native textual format, which encompasses most pos-
sibilities, as needed by supported force fields. Support of leaner textual formats is provided
as short hand for ease of use.

The CFF file format is identical to the .frc and .dat as provided by Accelrys’ Materials
Studio. It has been tested for PCFF and COMPASS formats.

The CHARMM, DPD, MARTINI, and OPLS file formats are created for EMC and func-
tion as intermediates between CHARMM, DPD, GROMACS, or OPLS force field families
and EMC. Data blocks in the EMC .prm format are flanked by the keywords ITEM and
ITEM END. The keyword ITEM is followed by an identifier to designate the following data
block. This data block describes data in tab-separated columns. Note, that only exactly
one tab is allowed between entries. Spaces and multiple tabs lead to erroneous behavior.
The interpretation of the data depends on the ITEM identifier as described in the following
table:

ITEM ID Parameters Description
DEFINE See next table Contains force field definitions and units.

Chapter 5: Scripting Commands 108

MASS type mass

element

nconnections

charge

comment

Defines masses; columns contain a textual type, a numer-
ical mass value, a textual element, a numerical number of
connections, a numerical charge, and a textual comment
line respectively.

RULES id

type element

{index|residue

atom} charge

rule

Defines typing rules; columns contain a numerical id, a
textual type, a textual element, a numerical index (e.g.
OPLS index), a numerical charge, and a rule in SMILES
format respectively; in case of the CHARMM force field,
the single numerical index entry is replaced by two entries
for residue and atom, respectively.

COMMENTS id index

element

comment

Defines comments associated with rules; columns contain
a numerical id, a numerical index (e.g. OPLS index), a
textual element, and a textual comment respectively.

LITERATURE year volume

page journal

Lists literature references associated with force field;
columns contain a numerical year, a textual cvolume, a
textual page, and a textual journal reference respectively.

EQUIVALENCE type pair

bond angle

torsion

improper

Tabulates equivalences between types (used to reference
a derived type to its original; pair types are considered
unique); all columns are in a textual format.

TEMPLATE name smiles Lists predefined group and cluster templates; all columns
are in a textual format; SMILES format follows the Day-
light Chemical Information Systems definition.

PRECEDENCE Precendences describe the order in which rules are inter-
preted; parenthesis indicate precedence hierarchy: (? (c
(c1)(c2))) c followed by c1 and c2.

NONBOND type1 type2

sigma epsilon

Defines the interaction parameters for Lennard-Jones 6-
12 pairwise interactions; columns contain two textual
types followed by two numerical values.

BOND,

BOND_AUTO

type1 type2 k

l0

Defines covalent bond length interaction parameters for
a harmonic spring; columns contain two textual types
followed by two numerical values.

ANGLE,

ANGLE_AUTO

type1 type2

type3 k

theta0

Defines bond angle interaction parameters for a harmonic
spring; columns contain three textual types followed by
two numerical values.

TORSION,

TORSION_

AUTO

type1 type2

type3 type4 k

n delta [...]

[index]

Defines bond torsion interaction parameters for a fourier
expansion; columns contain four textual types followed
by up to four groups of three numerical values; the last
column can contain an optional OPLS reference index.

IMPROPER,

IMPROPER_

AUTO

type1 type2

type3 type4 k

psi0

Defines improper interaction parameters; columns con-
tain four textual types followed by two numerical values;
each of the three possible angle combinations contribute
1/3 to the total improper energy.

Chapter 5: Scripting Commands 109

Valid DEFINE IDs are given in the following table:

DEFINE ID Type Description
FFNAME string Defines force field name.
FFTYPE string Defines force field type; options are ATOMISTIC, UNITED,

or COARSE.

VERSION string Defines force field version.
CREATED string Defines parameter file creation date.
LENGTH string Sets length unit of parameters in file; options are

ANGSTROM, NANOMETER, MICROMETER, METER, or REDUCED.

ENERGY string Sets energy unit of parameters in file; options are J/MOL,
KJ/MOL, CAL/MOL, KCAL/MOL, or REDUCED.

DENSITY string Sets density units of parameters in file; options are G/CC,
KG/M^3, or REDUCED.

MIX string Sets nonbonded mixing rule; options are NONE,
BERTHELOT, ARTIHMETIC, GEOMETRIC, or SIXTH_POWER.

NBONDED integer Sets the number of bonds excluded from nonbonded pair-
wise calculations.

ANGLE string Include angle considerations during typing; options are
IGNORE, COMPLETE, WARN, EMPTY or ERROR.

TORSION string Include torsion considerations during typing; same op-
tions as for ANLGE.

IMPROP string Include improper considerations during typing; same op-
tions as for ANLGE.

The distinction between general and specific force field entries is made by adding extension
_AUTO to a parameter keyword. Allowed keywords for this extension are PRECEDENCE, BOND,
ANGLE, TORSION, and IMPROPER.

A conversion script for the OPLS force field is provided by ./scirpts/opls.pl, which
creates a .prm and .top from OPLS input formats .par and .sb. It is used through

opls.pl [-source=source] target

The script assumes the existence of source.par, source.sb, and target.define. The lat-
ter is an extra file providing typing rules and possible additions or redefinitions of the OPLS
source. The .define files found in ./field/opls/2012/ are currently under development.

A conversion script for the MARTINI force field in GROMACS format is provided by
./scripts/martini.pl. The script is called separately for each contribution through

martini.pl name[.itp]

The use of multiple topology files within one simulation can be obtained by using a master
topology file, which consists of a concatenation of individual topology files. The martini.pl
script will create extra types in case of redefinition of bonds, angles, torsions, or impropers.

Chapter 5: Scripting Commands 110

MARTINI files can be found in ./field/martini/v2.0. A converted copy of the nonbonded
parameter file martini.itp is stored as martini.prm in this directory.

A conversion script for the CHARMM force field is provided by ./scirpts/charmm.pl,
which creates a .prm and .top from CHARMM input formats .prm and .rtf. It is used
through

charmm.pl [-source=source] target

The script assumes the existence of par_source.prm, top_source.rtf, and
target.define. The latter is an extra file providing typing rules and possible additions
or redefinitions of the OPLS source. A conversion of all27_prot_lipid with its
accompanying .define file as can be found in ./field/charmm/c32b1/. The CHARMM
force field interpretation is still in beta phase.

5.11.4 Default

Unless otherwise stated, the default is given by

field = {

mode -> get, compress -> false, error -> true,

angle -> true, torsion -> true

};

Chapter 5: Scripting Commands 111

5.12 Flag

5.12.1 Syntax

flag = {system -> id, oper -> mode, select -> mode,

flag -> {constant, ...},

site -> {constant, ...},

group -> {constant, ...},

cluster -> {constant, ...}, region -> region};

Directive Parameters Description
system id Sets system to operate on; identifiers as previously

defined.

oper mode Sets how to operate on site flag; modes are set or unset.
select mode Sets selection (used for ignoring head-tail (i.e. ends) con-

nections in crystal builds); modes are all or ends.

flag constant Sets site flag; input either one or more flags; options are
fixed, semi, rigid, or branch.

site constant Sets the site types to include; all site types are implied
when left blank.

group constant Sets the group to include; all groups are implied when
left blank.

cluster constant Sets the cluster id to include; all cluster ids are implied
when left blank.

region region Specifies in which region in the simulation cell to cut (see
Section 7.7 [Region], page 196).

5.12.2 Usage

The flag command is used to define site-based functionalities through flags. Sites store
these flags in a bitwise representation. Possible flag options are given in the table below.

Name Bit Description
fixed 0b0000000001 Prevents the site from being included in energy calcula-

tions and from being moved during simulation.

semi 0b0000000010 Prevents the site from being moved during simulation,
however, it is included in energy calculations.

head 0b0000000100 Defines a site as a head site and is normally not set in
a global fashion, but only on a per site basis (as used in
data files).

tail 0b0000001000 Defines a site as a tail site and is normally not set in a
global fashion, but only on a per site basis (as used in
data files).

rigid 0b0000010000 Defines a site as part of a rigid body and causes a collec-
tion of sites to move as one object; only connected sites
end up in one rigid body when the body flag is not set.

Chapter 5: Scripting Commands 112

body 0b0000100000 Defines a site as being part of a body as defined by the
region on the cluster as to which the site belongs; sites
will either move inside or on the surface of this body;
one cluster represents one body; all rigid sites within this
body are treated as one rigid body.

surface 0b0001000000 Defines a site to be on the surface of a body rather than
in its interior.

backbone 0b0010000000 Defines a site to be part of a cluster backbone; backbones
are determined internally upon initialization and are able
to take part in topology altering moves (e.g. endbridge
and reptate moves).

branch 0b0100000000 Defines a site to be part of a cluster branch; branches are
excluded from topology altering moves (e.g. endbridge
and reptate moves).

unbound 0b1000000000 Defines a site to be part of a cluster branch; branches are
excluded from topology altering moves (e.g. endbridge
and reptate moves).

5.12.3 Default

The default is given by

flag = {system -> 0, oper -> set, select -> all,

region -> {

shape -> cuboid, type -> relative,

center -> {0, 0, 0}, radius -> {1, 1, 1}};

Chapter 5: Scripting Commands 113

5.13 Focus (Command)

5.13.1 Syntax

focus = {

sites -> {constant, ...},

groups -> {constant, ...},

clusters -> {constant, ...}

};

Directive Parameters Description
sites constant Sets site or sites to focus on; refers to mass type

constants.

groups constant Sets group or groups to focus on.
clusters constant Sets cluster or clusters to focus on.

5.13.2 Usage

The focus command performs a translation to the origin of the accumulative center of mass
of all participating sites, groups, and/or clusters. Sites, groups, and clusters are defined
by constants as referred to in the simulation constant definition paragraph (see Section 7.1
[Constants], page 179) and described in the focus section (see Section 7.3 [Focus], page 181).

5.13.3 Default

Unless otherwise stated, the default is given by

focus = {};

Chapter 5: Scripting Commands 114

5.14 Force

5.14.1 Syntax

force = {style -> option, message -> boolean};

Directive Parameters Description
style option Selects force style; valid options are none, init, or list
message option Selects output to screen; alid options are none, raw, nkt,

or n, which corresponds to energy in no particular units,
internal units, units of nkT or units of n, respectively;
internal units correspond to the units of the selected force
field (e.g. kcal/mol for COMPASS, CHARMM, OPLS,
GROMACS, or MARTINI).

5.14.2 Usage

The force command is used to calculate and possibly output energies and virials associ-
ated with all systems in the active simulation. It allows for an internal check of consistency
of energies after a simulation by calculation of energies either directly by using the none

option, or using the neighbor list resulting from a simulation using the list, or through
reinitialization of the neighbor lists by using the init option. The energy output is con-
trolled by the message directive. Energies and virials are reported in either units as defined
in the units paragraph when selecting raw, or normalized by the number of active sites when
selecting n, or in relative units of nkBT when selecting nkt.

5.14.3 Default

The default is given by

force = {style -> init, message -> nkt};

Chapter 5: Scripting Commands 115

5.15 Former

5.15.1 Syntax

former = {name -> string, mode -> option, forcefield -> option};

Directive Parameters Description
name string Defines the file name to be imported; an extention of .emc

is assumed.

mode option Selects i/o mode; the only currently supported option is
get.

forcefield option Selects the desired force field; valid options are none,
standard, and charmm.

5.15.2 Usage

The former command is used to import data files generated by previous EMC versions.
Currently only the import of version 8 data files is supported.

5.15.3 Default

The default is given by

former = {mode -> get, forcefield -> none};

Chapter 5: Scripting Commands 116

5.16 Get

5.16.1 Syntax

get = {name -> string, compress -> boolean};

Directive Parameters Description
name string Defines the file name to be imported; an extention of .emc

is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an
extra extension of .gz is assumed; options are true or
false.

5.16.2 Usage

The get command is used to import data files generated by the current version of EMC,
using a structured data format. Data files function as a restart file and are expected to be
in a textual format.

5.16.3 Default

The default is given by

get = {compress -> false};

Chapter 5: Scripting Commands 117

5.17 Groups

5.17.1 Syntax

groups = {

group -> {

id -> constant,

charge -> real,

charges -> option,

template -> constant,

terminator -> boolean,

chemistry -> string,

depth -> integer,

field -> constant,

connects -> {{source -> integer,

destination -> {index -> constant, site -> integer}

}, ...}

},

delete -> {

id -> constant,

site -> integer

},

...

};

Directive Parameters Description
group struct Defines group parameters; repeating structure.
id constant Sets group identity; can be either numerical or textual.
charge double Sets an additional charge of the complete group, which

value divided by the number of group sites is added to
the site charges originating from force field or override
charge assignments.

charges option Defines how partial charges defined in SMILES string are
dealt with; valid options are forcefield for using partial
charges assigned by a force field only (see Section 5.11
[Field], page 106), additive for adding specified partial
charges per SMILES atom to values resulting from force
field assigment, and override for only using the specified
partial charges (non-specified charges are zero).

template constant Selects a template as predefined in force field files; can
be either numerical or textual (see Section 5.11 [Field],
page 106); templates replace the use of a chemistry string.

terminator boolean Indicates if this group can be used as a terminator, which
is useful for coarse-grained polymers without termination
groups; options are true or false.

Chapter 5: Scripting Commands 118

chemistry string Sets the group’s chemistry using the SMILES format (see
Section 7.8 [SMILES], page 197).

depth integer Sets recursive depth for ring determination during
SMILES interpretation; the depth should equal the max-
imum number of atoms participating in a ring within the
given SMILES string; standard option is auto; any set
depth smaller than 3 reverts to the auto setting.

field constant Optionally set a specific subfield identifier to use when
typing this group (see Section 5.11 [Field], page 106).

connects struct Defines connections to other groups; both source and
site correspond to the position in the SMILES of where
a connection occurs; ’*’, ’>’, or ’<’ characters mark con-
nection points; shortcuts head, tail, and $end1 through
$end10 denote connections in a group withouth having
to state their exact positions within the corresponding
SMILES; head and tail are analogous to $end1 and
$end2 respectively (see example below).

source integer Sets the source element
destination struct Defines the destination group and element
index constants Sets the destination group; can be either numerical or

textual

site integer Sets the destination element

delete struct Deletes a specified group site corresponding to a chem-
istry entry; all corresponding simulation sites are deleted
accordingly.

id constant Target group identity; can be either numerical or textual.
site integer Site number corresponding to the entry position in the

SMILES string; counting starts at 0.

5.17.2 Usage

The groups command creates the necessary groups used to identify full molecules or chem-

ical repeat units within clusters, as represented by SMILES strings. Keyword charges is

used to assign extra charge to a subset of atoms in case of ionic liquids, for which case a force

field might not supply charged molecules. One can also use keyword charge to increase or

decrease the charge of a full group. This option assigns a partial charge to each site, which

is equal to the full charge divided by the number of sites in the group.

5.17.3 Default

The default is given by

groups = {

group -> {

id -> 0,

charge -> 0,

charges -> forcefield,

Chapter 5: Scripting Commands 119

terminator -> false

}

};

5.17.4 Examples

A few atomistic examples are

groups = {

group -> {

id -> water,

chemistry -> "HOH"

},

group -> {

id -> dodecane,

chemistry -> "(C)12"

},

group -> {

id -> benzene,

chemistry -> "c1ccccc1"

},

group -> {

id -> acid,

chemistry -> "C(=O)[O-]

}

};

An example of deleting a group site is given by

groups = {

delete -> {

id -> dodecane,

site -> 0

}

};

which deletes the first site of group dodecane, effectively changing dodecane into undecane.
Note, that all corresponding simulation sites are deleted accordingly.

An example of a set of monomers for a coarse-grained polymer is given by

groups = {

group -> {

id -> monomer1,

chemistry -> "*ab*c(d)cc",

connects -> {

{head, {monomer1, tail}}, {head, {monomer2, head}},

{tail, {monomer1, head}}, {tail, {monomer2, head}},

{head, {terminator, head}}, {tail, {terminator, head}}}

},

group -> {

Chapter 5: Scripting Commands 120

id -> monomer2,

chemistry -> "*c*",

connects -> {

{head, {monomer1, head}}, {head, {monomer1, tail}},

{head, {monomer2, head}}, {head, {monomer2, tail}},

{head, {terminator, head}}}

},

group -> {

id -> terminator,

chemistry -> "*t",

connects -> {

{head, {monomer1, head}}, {head, {monomer2, head}}}

},

};

The ’*’ character implies the start and end or head and tail of a repeat unit of a polymer.
By default, a group is not a terminator when more than one ’*’ character appears in the
SMILES string. However, when such a group should also function as a terminator, the
terminator flag can be used as indication of such. A group is automatically a terminator
when a ’*’ character appears only once, which means, that the terminator flag need not
be set. The keyword connects lists the possible connections of these start and end sites
to sites in the same or other groups. The keywords head and tail represent internal short
cuts and indicate the position of the ’>’ and ’<’ characters repectively.

Chapter 5: Scripting Commands 121

5.18 Insight

5.18.1 Syntax

insight = {name -> string, compress -> boolean,

system -> integer, mode -> option,

forcefield -> option, atomistic -> option,

charges -> boolean, formal -> boolean, depth -> integer,

detect -> boolean, cut -> boolean, pbc -> boolean,

map -> boolean, unwrap -> boolean, percolate -> boolean,

crystal -> boolean, flag -> struct};

Directive Parameters Description
name string Defines the file name to be imported; an extention of .emc

is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an
extra extension of .gz is assumed; options are true or
false.

system integer Selects system to be imported or exported
mode option Selects i/o mode; supported options are get or put.
forcefield option Selects the desired force field for writing; see Section 7.5

[Ports], page 194, for valid options; option auto auto-
selects.

atomistic option Select the atomistic mode normally defined by the choice
of forcefield; options are none, united, or full.

charges boolean Use partial charges from imported structures; options are
true or false.

formal boolean Use formal charges from imported structures; options are
true or false.

detect boolean Detect and assign atom and amino acid residue types;
options are true or false.

depth integer Sets recursive depth for ring determination during
SMILES interpretation; the depth should equal the max-
imum number of atoms participating in a ring within the
given SMILES string; standard option is auto; any set
depth smaller than 3 reverts to the auto setting.

cut boolean Selects cut mode: cut bonds that cross cell boundaries;
options are true or false.

pbc boolean Applies periodic boundary conditions; options are true

or false.

map boolean Selects mapping sites and box geometry according to a
minimum image convention; options are true or false.

unwrap boolean Unwraps clusters to cross periodic boundaries with ap-
plication of periodic boundary conditions to its center of
mass when applicable; options are true or false.

Chapter 5: Scripting Commands 122

crystal boolean Imported structure is crystalline; options are true or
false.

percolate boolean Allow for percolating structures; options are true or
false.

flag struct Allows for setting system flags while importing morpholo-
gies; see see Section 7.10 [System Flags], page 201, for the
various available flags.

5.18.2 Usage

The insight command is used to import and export InsightII data files in CAR and MDF
format for exchange of configurations between EMC and Materials Studio, a product of
Accelrys1.

5.18.3 Default

The default is given by

insight = {compress -> false,

system -> 0, forcefield -> auto, detect -> false,

cut -> false, pbc -> true, map -> false, unwrap -> true};

5.18.4 References

1. Materials Studio, ‘http://www.accelrys.com/’

Chapter 5: Scripting Commands 123

5.19 Lammps

5.19.1 Syntax

lammps = {name -> string, compress -> boolean,

system -> integer, mode -> option,

units -> option, length -> double, forcefield -> option,

shake -> option, atomistic -> boolean, cutoff -> boolean,

charges -> boolean, ewald -> boolean,

bonds -> boolean, types -> boolean,

parameters -> boolean, cross -> boolean,

variables -> boolean, coefficients -> boolean,

comment -> boolean, map -> boolean, unwrap -> boolean,

version -> integer, flag -> structure};

Directive Parameters Description
name string Defines the file name to be imported; an extention of

.data is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an
extra extension of .gz is assumed; options are true or
false.

system integer Selects system to be imported or exported
mode option Selects i/o mode; supported options are get or put.
length double Defines a scaling length to superceede the simulation vari-

able units -> angstrom; the latter is used when length
is not specified (see Section 7.13 [Units], page 364).

units option Selects wether to represent site coordinates in reduced or
real units, for which options are lj or real respectively;
alternatively none is also defined.

forcefield option Selects the desired force field; see Section 7.5 [Ports],
page 194, for valid options.

shake option Selects the SHAKE1,2 mode for atomistic force fields;
valid options are none, auto, hydrogen, water and all;
auto bases the choice on the selected force field (none by
default).

atomistic boolean Selects atomistic mode: no charge column and no bonds;
options are true or false.

cutoff boolean adds a column containing cut offs as used for EMC force
field evaluation to the LAMMPS parameter file; helpful
for transferring purely repulsive potentials; options are
true or false.

charges boolean Selects charge mode: a charge column is present in the
Atoms paragraph; options are true or false.

ewald boolean Selects the usage of Ewald summations for long-range
charge treatment; options are true or false.

Chapter 5: Scripting Commands 124

bonds boolean Selects bonds mode: all bonded contributions are
present; options are true or false.

types boolean Selects types mode: all types parameter definitions are
present; options are true or false.

parameters boolean Selects the separate output of variables and (non)bonded
interaction parameters in LAMMPS input script format;
an extension of .params is assumed; options are true or
false.

cross boolean Includes nonbonded cross-terms in .params file; options
are true or false.

variables boolean Selects adding simulation variables to the separate output
of variables and interaction parameters; options are true
or false.

coefficients boolean Selects adding interaction parameters to the separate
output of variables and interaction parameters; options
are true or false.

comment boolean Includes commented references to mass names in .data
and .params files; options are true or false.

map boolean Selects mapping sites and box geometry according to a
minimum image convention; options are true or false.

unwrap boolean Selects unwrapping of clusters; options are true or
false.

version integer Set LAMMPS version.
flag structure Set system flags.

5.19.2 Usage

The lammps command is used to import and export data files generated by LAMMPS,
a Molecular Dynamics code conceived at Sandia National Laboratories.3,4 Textual input
formats for LAMMPS are ambiguous and are not self-defining, which creates the need for
predefinition of the desired format. This port allows for commonly used force field modes
and site (atom) definitions.

5.19.3 Default

The default is given by

lammps = {compress -> false, system -> 0, mode -> put,

units -> none, forcefield -> auto, shake -> auto,

atomistic -> true, charges -> false, ewald -> false,

bonds -> false, bonds -> false, types -> true,

parameters -> false, cross -> false, variables -> true,

coefficients -> true, comment -> true, map -> true,

unwrap -> false};

5.19.4 Examples

A few examples are given by

lammps = {name -> "benzene", compress -> true,

Chapter 5: Scripting Commands 125

mode -> put, forcefield -> opls, types -> false,

parameters -> true, charges -> true, ewald -> true};

lammps = {name -> "polystyrene", compress -> true,

mode -> put, forcefield -> coarse, types -> false,

parameters -> true};

lammps = {name -> "polyethylene", mode -> put};

5.19.5 References

1. Ryckaert, J.-P.; Ciccotti, G. and Berendsen, H.J.C., "", J. Comp. Phys. 1977, 23,
327-341

2. Andersen, H. "", J. Comp. Phys. 1983, 52, 24-34

3. LAMMPS - Molecular Dynamics Simulator, ‘http://lammps.sandia.gov/’

4. Plimpton, S., "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J.
Comput. Phys. 1995, 117, 1-19

Chapter 5: Scripting Commands 126

5.20 Memory

5.20.1 Syntax

memory = {style -> option};

Directive Parameters Description
style option Sets the output style; options are full or summary.

5.20.2 Usage

The memory command outputs the memory consumption of the current simulation to screen.
Either a summary or a full description can be selected.

5.20.3 Default

The default is given by

memory = {style -> full};

5.20.4 Examples

An example is given by

memory = {style -> summary};

Chapter 5: Scripting Commands 127

5.21 Moves

5.21.1 Syntax

moves = {

ncycles -> integer,

cycle -> integer,

move -> integer,

moves...

};

Directive Parameters Description
ncycles integer Sets the total number of simulation cycles.
cycle integer Sets the current simulation cycle
move integer Sets the current simulation move.
moves Access to various move settings; see Section 7.4 [Moves],

page 182, for further information.

5.21.2 Usage

This variable style describes types (see Section 7.4 [Moves], page 182, for further infor-
mation) and allows direct access to all variables and parameters stored within the moves
structure.

5.21.3 Default

Unless otherwise stated, the default is given by

Unless otherwise stated, the default is given by

@verbatim

moves = {

ncycles -> 0,

cycle -> 0,

move -> 0

};

By default, all moves are activated with zero frequency, with the exception of the displace-
ment move (see Section 7.4.6 [Displace], page 185), which has a frequency of one.

Chapter 5: Scripting Commands 128

5.22 PDB

5.22.1 Syntax

pdb = {name -> string,

compress -> boolean, mode -> option, system -> integer,

length -> real, forcefield -> option, atomistic -> option,

charges -> boolean, depth -> integer, detect -> boolean,

atom -> option, residue -> option, segment -> option,

vdw -> option, hexadecimal -> boolean,

cut -> boolean, pbc -> boolean, map -> boolean,

unwrap -> boolean, rigid -> boolean, fixed -> boolean,

connectivity -> boolean, crystal -> boolean,

element -> option};

Directive Parameters Description
name string Defines the file name to be imported; an extention of .emc

is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an ex-
tra extension of .gz is assumed; unpacking and packing
is added to the VMD script; options are true or false.

mode option Selects i/o mode; supported options are get and put

system integer Selects system to be imported or exported.
length real Set the length scale with which to scale the resulting co-

ordinates (normmaly results from choice of forcefield).

forcefield option Selects the desired force field; see Section 7.5 [Ports],
page 194, for valid options; option auto auto-selects.

atomistic option Select the atomistic mode normally defined by the choice
of forcefield; options are none, united, or full.

charges boolean Use charges from imported structures; options are true

or false.

depth integer Sets recursive depth for ring determination during
SMILES interpretation; the depth should equal the max-
imum number of atoms participating in a ring within the
given SMILES string; standard option is auto; any set
depth smaller than 3 reverts to the auto setting.

detect boolean Detect and assign atom and amino acid residue types;
options are true or false.

atom option Sets options for atom name representation upon output;
options are detect for detection of atom types, index
for use of EMC mass element ids, or series for indexing
using EMC element ids followed with sequential number-
ing per segment. The latter is useful for CHARMM tools
expecting unique atom ids.

Chapter 5: Scripting Commands 129

residue option Sets options for residue name representation upon out-
put; options are detect for detection of amino acid
residues, index for use of EMC group ids, or series

for increments starting with the letter R.

segment option Sets options for segment name representation upon out-
put; options are detect for detection, index for use of
EMC cluster ids, or series for increments starting with
the letter M.

vdw boolean Include the definition for switching on Van der Waals in
the resulting VMD script; options are true or false.

hexadecimal boolean Use hexadecimal representations for residue sequence
numbers; options are true or false.

cut boolean Selects whether cut bonds that cross cell boundaries upon
output; options are true or false.

vdw boolean Add Van der Waals representation to the written VMD
script; options are true or false.

pbc boolean Applies periodic boundary conditions upon output; op-
tions are true or false.

map boolean Selects mapping sites and box geometry according to a
minimum image convention; options are true or false.

unwrap boolean Unwraps clusters upon output to cross periodic bound-
aries with application of periodic boundary conditions to
its center of mass when applicable; options are true or
false.

rigid boolean Unwrap sites in clusters, that are flagged as rigid; options
are true or false.

fixed boolean Unwrap sites in clusters, that are flagged as fixed; options
are true or false.

connectivity boolean Include connectivity in the resulting PDB using keyword
CONECT; options are true or false.

crystal boolean Selects whether a read structure is a crystal; needed for
small crystal structures with box crossing bonds; options
are true and false.

element option Selects location of element (internally used for defining
masses); options are auto, element, and type; element
uses elements defined in PDB files; aromatic elements are
all lower case (needed when reading united atom struc-
tures); type uses types as defined in PSF files, which
is needed when reading coarse-grained structures; auto
internally decides which of the previous options to use
based on the choice of force field (see Section 5.11 [Field],
page 106).

Chapter 5: Scripting Commands 130

5.22.2 Usage

The pdb command is used to export data files in PDB and PSF format for convenient
visualization with VMD (Visual Molecular Dynamics), a visualization conceived and sup-
ported by the Theoretical and Computational Biophysics Group at the University of Illinois
at Urbana-Champaign. Textual PDB and PSF formats are ambiguous and are not self-
defining, which creates the need for predefinition of the desired format. This port allows
for commonly used force field modes. Cell dimensions are defined by addition of a CRYST1

keyword to the PDB file.

5.22.3 Default

The default is given by

pdb = {compress -> false, mode -> put, system -> 0,

forcefield -> auto, atomistic -> full, depth -> auto,

detect -> false, atom -> series, residue -> index,

segment -> index, vdw -> false, hexadecimal -> false,

cut -> false, pbc -> true, map -> false, unwrap -> true,

rigid -> true, fixed -> true, connectivity -> false,

crystal -> false, element -> auto};

5.22.4 References

1. VMD - Visual Molecular Dynamics, ‘http://www.ks.uiuc.edu/Research/vmd/’

2. Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J.
Molec. Graphics 1996, 14, 33-38

Chapter 5: Scripting Commands 131

5.23 Put

5.23.1 Syntax

put = {name -> string, compress -> boolean, detail -> integer};

Directive Parameters Description
name string Defines the file name to be exported; an extention of .emc

is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an
extra extension of .gz is assumed; options are true or
false.

detail integer Sets level of detail in output file; a non-zero setting over-
rides the already set detail.

5.23.2 Usage

The put command is used to export data files generated by the current version of EMC,
using a structured data format. Data files contain all necessary information to function as
a restart file and are in a textual format.

5.23.3 Default

The default is given by

put = {compress -> false, detail -> 0};

Chapter 5: Scripting Commands 132

5.24 Rename

5.24.1 Syntax

rename = {

site -> {src -> constant, dest -> constant},

...

group -> {src -> constant, dest -> constant},

...

cluster -> {src -> constant, dest -> constant},

...

system -> {src -> constant, dest -> constant},

...

};

Directive Parameters Description
site struct Defines multiple sites.
group struct Defines multiple groups.
cluster struct Defines multiple clusters.
system struct Defines multiple systems.

5.24.2 Usage

The rename command allows for renaming already existing site, group, cluster, or system
ids.

5.24.3 Default

No default.

5.24.4 Examples

A few examples are given by

rename = {

site -> {src -> bcc, dest -> a},

site -> {src -> fcc, dest -> b}

};

rename = {

site -> {src -> fcc, dest -> a},

cluster -> {src -> fcc, dest -> surface}

};

Chapter 5: Scripting Commands 133

5.25 Remove

5.25.1 Syntax

remove = {n -> integer, mode -> option, nmin -> integer,

target -> index, region -> region};

Directive Parameters Description
n integer Selects number repeat units to be removed in each active

system.

mode option Selects removal mode; viable options are cluster, group,
and site.

target index Specifies the targeted group to remove; additionally a
group site can be specified; a value of -1 one indicates
all.

nmin integer Specifies the minimum allowable number of mobile repeat
units that remain.

region region Specifies in which region in the simulation cell to remove
(see Section 7.7 [Region], page 196).

5.25.2 Usage

The remove command deletes a maximum of n and a minimum of nmin groups specified by
group, which fall within a specified region. All sites within the specified region are deleted,
when no group is provided.

5.25.3 Default

remove = {

n -> 0,

mode -> cluster,

nmin -> 0,

target -> {index -> -1, site -> -1},

region -> {shape -> spheroid, type -> relative, mode -> hard,

center -> {0,0,0}, h -> {0,0,0,0,0,0}}

};

5.25.4 Examples

Remove 100 water molecules as defined by group water in the whole simulation box,

remove = {

n -> 100,

target -> {index -> water},

region -> {shape -> cuboid, radius -> {1, 1, 1}}

};

Note, that overspecification by the region radius of a factor of two ensures the inclusion of
all particles in that box direction.

Chapter 5: Scripting Commands 134

Remove 10 methyl groups as defined by group methyl in the center halve portion in the x
direction of the simulation box,

remove = {

n -> 10,

target -> {index -> methyl},

region -> {shape -> cuboid, radius -> {0.25, 1, 1}}

};

Chapter 5: Scripting Commands 135

5.26 Reset

5.26.1 Syntax

reset = {style -> option};

Directive Parameters Description
style integer Possible options are simulation, statistics,

profiles, or moves.

5.26.2 Usage

The reset command allows for resetting entries and counters of either the whole simulation
structure, or of separate subsections statistics, profiles, or moves.

5.26.3 Default

The default is given by

reset = {style -> simulation};

Chapter 5: Scripting Commands 136

5.27 Restart

5.27.1 Syntax

restart = {name -> string, compress -> boolean, format -> string,

frequency -> integer, reset -> boolean};

Directive Parameters Description
name string Defines the file name to be exported; an extention of .emc

is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an
extra extension of .gz is assumed; options are true or
false.

format string Defines counter extention format.
frequency integer Selects output interval frequency in units of cycles.
reset boolean Resets simulation after writing restart file; options are

true or false.

5.27.2 Usage

The restart command allows for writing of restart files at constant intervals during simu-
lation, which safeguards long simulations in case of compute environment failure.

5.27.3 Default

The default is given by

restart = {compress -> false, format -> "_%08ld",

frequency -> 10000, reset -> false};

Chapter 5: Scripting Commands 137

5.28 Retype

5.28.1 Syntax

retype = {

mode -> option,

fraction -> real,

charge -> boolean,

n -> {integer, ...},

system -> {constant, ...},

source -> {constant, ...},

destination -> {constant, ...},

group -> {index -> constant, site -> integer},

inside -> region,

outside -> region

};

Directive Parameters Description
mode option Sets the selection criteria for the fraction of selected sites;

valid modes are: random.

charge boolean Selects charge transfer from mass paragraph to sites.
fraction real Defines the fraction of sites within the selection to be

changed; values smaller than zero will be set to zero;
values larger than one will be set to one; non-zero number
of sites overrides fractions.

n integer Sets the number of sites to delete per defined targeted
system; the first entry is taken for all systems when
targeted systems are omited; fractions are taken when
omited.

system constant Sets targeted system; can one or more systems; all sys-
tems are implied when omited.

source constant Sets source mass types; can be one or more types.
destination constant Sets destination mass types; can be one or more types;

has to be either one element or the same number of ele-
ments as represented under the source directive.

group index Optional definition of group index and site for all desti-
nation types.

inside region Sets the inner boundary of the region in which mass types
are to be changed (see Section 7.7 [Region], page 196);
assumes domain center when ommited.

outside region Sets the outer boundary of the region in which mass types
are to be changed (see Section 7.7 [Region], page 196);
assumes whole domain when ommited.

Chapter 5: Scripting Commands 138

5.28.2 Usage

The retype command allows for changing mass types from a source target consisting of
either one or more types to a destination target consisting of one or more types. The
destination target can either consist of one element or the same number of elements as
the source target, in case the source target consists of more than one element. All groups,
systems and regions are implied when none are supplied.

5.28.3 Default

The default is given by

retype = {

mode -> random,

fraction -> 1

};

5.28.4 Examples

Note that the new site ’graft’ needs to be defined in terms of mass and force field (see
Section 5.32 [Sites], page 142, and Section 5.33 [Simulation], page 143). An example is
given by

variables = {r1 -> 1/2, r2 -> 1/2-0.75/(2^(2/3)*n)};

retype = {

source -> fcc,

destination -> graft,

inside -> {shape -> spheroid,

center -> {0, 0, 0}, radius -> {r2, r2, r2}},

outside -> {shape -> spheroid,

center -> {0, 0, 0}, radius -> {r1, r1, r1}}

};

Chapter 5: Scripting Commands 139

5.29 Run

5.29.1 Syntax

run = {ncycles -> integer, nblocks -> integer,

cycle -> integer, seed -> integer};

Directive Parameters Description
ncycles integer Defines the number of cycles for which to run the

simulation.

nblocks integer Defines the frequency with which to output intermediate
energies in intervals of cycles.

cycle integer Defines the cycle counter at which to start the simulation;
selects the cycle as defined by the input file when negative

seed integer Selects a random seed; the time is used when seed is
greater than or equal to zero.

5.29.2 Usage

The run command is used to start a simulation. It allows for definition of simulation length
and output frequency. Starting cycle and initial random seed can also be defined.

5.29.3 Default

The default is given by

run = {cycle -> -1, seed -> 0};

Chapter 5: Scripting Commands 140

5.30 Sample

5.30.1 Syntax

sample = {

cavity -> struct,

gr -> struct,

gyration -> struct,

...

};

Directive Parameters Description
cavity struct Descriptor for cavity size sampling as defined by CESA

(Cavity Energetic Sizing Algorithm)1 (see Section 6.2
[Cavity], page 160).

gr struct Descriptor for radial distribution functions sampling (see
Section 6.3 [Gr], page 165).

gyration struct Descriptor for radius of gyration sampling (see
Section 6.4 [Gyration], page 170).

5.30.2 Usage

This variable style describes the control of sampling options (see Chapter 6 [Sampling Tools],
page 156, for applications).

5.30.3 Default

By default, all sampling is deactivated.

5.30.4 References

1. P.J. in ’t Veld, M.T. Stone, T.M. Trustkett, and I.C. Sanchez, "Liquid Structure via
Cavity Size Distributions", J. Phys. Chem. B 2000, 104, 12028

Chapter 5: Scripting Commands 141

5.31 Shell

5.31.1 Syntax

shell = {command -> string};

Directive Parameters Description
command string Execute a shell command as specified by string.

5.31.2 Usage

The shell command is used to execute a shell command, which allows for file manuipula-
tions during running. Any problems will be identified by a warning, thus not stopping the
execution of the EMC script.

5.31.3 Default

The default is given by

shell = {command -> ""};

Chapter 5: Scripting Commands 142

5.32 Sites

5.32.1 Syntax

sites = {

site -> {id -> constant,

reference -> integer, name -> string, mass -> real},

...

};

Directive Parameters Description
site struct Identifies site parameters; repeating structure.
id constant Sets site identity; can be either numerical or textual.
reference integer Sets a numerical reference; not used internally.
name string Sets a longer identifying name.
mass real Sets the mass in units set in units.

5.32.2 Usage

The sites command creates mass entries in the mass section of the types section of
simulation. Multiple sites can be entered by using multiple instances of the site di-
rective, separated by commas.

5.32.3 Default

The default is given by

sites = {site -> {id -> 0, reference -> 0}};

5.32.4 Examples

A few examples are

sites = {

site -> {id -> a, reference -> 0, name -> "colloid", mass -> 10}

};

sites = {

site -> {id -> c,

reference -> 12, name -> "carbon", mass -> 12.011},

site -> {id -> h,

reference -> 1, name -> "hydrogen", mass -> 1.008},

site -> {id -> o,

reference -> 14, name -> "oxygen", mass -> 15.9994}

};

Chapter 5: Scripting Commands 143

5.33 Simulation

5.33.1 Syntax

simulation = {output -> {...}, units -> {...}, variables -> {...},

systems -> {...}, types -> {...}, moves -> {...},

profiles -> {...}};

Directive Parameters Description
output {...} Provides access to output parameters; possible directives

include detail, wide, expand, math, reduced, info,
strict, warning, message, and debug.

units {...} Provides access to internal units; possible directives
include mass, length, angstrom, angle, energy, kb,
nav, charge, permittivity, and seed (see Section 7.13
[Units], page 364).

variables {...} Provides access to changing predefined variables; used
in conjunction with predefined variables in input files,
allowing posteriori sizing of an input structure.

types {...} Provides access to all simulation-wide types; possible
directives, which define force fields and their respec-
tive constants, include boltzmann, charmm, coarse,
coulomb, spline, and standard (see Section 7.12
[Types], page 204).

systems {...} Provides access to all simulation-wide system settings;
possible directives, which define e.g. system temperature
or geometry, include properties; most system properties
are derived output variables (e.g. p, v, mass, nsites,
nclusters) rather than input variables (see Section 7.11
[Systems], page 202).

moves {...} Provides access to all moves; possible directives include
displace, endbridge, rebridge, reptate, rotate, and
temper (see Section 7.4 [Moves], page 182).

profiles {...} Provides acces to all profile definitions; possible directives
include density, force, mass, and order (see Section 7.6
[Profiles], page 195).

5.33.2 Usage

The simulation command provides access to all variables and parameters defined within
the simulation structure, of which the above table lists the main directives.

5.33.3 Examples

A few examples are (see data file for more suggestions)

simulation = {output -> {detail -> 4}};

simulation = {variables -> {lb -> 0.95*lb}};

Chapter 5: Scripting Commands 144

simulation = {types -> {standard -> {correct -> {active -> true}}}};

simulation = {systems -> {

properties -> {

{id -> 0, t -> 298.15}, {id -> 1, t -> 315}}};

simulation = {moves -> {displace -> {frequency -> 1}}};

simulation = {profiles -> {density -> {active -> true}}};

Chapter 5: Scripting Commands 145

5.34 Split

5.34.1 Syntax

split = {system -> constant, direction -> option,

mode -> option, unwrap -> boolean, fraction -> real,

focus -> struct, region -> struct};

Directive Parameters Description
system constant Sets identity of system to which to add the build; can be

either textual or numerical.

direction option Sets the direction in which the system is grown; options
are x, y, and z.

mode option Sets the selection algorithm; options are distance and
random.

unwrap boolean Sets wether to unwrap already existing clusters (only the
first instance before a build should be set to true); op-
tions are true and false.

fraction real Defines the distribution fraction; valid values are between
0 and 1, inclusive the extremes.

focus struct Sets the selection to focus on (see see Section 7.3 [Focus],
page 181).

region struct Sets the region to consider (see see Section 7.7 [Region],
page 196).

5.34.2 Usage

The split command is used to redistribute clusters at the growing sides of a simulation
box. Specific selection criteria can be set by defining a region in which the center of mass of
targetted clusters need to reside. Additionally, a focussing selection can be specified based
on site types, group ids, and cluster ids. Undefined focus and region directives imply
considering all active sites in the system.

5.34.3 Default

The default is given by

split = {system -> 0, direction -> x,

mode -> random, unwrap -> true, fraction -> 0.5};

Chapter 5: Scripting Commands 146

5.35 Terminate

5.35.1 Syntax

terminate = {mode -> option};

Directive Parameters Description
mode option Selects termination mode; currently only the option all

is supported.

5.35.2 Usage

The terminate command is used to terminate free cluster ends created by cut and remove

commands. Currently, terminators existing of only one site are supported. Future releases
will include a group-based terminator.

5.35.3 Default

The default is given by

terminate = {mode -> all};

Chapter 5: Scripting Commands 147

5.36 Timing

5.36.1 Syntax

timing = {style -> option};

Directive Parameters Description
style option Possible options are none, show, or reset.

5.36.2 Usage

The timing command allows for showing current timing, after which timing can be reset
or allowed to accumulate further.

5.36.3 Default

The default is given by

timing = {style -> show};

Chapter 5: Scripting Commands 148

5.37 Traject

5.37.1 Syntax

traject = {mode -> option, system -> integer,

name -> string, compress -> boolean, format -> string,

start -> integer, end -> integer, frequency -> integer,

append -> boolean, reset -> boolean, scale -> boolean,

unwrap -> boolean, pbc -> boolean};

Directive Parameters Description
mode option Sets the operation mode; viable options are get, put, and

sample.

system integer Selects the system to export.
name string Defines the file name to be exported; an extention of

.traject is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an
extra extension of .gz is assumed; options are true or
false.

format string Defines counter extention format.
start integer Selects the frame at which to start reading; -1 indicates

the last frame.

end integer Selects the frame at which to end reading; -1 indicates
the last frame.

frequency integer Selects output interval frequency in units of cycles.
append boolean Appends each selected cycle to the end of the trajectory

file; options are true or false.

reset boolean Resets output file; options are true or false.
scale boolean Scales the output using system box dimensions; options

are true or false.

unwrap boolean Unwraps clusters in output; options are true or false.
pbc boolean Applies periodic boundary conditions; options are true

or false.

5.37.2 Usage

The traject command allows for reading, writing, or analyzing of LAMMPS-style tra-
jectory files. In read mode, a configuration from a trajectory can be loaded over already
existing positions. In write mode, configurations are written at constant intervals during
simulation. Output can be directed to either one or separate files by setting the append

option to true or false respectively. Cycle counts are added to the file name when sepa-
rate files are chosen, however they are omitted when the append option is set. In analyze

mode, a full trajectory is analyzed using preset sampling settings (see Section 5.30 [Sample],
page 140). An example can be found in ./examples/sample/cavity/traject.emc.

5.37.3 Default

The default is given by

Chapter 5: Scripting Commands 149

traject = {mode -> put,

compress -> false, format -> "_%08ld", system -> 0,

start -> 0, end -> -1, frequency -> 1000, append -> true,

reset -> true, scale -> false};

5.37.4 Examples

A few examples are given by

traject = {name -> "test/polyethylene", compress -> true};

traject = {name -> "water", format -> "_%ld", system -> 1,

frequency -> 10000, append -> false, scale -> false};

traject = {name -> "cavity", frequency -> 1, mode -> analyze};

Chapter 5: Scripting Commands 150

5.38 Translate

5.38.1 Syntax

translate = {

site -> {constant, ...},

group -> {constant, ...},

cluster -> {constant, ...}

delta -> vector

};

Directive Parameters Description
sites constant Sets site or sites to focus on; refers to mass type

constants.

groups constant Sets group or groups to focus on.
clusters

delta vector Sets the displacement vector

5.38.2 Usage

The translate command facilitates translation of a selection of sites over a displacement
vector delta. This scripting command can be helpful in translating surfaces constructed in
the center of the simulation box to its edges.

5.38.3 Default

The default is given by

translate = {

vector -> {0, 0, 0}

};

5.38.4 Examples

An example is given by

translate = {

cluster -> surface,

delta -> {-lx/2, 0, 0}

};

which translates clusters called ’surface’ to the lower edge of the simulation box. Note, that
lx has to be provided by the user.

Chapter 5: Scripting Commands 151

5.39 Types

5.39.1 Syntax

types = {

merge -> boolean,

virial -> boolean,

periodic -> vector,

neighbor -> constant,

stencil -> constant,

skin -> real,

shake -> constant

depth -> integer,

mass -> struct,

fields...

};

Directive Parameters Description
merge boolean Allows for merging force field constants upon input when

true; options are true or false.

virial boolean Describes if virial calculations are included; options are
true or false.

periodic vector Indicate periodicity with a three-element boolean vector
with options true or false.

neighbor constant Describes what kind of neighbor list algorithm is used
during pair interaction calculations; options are sector

or pair.

stencil constant Describes the kind of stencil used during pair interaction
calculations; options are standard or multi.

skin real Describes the skin used during pair interaction calcula-
tions; the skin is added to the pairwise cutoff.

shake constant Indicates the use of the SHAKE algorithm in subsequent
codes (e.g. LAMMPS); valid options are none, auto,
hydrogen, water, or all.

depth integer Maximum depth used for construction of ring structures
during typing; allowed values are positive, where a value
of 8 works in most ring cases; alternatively, an auto key-
word allows for checking rings of unknown size; please
note, that significant slow down occurs with the latter
options for intricate ring systems.

mass struct Describes the site masses.
fields Access to various field settings; see Section 7.12 [Types],

page 204, for further information.

Chapter 5: Scripting Commands 152

5.39.2 Usage

This variable style describes types (see Section 7.12 [Types], page 204, for further infor-
mation) and allows direct access to all variables and parameters stored within the types
structure.

5.39.3 Default

Unless otherwise stated, the default is given by

types = {

merge -> false,

virial -> false,

periodic -> {true, true, true}

neighbor -> sector,

stencil -> standard,

shake -> none,

depth -> auto,

skin -> 0

};

By default, all force fields are deactivated.

Chapter 5: Scripting Commands 153

5.40 Variables

5.40.1 Syntax

variables = {variable -> string|integer|real, ...};

Directive Parameters Description
variable string,

integer, real
Sets or redefine a variable; currently supported format
only include scalars of types string, integer, and real.

5.40.2 Usage

The variable command is used to define or override previously defined variables, which al-
lows for e.g. resizing of simulation cells as defined in the original data file. Also, simulation-
wide string variables can be set, which later can be used as file names, etc. Currently, only
scalar variables are supported. Future releases will include structured variables as well.

5.40.3 Examples

Possible definitions include

variables = {la -> 0.95*la, lb -> 1.05*lb};

variables = {name -> "test/polyethylene"};

Chapter 5: Scripting Commands 154

5.41 XYZ

5.41.1 Syntax

xyz = {name -> string, compress -> boolean,

system -> integer, forcefield -> option,

cut -> boolean, detect -> boolean,

segment -> option, residue -> option,

pbc -> boolean, map -> boolean, unwrap -> boolean};

Directive Parameters Description
name string Defines the file name to be imported; an extention of .emc

is assumed.

compress boolean Sets compression using Lempel-Ziv coding (LZ77); an
extra extension of .gz is assumed; options are true or
false.

system integer Selects system to be imported or exported
forcefield option Selects the desired force field; valid options are none,

standard, or charmm.

cut boolean Selects cut mode: cut bonds that cross cell boundaries;
options are true or false.

detect boolean Detect and assign atom and amino acid residue types;
options are true or false.

segment option Sets options for segment representation; options are
detect for detection, index for use of EMC cluster ids,
or series for increments starting with the letter M.

residue option Sets options for residue representation; options are
detect for detection of amino acid residues, index for
use of EMC group ids, or series for increments starting
with the letter R.

pbc boolean Applies periodic boundary conditions; options are true

or false.

map boolean Selects mapping sites and box geometry according to a
minimum image convention; options are true or false.

unwrap boolean Unwraps clusters to cross periodic boundaries with ap-
plication of periodic boundary conditions to its center of
mass when applicable; options are true or false.

5.41.2 Usage

The xyz command is used to export data files in XYZ format for convenient visualization
with VMD (Visual Molecular Dynamics), a visualization conceived and supported by the
Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-
Champaign. Textual XYZ formats are ambiguous and are not self-defining, which creates
the need for predefinition of the desired format. This port allows for commonly used force
field modes.

Chapter 5: Scripting Commands 155

5.41.3 Default

The default is given by

xyz = {compress -> false,

system -> 0, forcefield -> standard,

cut -> false, detect -> false,

segment -> index, residue -> index,

pbc -> true, map -> false, unwrap -> true};

5.41.4 References

1. VMD - Visual Molecular Dynamics, ‘http://www.ks.uiuc.edu/Research/vmd/’

2. Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J.
Molec. Graphics 1996, 14, 33-38

156

6 Sampling Tools

EMC offers the possibility of applying sampling either on the fly or by application to
pregenerated trajectories (in .traject format). Available sampling algorithms include radii
of gyration, pair correlation functions, cavity size distributions, energy and density profiles.
The latter profiles offer a convolution option, which promotes smoothing out results by
spreading point measurables over spherical volumes. Sampling is accessed through the
scripting command sample (see Section 5.30 [Sample], page 140). Examples can be found
in ./examples/build/sample.

Chapter 6: Sampling Tools 157

6.1 Bond

6.1.1 Syntax

gyration = {

id -> integer,

active -> boolean,

frequency -> integer,

source -> struct,

target -> struct,

binsize -> real,

distributions -> struct

};

Directive Parameters Description
id integer Method identifier for referencing subsequent alterations.
active boolean Indicates the state of the method; options are true or

false.

frequency integer Sets the frequency of the method, which is assumed to
be a positive integer.

source,

target

struct Definition of clusters, groups, and sites as to which to
focus analysis on (see Section 7.3 [Focus], page 181); both
contributing types need to be included for a specific bond;
all mobile and active sites are taken when not defined.

binsize real Sets the binsize of the resulting distributions.
distributions struct Distributions resulting from analysis; these distributions

- only shown in .emc and exported .m files - cannot be
influenced with scripting command sample.

6.1.2 Usage

The bond command is used to sample bond lengths, which are indicated by defining pairs
withing focus. Resulting distributions are reported as frequency distributions, which can
be exported by using the scripting command export (see Section 5.10 [Export], page 103).
Averages are reported as part of the resulting distribution as shown in .emc and .m files.
An example can be found in ./examples/build/sample/bond/ by running setup.sh.

6.1.3 Default

The default is given by

sample = {

id -> 0,

active -> false,

frequency -> 1,

source -> {},

target -> {},

binsize -> 0.01

};

Chapter 6: Sampling Tools 158

6.1.4 Example

The example as provided in ./examples/sample/bond/ creates a system of octane
molecules using the TraPPE-UA force field (see Section 7.12.21 [TraPPE], page 356). The
EMC build script is generated by emc_setup.pl, which uses chemistry.csv to define the
octane chemistry (see Chapter 4 [Simulation Setup], page 8). The final system contains a
total of 1000 beads. The setup.sh calls EMC to build and sample. The sampling script
sample.emc is explained in the following. First, a set of variables are set, which are used
later in the script.

variables = {

input -> "example",

output -> "test",

ncycles -> 1000,

nblocks -> 100,

frequency -> 1

};

Next, the created structure example.emc.gz is loaded.

get = {name -> input, compress -> true};

The structure should first be equilibrated before sampling commences. To this effect, a
simulation is executed for ncycles cycles.

run = {

ncycles -> ncycles,

nblocks -> nblocks

};

The bond lengths of bonds between CH3 and CH2 types and between CH2 types are to be
sampled. To this end, sampling of bonds in defined in the sample paragraph. The TraPPE
type for CH3 groups is c4h3 and for CH2 groups c4h2.

sample = {

bond -> {

{

id -> 0,

source -> {sites -> c4h3},

target -> {sites -> c4h2},

active -> true, frequency -> frequency, binsize -> 0.001

},

{

id -> 1,

source -> {sites -> c4h2},

target -> {sites -> c4h2},

active -> true, frequency -> frequency, binsize -> 0.001

Chapter 6: Sampling Tools 159

}

}

};

The simulations is continued for another ncycles. Sampling occurs during the execution
of the simulation.

run = {

ncycles -> ncycles,

nblocks -> nblocks

};

Trajectories can also be used for sampling analysis. To this effect, a trajectory can be
loaded by using the traject keyword.

traject = {name -> name, frequency -> 1, mode -> analyze};

Sampling of trajectories occurs when the mode option analyze is selected. The resulting
distributions can be exported to either math and csv formats.

export = {

sample -> {name -> "bond", type -> bond, style -> math},

sample -> {name -> "bond", type -> bond, style -> csv}

};

The equilibrated and resulting structure is stored in EMC format by means of

put = {name -> output, compress -> true};

Chapter 6: Sampling Tools 160

6.2 Cavity

6.2.1 Syntax

cavity = {

id -> integer,

active -> boolean,

frequency -> integer,

focus -> struct,

solver -> option,

record -> string,

separate -> boolean,

ninserts -> integer,

ntrials -> integer,

npoints -> integer,

tolerance -> real,

cutoff -> real,

binsize -> real,

distributions -> struct,

nerrors -> struct,

zero -> boolean,

negative -> boolean

};

Directive Parameters Description
id integer Method identifier for referencing subsequent alterations.
active boolean Indicates the state of the method; options are true or

false.

frequency integer Sets the frequency of the method, which is assumed to
be a positive integer.

focus struct Defines sites, groups, or clusters to focus on (see
Section 7.3 [Focus], page 181).

solver option Selects the solver used in finding local minima or sad-
dle points in the energy surface; available options are
broyden or newton.

record string Sets the output file name for the positions ans sizes of
found cavities; ignored when no file name is set.

separate boolean Toggles whether to write recorded output in one single
or separate files; options are true or false.

ninserts integer Sets the number of initially inserted points for finding
local minima or saddle points.

niterations integer Sets the maximum number of iteration steps allowed in
finding the local minima or saddle points.

npoints integer Sets the number of points used to determine the cavity
size by means of the root of the local energy.

Chapter 6: Sampling Tools 161

tolerance real Sets the tolerance for the zero force at the local minimum
or saddle point.

cutoff real Sets the cutoff in Jacobian elements used to discriminate
between minima and saddle points.

binsize real Sets the binsize of the resulting distributions.
distributions struct Distributions resulting from analysis; local minima and

saddle points distributions are reported per system in
alternating fashion.

nerrors struct Resulting bookkeeping of algorithm performance.
zero boolean Include negative sizes as zero size in distribution; nega-

tive sizes are ignored when false; superceedes negative
when true; options are true or false.

negative boolean Include negative sizes in distribution; options are true

or false.

6.2.2 Usage

The cavity command is used to sample cavity size distributions of all morphologies entailed
by a simulation according to the algorithm as described by In ’t Veld et al.[1] The algorithm
uses either a Newton or Broyden iterative scheme in combination with a line search to
determine local minima or saddle point in the surface of the energy landscape. This point
is then used to grow a bead to such an extent, that the resulting energy equals zero.
Distinction between minima and saddle points is made by requiring the Jacobian to be
definate positive for minima. The definition of "definate positive" can be adjusted by means
of the cutoff option. An example can be found in ./examples/build/sample/cavity/

by running build.emc. An example of trajectory analysis is given by traject.emc in the
same examples directory.

6.2.3 Default

The default is given by

sample = {

active -> false,

frequency -> 1,

focus -> {},

solver -> newton,

record -> "",

separate -> false,

ninserts -> 1000,

ntrials -> 200,

npoints -> 10,

tolerance -> 1e-8,

cutoff -> 1e-6,

binsize -> 0.01,

zero -> false,

negative -> false

};

Chapter 6: Sampling Tools 162

6.2.4 Example

The following example samples the cavity size distribution of an FCC lattice, which con-
sists of a tetrahedral and an octahedral cavity. Its scripting equivalent can be found in
./examples/sample/cavity/build.emc. This example will be discussed in parts in the
following. First, a number of variables are set,

variables = {

lattice -> $root+"lib/fcc",

output -> "lattice",

n -> 4

};

Here the variable lattice describes the location of a predefined FCC lattice in EMC format.
The final resulting positions are stored in filenames with starting with lattice. The variable
n holds the number of replicas. An FCC lattice is obtained from the library directory by

get = {name -> lattice};

after which it is replicated n times in all directions by

crystal = {n -> {n, n, n}};

thus creating a superlattice. Subsequently, sampling of cavities using a Newton solver is
turned on by

sample = {

cavity -> {

active -> true,

solver -> newton,

record -> "cavity",

binsize -> 0.001,

ninserts -> 1000

}

};

One thousand inserts are executed for each sampled structure. Cavity and saddle point
positions are stored in file "cavity.pdb" by defining record. The resulting distribution has
a bin size of 0.001. All omitted parameter definitions will internally be set to the above
mentioned defaults. The selected FCC lattice does not include a force field definition, Force
field parameters – which are not included in the selected FCC lattice – can be defined by
using the simulation scripting command,

simulation = {

output -> {debug -> false},

units -> {seed -> -1},

types -> {

Chapter 6: Sampling Tools 163

standard -> {

pair -> {

active -> true,

cutoff -> 2.5,

data -> {

{i0 -> 0, i1 -> 0, sigma -> 1, epsilon -> 1}

}

}

}

},

moves -> {

displace -> {active -> false}

}

};

Here, the standard Lennard-Jones force field is chosen. Subsequently, displacement moves
are switched off, thus not allowing particles to move. The seed value -1 triggers the use of
the system clock as a seed value. A trajectory file is created through

traject = {name -> "cavity", frequency -> 1};

The resulting configuration is run for 0 cycles in order to sample the cavity size distribution,

run = {ncycles -> 0};

Once the cavity size distribution has been sampled, it is stored in both a Mathematica and
a comma separated value format through

export = {

sample -> {name -> "cavity", type -> cavity, style -> math},

sample -> {name -> "cavity", type -> cavity, style -> csv}

};

The superlattice is stored in both EMC native and PDB formats by means of

put = {name -> output};

pdb = {name -> output};

The above described script is run with

emc_linux build.emc 2>&1 | tee build.out

A VMD script called cavity.vmd has been provided in the same directory. This script allows
for simulataneous visualization of particles, octahedral and tetrahedral cavities, demarcated
with types A and B respectively. The script is called with

Chapter 6: Sampling Tools 164

vmd -e cavity.vmd

The color of the solid particles identifies the size of the cavity. Note, that due to the
statistical nature of the algorithm, not all cavities necessarily will be found. Thus, possibly
not all cavities will be displayed.

6.2.5 References

1. P.J. in ’t Veld, M.T. Stone, T.M. Trustkett, and I.C. Sanchez, "Liquid Structure via
Cavity Size Distributions", J. Phys. Chem. B 2000, 104, 12028

Chapter 6: Sampling Tools 165

6.3 Gr

6.3.1 Syntax

gr = {

id -> integer,

active -> boolean,

frequency -> integer,

source -> struct,

target -> struct,

cutoff -> real,

binsize -> real,

intra -> struct,

inter -> struct,

total -> struct

};

Directive Parameters Description
id integer Method identifier for referencing subsequent alterations.
active boolean Indicates the state of the method; options are true or

false.

frequency integer Sets the frequency of the method, which is assumed to
be a positive integer.

source,
target

struct Definition of source and target clusters, groups, and sites
(see Section 7.3 [Focus], page 181); all mobile and active
sites are taken when not defined.

cutoff real Sets the extent to which distances are evaluated; a zero
value will result in initialization with the maximum cutoff
resulting from active pairwise potential definitions.

binsize real Sets the binsize of the resulting distributions.
intra,
inter, total

struct Distributions resulting from analysis, reporting in-
tramolecular, intermolecular, and all distances resulting
from pairwise combinations as specified by source and
target structures.

6.3.2 Usage

The gr command is used to sample radial distribution functions of all morphologies
entailed by a simulation. Intramolecular, intermolecular, and total distributions are
sampled based on the specified source and target definitions. Resulting distributions
are reported as frequency distributions, which can be exported by using the scripting
command export (see Section 5.10 [Export], page 103). An example can be found in
./examples/build/sample/gr/ by running setup.sh.

6.3.3 Default

The default is given by

sample = {

Chapter 6: Sampling Tools 166

id -> 0,

active -> false,

frequency -> 1,

source -> {},

target -> {},

cutoff -> 0,

binsize -> 0.01

};

6.3.4 Pair Correlation Functions

The following has been borrowed from Wikipedia1. In statistical mechanics, the radial
distribution function, (or pair correlation function) g(r) in a system of particles (atoms,
molecules, colloids, etc.), describes how density varies as a function of distance from a
reference particle.

If a given particle is taken to be at the origin O, and if ρ = N/V is the average number
density of particles, then the local time-averaged density at a distance r from O is ρg(r).
This simplified definition holds for a homogeneous and isotropic system. A more general
case will be considered below.

In simplest terms it is a measure of the probability of finding a particle at a distance of r
away from a given reference particle, relative to that for an ideal gas. The general algorithm
involves determining how many particles are within a distance of r and r+ dr away from a
particle. This general theme is depicted to the right, where the red particle is our reference
particle, and blue particles are those which are within the circular shell, dotted in orange.

The RDF is usually determined by calculating the distance between all particle pairs
and binning them into a histogram. The histogram is then normalized with respect to an
ideal gas, where particle histograms are completely uncorrelated. For three dimensions, this
normalization is the number density of the system multiplied by the volume of the spherical
shell, which mathematically can be expressed as g(r)I = 4πr2ρdr, where ρ is the number
density.

Given a potential energy function, the radial distribution function can be computed
either via computer simulation methods like the Monte Carlo method, or via the Ornstein-
Zernike equation, using approximative closure relations like the Percus-Yevick approxima-
tion or the Hypernetted Chain Theory. It can also be determined experimentally, by ra-
diation scattering techniques or by direct visualization for large enough (micrometer-sized)
particles via traditional or confocal microscopy.

The radial distribution function is of fundamental importance since it can be used,
using the Kirkwood–Buff solution theory, to link the microscopic details to macroscopic
properties. Moreover, by the reversion of the Kirkwood-Buff theory, it is possible to attain
the microscopic details of the radial distribution function from the macroscopic properties.

6.3.5 Definition

Consider a system of N particles in a volume V (for an average number density ρ = N/V)
and at a temperature T (let us also define β = 1

kT
). The particle coordinates are ~ri, with

i = 1, ..., N . The potential energy due to the interaction between particles is UN(~r1, ...,~rN)
and we do not consider the case of an externally applied field.

Chapter 6: Sampling Tools 167

The appropriate averages are taken in the canonical ensemble (N,V, T), with ZN =∫
...
∫
e−βUNd~r1 ... d~rN the configurational integral, taken over all possible combinations of

particle positions. The probability of an elementary configuration, namely finding particle
1 in d~r1, particle 2 in d~r2, etc. is given by

P (N) (~r1, ...,~rN) d~r1 ... d~rN = e−βUN

ZN
d~r1 ... d~rN .

The total number of particles is huge, so that P (N) in itself is not very useful. However, one
can also obtain the probability of a reduced configuration, where the positions of only n < N
particles are fixed, in ~r1 ..., ~rn, with no constraints on the remaining N−n particles. To this
end, one has to integrate the above equation over the remaining coordinates ~rn+1, ..., ~rN :

P (n)(~r1, ..., ~rn) =
1
ZN

∫
...
∫
e−βUN d~rn+1 ... d~rN .

The particles being identical, it is more relevant to consider the probability that any n of
them occupy positions ~r1, ..., ~rn in any permutation, thus defining the n-particle density

ρ(n)(~r1, ..., ~rn) =
N !

(N−n)!P
(n)(~r1, ..., ~rn).

For n = 1, this equation gives the one-particle density which, for a crystal, is a periodic func-
tion with sharp maxima at the lattice sites. For a (homogeneous) liquid, it is independent
of the position ~r1 and equal to the overall density of the system:

1
V

∫
ρ(1)(~r1) d~r1 = ρ(1) = N

V
= ρ.

It is now time to introduce a correlation function g(n) by

ρ(n)(~r1, ..., ~rn) = ρng(n)(~r1, ..., ~rn).

g(n) is called a correlation function, since if the atoms are independent from each other ρ(n)

would simply equal ρn and therefore g(n) corrects for the correlation between atoms. From
the latter two equations it follows that

g(n)(~r1, ..., ~rn) =
V nN !

Nn(N−n)! ·
1
ZN

∫
...
∫
e−βUN d~rn+1 ... d~rN .

6.3.6 Relations Involving g(r)

6.3.6.1 Structure Factor

The second-order correlation function g(2)(~r1,~r2) is of special importance, as it is directly
related (via a Fourier transform) to the structure factor of the system and can thus be
determined experimentally using X-ray diffraction or neutron diffraction. If the system
consists of spherically symmetric particles, g(2)(~r1,~r2) depends only on the relative distance
between them, ~r12 = ~r2 − ~r1. We will drop the sub- and superscript: g(~r) ≡ g(2)(~r12).
Taking particle 0 as fixed at the origin of the coordinates, ρg(~r) dr = dn(~r) is the number

Chapter 6: Sampling Tools 168

of particles (among the remaining N−1) to be found in the volume d~r around the position ~r.
We can formally count these particles as dn(~r) = 〈

∑
i6=0 δ(~r−~ri)〉d~r, with 〈...〉 the ensemble

average, yielding

g(~r) = 1
ρ
〈
∑
i6=0 δ(~r −~ri)〉 = V N−1

N
〈δ(~r −~r1)〉,

where the second equality requires the equivalence of particles 1, ..., N − 1. The formula
above is useful for relating g(~r) to the static structure factor S(~q), defined by S(~q) =
1/N〈

∑
ij e
−i~q(~ri−~rj)〉, since we have

S(~q) = 1 + 1
N
〈
∑
i 6=j e

−i~q(~ri−~rj)〉 =
= 1 + 1

N

〈∫
V e
−i~q~r∑

i 6=j δ [~r − (~ri −~rj)] d~r
〉
=

= 1 + N(N−1)
N

∫
V e
−i~q~r 〈δ(~r −~r1)〉 d~r ,

and thus

S(~q) = 1 + ρ
∫
V e
−i~q~rg(~r) d~r ,

proving the Fourier relation alluded to above. This equation is only valid in the sense of
distributions, since g(~r) is not normalized: limr→∞ g(~r) = 1, so that

∫
V d~rg(~r) diverges as

the volume V , leading to a Dirac peak at the origin for the structure factor. Since this
contribution is inaccessible experimentally we can subtract it from the equation above and
redefine the structure factor as a regular function,

S′(~q) = S(~q)− ρδ(~q) = 1 + ρ
∫
V e
−i~q~r[g(~r)− 1] d~r .

Finally, we rename S(~q) ≡ S′(~q) and, if the system is a liquid, we can invoke its isotropy,

S(q) = 1 + ρ
∫
V e
−i~q~r[g(r)− 1] d~r = 1 + 4πρ 1

q

∫
r sin(qr)[g(r)− 1] dr .

6.3.6.2 Compressibility Equation

Evaluating the latter equation for q = 0 while using the relation between the isothermal
compressibility χT and the structure factor at the origin yields the compressibility equation:

ρkTχT = kT
(
∂ρ
∂p

)
= 1 + ρ

∫
V [g(r)− 1] d~r.

6.3.6.3 Potential of Mean Force

It can be shown that the radial distribution function is related to the two-particle potential
of mean force w(2)(r) by2

g(r) = exp
[
−w(2)(r)

kT

]
.

Chapter 6: Sampling Tools 169

6.3.6.4 Energy Equation

If the particles interact via identical pairwise potentials3,

UN =
∑N
i>j=1 u(|~ri −~rj|),

the average internal energy per particle is

〈E〉
N

= 3
2
kT + 〈UN 〉

N
= 3

2
kT + 1

2
ρ
∫
V d~r u(r)g(r, ρ, T).

6.3.6.5 Pressure Equation of State

Developing the virial equation yields the pressure equation of state,

p = ρkT − 1
6
ρ2
∫
V r g(r, ρ, T)du(r)

dr
d~r.

6.3.6.6 Thermodynamic Properties

The radial distribution function is an important measure because several key thermody-
namic properties, such as potential energy and pressure can be calculated from it. For
a 3-D system where particles interact via pairwise potentials, the potential energy of the
system can be calculated as follows4

PE = 2πρN
∫∞
0 r2u(r)g(r)dr,

where N is the number of particles in the system, ρ is the number density, u(r) is the
pair potential. The pressure of the system can also be calculated by relating the 2nd virial
coefficient to g(r). The pressure can be calculated as follows

P = ρkBT − 2
3
πρ2

∫∞
0 r3g(r)du(r)

dr
dr,

where T is the temperature and kB is Boltzmann’s constant. Note that the results of
potential and pressure will not be as accurate as directly calculating these properties because
of the averaging involved with the calculation of g(r).

6.3.7 References

1. N. N., Radial Distribution Function, Wikipedia (1/1/2016).

2. Chandler, D., Introduction to Modern Statistical Mechanics. Chapter 7.3, Oxford
University Press (1987).

3. Hansen, J. P. and McDonald, I. R., Theory of Simple Liquids (3rd ed.), Academic Press
(2005).

4. Frenkel, D. and Smit, B., Understanding Molecular Simulation from Algorithms to
Applications (2nd ed.), Academic Press (2002).

Chapter 6: Sampling Tools 170

6.4 Gyration

6.4.1 Syntax

gyration = {

id -> integer,

active -> boolean,

frequency -> integer,

focus -> struct,

cutoff -> real,

binsize -> real,

distributions -> struct

};

Directive Parameters Description
id integer Method identifier for referencing subsequent alterations.
active boolean Indicates the state of the method; options are true or

false.

frequency integer Sets the frequency of the method, which is assumed to
be a positive integer.

focus struct Definition of clusters, groups, and sites as to which to
focus analysis on (see Section 7.3 [Focus], page 181); all
mobile and active sites are taken when not defined.

cutoff real Sets the extent to which distances are evaluated; a zero
value will result in initialization with the maximum cutoff
resulting from active pairwise potential definitions.

binsize real Sets the binsize of the resulting distributions.
distributions struct Distributions resulting from analysis; these distributions

- only shown in .emc and exported .m files - cannot be
influenced with scripting command sample.

6.4.2 Usage

The gyration command is used to sample radius of gyration distributions of all morpholo-
gies entailed by a simulation. Resulting distributions are reported as frequency distributions,
which can be exported by using the scripting command export (see Section 5.10 [Export],
page 103). Averages are reported as part of the resulting distribution as shown in .emc and
.m files. An example can be found in ./examples/build/sample/gyration/ by running
setup.sh.

6.4.3 Default

The default is given by

sample = {

id -> 0,

active -> false,

frequency -> 1,

focus -> {},

Chapter 6: Sampling Tools 171

cutoff -> 0,

binsize -> 0.01

};

6.4.4 Theory

The following has been borrowed from Wikipedia1. In polymer physics, the radius of gy-
ration is used to describe the dimensions of a polymer chain. The radius of gyration of a
particular molecule at a given time is defined as:

R2
g =

1
N2

∑N
i=1,j>i (~ri −~rj)

2
,

where N represents the number of particles in the molecule and vectors ~ri and ~rj denote
particle positions. Since the chain conformations of a polymer sample are quasi infinite in
number and constantly change over time, the "radius of gyration" discussed in polymer
physics must usually be understood as a mean over all polymer molecules of the sample
and over time. That is, the radius of gyration which is measured as an average over time
or ensemble:

〈R2
g〉 = 1

N2 〈
∑N
i=1,j>i (~ri −~rj)

2〉,

where the angular brackets 〈...〉 denote the ensemble average. An entropically governed
polymer chain (i.e. in so called theta conditions) follows a random walk in three dimensions.
The radius of gyration for this case is given by

Rg =
1√
6

√
N a

Note that although aN represents the contour length of the polymer, a is strongly dependent
of polymer stiffness and can vary over orders of magnitude. N is reduced accordingly. One
reason that the radius of gyration is an interesting property is that it can be determined
experimentally with static light scattering as well as with small angle neutron- and x-ray
scattering. This allows theoretical polymer physicists to check their models against reality.
The hydrodynamic radius is numerically similar, and can be measured with Dynamic Light
Scattering (DLS).

6.4.5 References

1. N. N., Radius of Gyration, Wikipedia (1/1/2016).

Chapter 6: Sampling Tools 172

6.5 Interaction

6.5.1 Syntax

interaction = {

id -> integer,

active -> boolean,

frequency -> integer,

cutoff -> real,

mode -> option,

coulomb -> option,

bias -> option,

weight -> option,

ntrials -> integer,

nvolumes -> integer,

ninits -> integer,

nwidth -> integer,

source -> struct,

target -> struct,

mass -> real,

dvolume -> real,

volume1 -> struct,

volume2 -> struct,

denergy -> real,

energy -> struct

};

Directive Parameters Description
id integer Method identifier for referencing subsequent alterations.
active boolean Indicates the state of the method; options are true or

false.

frequency integer Sets the frequency of the method, which is assumed to
be a positive integer.

mode global Sets the desired pairwise potential cut off mode; options
are global, individual, and repulsive

coulomb none Sets the desired type of coulombic interactions; options
are none, cut, switch, and long.

bias none Sets the bias used during interaction sampling; options
are none, energy, and frequency.

weight none Sets the weighting used for populating the resulting in-
teraction distribution; options are none, boltzmann, and
montecarlo.

ntrials 0 Sets the number of energetic interaction sampling trials.
nvolumes 100 Sets the number of volume sampling trials.

Chapter 6: Sampling Tools 173

ninits 1000 Sets the number of trials for populating the initial
distribution as used by energy and frequency biased
sampling.

nwidth 1 Sets the spread used during sampling for accessing non-
initialized bins resulting from the previous option.

source,
target

struct Definition of source and target clusters, groups, and sites
(see Section 7.3 [Focus], page 181) setting the two inter-
action species; all mobile and active sites are taken when
not defined.

cutoff real Sets the extent to which distances are evaluated; a zero
value will result in initialization with the maximum cutoff
resulting from active pairwise potential definitions.

dvolume real Sets the binsize of the resulting distributions.
volume1,
volume2

real Resulting distribution of source and target volume anal-
ysis; produces the volume distribution of the two inter-
acting species.

denergy real Sets the binsize of the resulting energy distributions.
energy struct Distributions resulting from analysis, reporting pairwise

interaction as specified by source and target structures.

6.5.2 Usage

The interaction command is used to sample the pairwise potential of mean force, which
can either be calculated from provided or from internally generated structures. Inter-
nally generated structures are sampled over distances within the specified cutoff and
over randomly chosen orientations. Resulting pairwise interactions can be weighted by
several weighting techniques. Resulting samples per bin can be controlled by different bi-
asing schemes. Volumetric and energetic distributions are sampled based on the specified
source and target definitions. Resulting distributions are reported as frequency distribu-
tions, which can be exported by using the scripting command export (see Section 5.10
[Export], page 103).

6.5.3 Default

The default is given by

sample = {

id -> 0,

active -> false,

frequency -> 1,

mode -> option,

coulomb -> option,

bias -> none,

weight -> none,

ntrials -> 0,

nvolumes -> 100,

ninits -> 1000,

nwidth -> 1,

source -> {},

Chapter 6: Sampling Tools 174

target -> {},

mass -> 0,

cutoff -> 0,

dvolume -> 0.01,

denergy -> 0.01

};

Chapter 6: Sampling Tools 175

6.6 Profiles

Density, pressure, and energy profile explanation.

Chapter 6: Sampling Tools 176

6.7 Examples

Choice examples.

177

7 Variable Descriptions

EMC uses hierarchical variables, which can be recursive in character. This chapter describes
the syntax of variables that are used often within the context of the EMC scripting language.
Currently, variables use a representation similar to Mathematica.

Mathematical operations supported for scalar variable types integer and real are

Operator Application Description
+ a + b Addition
- a - b Subtraction
* a * b Multiplication
/ a / b Division
^ a ^ b Power
? q ? a : b Logical; select a when q is true, b otherwise

Mathematical functions supported for scalar variable types integer and real are

Operator Application Description
acos acos(x) Arccosine using a radial basis
asin asin(x) Arcsine using a radial basis
atan atan(x) Arctangent using a radial basis
cos cos(x) Cosine using a radial basis
eval eval(expr) Evaluate a string expression into a value
exp exp(x) Exponential
int int(x) Floor of a real number
log log(x) Natural log
sin sin(x) Sine using a radial basis
sqrt sqrt(x) Square root
tan tan(x) Tangent using a radial basis
mass mass(index) Mass of a predefined group index
mtotal mtotal(focus) Mass of sites in selection as defined by focus (See

Section 7.3 [Focus], page 181)

nclusters nclusters(

focus)

Number of clusters in selection as defined by focus
(See Section 7.3 [Focus], page 181)

nsites nsites(index) Number of sites of a predefined group index
ntotal ntotal(focus) Number of sites in selection as defined by focus (See

Section 7.3 [Focus], page 181)

type type(index) Determine type number of site index (used for trans-
fer to e.g. LAMMPS input scripts)

vsites vsites(focus) Volume captured by selection as defined by focus (See
Section 7.3 [Focus], page 181)

vtotal vtotal(focus) Total system volume as defined by system selection
(See Section 7.3 [Focus], page 181)

Chapter 7: Variable Descriptions 178

Note, that groups must have been defined (see Section 5.17 [Groups], page 117) and a force
field must have been applied (see Section 5.11 [Field], page 106) in order for mass(index)
and nsites(index) to return correct values. See also scripts/emc_setup.pl.

Reverved variable names are represented by the following constants

Constant Type Description
$root string EMC root directory
$arg# varies command line argument
pi real number: 3.14159265358979323846264338327950288
e real number: 2.71828182845904523536028747135266250
true integer number: 0
false integer number: 1
null integer number: -1

Internally defined constants are booleans true and false, mathematical constants pi and
e, internal variable null, and the program’s root directory $root. For the latter, it is
assumed, that the emc executable resides in $root/bin. All other locations will result in
erroneous behavior of $root. Command line arguments not preceeded by a "-" are accessed
through the prefix $arg followed by a number, starting at 0. For example

variables = {name -> $arg0};

sets the variable name to the first command line argument. In case of the command

emc_${HOST} build.emc atoms

the variable name in the above example would be set to the text "atoms". Note, that –
in this example – calling $arg1 and subsequent non-exisiting arguments as a variable will
result in an error due to the fact, that $arg1 is not defined on the command line and
therefore also not internally. Addition operations using a + b, where either a or b is of
variable type string, will result in a string. For example

"text" + 1 + 1 := "text11"

but

"text" + (1 + 1) := "text2"

Previously defined variables can also be included

a = 2^2

"text" + a := "text4"

or

a = 2*3

dir = "/home/user/text"

dir + "_" + a := "/home/user/text_6"

Chapter 7: Variable Descriptions 179

7.1 Constants

7.1.1 Syntax

constants = {

systems -> {constant, ...},

clusters -> {constant, ...},

groups -> {constant, ...},

sites -> {constant, ...}

};

Directive Parameters Description
systems constant Adds a constant to the systems category; constants are

expected to be alpha-numerical.

clusters constant Adds a constant to the clusters category; constants are
expected to be alpha-numerical.

groups constant Adds a constant to the groups category; constants are
expected to be alpha-numerical.

sites constant Adds a constant to the sites category; constants are ex-
pected to be alpha-numerical.

7.1.2 Usage

This variable style describes constants. The style is additive when used in combinations
with see Section 5.40 [Variables], page 153.

7.1.3 Default

Unless otherwise stated, the default is given by

constants = {

systems -> {},

clusters -> {},

groups -> {},

sites -> {}

};

Chapter 7: Variable Descriptions 180

7.2 System Flags

7.2.1 Syntax

flag -> option

Valid options are, when set,

Directive Parameters
ignore Ignore any missing contribution and do not generate any output
complete Complete any missing contribution
warn Generate a warning when a contribution is missing
empty Create an empty entry when a contribution is missing
error Exit on errors resulting from missing contributions; all missing contribu-

tions will be listed before an exit on error occurs

7.2.2 Default

Unless otherwise stated, the default is given by

flag -> error

Chapter 7: Variable Descriptions 181

7.3 Focus

7.3.1 Syntax

focus = {

clusters -> {constant, ...},

groups -> {constant, ...},

sites -> {constant, ...},

systems -> {constant, ...},

ntrials -> integer

};

Directive Parameters Description
clusters constant Refers to cluster constants as defined by the constants

table.

groups constant Refers to group constants as defined by the constants

table.

ntrials integer Defines the number of trials used to determine vol-
ume; volume is determined by means of Monte Carlo
integration.

sites constant Refers to site constants as defined by the constants

table.

systems constant Refers to system constants as defined by the constants

table.

7.3.2 Usage

Defines a system sites subset by means of their constants identifiers (see Section 7.1 [Con-
stants], page 179).

7.3.3 Default

The default is described by an empty list for all three contributors,

focus = {

clusters -> {},

groups -> {},

sites -> {},

systems -> {},

ntrials -> 10000

};

Chapter 7: Variable Descriptions 182

7.4 Moves

7.4.1 Syntax

moves = {

ncycles -> integer,

cycle -> integer,

move -> integer,

body -> struct,

deform -> struct,

displace -> struct,

endbridge -> struct,

migrate -> struct,

rebridge -> struct,

reptate -> struct,

rotate -> struct,

surface -> struct,

temper -> struct

};

Directive Parameters Description
ncycles integer Sets the total number of simulation cycles.
cycle integer Sets the current simulation cycle
move integer Sets the current simulation move.
body struct Settings for displacing sites inside a body.
deform struct Settings for system box deformation (see Section 7.4.6

[Displace], page 185).

displace struct Settings for displacing sites in a system box.
endbridge struct Settings for recombining cluster ends in a system box.
migrate struct Settings for migrating short branches.
rebridge struct Settings for rebridging clusters in a system box.
reptate struct Settings for reptating cluster ends in a system box.
rotate struct Settings for rotating cluster ends in a system box.
surface struct Settings for displacing sites on a body surface.
temper struct Settings for parallel tempering between systems.

7.4.2 Usage

This variable style describes moves. These moves encompass standard and advanced Monte
Carlo moves.1,2

7.4.3 Default

Unless otherwise stated, the default is given by

moves = {

ncycles -> 0,

cycle -> 0,

move -> 0

Chapter 7: Variable Descriptions 183

};

By default, all moves are activated with zero frequency, with the exception of the displace-
ment move (see Section 7.4.6 [Displace], page 185), which has a frequency of one.

7.4.4 References

1. P.J. in ’t Veld, M. Hütter, and G.C. Rutledge, "Temperature-Dependent Thermal
and Elastic Properties of the Interlamellar Phase of Semicrystalline Polyethylene by
Molecular Simulation", Macromolecules 2006, 39, 439

2. V. Kumar, C.R. Locker, P.J. in ’t Veld, G.C. Rutledge, "Effect of Short Chain Branch-
ing on the Interlamellar Structure of Semicrystalline Polyethylene", Macromolecules
2017, 50, 1206

Chapter 7: Variable Descriptions 184

7.4.5 Deform Move

7.4.5.1 Syntax

deform = {

active -> boolean,

mode -> option,

frequency -> integer,

n -> integer,

dmax -> real,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

mode option Set the mode of deformation; valid options are
isotropic, shape, full, xx, yx, yy, zx, zy, and zz.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

...

n integer Number of masses available in the simulation; controlled
internally: output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.5.2 Usage

The deform move alters the box geometry based the mode and the selected pressure as set
in systems (see Section 7.11 [Systems], page 202).

7.4.5.3 Default

The default is given by

sample = {

active -> false,

frequency -> 1

};

Chapter 7: Variable Descriptions 185

7.4.6 Displace

7.4.6.1 Syntax

displace = {

active -> boolean,

frequency -> integer,

dlimit -> real,

nsites -> integer,

couple -> boolean,

n -> integer,

dmax -> real,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

dlimit real Set the maximum displacement limit.
couple boolean Couple all individual acceptances when internally deter-

mining displacement limits.

nsites integer Set the number of sites to be displaced within one move.
n integer Number of masses available in the simulation; controlled

internally.

dmax real Array of adapted displacement limits based on simulation
progress; internally determined using a feedback loop;
output only.

accept struct Array of accumulative accepted and total trials.

7.4.6.2 Usage

The displace move is used to displace sites by means of perturbation. The target accep-
tance is set to 50%.

7.4.6.3 Default

The default is given by

sample = {

active -> true,

couple -> false,

frequency -> 1,

nsites -> 1

};

Chapter 7: Variable Descriptions 186

7.4.7 Endbridge

7.4.7.1 Syntax

endbridge = {

active -> boolean,

frequency -> integer,

target -> constant,

nmin -> integer,

nmax -> integer,

tolerance -> real,

dmin -> real,

dmax -> real,

n -> integer,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

target constant Target group.
nmin integer Minimum chain length after end-bridging; valid values

are values larger or equal than three.

nmax integer Maximum chain length after end-bridging; chain length
is unlimited when zero.

tolerance real Tolerance; currently not in use.
dmin real Minimum distance between parent chain end and child

end-bridging candidate chain.

dmax real Maximum distance between parent chain end and child
end-bridging candidate chain.

n integer Number of masses available in the simulation; controlled
internally: output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.7.2 Usage

The endbridge move allows for recombination of chain ends with other chains; currently,
only linear non-branched chains are allowed.

7.4.7.3 Default

The default is given by

sample = {

active -> false,

Chapter 7: Variable Descriptions 187

frequency -> 1,

nmin -> 3

};

Chapter 7: Variable Descriptions 188

7.4.8 Migrate

7.4.8.1 Syntax

migrate = {

active -> boolean,

frequency -> integer,

target -> constant,

radius -> real,

n -> integer,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

target constant Target type for moving the branch to.
radius real Select sites with target types within radius from type on

backbone; selects all available sites in the system when
the radius equals zero.

n integer Number of masses available in the simulation; controlled
internally: output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.8.2 Usage

The migrate move is used to migrate branches on the backbone of a chain. Branches should
be created by using grafting short side clusters. Branches should not exceed a length of
three sites. Target candidates are chosen at random from the candidate list following from
the chosen radius.

7.4.8.3 Default

The default is given by

sample = {

active -> false,

frequency -> 1,

radius -> 0

};

Chapter 7: Variable Descriptions 189

7.4.9 Rebridge

7.4.9.1 Syntax

rebridge = {

active -> boolean,

frequency -> integer,

drivers -> integer,

tolerance -> real,

n -> integer,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

drivers integer Number of driver sites; valid options are 0, 1, and 2.
tolerance real Move tolerance; currently not in use.
n integer Number of masses available in the simulation; controlled

internally: output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.9.2 Usage

The rebridge move performs concerted rotations on single chains to promote accelerated
equilibration of long chain polymers.1

7.4.9.3 Default

The default is given by

sample = {

active -> false,

frequency -> 1

};

1. V.G. Mavrantzas, T.D. Boone, E. Zervopoulou, and D.N. Theodorou, "End-Bridging
Monte Carlo: A Fast Algorithm for Atomistic Simulation of Condensed Phases of Long
Polymer Chains", Macromolecules 1999, 32, 5072.

Chapter 7: Variable Descriptions 190

7.4.10 Reptate

7.4.10.1 Syntax

reptate = {

active -> boolean,

frequency -> integer,

target -> constant,

nmin -> integer,

n -> integer,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

target constant Optional target end group and site; considers all available
chain ends when not defined.

nmin integer Minimum length of the resulting chain; valid values are
values larger or equal than three.

n integer Number of masses available in the simulation; controlled
internally: output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.10.2 Usage

The reptate move promotes chain reptation by taking the end of one chain and moving it
to the end of another.

7.4.10.3 Default

The default is given by

sample = {

active -> false,

frequency -> 1,

nmin -> 3

};

Chapter 7: Variable Descriptions 191

7.4.11 Rotate

7.4.11.1 Syntax

rotate = {

active -> boolean,

frequency -> integer,

nmax -> integer,

n -> integer,

amax -> real,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

nmax integer Currently not in use.
n integer Number of masses available in the simulation; controlled

internally: output only.

amax real Array of adapted rotation limits based on simulation
progress; internally determined using a feedback loop;
output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.11.2 Usage

The rotate move selects and rotate chain ends at random. One chain is considered per
attempted move. Per attempted on to three sites are included in a random rotation.

7.4.11.3 Default

The default is given by

sample = {

active -> false,

frequency -> 1

};

Chapter 7: Variable Descriptions 192

7.4.12 Surface

7.4.12.1 Syntax

surface = {

n -> integer,

dmax -> real,

accept -> struct

};

Directive Parameters Description
n integer Number of masses available in the simulation; controlled

internally: output only.

dmax real Array of adapted displacement limits based on simulation
progress; internally determined using a feedback loop;
output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.12.2 Usage

The surface move represents a subclass of the displacement move and operates on sites
that are part of a body representing a surface. The move is automatically invoked when
the latter applies. User settings are controlled via the displacement move.

7.4.12.3 Default

Defaults are given by the displacement move.

Chapter 7: Variable Descriptions 193

7.4.13 Temper

7.4.13.1 Syntax

temper = {

active -> boolean,

frequency -> integer,

n -> integer,

accept -> struct

};

Directive Parameters Description
active boolean Indicates the state of the move; options are true or

false.

frequency integer Sets the frequency of the move, which is assumed to be
a positive integer.

n integer Number of masses available in the simulation; controlled
internally: output only.

accept struct Array of accumulative accepted and total trials; output
only.

7.4.13.2 Usage

The temper move controls the exchange between multiple replicas as represented by existing
systems. The exchange is governed by the per system chosen temperatures.

7.4.13.3 Default

The default is given by

sample = {

active -> false,

frequency -> 1

};

Chapter 7: Variable Descriptions 194

7.5 Port

7.5.1 Syntax

port = {forcefield -> option};

Directive Parameters Description
forcefield option Sets the ported force field type.

Option Description
none No force field interpretation; bonded contributions are not included in the

ported format.

auto Automated guess of ported format; based on which force field family is
currently active; only works correctly when just one force field family is
activated.

boltzmann Assumes Boltzmann force fields (see Section 7.12.4 [Boltzmann], page 207).
cff Assumes CFF force fields (see Section 7.12.6 [CFF], page 220).
charmm Assumes CHARMM force fields (see Section 7.12.7 [CHARMM], page 236).
dpd Assumes DPD coarse-grained force fields (see Section 7.12.11 [DPD],

page 275).

gauss Assumes Gaussian coarse-grained force fields (see Section 7.12.12 [Gauss],
page 284).

martini Assumes MARTINI coarse-grained force fields (see Section 7.12.14 [MAR-
TINI], page 302).

mie Assumes Mie coarse-grained force fields (see 〈undefined〉 [mie], page 〈unde-
fined〉).

opls Assumes OPLS all-atom and united-atom force fields (see Section 7.12.16
[OPLS], page 319).

sdk Assumes SDK coarse-graine force fields (see Section 7.12.17 [SDK],
page 328).

standard Assumes standard force fields (see Section 7.12.19 [Standard], page 341).
table Assumes tabulated force fields (see Section 7.12.20 [Table], page 350).
trappe Assumes TraPPE all-atom and united-atom force fields (see Section 7.12.21

[TraPPE], page 356).

coarse Assumes coarse-grained force fields.
colloid Assumes colloidal force fields.
fene Assumes FENE force fields.

7.5.2 Default

Unless otherwise stated, the default is given by

port = {forcefield -> auto};

Chapter 7: Variable Descriptions 195

7.6 Profiles

7.6.1 Syntax

profiles = {

bond -> struct,

density -> struct,

force -> struct,

mass -> struct,

order -> struct

};

Directive Parameters Description
bond struct Settings for bond length distributions of all bonds within

all systems; no discrimination is made between bond
types.

density struct Settings for mass density profiles; no discrimination is
made between site masses.

force struct Settings for energy and virial density profiles; resulting
binned contributions reflect the interaction of that bin
with its surroundings.

mass struct Settings for mass profiles; distinction is made between
contributing site masses.

order struct Settings for order profiles; no distinction is made between
contributing bond types.

7.6.2 Usage

This variable style describes profiles.

7.6.3 Default

By default, all profiles are deactivated and all entries are zeroed out.

Chapter 7: Variable Descriptions 196

7.7 Region

7.7.1 Syntax

region = {shape -> option, type -> option, mode -> option,

center -> vector, h -> voigt[, radius -> vector]}

Directive Parameters Description
shape option Sets region shape; possibilities are cuboid or spheroid.
type option Sets region type; possibilities are relative or absolute.
mode option Sets region mode; possibilities are hard or soft; used in

conjunction with sites growth.

center vector Defines the center of a region.
h voigt Defines the extent of a region as a voigt notation shape

(see Section 7.15 [Voigt], page 367).

radius vector Defines the extent of a region as a vector (see Section 7.14
[Vector], page 366); the radius is a derived alternative
to h and translated into h upon execution.

7.7.2 Usage

Specifies a region of a certain shape within system simulation cell. Units of the shape
center and radius can either be expressed in a relative or an absolute fashion. Relative
units express both shape center and radius in units of base vectors ~a, ~b, and ~c and lengths
thereof. Absolute units make use of the simulation-wide settings as expressed under in the
’Units’ section (see Section 7.13 [Units], page 364) of the simulation structure. The region’s
mode influences the growth of sites by either hard or soft exclusion or inclusion. The hard
mode applies the region to all sites of inserted clusters, while the soft mode only applies
the region to the first site of inserted clusters.

7.7.3 Default

Unless otherwise stated, the default is given by

region = {shape -> spheroid, type -> relative, mode -> hard,

center -> {0,0,0}, h -> {0,0,0,0,0,0}};

Chapter 7: Variable Descriptions 197

7.8 SMILES

7.8.1 Syntax

chemistry = string;

7.8.2 Usage

The Simplified Molecular Input Line Entry System (or SMILES for short) is used to describe
chemistry as reflected in the definitions of groups (see Section 5.17 [Groups], page 117).
It follows the syntax as described Daylight Chemical Information Systems, Inc., but is
extended to also capture non-periodic system representations as are used in defining coarse-
grained systems. The distinction between periodic and non-periodic representations is iden-
tified by keywords atomistic and coarse respectively. In atomistic mode, hydrogen com-
pletion is implicit and lower character case signifies aromaticity, where allowed characters
are c, n, o, p, and s. A short summary is listed in the table below. Extensions to the
original SMILES format are marked with (extension).

Modifier Example Description
>X >C First branch point, connecting to chains in the down di-

rection (extension).

X< C< Second branch point, connecting to chains in the up di-
rection (extension).

* * General branch point, connecting chains (extension).
~X ~C Represents any bond (extension).
-X -C Represents a single bond (extension).
:X :C Represents a partial double bond (extension).
=X =C Represents a double bond.
#X #N Represents a triple bond.
x c Lower case indicate aromatics in atomistic mode; al-

lowed characters are c, n, o, p, and s.

[XX] [He] Needed for usage of symbols with more than one
character.

() CC(C)C Indicates branching from backbone.
(X)1 (C)3 Indicates repeating sequences (here (C)3 = CCC); note,

that CC(C)3C = CCCCCC and CC((C)3)C = CC(CCC)C;
multi-digits are allowed (extension).

1X 2H Assignes an aberrant mass to a symbol (here 2).
X1 c1ccccc1 Indicates a link number to create ring structures (here a

benzene ring); duplicate link numbers are allowed.

% c%11ccccc%11 Used for multi-digit link numbers.
\X or /X C/C=C/C Identifies cis (C/C=C\C) or trans (C/C=C/C) isomers.
@ [C@H] Identifies L- ([C@@H]) or R- ([C@H]) stereoisomers.
+1 [Na+1] Indicates an assigned positive charge; charges can be par-

tial (e.g. 0.5); a + with omitted digits indicates an in-
crease by +1, e.g. [Na+] equals [Na+1] or [Ca++] repre-
sents a calcium atom with charge +2.

Chapter 7: Variable Descriptions 198

-1 [Cl-1] Indicates an assigned negative charge; charges can be
partial (e.g. 0.5); a - with omitted digits indicates an
decrease by -1.

7.8.3 Examples

The following table shows a few example chemistry and their corresponding SMILES strings.

Chemistry SMILES
water HOH

cyclohexanone O=C1CCCCC1

dodecane (C)12

CCCCCCCCCCCC

iso-octane CC(C)CC(C)(C)C

diphenylmethane c1ccccc1Cc1ccccc1

Methylene diphenyl 4,4’-diisocyanate O=C=Nc1ccc(cc1)Cc2ccc(N=C=O)cc2

trans-2-butene C/C=C/C

L-tryptophan c1ccc2c(c1)c(c[nH]2)C[C@@H](C(=O)O)N

Chapter 7: Variable Descriptions 199

7.9 Splines

7.9.1 Introduction1

In mathematics, a spline is a sufficiently smooth polynomial function that is piecewise-
defined, and possesses a high degree of smoothness at the places where the polynomial
pieces connect (which are known as knots).2,3

In interpolating problems, spline interpolation is often referred to as polynomial interpo-
lation because it yields similar results, even when using low-degree splines, to interpolating
with higher degree polynomials while avoiding instability due to Runge’s phenomenon. In
computer graphics splines are popular curves because of the simplicity of their construction,
their ease and accuracy of evaluation, and their capacity to approximate complex shapes
through curve fitting and interactive curve design.

The most commonly used splines are cubic spline, i.e., of order 3 – particular, cubic
B-spline and cubic Bezier spline. They are common, in particular, in spline interpolation
simulating the function of flat splines. The term spline is adopted from the name of a
flexible strip of metal commonly used by draftsmen to assist in drawing curved lines.4

Splines are curves, which are usually required to be continuous and smooth. Splines
are usually defined as piecewise polynomials of degree n with function values and first n-1
derivatives that agree at the points where they join. The abscissa values of the join points
are called knots. The term "spline" is also used for polynomials (splines with no knots)
and piecewise polynomials with more than one discontinuous derivative. As such, splines
with no knots are generally smoother than splines with knots, which are generally smoother
than splines with multiple discontinuous derivatives. Splines with few knots are generally
smoother than splines with many knots; however, increasing the number of knots usually
increases the fit of the spline function to the data. Knots give the curve freedom to bend
to more closely follow the data.

It is commonly accepted that the first mathematical reference to splines is the 1946
paper by Schoenberg,5 which is probably the first place that the word "spline" is used in
connection with smooth, piecewise polynomial approximation. However, the ideas have
their roots in the aircraft and shipbuilding industries.

7.9.2 Linear Spline

The linear splined applied by EMC follows

Δxi = x− xi,
Si(x) =

∑1
j=0 kj,iΔx

j
i ,

k0,i = yi,

k1,i = (yi − yi−1)/(xi − xi−1).

Linear splines find their application in cases of sudden large gradients or steps in y data
with respect to x.

7.9.3 Cubic Spline

Internally, EMC applies a natural cubic spline by default. The algorithm behind a natural
cubic spline is given by

Chapter 7: Variable Descriptions 200

Δxi = x− xi,
Si(x) =

∑3
j=0 kj,iΔx

j
i ,

Si(xi) = Si−1(xi) = yi,

S′i(xi) = S′i−1(xi),

S′′i (xi) = S′′i−1(xi),

S′′i (x0) = S′′n−1(xn) = 0,

for which the above set of equations defines all constants k needed to describe the full spline
function. Cubic splines are useful for capturing the behavior of reasonably well-behaved
data.

7.9.4 References

1. Wikipedia on "Cubic Splines"

2. K. L. Judd, "Numerical Methods in Economics", MIT Press 1998, 225 (ISBN 978-0-
262-10071-7).

3. W.-K. Chen, Wai-Kai (2009 "Feedback, Nonlinear, and Distributed Circuits", CRC
Press 2009, 9-20 (ISBN 978-1-4200-5881-9).

4. M. H. Katz, "Multivariable Analysis: A Practical Guide for Clinicians and Public
Health Researchers", Cambridge University Press 2011, 82 (ISBN 978-0-521-14107-9).

5. Schoenberg, "Contributions to the problem of approximation of equidistant data by
analytic functions", Quart. Appl. Math. 1946, 4, 45-99 and 112-141.

Chapter 7: Variable Descriptions 201

7.10 System Flags

7.10.1 Syntax

flag = {charge -> boolean, map -> boolean, pbc -> boolean};

Directive Parameters Description
charge boolean Check for charge neutrality; options are true or false.
map boolean Map configurations into the system box; options are true

or false.

pbc boolean Apply periodic conditions to system geometry; options
are true or false.

7.10.2 Default

Unless otherwise stated, the default is given by

flag = {charge -> true, map -> true, pbc -> true};

Chapter 7: Variable Descriptions 202

7.11 Systems

7.11.1 Syntax

systems = {

n -> integer,

properties -> {

{

id -> constant,

p -> real,

v -> real,

t -> real,

mass -> real,

nclusters -> integer,

nsites -> struct,

plane -> integer,

geometry -> voigt

},

...

}

};

Directive Parameters Description
n integer Sets the number of contributing systems to the total

simulation.

properties Describes the properties of each individual system.
id constant Identifies the system; refers to the systems paragraph in

constants (see Section 7.1 [Constants], page 179).

p real Defines the system pressure; only used when deformation
moves are active.

v real Defines the system volume.
t real Defines the system temperature.
mass real Reflects the total system mass; cannot be altered.
nclusters integer Reflects the number of clusters in this system; cannot be

altered.

nsites struct Reflects the number of sites in this system; cannot be
altered.

plane integer Reflects the original crystal plane the system was con-
structed with.

geometry voigt Defines the system geometry (see Section 7.15 [Voigt],
page 367).

7.11.2 Usage

This variable style describes the definition of systems.

Chapter 7: Variable Descriptions 203

7.11.3 Default

Unless otherwise stated, the default is given by

systems = {n -> 0};

Chapter 7: Variable Descriptions 204

7.12 Types

7.12.1 Syntax

types = {

merge -> boolean,

virial -> boolean,

periodic -> vector,

neighbor -> constant,

stencil -> constant,

skin -> real,

shake -> constant

depth -> integer,

mass -> struct,

boltzmann -> struct,

charmm -> struct,

cff -> struct,

coarse -> struct,

colloid -> struct,

coulomb -> struct,

dpd -> struct,

gauss -> struct,

gromacs -> struct,

inverse -> struct,

martini -> struct,

opls -> struct,

sdk -> struct,

spline -> struct,

standard -> struct,

table -> struct,

trappe -> struct

};

Directive Parameters Description
merge boolean Allows for merging force field constants upon input when

true; options are true or false.

virial boolean Describes if virial calculations are included; options are
true or false.

periodic vector Indicate periodicity with a three-element boolean vector
with options true or false.

neighbor constant Describes what kind of neighbor list algorithm is used
during pair interaction calculations; options are sector

or pair.

stencil constant Describes the kind of stencil used during pair interaction
calculations; options are standard or multi.

Chapter 7: Variable Descriptions 205

skin real Describes the skin used during pair interaction calcula-
tions; the skin is added to the pairwise cutoff.

shake constant Indicates the use of the SHAKE algorithm in subsequent
codes (e.g. LAMMPS); valid options are none, auto,
hydrogen, water, or all.

depth integer Maximum depth used for construction of ring structures
during typing; allowed values are positive, where a value
of 8 works in most ring cases; alternatively, an auto key-
word allows for checking rings of unknown size; please
note, that significant slow down occurs with the latter
options for intricate ring systems.

mass struct Describes the site masses.
boltzmann struct Describes Boltzmann force fields (see Section 7.12.4

[Boltzmann], page 207).

born struct Describes Born force fields (see Section 7.12.5 [Born],
page 212).

cff struct Describes CFF (Class2) force field families (see
Section 7.12.6 [CFF], page 220).

charmm struct Describes CHARMM force fields (see Section 7.12.7
[CHARMM], page 236).

coarse struct Describes multiple coarse-grained force field definitions
(see Section 7.12.8 [Coarse], page 247).

colloid struct Describes colloidal force fields (see Section 7.12.9 [Col-
loid], page 263).

coulomb struct Describes coulombic contribution definitions (see
Section 7.12.10 [Coulomb], page 271).

martini struct Describes MARTINI coarse-grained force fields (see
Section 7.12.14 [MARTINI], page 302).

gromacs struct Describes GROMACS force fields (see Section 7.12.13
[GROMACS], page 293).

inverse struct Describes settings used in applications of inverse bonded
interactions.

dpd struct Describes DPD coarse-grained force fields (see
Section 7.12.11 [DPD], page 275).

gauss struct Describes Gaussian coarse-grained force fields (see
Section 7.12.12 [Gauss], page 284).

opls struct Describes OPLS force fields (see Section 7.12.16 [OPLS],
page 319).

sdk struct Describes SDK force fields (see Section 7.12.17 [SDK],
page 328).

spline struct Describes spline-based force fields (see Section 7.12.18
[Spline], page 337).

standard struct Describes standard force fields (see Section 7.12.19 [Stan-
dard], page 341).

Chapter 7: Variable Descriptions 206

table struct Describes tabular force fields (see Section 7.12.20 [Table],
page 350).

trappe struct Describes tabular force fields (see Section 7.12.21
[TraPPE], page 356).

7.12.2 Usage

This variable style describes types.

7.12.3 Default

Unless otherwise stated, the default is given by

types = {

merge -> false,

virial -> false,

periodic -> {true, true, true},

neighbor -> sector,

stencil -> standard,

shake -> none,

depth -> auto,

skin -> 0

};

By default, all force fields are deactivated.

Chapter 7: Variable Descriptions 207

7.12.4 Boltzmann

7.12.4.1 Syntax

boltzmann = {

bond -> struct,

angle -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
pair struct Pair interaction descriptors

The boltzmann force field uses exponential functions for bonded interactions and tabulated
functions for nonbonded interactions. Its functional form is a summation of bonded and
nonbonded interactions given by

Eboltzmann = Ebond + Eangle + Epair

for angle, bond and pair contributions respectively. The following paragraphs describe each
contribution in detail. See ./examples/nanoparticle/coarse/ for an application.

7.12.4.2 Example

variables = {

a -> 1*^-10,

prefix -> "~/emc/version/force/polystyrene/smoothed_"

};

simulation = {

types -> {

merge -> true,

boltzmann -> {

bond -> {

active -> true,

data -> {

{i0 -> m, i1 -> m, coefficients -> {

a -> 0.015e-10, w -> 0.09e-10, length -> 2.46e-10}},

}

},

angle -> {

active -> true,

data -> {

{i0 -> m, i1 -> m, i2 -> m, coefficients -> {

{a -> 0.140, w -> 14.2, theta -> 147.3},

{a -> 0.030, w -> 15.5, theta -> 158.0}}}

Chapter 7: Variable Descriptions 208

}

},

pair -> {

active -> true,

nbonded -> 2,

data -> {

{i0 -> m, i1 -> m, order -> 2, name -> prefix+"m-m.m"}

}

}

}

}

};

7.12.4.3 References

1. T. Spyriouni, C. Tzoumanekas, D. Theodorou, F. Mueller-Plathe, and G. Milano,
"Coarse-Grained and Reverse-Mapped United-Atom Simulations of Long-Chain Atac-
tic Polystyrene Melts: Structure, Thermodynamic Properties, Chain Conformation,
and Entanglements", Macromolecules 2007, 40, 3876

Chapter 7: Variable Descriptions 209

7.12.4.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

cutoff -> real,

order -> integer,

name -> string

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

cutoff real Defines the cutoff of the potential; takes the last data file
entry when cutoff <= 0.

order integer Interpolation order; either 1 for linear interpolation or 2
for cubic splines.

name string Defines the data file name; ./force/polystyrene/ shows
examples of the data file format (i.e. {{x, y}, ...}).

The energetic functional form of the pair contributions to the total potential is formed by
a linear interpolation or a cubic spline through the provided data.

Chapter 7: Variable Descriptions 210

7.12.4.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

coefficients ->

{

{

a -> real,

w -> real,

length-> real

},

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

coef struct Describes individual coefficient contributions
a, w real Force constants
length real Equilibrium length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond =
∑n
i=1 ai/(2πwi) exp[−2(l − l0,i)2/w2

i],

where l represents the bond length.

Chapter 7: Variable Descriptions 211

7.12.4.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

coefficients ->

{

{

a -> real,

w -> real,

theta -> real

},

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to mass paragraph in types

coef struct Describes individual coefficient contributions
a, w real Force constants
theta real Equilibrium angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle =
∑n
i=1 ai/(2πwi) exp[−2(θ − θ0,i)2/w2

i],

where θ represents the bond angle.

Chapter 7: Variable Descriptions 212

7.12.5 Born

7.12.5.1 Syntax

born = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair14 -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair14 struct 1-4 intra-molecular pair interaction activator
pair struct Pair interaction descriptors

The OPLS force field is a compounded force field based on the Born force field.1−2. Bonded
terms are equivalent to OPLS force fields3. Its functional form is a summation of bonded
and nonbonded interactions given by

Eopls = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, and pair contributions respectively. The following paragraphs
describe each contribution in detail. See ./examples/field/born/ for applications.

7.12.5.2 Example

simulation = {

types -> {

merge -> true,

born -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 100, theta -> 110}

}

},

Chapter 7: Variable Descriptions 213

torsion -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

improper -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, k -> 100, psi -> 0}

}

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 10,

mix -> berthelot,

data -> {

{i0 -> a, i1 -> a, sigma -> 4.0, epsilon -> 0.4},

{i0 -> b, i1 -> b, sigma -> 3.7, epsilon -> 0.5},

{i0 -> c, i1 -> c, sigma -> 4.1, epsilon -> 0.22},

{i0 -> d, i1 -> d, sigma -> 2.4, epsilon -> 0.09},

}

}

}

}

};

7.12.5.3 References

1. F.G. Fumi and M.P. Tosi, Ionic sizes and born repulsive parameters in the NaCl-type
alkali halides—I: The Huggins-Mayer and Pauling forms, J. Phys. Chem. Solids 1964,
25, 31-44.

2. F.G. Fumi and M.P. Tosi, Ionic sizes and born repulsive parameters in the NaCl-type
alkali halides—II: The generalized Huggins-Mayer form, J. Phys. Chem. Solids 1964,
25, 31-44.

3. W. L. Jorgensen and J. Tirado-Rives, "The OPLS Potential Functions for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin", J. Am. Chem.
Soc. 1988, 110, 1657-1666.

Chapter 7: Variable Descriptions 214

7.12.5.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

sigma -> real,

rho -> real,

a -> real,

c -> real,

d -> real,

core -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants

Chapter 7: Variable Descriptions 215

i0, i1 id Site id, referring to types as defined by the mass

paragraph.

sigma real Interaction dependent parameter.
rho real Ionic pair dependent paramater.
a real Exponential prefactor.
c real Atractive parameter.
d real Repulsive parameter.
core real Distance at which the potential is treated as a purely

repulsive potential; needed to avoid singular behavior at
small distances.

cutoff real Cut off; distance at which the pair-wise contribution is
set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = A exp
(
σ−rij
ρ

)
− C

r6
ij

+ D
r8
ij

,

for rij > rcore, where rij represents the distance between site i and site j. The default
mixing rule is Berthelot (mix -> berthelot).

Chapter 7: Variable Descriptions 216

7.12.5.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 217

7.12.5.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 218

7.12.5.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 4
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 1/2 ki(1 + sign(ni) cos(niφ− δi)),

where φ represents the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.
Function sign(ni) is +1 for odd and -1 for even values of ni.

Chapter 7: Variable Descriptions 219

7.12.5.8 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 220

7.12.6 CFF

7.12.6.1 Syntax

cff = {

pair -> struct,

bond -> struct,

angle -> struct,

bond_bond -> struct,

bond_angle -> struct,

torsion -> struct,

end_bond_torsion -> struct,

middle_bond_torsion -> struct,

bond_bond_13 -> struct,

angle_torsion -> struct,

angle_angle_torsion -> struct,

improper -> struct,

angle_angle -> struct

};

Directive Parameters Description
pair struct Pair interaction descriptors
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
bond_bond struct Bond-bond interaction descriptors
bond_angle struct Bond-angle interaction descriptors
torsion struct Torsion interaction decriptors
end_bond_

torsion

struct End bond torsion interaction decriptors

middle_

bond_

torsion

struct Middle bond torsion interaction decriptors

bond_bond_

13

struct Bond-bond-13 interaction decriptors

angle_

torsion

struct Angle-torsion interaction decriptors

angle_

angle_

torsion

struct Angle-angle-torsion interaction decriptors

improper struct Improper interaction decriptors
angle_angle struct Angle-angle interaction decriptors

The CFF force field, as described by Sun,1 uses a combination of standard and cross-
coupled bonded interactions combined with Lennard-Jones 6-9 nonbonded interactions. Its
functional form is a summation of bonded and nonbonded interactions given by

Chapter 7: Variable Descriptions 221

Ecff = Ebond + Eangles + Etorsions + Eimpropers + Epair

Eangles = Eangle + Ebond−bond + Ebond−angle

Etorsions = Etorsion+Eend−bond−torsion+Emiddle−bond−torsion+Ebond−bond−13+Eangle−torsion
+Eangle−angle−torsion

Eimpropers = Eimproper + Eangle−angle

for bond, angle, torsion, improper, and pair contributions respectively. The following para-
graphs describe each contribution in detail. Note, that improper contributions are calculated
differently (see Improper). Force field typing is available for the PCFF force field.

7.12.6.2 Examples

The following example creates topology for water and types these sites with the PCFF force
field as included with EMC,

field = {

mode -> cff,

name -> {$root+"pcff/pcff_templates.dat", $root+"pcff/pcff.frc"

};

groups = {

group -> {id -> water, chemistry -> "O"}

}

clusters = {

cluster -> {id -> water, system -> main, group -> water, n -> 1000}

};

field = {

mode -> apply

};

Application of the field scripting command saves the need for manual force field typing
(see Section 5.11 [Field], page 106). However, CFF-type force field alterations or additions
can also be entered directly through

simulation = {

types -> {

merge -> true,

cff -> {active -> true,

angle -> {

active -> true, n -> 1, data ->

{i0 -> hw, i1 -> o*, i2 -> hw, theta -> 103.7, k -> {49.84,

-11.6, -8}}},

angle_angle -> {

active -> true, n -> 0},

angle_angle_torsion -> {

Chapter 7: Variable Descriptions 222

active -> true, n -> 0},

angle_torsion -> {

active -> true, n -> 0},

bond -> {

active -> true, n -> 1, data ->

{i0 -> o*, i1 -> hw, l -> 0.97, k -> {563.28, -1428.22,

1902.12}}},

bond_angle -> {

active -> true, n -> 1, data ->

{i0 -> hw, i1 -> o*, i2 -> hw, k -> {22.35, 22.35}}},

bond_bond -> {

active -> true, n -> 1, data ->

{i0 -> hw, i1 -> o*, i2 -> hw, k -> -9.5}},

bond_bond_13 -> {

active -> true, n -> 0},

end_bond_torsion -> {

active -> true, n -> 0},

improper -> {

active -> true, n -> 0},

middle_bond_torsion -> {

active -> true, n -> 0},

pair -> {

active -> true, mix -> sixth, shift -> false, coulomb -> cut,

nbonded -> 2, mode -> repulsive, cutoff -> 9.5, n -> 3, data -> {

{i0 -> o*, i1 -> o*, epsilon -> 0.274, sigma -> 3.608},

{i0 -> o*, i1 -> hw, epsilon -> 0.00336154972409,

sigma -> 3.21478799199},

{i0 -> hw, i1 -> hw, epsilon -> 0.013, sigma -> 1.098}}},

torsion -> {

active -> true, n -> 0}},

}

};

The above definition would result from application of the PCFF force field.

7.12.6.3 References

1. H. Sun, "COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Appli-
cations - Overview with Details on Alkane and Benzene Compounds", J. Phys. Chem.
B 1998, 102, 7338.

Chapter 7: Variable Descriptions 223

7.12.6.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants.
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

Chapter 7: Variable Descriptions 224

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-9 potential.

sigma real Site size; the location of the potential well.
cutoff real Cut off; distance at which the pair-wise contribution is

set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a 6-9 Lennard-Jones potential,

Epair = ε
(
σ
rij

)6 [
2
(
σ
rij

)3
− 3

]
,

where rij represents the distance between site i and site j. The nonbond interactions, which
include Lennard-Jones and coulombic interactions, encompass all pairs between atoms which
are separated by two or more bonded atoms, i.e. nbonded = 2. The default mixing rule is
sixth power (sixth).

Chapter 7: Variable Descriptions 225

7.12.6.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

l -> real,

k -> {real, real, real}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

l real Equilibrium length
k real Defines up to three bond constants

The energetic functional form of the bond contributions to the total potential is described
by

Ebond =
∑3
i=1 ki(l − l0,i)i+1,

where l represents the bond length of bond {i0, i1}.

Chapter 7: Variable Descriptions 226

7.12.6.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id

theta -> real,

k -> {real, real, real}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to mass paragraph in types

theta real Equilibrium angle
k real Defines up to three angle constants

The energetic functional form of the angle contributions to the total potential is described
by

Eangle =
∑3
i=1 ki(θ − θ0,i)i+1,

where θ represents the angle between bonds {i0, i1} and {i1, i2}.

Chapter 7: Variable Descriptions 227

7.12.6.7 Bond-Bond

bond_bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id

k -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to mass paragraph in types

k real Defines the bond-bond cross term constant

The energetic functional form of the bond-bond cross-coupling contributions to the total
potential is described by

Ebond−bond = k(l1 − l0,1)(l2 − l0,2),

where l1 represents the length of bond {i0, i1} with equilibrium value l0,1 and l2 the length
of bond {i1, i2} with equilibrium value l0,2. Equilibrium values reference the bond contri-
butions.

Chapter 7: Variable Descriptions 228

7.12.6.8 Bond-Angle

bond_angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id

k -> {real, real}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to mass paragraph in types

k real Defines the bond-angle cross term constants

The energetic functional form of the bond-angle cross-coupling contributions to the total
potential is described by

Ebond−angle = (k1(l1 − l0,1) + k2(l2 − l0,2))(θ − θ0,i),

where l1 represents the length of bond {i0, i1} with equilibrium value l0,1, l2 the length of
bond {i1, i2} with equilibrium value l0,2, and θ the angle between bonds {i0, i1} and {i1, i2}.
Equilibrium values reference both bond and angle contributions.

Chapter 7: Variable Descriptions 229

7.12.6.9 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{k -> real, n -> integer, delta -> real},

{k -> real, n -> integer, delta -> real},

{k -> real, n -> integer, delta -> real}

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types

coefficients struct List of up to three sets of coefficients
k real Torsion constants
n integer Torsion prefactor
delta real Torsion offset

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑3
i=1 ki(1− cos[niφ− δ]),

where φ represents the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.

Chapter 7: Variable Descriptions 230

7.12.6.10 End-Bond-Torsion

end_bond_torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> {real, real, real, real, real, real}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types

k real Three left (k1 through k3) and three right (k4 through
k6) interaction constants

The energetic functional form of the end-bond-torsion cross-coupling contributions to the
total potential is described by

Eend−bond−torsion =
∑3
i=1(ki(l1 − l0,1) + ki+3(l2 + l0,2)) cos[iφ],

where l1 represents the length of bond {i0, i1} with equilibrium value l0,1, l2 represents
the length of bond {i2, i3} with equilibrium value l0,2, and φ represents the bond torsion
constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.

Chapter 7: Variable Descriptions 231

7.12.6.11 Middle-Bond-Torsion

middle_bond_torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> {real, real, real}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types

k real Three (k1 through k3) interaction constants

The energetic functional form of the middle-bond-torsion cross-coupling contributions to
the total potential is described by

Eend−bond−torsion =
∑3
i=1 ki(l1 − l0,1) cos[iφ],

where l1 represents the length of bond {i1, i2} with equilibrium value l0,1 and φ represents
the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.

Chapter 7: Variable Descriptions 232

7.12.6.12 Bond-Bond-13

bond_bond_13 = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants.
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types.

k real Bond-Bond-13 interaction constant.

The energetic functional form of the bond-bond-13 cross-coupling contributions to the total
potential is described by

Ebond−bond−13 = kbond−bond−13(l1 − l0,1)(l2 − l0,2),

where l1 represents the length of bond {i0, i1} with equilibrium value l0,1, l2 represents the
length of bond {i2, i3} with equilibrium value l0,2.

Chapter 7: Variable Descriptions 233

7.12.6.13 Angle-Torsion

angle_torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> {real, real, real, real, real, real}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants.
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types.

k real Six (k1 through k6) interaction constants.

The energetic functional form of the angle-torsion cross-coupling contributions to the total
potential is described by

Eangle−torsion =,
∑2
i=1(θi − θ0,i)

∑3
j=1 k3(i−1)+j cos[jφ],

where θ1 the angle between bonds {i0, i1} and {i1, i2}, θ2 the angle between bonds {i1, i2}
and {i2, i3}, and φ the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.

Chapter 7: Variable Descriptions 234

7.12.6.14 Angle-Angle-Torsion

angle_torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types

The energetic functional form of the angle-angle-torsion cross-coupling contributions to the
total potential is described by

Eangle−angle−torsion =, kangle−angle−torsion((θ1 − θ0,1)((θ2 − θ0,2) cos[φ],

where θ1 the angle between bonds {i0, i1} and {i1, i2}, θ2 the angle between bonds {i1, i2}
and {i2, i3}, and φ the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.

Chapter 7: Variable Descriptions 235

7.12.6.15 Improper

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles formed
by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0}, and {i3, i0}.
EMC represents site i0 as the central site, as opposed to some representations, for which
i1 is the central site. Note, that each improper contributes to the total improper energy
individually. Note, that Discover and LAMMPS use the average of the three contributing
angles ψ and calculate the improper energy accordingly. EMC, however, uses the average
of the energy for all three contributing factors.

Chapter 7: Variable Descriptions 236

7.12.7 CHARMM

7.12.7.1 Syntax

charmm = {

pair -> struct,

bond -> struct,

angle -> struct,

urey -> struct,

torsion -> struct,

pair14 -> struct,

improper -> struct

};

Directive Parameters Description
pair struct Pair interaction descriptors
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
urey struct Urey 1-3 interaction decriptors
torsion struct Torsion interaction decriptors
pair14 struct Pair 1-4 interaction descriptors
improper struct Improper interaction descriptors

The CHARMM force field as included in EMC is based on the CHARMM description as de-
fined by MacKerrell et al.1 EMC provides force field files, which are derived from the original
CHARMM force field files, but are governed by typing rules, rather than residue templates,
as is the case in the original definition. An included script (./scripts/charmm.pl) derives
typing rules from the original CHARMM force field files in an automated fashion. The force
field files are found in ./field/charmm. Its functional form is a summation of bonded and
nonbonded interactions given by

Echarmm = Ebond + Eangle + Eurey + Etorsion + Eimproper + Epair14 + Epair

for bond, angle, urey, torsion, pair14, and pair contributions respectively. The following
paragraphs describe each contribution in detail. See ./examples/field/charmm/ for ap-
plications.

7.12.7.2 Examples

The following example creates topology for water and types these sites with the CHARMM
force field as included with EMC,

field = {

mode -> charmm,

name -> {$root+"field/charmm/c32b1/all27_prot_lipid.prm",

$root+"field/charmm/c32b1/all27_prot_lipid.top"}

};

groups = {

Chapter 7: Variable Descriptions 237

group -> {id -> water, chemistry -> "O"}

}

clusters = {

cluster -> {id -> water, system -> main, group -> water, n -> 1000}

};

field = {

mode -> apply

};

Application of the field scripting command saves the need for manual force field typing
(see Section 5.11 [Field], page 106). However, CHARMM force field alterations or additions
can also be entered directly through

simulation = {

types -> {

merge -> true,

charmm -> {active -> true,

angle -> {active -> true, n -> 1, data ->

{i0 -> HT, i1 -> OT, i2 -> HT, k -> 55, theta -> 104.52}},

bond -> {active -> true, n -> 1, data ->

{i0 -> OT, i1 -> HT, k -> 450, l -> 0.9572}},

improper -> {active -> true, n -> 0},

pair -> {active -> true, mix -> berthelot, shift -> false,

coulomb -> none, nbonded -> 3, mode -> individual, inner -> 0,

cutoff -> 9.5, n -> 3, data -> {

{i0 -> OT, i1 -> OT, epsilon -> 0.1521, sigma -> 3.15057422683},

{i0 -> OT, i1 -> HT, epsilon -> 0.0836456812992,

sigma -> 1.77529387564},

{i0 -> HT, i1 -> HT, epsilon -> 0.046,

sigma -> 0.400013524445}}},

pair14 -> {active -> true, n -> 3, data -> {

{i0 -> OT, i1 -> OT, epsilon -> 0.1521, sigma -> 3.15057422683},

{i0 -> OT, i1 -> HT, epsilon -> 0.0836456812992,

sigma -> 1.77529387564},

{i0 -> HT, i1 -> HT, epsilon -> 0.046,

sigma -> 0.400013524445}}},

torsion -> {active -> true, n -> 0},

urey -> {active -> true, n -> 1, data ->

{i0 -> HT, i1 -> OT, i2 -> HT, k -> 0, l -> 0}}},

}

};

7.12.7.3 References

1. A. D. MacKerrell, Jr. et al., "All-Atom Empirical Potential for Molecular Modeling

Chapter 7: Variable Descriptions 238

and Dynamics Studies of Proteins", J. Phys. Chem. B 1998, 102, 3586-3616.

Chapter 7: Variable Descriptions 239

7.12.7.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

inner -> real,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

inner -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

inner real Sets global inner start of cut off for global mode.
cutoff real Sets global cut off for global mode.
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}in which case the entered entries are
merged with already existing ones.

data struct Summary of interaction constants.

Chapter 7: Variable Descriptions 240

i0, i1 id Site id, referring to types as defined by the mass

paragraph.

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential.

sigma real Site size; the point where the potential equals zero.
inner real Sets pairwise inner start of cut off; can be omitted upon

global inner definition.

cutoff real Sets pairwise cut off; can be omitted upon global cutoff
definition.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
rij

)6 [(
σ
rij

)6
− 1

]
,

where rij represents the distance between sites i and j. The default mixing rule is Berthelot
(mix -> berthelot).

Chapter 7: Variable Descriptions 241

7.12.7.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 242

7.12.7.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 243

7.12.7.7 Urey

urey = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Urey bond spring constants
l real Equilibrium urey bond length

The energetic functional form of the Urey-Bradley contributions to the total potential is
described by

Eurey = kurey(l − l0)2,

where kurey represents a spring constant, l the urey bond length of bond {i0, i2}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 244

7.12.7.8 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + cos(niφ− δi)),

where ki represents a set of torsion constants, δi a torsion offset, ni the torsion pre-factor,
and φ the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}. The maximum
allowed value of ni is 6.

Chapter 7: Variable Descriptions 245

7.12.7.9 Pair14

pair = {

active -> boolean,

mix -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
mix option Sets mixing rule; options are none, berthelot,

arithmetic, geometric, and sixth.

n integer Number of data entries; can be ommited when type =

{merge -> true}in which case the entered entries are
merged with already existing ones.

data struct Summary of interaction constants.
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential.

sigma real Site size; the point where the potential equals zero.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
l

)6 [(σ
l

)6 − 1
]
,

where l represents the distance between sites i0 and i1.

Chapter 7: Variable Descriptions 246

7.12.7.10 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 247

7.12.8 Coarse

7.12.8.1 Syntax

coarse = {

lj -> struct,

repulsive -> struct,

sphere -> struct,

colloid -> struct,

dpd -> struct,

charge -> struct,

fene -> struct,

angle -> struct

};

Directive Parameters Description
lj struct Hard sphere core with Lennard-Jones shell interaction

descriptors

repulsive struct Hard sphere core with r^-6 repulsive shell interaction
descriptors

sphere struct Coarse-grained sphere interaction descriptors (Girifalco1)
colloid struct Colloidal interaction descriptors (Everaers and

Ejtehadi2)

dpd struct DPD interaction descriptors (Groot and Warren3)
charge struct Coarse-grained charge interaction decriptors (internal

form)

fene struct FENE interaction descriptors (Kremer and Grest4)
angle struct Angle interaction descriptors

The coarse force field represents a set of coarse-grained interations functions. Its functional
form is a summation of bonded and nonbonded interactions given by

Ecoarse = ELJ + Erepulsive + Esphere + Ecolloid + EDPD + Echarge + EFENE + Eangle

for hard core Lennard-Jones, hard core repulsive, colloidal, coarse-grained sphere
angle, DPD, charge, FENE, and angle contributions respectively. The following
paragraphs describe each contribution in detail. Typically, all conributions are not
used simulataneously. Note, that the DPD contributions are included for backwards
compatibility. Use the DPD force field when typing and transferring to e.g. LAMMPS.
See ./examples/nanoparticle/coarse/ for applications.

7.12.8.2 Examples

variables = {

};

simulation = {

Chapter 7: Variable Descriptions 248

types -> {

merge -> true,

coarse -> {

dpd -> {

active -> true,

data -> {

}

}

}

}

};

simulation = {

types -> {

merge -> true,

coarse -> {

colloid -> {

active -> true,

data -> {

}

}

}

}

};

7.12.8.3 References

1. L. A. Girifalco, "Molecular Properties of C60 in the Gas and Solid Phases" J. Chem.
Phys. 1992, 96, 858-861.

2. R. Everaers and M. R. Ejtehadi, "Interaction potentials for soft and hard ellipsoids",
Phys. Rev. E. 2003, 67, 041710.

3. R. D. Groot and P. B. Warren, "Dissipative particle dynamics: Bridging the gap between
atomistic and mesoscopic simulation", J. Chem. Phys. 1997, 107, 4423-4435.

4. K. Kremer and G. S. Grest, J. Chem. Phys. 1990, 92, 5057.

Chapter 7: Variable Descriptions 249

7.12.8.4 LJ

lj = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

core -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential

sigma real Site size; the point where the potential equals zero

Chapter 7: Variable Descriptions 250

core real Site hard core size
cutoff real Sets the local pairwise cut off

The energetic functional form of the pair contributions to the total potential is described
by a hard core, extended with a 6-12 Lennard-Jones potential,

ELJ = 4ε
(

σ
rij−dcore

)6 [(
σ

rij−dcore

)6
− 1

]
for rij ≥ dcore,

where rij represents the distance between site i and site j, and dcore its core size.

Chapter 7: Variable Descriptions 251

7.12.8.5 Repulsive

repulsive = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

core -> real

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential

sigma real Site size; the point where the potential equals zero

Chapter 7: Variable Descriptions 252

core real Site hard core size

The energetic functional form of the pair contributions to the total potential is described
by a hard core, extended with a repulsive potential,

Erepulsive = 4ε
(

σ
rij−dcore

)12
for rij ≥ dcore,

where rij represents the distance between site i and site j, and dcore its core size.

Chapter 7: Variable Descriptions 253

7.12.8.6 Sphere

lj = {

active -> boolean,

nbonded -> integer,

mix -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

d -> real,

n -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential

d real Sets the diameter of both particles
n real Sets the number of contributing Lennard-Jones beads to

each spherical FCC particle

Chapter 7: Variable Descriptions 254

cutoff real Sets the local pairwise cut off

The energetic functional form of an integration of two interacting spherical FCC lattices
consisting of n Lennard-Jones particles,

ELJ = 4 ε n2
(
σ
d

)6 [1
12

(
1

s(s−1)3 + 1
s(s+1)3

− 2
s4

)
+ 1

90

(
σ
d

)6 (1
s(s−1)9 + 1

s(s+1)9
− 2

s10

)]
,

where ε and σ are the standard Lennard-Jones constants, s = rij/d, and rij represents the
distance between the particle centers.

Chapter 7: Variable Descriptions 255

7.12.8.7 Colloid

colloid = {

active -> boolean,

nbonded -> integer,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

A -> real,

sigma -> real,

d1 -> real,

d2 -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

A real Pairwise Hamaker constants
sigma real Pairwise Lennard-Jones sigma
d1, d2 real Respective colloidal particle diameter
cutoff real Pairwise potential cutoff

The energetic functional form of the pair contributions to the total potential, as described
by Everaers and Ejtehadi, is formed by the sum of attractive and repulsive energy:

E = EA + ER

Attractive energy is expressed by

EA = −A
6

[
2didj

r2
ij
−(di+dj)2

+ 2didj
r2
ij
−(di−dj)2

+ ln

(
r2ij−(di+dj)

2

r2
ij
−(di−dj)2

)]
,

Chapter 7: Variable Descriptions 256

where A is referred to as Hamaker’s constant, di and dj represent the diameter sites i and
j, and rij represents the distance between sites. Repulsive energy is expressed by

ER = A
37800

σ6

rij

[
r2ij−7rij(di+dj)+6(d2i+7didj+d

2
j)

(rij−di−dj)7
+

r2ij+7rij(di+dj)+6(d2i+7didj+d
2
j)

(rij+di+dj)
7

− r2ij+7rij(di−dj)+6(d2i−7didj+d2j)
(rij+di−dj)7

− r2ij−7rij(di−dj)+6(d2i−7didj+d2j)
(rij−di+dj)7

]
,

where σ represents the Lennard-Jones (LJ) constant sigma. Hamaker’s constant A in LJ

units is given by A = 4πεLJ (ρσ
3)

2
, with ρ representing reduced density.

Chapter 7: Variable Descriptions 257

7.12.8.8 DPD

pair = {

active -> boolean,

mix -> option,

nbonded -> integer,

mode -> option,

cutoff -> real,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

a -> real,

gamma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
mix option Sets mixing rule; options are none, berthelot,

arithmetic, geometric, and sixth.

nbonded integer Number of bonded sites to exclude from nonbonded in-
teractions; the given number is expected to be larger or
equal to zero.

mode option Sets cut off mode; options are global using the value of
cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

cutoff real Sets global cut off for global mode
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

a real Force interaction constant.
gamma real Force damping constant.
cutoff real Site size; the point where the potential equals zero.

The energetic functional form of pair contributions to the total soft potential is described
by a repulsive Hertzian spring,

Chapter 7: Variable Descriptions 258

Epair = 1/2 a rij,cutoff (1− rij/rij,cutoff)2 , rij < rij,cutoff

where a represents the pairwise interaction paramater, rij the distance between site i and
site j, and rij,cutoff the cutoff distance between these two sites.

Chapter 7: Variable Descriptions 259

7.12.8.9 Charge

charge = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

a -> real,

kappa -> real,

d1 -> real,

d2 -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

a real Model constant
kappa real Electrostatic screening factor
d1 real Sets the diameter of particle i0
d2 real Sets the diameter of particle i1
cutoff real Sets the local pairwise cut off

The energetic functional form of the charge contributions to the total potential, which is
based on a Yukawa potential. It is described by

Echarge = A ln (1 + e−κH) (4− 2H/d1 − 2H/d2) ,

Chapter 7: Variable Descriptions 260

where d1 and d2 represent particle diameters, H = rij − 1
2
(d1 + d2), and A the electrostatic

constant, which can be expressed in terms of surface potentials ψ1 and ψ2,

A = π ε0 εr (ψ1 + ψ2)
2d1d2/(d1 + d2)/8,

assuming, that both surface potentials are approximately the same.

Chapter 7: Variable Descriptions 261

7.12.8.10 FENE

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = − 1
2
k l20 ln [1− (l/l0)

2] ,

where k represents a spring constant, l the bond length of bond {i0, i1}, and l0 the equilib-
rium bond length.

Chapter 7: Variable Descriptions 262

7.12.8.11 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

The energetic functional form of the bond contributions to the total potential is described
by

Eangle =

where

Chapter 7: Variable Descriptions 263

7.12.9 Colloid

7.12.9.1 Syntax

colloid = {

pair -> struct,

charge -> struct,

bond -> struct,

angle -> struct

};

Directive Parameters Description
pair struct Pairwise colloidal interaction descriptors
charge struct Pairwise charge interaction descriptors
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors

The colloid force field is a compounded force field, that uses Hamaker and charge screening
interactions. Its functional form is a summation of nonbonded and bonded interactions
given by

Ecolloid = Epair + Echarge + Ebond + Eangle

for pair, charge, bond, and angle contributions respectively. The following paragraphs
describe each contribution in detail.

7.12.9.2 Example

simulation = {

types -> {

merge -> true,

standard -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 400, theta -> 110}

}

},

pair -> {

active -> true,

inner -> 1.0001,

outer -> 1.25,

Chapter 7: Variable Descriptions 264

nbonded -> 2,

data -> {

{i0 -> a, i1 -> a,

A -> 1e-21, d1 -> 1e-7, d2 -> 1e-7, cutoff -> 2.5e-7},

{i0 -> a, i1 -> b,

A -> 1.1e-21, d1 -> 1e-7, d2 -> 2e-7, cutoff -> 3.75e-7},

{i0 -> a, i1 -> c,

A -> 1.2e-21, d1 -> 1e-7, d2 -> 3e-7, cutoff -> 5e-7},

{i0 -> b, i1 -> b,

A -> 1.2e-21, d1 -> 2e-7, d2 -> 2e-7, cutoff -> 5e-7},

{i0 -> b, i1 -> c,

A -> 1.3e-21, d1 -> 2e-7, d2 -> 3e-7, cutoff -> 6.25e-7},

{i0 -> c, i1 -> c,

A -> 1.4e-21, d1 -> 3e-7, d2 -> 3e-7, cutoff -> 7.5e-7}

}

}

}

}

};

7.12.9.3 References

1. R. Everaers and M. R. Ejtehadi, "Interaction potentials for soft and hard ellipsoids",
Phys. Rev. E. 2003, 67, 041710.

Chapter 7: Variable Descriptions 265

7.12.9.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

n -> integer,

inner -> real,

outer -> real,

data ->

{

{

i0 -> id,

i1 -> id,

A -> real,

sigma -> real,

d1 -> real,

d2 -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

inner real Fraction of diameter defining the inner interaction rim;
must be a number larger than 1.

outer real Fraction of diameter defining the outer interaction rim;
must be a number larger than 1.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

A real Pairwise Hamaker constants
sigma real Pairwise Lennard-Jones sigma
d1, d2 real Respective colloidal particle diameter
cutoff real Pairwise potential cutoff

The energetic functional form of the pair contributions to the total potential, as described
by Everaers and Ejtehadi, is formed by the sum of attractive and repulsive energy:

E = EA + ER

Chapter 7: Variable Descriptions 266

Attractive energy is expressed by

EA = −A
6

[
2didj

r2
ij
−(di+dj)2

+ 2didj
r2
ij
−(di−dj)2

+ ln

(
r2ij−(di+dj)

2

r2
ij
−(di−dj)2

)]
,

where A is referred to as Hamaker’s constant, di and dj represent the diameter sites i and
j, and rij represents the distance between sites. Repulsive energy is expressed by

ER = A
37800

σ6

rij

[
r2ij−7rij(di+dj)+6(d2i+7didj+d

2
j)

(rij−di−dj)7
+

r2ij+7rij(di+dj)+6(d2i+7didj+d
2
j)

(rij+di+dj)
7

− r2ij+7rij(di−dj)+6(d2i−7didj+d2j)
(rij+di−dj)7

− r2ij−7rij(di−dj)+6(d2i−7didj+d2j)
(rij−di+dj)7

]
,

where σ represents the Lennard-Jones (LJ) constant sigma. Hamaker’s constant A in LJ

units is given by A = 4πεLJ (ρσ
3)

2
, with ρ representing reduced density.

Chapter 7: Variable Descriptions 267

7.12.9.5 Charge

charge = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

a -> real,

kappa -> real,

d1 -> real,

d2 -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

a real Model constant
kappa real Electrostatic screening factor
d1 real Sets the diameter of particle i0
d2 real Sets the diameter of particle i1
cutoff real Sets the local pairwise cut off

The energetic functional form of the charge contributions to the total potential, which is
based on a Yukawa potential. It is described by

Echarge = A ln (1 + e−κH) (4− 2H/d1 − 2H/d2) ,

Chapter 7: Variable Descriptions 268

where d1 and d2 represent particle diameters, H = rij − 1
2
(d1 + d2), and A the electrostatic

constant, which can be expressed in terms of surface potentials ψ1 and ψ2,

A = π ε0 εr (ψ1 + ψ2)
2d1d2/(d1 + d2)/8,

assuming, that both surface potentials are approximately the same.

Chapter 7: Variable Descriptions 269

7.12.9.6 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2 kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 270

7.12.9.7 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2 kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 271

7.12.10 Coulomb

7.12.10.1 Syntax

coulomb = {

charge -> struct,

pair -> struct

};

Directive Parameters Description
charge struct Diffuse coarse-grained charge interaction descriptors
pair struct Pair interaction descriptors

The coulomb force field is a collection of electrostatic interactions. Its functional form is a
summation of nonbonded interactions given by

Ecoulomb = Epair + Echarge

for charge and pair contributions respectively. The following paragraphs describe each
contribution in detail.

7.12.10.2 Examples

variables = {

};

simulation = {

types -> {

merge -> true,

coulomb -> {

charge -> {

active -> true,

data -> {

}

}

}

}

};

simulation = {

types -> {

merge -> true,

coulomb -> {

pair -> {

active -> true,

data -> {

}

}

Chapter 7: Variable Descriptions 272

}

}

};

7.12.10.3 References

1. R. D. Groot, "Electrostatic interactions in dissipative particle dynamics - simulation
of polyelectrolytes and anionic surfactants", J. Chem. Phys. 2003, 118, 11265-11277.

2. M. Gonzalez-Melchor, E. Mayoral, M. E. Valsquez, J. Alejandre, "Electrostatic inter-
actions in dissipative particle dynamics using the Ewald sums", J. Chem. Phys. 2006,
125, 224107.

Chapter 7: Variable Descriptions 273

7.12.10.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

cutoff -> real

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

The energetic functional form of the bond contributions to the total potential is described
by

Epair =
qiqj

4πε0εrrij
,

where qi and qj represent the point charges of sites i and j respectively, ε0 represents the
dielectric permittivity, εr the dielectric constant, and rij the distance between site i and
site j. Charges are set per site.

Chapter 7: Variable Descriptions 274

7.12.10.5 Charge

charge = {

active -> boolean,

nbonded -> integer,

k -> real,

cutoff -> real

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

The distrubution of charges in a coarse-grained system cannot be described by simple point
charges only. Instead, a spatial distribution following from the Poisson-Boltzmann equation
(PBE) should be used, as decribed by Groot [Groot 2003]. A first approximation of a two-
body approach for the solution to the PBE was given by Gonzalez-Melchor et al. [Gonzalez-
Melchor 2006] as a function of exponentials. This solution, however, prooved to inadequately
describe the two-body solution. We propose s better approximation, which is based on an
error function and is given by

Echarge =
erf[krij]

rij
,

where k represents a force constant and rij represents the distance between site i and site
j. Charges are set per site. The advantage of this function is its easy integration in already
existing standard point-charge descriptions, thus allowing for representation of long-range
contributions by Ewald summations without change of already existing implementations.

Chapter 7: Variable Descriptions 275

7.12.11 DPD

7.12.11.1 Syntax

dpd = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair struct Pair interaction descriptors

The Dissipative Particle Dynamics (DPD) force field - developed by Groot and Warren - is
a compounded force field, that finds its application in mesoscale simulations.1 Its functional
form is a summation of bonded and nonbonded interactions given by

Edpd = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, improper, and pair contributions respectively. The following para-
graphs describe each contribution in detail. See ./examples/dpd/ for applications.

7.12.11.2 Example

simulation = {

types -> {

merge -> true,

dpd -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 20, l -> 1}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 5, theta -> 180}

}

},

torsion -> {

active -> true,

Chapter 7: Variable Descriptions 276

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 1,

data -> {

{i0 -> a, i1 -> a, a -> 25.0, gamma -> 4.5, cutoff -> 1},

{i0 -> a, i1 -> b, a -> 26.2, gamma -> 4.5, cutoff -> 1},

{i0 -> a, i1 -> c, a -> 22.1, gamma -> 4.5, cutoff -> 1},

{i0 -> a, i1 -> d, a -> 20.0, gamma -> 4.5, cutoff -> 1},

{i0 -> b, i1 -> b, a -> 25.0, gamma -> 4.5, cutoff -> 1},

{i0 -> b, i1 -> c, a -> 28.0, gamma -> 4.5, cutoff -> 1},

{i0 -> b, i1 -> d, a -> 29.0, gamma -> 4.5, cutoff -> 1},

{i0 -> c, i1 -> c, a -> 25.0, gamma -> 4.5, cutoff -> 1},

{i0 -> c, i1 -> d, a -> 21.3, gamma -> 4.5, cutoff -> 1},

{i0 -> d, i1 -> d, a -> 25.0, gamma -> 4.5, cutoff -> 1}

}

}

}

}

};

7.12.11.3 References

1. R.D. Groot and P.B. Warren "Dissipative particle dynamics: Bridging the gap between
atomistic and mesoscopic simulation", J. Chem. Phys. 1997, 107, 4423-4435.

Chapter 7: Variable Descriptions 277

7.12.11.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mode -> option,

mix -> option,

cutoff -> real,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

a -> real,

gamma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
mix option Sets mixing rule; options are none, berthelot,

arithmetic, geometric, and sixth.

nbonded integer Number of bonded sites to exclude from nonbonded in-
teractions; the given number is expected to be larger or
equal to zero.

mode option Sets cut off mode; options are global using the value of
cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

cutoff real Sets global cut off for global mode
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

a real Force interaction constant.
gamma real Force damping constant.
cutoff real Site size; the point where the potential equals zero.

The energetic functional form of pair contributions to the total soft potential is described
by a repulsive Hertzian spring,

Chapter 7: Variable Descriptions 278

Epair = 1/2 a (1− rij/rij,cutoff)2 , rij < rij,cutoff

where a represents the pairwise interaction parameter, rij the distance between site i and
site j, and rij,cutoff the cutoff distance between these two sites. The default mixing rule is
none (mix -> none).

Chapter 7: Variable Descriptions 279

7.12.11.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2 kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 280

7.12.11.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2 kangle(cos(θ)− cos(θ0))
2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 281

7.12.11.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 6
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + cos(niφ− δi)),

where ki represents a set of torsion constants, δi a torsion offset, ni the torsion pre-factor,
and φ the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}. The maximum

Chapter 7: Variable Descriptions 282

allowed value of ni is 6. Note, that the functional form presented here differs from the
original OPLS definition.

Chapter 7: Variable Descriptions 283

7.12.11.8 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 284

7.12.12 Gauss

7.12.12.1 Syntax

dpd = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair struct Pair interaction descriptors

The Gaussian force field is a compounded force field, that finds its application in mesoscale
simulations.1 Its functional form is a summation of bonded and nonbonded interactions
given by

Egauss = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, improper, and pair contributions respectively. The following para-
graphs describe each contribution in detail. See ./examples/dpd/ for applications.

7.12.12.2 Example

simulation = {

types -> {

merge -> true,

gauss -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 20, l -> 1}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 5, theta -> 180}

}

},

torsion -> {

active -> true,

Chapter 7: Variable Descriptions 285

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 1,

data -> {

{i0 -> a, i1 -> a, a -> 25.0, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> a, i1 -> b, a -> 25.2, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> a, i1 -> c, a -> 24.0, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> a, i1 -> d, a -> 26.4, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> b, i1 -> b, a -> 25.0, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> b, i1 -> c, a -> 21.0, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> b, i1 -> d, a -> 21.5, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> c, i1 -> c, a -> 25.0, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> c, i1 -> d, a -> 22.0, d -> 1, r0 -> 0, cutoff -> 1},

{i0 -> d, i1 -> d, a -> 25.0, d -> 1, r0 -> 0, cutoff -> 1,

}

}

}

}

};

7.12.12.3 References

1. Reference.

Chapter 7: Variable Descriptions 286

7.12.12.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mode -> option,

cutoff -> real,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

a -> real,

d -> real,

r0 -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mode option Sets cut off mode; options are global using the value of
cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

cutoff real Sets global cut off for the global mode.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

a real Energy scale constant.
d real Length scale constant.
r0 real Length translation constant.
cutoff real Site size; the point where the potential equals zero.

The energetic functional form of pair contributions to the total potential is described by an
exponential function,

Epair = aij exp
[
−1/4/d2ij (rij − r0,ij)2

]
, rij < rij,cutoff

Chapter 7: Variable Descriptions 287

where aij represents the pairwise interaction parameter, dij a distance scaling factor, r0,ij
a distance offset, rij the distance between sites i and j, and rij,cutoff the cutoff distance
between these two sites.

Chapter 7: Variable Descriptions 288

7.12.12.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2 kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 289

7.12.12.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2 kangle(cos(θ)− cos(θ0))
2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 290

7.12.12.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 6
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + cos(niφ− δi)),

where ki represents a set of torsion constants, δi a torsion offset, ni the torsion pre-factor,
and φ the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}. The maximum

Chapter 7: Variable Descriptions 291

allowed value of ni is 6. Note, that the functional form presented here differs from the
original OPLS definition.

Chapter 7: Variable Descriptions 292

7.12.12.8 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 293

7.12.13 GROMACS

7.12.13.1 Syntax

gromacs = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair14 -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair14 struct 1-4 intra-molecular pair interaction activator
pair struct Pair interaction descriptors

The gromacs force field is a compounded force field based on the GROMACS force field.1

Its functional form is a summation of bonded and nonbonded interactions given by

Egromacs = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, and pair contributions respectively. The following paragraphs de-
scribe each contribution in detail. See ./examples/nanoparticle/coarse/ for an application.

7.12.13.2 Example

simulation = {

types -> {

merge -> true,

gromacs -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 100, theta -> 110}

}

},

torsion -> {

Chapter 7: Variable Descriptions 294

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

improper -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, k -> 100, psi -> 0}

}

},

pair14 -> {

active -> true

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 10,

mix -> berthelot,

data -> {

{i0 -> a, i1 -> a, sigma -> 4.0, epsilon -> 0.4},

{i0 -> b, i1 -> b, sigma -> 3.7, epsilon -> 0.5},

{i0 -> c, i1 -> c, sigma -> 4.1, epsilon -> 0.22},

{i0 -> d, i1 -> d, sigma -> 2.4, epsilon -> 0.09},

}

}

}

}

};

7.12.13.3 References

1. W. L. Jorgensen and J. Tirado-Rives, "The OPLS Potential Functions for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin", J. Am. Chem.
Soc. 1988, 110, 1657-1666.

Chapter 7: Variable Descriptions 295

7.12.13.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

Chapter 7: Variable Descriptions 296

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential.

sigma real Site size; the point where the potential equals zero.
cutoff real Cut off; distance at which the pair-wise contribution is

set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
rij

)6 [(
σ
rij

)6
− 1

]
,

where rij represents the distance between site i and site j. The default mixing rule is
Berthelot (mix -> berthelot).

Chapter 7: Variable Descriptions 297

7.12.13.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2 kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 298

7.12.13.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2 kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 299

7.12.13.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 4
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + sign(ni) cos(niφ− δi)),

where φ represents the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.
Function sign(ni) is +1 for odd and -1 for even values of ni.

Chapter 7: Variable Descriptions 300

7.12.13.8 Pair14

pair14 = {

active -> boolean,

};

Directive Parameters Description
active boolean Interaction activator; either true or false.

Representation of the 1-4 intra-molecular pair-wise contributions, which have the same func-
tional form as the pair contributions in the following paragraph. The pre-factor, however
is 0.5, as described in Jorgensen et al. [Jorgensen 1988].

Chapter 7: Variable Descriptions 301

7.12.13.9 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 302

7.12.14 MARTINI

7.12.14.1 Syntax

martini = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair14 -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair14 struct 1-4 intra-molecular pair interaction activator
pair struct Pair interaction descriptors

The martini force field is a compounded force field based on the MARTINI force field.1 Its
functional form is a summation of bonded and nonbonded interactions given by

Emartini = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, improper, and pair contributions respectively. The following para-
graphs describe each contribution in detail. See ./examples/field/martini/ for an applica-
tion.

7.12.14.2 Example

simulation = {

types -> {

merge -> true,

martini -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 100, theta -> 110}

}

},

Chapter 7: Variable Descriptions 303

torsion -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

improper -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, k -> 100, psi -> 0}

}

},

pair14 -> {

active -> true

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 10,

mix -> berthelot,

data -> {

{i0 -> a, i1 -> a, sigma -> 4.0, epsilon -> 0.4},

{i0 -> b, i1 -> b, sigma -> 3.7, epsilon -> 0.5},

{i0 -> c, i1 -> c, sigma -> 4.1, epsilon -> 0.22},

{i0 -> d, i1 -> d, sigma -> 2.4, epsilon -> 0.09},

}

}

}

}

};

7.12.14.3 References

1. W. L. Jorgensen and J. Tirado-Rives, "The OPLS Potential Functions for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin", J. Am. Chem.
Soc. 1988, 110, 1657-1666.

Chapter 7: Variable Descriptions 304

7.12.14.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

Chapter 7: Variable Descriptions 305

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential.

sigma real Site size; the point where the potential equals zero.
cutoff real Cut off; distance at which the pair-wise contribution is

set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
rij

)6 [(
σ
rij

)6
− 1

]
,

where rij represents the distance between site i and site j. The default mixing rule is
Berthelot (mix -> berthelot).

Chapter 7: Variable Descriptions 306

7.12.14.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2 kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 307

7.12.14.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2 kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 308

7.12.14.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 4
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + sign(ni) cos(niφ− δi)),

where φ represents the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.
Function sign(ni) is +1 for odd and -1 for even values of ni.

Chapter 7: Variable Descriptions 309

7.12.14.8 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 310

7.12.15 Mie

7.12.15.1 Syntax

mie = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair struct Pair interaction descriptors

The Mie force field is a compounded force field, that finds its application in mesoscale
simulations.1 Its functional form is a summation of bonded and nonbonded interactions
given by

Emie = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, improper, and pair contributions respectively. The following para-
graphs describe each contribution in detail. See ./examples/mie/ for applications.

7.12.15.2 Example

simulation = {

types -> {

merge -> true,

mie -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 20, l -> 1}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 5, theta -> 180}

}

},

torsion -> {

active -> true,

Chapter 7: Variable Descriptions 311

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 1,

data -> {

{i0 -> a, i1 -> a, m -> 12, n -> 6,

epsilon -> 1, sigma -> 1,

cutoff -> 1},

...

}

}

}

}

};

7.12.15.3 References

1. Reference.

Chapter 7: Variable Descriptions 312

7.12.15.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

m -> real,

n -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

epsilon real Force interaction constant.
sigma real Site size.

Chapter 7: Variable Descriptions 313

m real First exponent; m should be a positive number larger
than 1.

n real Second exponent; n should smaller than m but larger
than 1.

cutoff real Cut off; distance at which the pair-wise contribution is
set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a m-n Lennard-Jones potential,

Epair =
m ε
m−n

(
m
n

) n
m−n

[(
σ
rij

)m
−
(
σ
rij

)n]
,

where rij represents the distance between site i and site j.

Chapter 7: Variable Descriptions 314

7.12.15.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2 kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 315

7.12.15.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2 kangle(cos(θ)− cos(θ0))
2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 316

7.12.15.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 6
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + cos(niφ− δi)),

where ki represents a set of torsion constants, δi a torsion offset, ni the torsion pre-factor,
and φ the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}. The maximum

Chapter 7: Variable Descriptions 317

allowed value of ni is 6. Note, that the functional form presented here differs from the
original OPLS definition.

Chapter 7: Variable Descriptions 318

7.12.15.8 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 319

7.12.16 OPLS

7.12.16.1 Syntax

opls = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair14 -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair14 struct 1-4 intra-molecular pair interaction activator
pair struct Pair interaction descriptors

The OPLS force field is a compounded force field based on the OPLS force field.1. Its
functional form is a summation of bonded and nonbonded interactions given by

Eopls = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, and pair contributions respectively. The following paragraphs
describe each contribution in detail. See ./examples/field/opls/ for applications.

7.12.16.2 Example

simulation = {

types -> {

merge -> true,

opls -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 100, theta -> 110}

}

},

torsion -> {

Chapter 7: Variable Descriptions 320

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

improper -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, k -> 100, psi -> 0}

}

},

pair14 -> {

active -> true

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 10,

mix -> berthelot,

data -> {

{i0 -> a, i1 -> a, sigma -> 4.0, epsilon -> 0.4},

{i0 -> b, i1 -> b, sigma -> 3.7, epsilon -> 0.5},

{i0 -> c, i1 -> c, sigma -> 4.1, epsilon -> 0.22},

{i0 -> d, i1 -> d, sigma -> 2.4, epsilon -> 0.09},

}

}

}

}

};

7.12.16.3 References

1. W. L. Jorgensen and J. Tirado-Rives, "The OPLS Potential Functions for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin", J. Am. Chem.
Soc. 1988, 110, 1657-1666.

Chapter 7: Variable Descriptions 321

7.12.16.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

Chapter 7: Variable Descriptions 322

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential.

sigma real Site size; the point where the potential equals zero.
cutoff real Cut off; distance at which the pair-wise contribution is

set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
rij

)6 [(
σ
rij

)6
− 1

]
,

where rij represents the distance between site i and site j. The default mixing rule is
geometrical (mix -> geometric).

Chapter 7: Variable Descriptions 323

7.12.16.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 324

7.12.16.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 325

7.12.16.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 4
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 1/2 ki(1 + sign(ni) cos(niφ− δi)),

where φ represents the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.
Function sign(ni) is +1 for odd and -1 for even values of ni.

Chapter 7: Variable Descriptions 326

7.12.16.8 Pair14

pair14 = {

active -> boolean,

};

Directive Parameters Description
active boolean Interaction activator; either true or false.

Representation of the 1-4 intra-molecular pair-wise contributions, which have the same func-
tional form as the pair contributions in the following paragraph. The pre-factor, however
is 0.5, as described in Jorgensen et al. [Jorgensen 1988].

Chapter 7: Variable Descriptions 327

7.12.16.9 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 328

7.12.17 SDK

7.12.17.1 Syntax

sdk = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair14 -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair14 struct 1-4 intra-molecular pair interaction activator
pair struct Pair interaction descriptors

The SDK force field is a compounded force field based on the SDK force field.1. Its functional
form is a summation of bonded and nonbonded interactions given by

Esdk = Epair + Ebond + Eangle + Etorsion + Eimproper

for bond, angle, torsion, and pair contributions respectively. The following paragraphs
describe each contribution in detail. See ./examples/field/sdk/ for applications.

7.12.17.2 Example

simulation = {

types -> {

merge -> true,

sdk -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 100, theta -> 110}

}

},

torsion -> {

Chapter 7: Variable Descriptions 329

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

improper -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, k -> 100, psi -> 0}

}

},

pair14 -> {

active -> true

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 10,

mix -> berthelot,

data -> {

{i0 -> a, i1 -> a, sigma -> 4.0, epsilon -> 0.4},

{i0 -> b, i1 -> b, sigma -> 3.7, epsilon -> 0.5},

{i0 -> c, i1 -> c, sigma -> 4.1, epsilon -> 0.22},

{i0 -> d, i1 -> d, sigma -> 2.4, epsilon -> 0.09},

}

}

}

}

};

7.12.17.3 References

1. Shinoda, Devane, Klein papers

2. W. L. Jorgensen and J. Tirado-Rives, "The SDK Potential Functions for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin", J. Am. Chem.
Soc. 1988, 110, 1657-1666.

Chapter 7: Variable Descriptions 330

7.12.17.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential.

Chapter 7: Variable Descriptions 331

sigma real Site size; the point where the potential equals zero.
cutoff real Cut off; distance at which the pair-wise contribution is

set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
rij

)6 [(
σ
rij

)6
− 1

]
,

where rij represents the distance between site i and site j. The default mixing rule is
Berthelot (mix -> berthelot).

Chapter 7: Variable Descriptions 332

7.12.17.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 333

7.12.17.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 334

7.12.17.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 4
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 1/2 ki(1 + sign(ni) cos(niφ− δi)),

where φ represents the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.
Function sign(ni) is +1 for odd and -1 for even values of ni.

Chapter 7: Variable Descriptions 335

7.12.17.8 Pair14

pair14 = {

active -> boolean,

};

Directive Parameters Description
active boolean Interaction activator; either true or false.

Representation of the 1-4 intra-molecular pair-wise contributions, which have the same func-
tional form as the pair contributions in the following paragraph. The pre-factor, however
is 0.5, as described in Jorgensen et al. [Jorgensen 1988].

Chapter 7: Variable Descriptions 336

7.12.17.9 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 337

7.12.18 Spline

7.12.18.1 Syntax

spline = {

bond -> struct,

angle -> struct,

torsion -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
pair struct Pair interaction descriptors

The spline force field uses a set of splined functions for nonbonded and bonded interactions
(see Section 7.9 [Splines], page 199). Its functional form is a summation of bonded and
nonbonded interactions given by

Espline = Epair + Ebond + Eangle + Etorsion

for bond, angle, torsion, and pair contributions respectively. The following paragraphs
describe each contribution in detail. See ./examples/field/spline/ for an application.

7.12.18.2 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

spline -> struct

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants

Chapter 7: Variable Descriptions 338

i0, i1 id Site id, referring to mass paragraph in types

spline struct Spline function structure.

The energetic functional form of the bond contributions to the total potential is described
by

Ebond =,

where

7.12.18.3 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

spline -> struct

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to mass paragraph in types

spline struct Spline function structure.

The energetic functional form of the angle contributions to the total potential is described
by

Eangle =,

where θ represents the bond angle.

7.12.18.4 Torsion

torsion = {

active -> boolean

n -> integer,

Chapter 7: Variable Descriptions 339

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

spline -> struct

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types

spline struct Spline function structure.

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =,

where φ represents the bond torsion.

7.12.18.5 Pair

bond = {

active -> boolean,

nbonded -> integer,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

spline -> struct

},

...

}

};

Chapter 7: Variable Descriptions 340

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

spline struct Spline function structure.

The energetic functional form of the pair contributions to the total potential is formed by
a linear interpolation or a cubic spline through the provided data.

7.12.18.6 Example

variables = {

};

simulation = {

types -> {

merge -> true,

boltzmann -> {

bond -> {

active -> true,

data -> {

}

},

angle -> {

active -> true,

data -> {

}

},

pair -> {

active -> true,

nbonded -> 3,

data -> {

}

}

}

}

};

7.12.18.7 References

1. Spyriouni et al., Macromolecules 2007, 40, 3876

Chapter 7: Variable Descriptions 341

7.12.19 Standard

7.12.19.1 Syntax

standard = {

pair -> struct,

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct

};

Directive Parameters Description
pair struct Pair interaction descriptors
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors

The standard force field is a compounded force field, that is OPLS-like in its appearance.
Its functional form is a summation of nonbonded and bonded interactions given by

Estandard = Epair + Ebond + Eangle + Etorsion + Eimproper

for pair, bond, angle, torsion, and improper contributions respectively. The following para-
graphs describe each contribution in detail. See ./examples/lj/ for an application. Note,
that no standardized typing is provided for the standard force field.

7.12.19.2 Example

simulation = {

types -> {

merge -> true,

standard -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 100, theta -> 110}

}

},

torsion -> {

active -> true,

Chapter 7: Variable Descriptions 342

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

improper -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, k -> 100, psi -> 0}

}

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 10,

mix -> berthelot,

data -> {

{i0 -> a, i1 -> a, sigma -> 4.0, epsilon -> 0.4},

{i0 -> b, i1 -> b, sigma -> 3.7, epsilon -> 0.5},

{i0 -> c, i1 -> c, sigma -> 4.1, epsilon -> 0.22},

{i0 -> d, i1 -> d, sigma -> 2.4, epsilon -> 0.09}

}

}

}

}

};

7.12.19.3 References

1. W. L. Jorgensen and J. Tirado-Rives, "The OPLS Potential Functions for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin", J. Am. Chem.
Soc. 1988, 110, 1657-1666.

Chapter 7: Variable Descriptions 343

7.12.19.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

Chapter 7: Variable Descriptions 344

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential

sigma real Site size; the point where the potential equals zero

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
rij

)6 [(
σ
rij

)6
− 1

]
,

where rij represents the distance between site i and site j. The default mixing rule is
Berthelot (mix -> berthelot).

Chapter 7: Variable Descriptions 345

7.12.19.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2 kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 346

7.12.19.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2 kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 347

7.12.19.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 6
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + cos(niφ− δi)),

where ki represents a set of torsion constants, δi a torsion offset, ni the torsion pre-factor,
and φ the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}. The maximum

Chapter 7: Variable Descriptions 348

allowed value of ni is 6. Note, that the functional form presented here differs from the
original OPLS definition.

Chapter 7: Variable Descriptions 349

7.12.19.8 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 350

7.12.20 Table

7.12.20.1 Syntax

table = {

bond -> struct,

angle -> struct,

torsion -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
pair struct Pair interaction descriptors

The tabular force field uses tabulated functions for nonbonded and bonded interactions. Its
functional form is a summation of bonded and nonbonded interactions given by

Etable = Epair + Ebond + Eangle + Etorsion

for bond, angle, torsion, and pair contributions respectively. The default interpolation order
is set to cubic (see Section 7.9 [Splines], page 199). The following paragraphs describe each
contribution in detail. See ./examples/field/table/ for an application.

7.12.20.2 Table Syntax

data = {

{

x -> real,

energy -> real

},

...

};

Directive Parameters Description
x real Location; either interparticle distance for pair, bond dis-

tance for bond, bond angle of angle, or bond torsion for
torsion interactions.

energy real Energy at the specified location.

Table entries are given in pairs, where the x coordinate represents the function variable
and the y coordinate the resulting energy. The x interval between each entry must be
equidistant. Non-equidistant entries result in poor interpolation.

Chapter 7: Variable Descriptions 351

7.12.20.3 Example

simulation = {

types -> {

merge -> true,

boltzmann -> {

bond -> {

active -> true,

order -> cubic,

data -> {

{i0 -> a, i1 -> a, name -> "bond_aa.dat"},

{i0 -> a, i1 -> b, name -> "bond_ab.dat"},

{i0 -> b, i1 -> b, name -> "bond_bb.dat"}

}

},

angle -> {

active -> true,

order -> cubic,

data -> {

{i0 -> a, i1 -> a, i2 -> a, name -> "angle_aaa.dat"},

{i0 -> a, i1 -> a, i2 -> b, name -> "angle_aab.dat"},

{i0 -> a, i1 -> b, i2 -> b, name -> "angle_abb.dat"},

{i0 -> b, i1 -> b, i2 -> b, name -> "angle_bbb.dat"}

}

},

pair -> {

active -> true,

order -> cubic,

nbonded -> 2,

data -> {

{i0 -> a, i1 -> a, name -> "pair_aa.dat"},

{i0 -> a, i1 -> b, name -> "pair_ab.dat"},

{i0 -> b, i1 -> b, name -> "pair_bb.dat"}

}

}

}

}

};

Chapter 7: Variable Descriptions 352

7.12.20.4 Pair

bond = {

active -> boolean,

order -> option,

nbonded -> integer,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

name -> string

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
order option Spline interpolation order; either linear or cubic.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

name string Table file name; for table format see [Table Syntax]
below.

The energetic functional form of the pair contributions to the total potential is formed by
a linear interpolation or a cubic spline through the provided data.

Chapter 7: Variable Descriptions 353

7.12.20.5 Bond

bond = {

active -> boolean,

order -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

name -> string

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
order option Spline interpolation order; either linear or cubic.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to mass paragraph in types

name string Table file name; for table format see [Table Syntax]
below.

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = Interpolation(l),

where l represents the bond distance. Either a linear or a cubic spline through the provided
data defines the interpolation function.

Chapter 7: Variable Descriptions 354

7.12.20.6 Angle

angle = {

active -> boolean,

order -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

name -> string

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
order option Spline interpolation order; either linear or cubic.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to mass paragraph in types

name string Table file name; for table format see [Table Syntax]
below.

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = Interpolation(θ),

where θ represents the bond angle. Either a linear or a cubic spline through the provided
data defines the interpolation function.

Chapter 7: Variable Descriptions 355

7.12.20.7 Torsion

torsion = {

active -> boolean,

order -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

name -> string

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
order option Spline interpolation order; either linear or cubic.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to mass paragraph in types

name string Table file name; for table format see [Table Syntax]
below.

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion = Interpolation(φ),

where φ represents the bond torsion. Either a linear or a cubic spline through the provided
data defines the interpolation function.

Chapter 7: Variable Descriptions 356

7.12.21 TraPPE

7.12.21.1 Syntax

trappe = {

bond -> struct,

angle -> struct,

torsion -> struct,

improper -> struct,

pair14 -> struct,

pair -> struct

};

Directive Parameters Description
bond struct Bond interaction descriptors
angle struct Angle interaction decriptors
torsion struct Torsion interaction decriptors
improper struct Improper interaction decriptors
pair14 struct 1-4 intra-molecular pair interaction activator
pair struct Pair interaction descriptors

The TraPPE force field is a compounded force field based on the TraPPE force field.1. Its
functional form is a summation of bonded and nonbonded interactions given by

Etrappe = Ebond + Eangle + Etorsion + Eimproper + Epair

for bond, angle, torsion, and pair contributions respectively. The following paragraphs
describe each contribution in detail. See ./examples/field/trappe/ for applications.

7.12.21.2 Example

simulation = {

types -> {

merge -> true,

trappe -> {

bond -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, k -> 100, l -> 2}

}

},

angle -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, k -> 100, theta -> 110}

}

},

torsion -> {

Chapter 7: Variable Descriptions 357

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, coefficients -> {

{k -> 1.5, n -> 1, delta -> 0},

{k -> 2.5, n -> 2, delta -> 0}

}

}

}

},

improper -> {

active -> true,

data -> {

{i0 -> a, i1 -> b, i2 -> c, i3 -> d, k -> 100, psi -> 0}

}

},

pair14 -> {

active -> true

},

pair -> {

active -> true,

nbonded -> 3,

mode -> global,

cutoff -> 10,

mix -> berthelot,

data -> {

{i0 -> a, i1 -> a, sigma -> 4.0, epsilon -> 0.4},

{i0 -> b, i1 -> b, sigma -> 3.7, epsilon -> 0.5},

{i0 -> c, i1 -> c, sigma -> 4.1, epsilon -> 0.22},

{i0 -> d, i1 -> d, sigma -> 2.4, epsilon -> 0.09},

}

}

}

}

};

7.12.21.3 References

1. Siepmann papers

2. W. L. Jorgensen and J. Tirado-Rives, "The TraPPE Potential Functions for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin", J. Am. Chem.
Soc. 1988, 110, 1657-1666.

Chapter 7: Variable Descriptions 358

7.12.21.4 Pair

pair = {

active -> boolean,

nbonded -> integer,

mix -> option,

shift -> boolean,

coulomb -> option,

cutoff -> real,

mode -> option,

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

epsilon -> real,

sigma -> real,

cutoff -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
nbonded integer Number of bonded sites to exclude from nonbonded in-

teractions; the given number is expected to be larger or
equal to zero.

mix option Sets mixing rule; options are none, berthelot,
arithmetic, geometric, and sixth.

shift boolean Sets shifting of potential at cutoff; options are true and
false.

coulomb option Set type of coulomb treatment; options are none, cut,
and long.

cutoff real Sets global cut off for global mode
mode option Sets cut off mode; options are global using the value of

cutoff for all contributions, individual defining cut offs
per contribution, and repulsive defining the well loca-
tion for each separate contribution as the cut off distance.

n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass

paragraph.

Chapter 7: Variable Descriptions 359

epsilon real Force interaction constant; identical to the well depth for
a Lennard-Jones 6-12 potential.

sigma real Site size; the point where the potential equals zero.
cutoff real Cut off; distance at which the pair-wise contribution is

set to zero; can be omitted.

The energetic functional form of the pair contributions to the total potential is described
by a 6-12 Lennard-Jones potential,

Epair = 4ε
(
σ
rij

)6 [(
σ
rij

)6
− 1

]
,

where rij represents the distance between site i and site j. The default mixing rule is
Berthelot (mix -> berthelot).

Chapter 7: Variable Descriptions 360

7.12.21.5 Bond

bond = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

k -> real,

l -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1 id Site id, referring to types as defined by the mass para-

graph in types

k real Bond spring constants
l real Equilibrium bond length

The energetic functional form of the bond contributions to the total potential is described
by

Ebond = 1/2kbond(l − l0)2,

where kbond represents a spring constant, l the bond length of bond {i0, i1}, and l0 the
equilibrium bond length.

Chapter 7: Variable Descriptions 361

7.12.21.6 Angle

angle = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

k -> real,

theta -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2 id Site id, referring to types as defined by the mass para-

graph in types

k real Angle spring constants
theta real Equilibrium bond angle

The energetic functional form of the angle contributions to the total potential is described
by

Eangle = 1/2kangle(θ − θ0)2,

where kangle represents a spring constant, θ the the angle between bonds {i0, i1} and {i1, i2},
and θ0 the equilibrium angle.

Chapter 7: Variable Descriptions 362

7.12.21.7 Torsion

torsion = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

coefficients ->

{

{

k -> real,

n -> integer,

delta -> real

}

...

}

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
n integer Torsional angle prefactor; values range between 1 and 4
delta real Offset angle, mainly used to change the sign of the cosine

function

The energetic functional form of the torsion contributions to the total potential is described
by

Etorsion =
∑m
i=1 ki(1 + sign(ni) cos(niφ− δi)),

where φ represents the bond torsion constructed by bonds {i0, i1}, {i1, i2}, and {i2, i3}.
Function sign(ni) is +1 for odd and -1 for even values of ni.

Chapter 7: Variable Descriptions 363

7.12.21.8 Improper

improper = {

active -> boolean

n -> integer,

data ->

{

{

i0 -> id,

i1 -> id,

i2 -> id,

i3 -> id,

k -> real,

psi -> real

},

...

}

};

Directive Parameters Description
active boolean Interaction activator; either true or false.
n integer Number of data entries; can be ommited when type =

{merge -> true}.

data struct Summary of interaction constants
i0, i1, i2,

i3

id Site id, referring to types as defined by the mass para-
graph in types

k real Force constant
psi real Improper equilibrium angle

The energetic functional form of the torsion contributions to the total potential is described
by

Eimproper = kimproper(ψ − ψ0)
2,

where ψ represents the improper angle, which is given by the average of torsion angles
formed by planes out of permutations of any of the following two bonds: {i1, i0}, {i2, i0},
and {i3, i0}. Note, that site i0 is the central site, as opposed to some representations, where
i1 is the central site.

Chapter 7: Variable Descriptions 364

7.13 Units

7.13.1 Syntax

units = {

type -> constant,

mass -> real,

length -> real,

angstrom -> real,

angle -> real,

energy -> real,

kb -> real,

nav -> real,

charge -> real,

permittivity -> real,

seed -> real,

reduced -> boolean

};

Directive Parameters Description
type constant Defines the type of units used (needed upon first initial-

ization); options are reduced or si.

mass real Defines the global mass scaling constant.
length real Defines the global length scaling constant.
angstrom real Defines the length scaling for ported formats (e.g. PDB

or LAMMPS).

angle real Defines the global angle scaling constant.
energy real Defines the global energetic scaling constant.
kb real Defines Boltzmann’s constant with respect to the chosen

scaling.

nav real Defines Avogadro’s constant with respect to the chosen
scaling.

charge real Defines the global scaling of a unit charge.
permittivity real Defines the global permittivity scaling.
seed real Defines the random seed.
reduced boolean Reflects the output state (normally false); options are

true or false.

7.13.2 Usage

This variable style describes units. Units are used to internally scale all variables with
respect to their units. The units can also be used to define an appropriate relation between
force field energies, angles, bead sizes, etc. Upon initialization, a suitable scaling will be
deduced from force field or internal natural constant definitions when the contributor is
zero (see Section 7.12 [Types], page 204).

Chapter 7: Variable Descriptions 365

7.13.3 Default

Unless otherwise stated, the default is given by

units = {

type -> si

};

By default, all other contributors are set to zero and deduced upon initialization.

Chapter 7: Variable Descriptions 366

7.14 Vector

7.14.1 Syntax

vector = {x -> real, y -> real, z -> real};

Directive Parameters Description
x, y, z real Sets vector components.

7.14.2 Usage

This variable style describes a vector. Vectors always consist of three components, which
can be given in real numbers. Interpretation can either be real or integer, dependent on
the command in which vector occurs.

7.14.3 Default

Unless otherwise stated, the default is given by

vector = {x -> 0, y -> 0, z -> 0};

Chapter 7: Variable Descriptions 367

7.15 Voigt

7.15.1 Syntax

voigt = {xx -> real, yy -> real, zz -> real,

zy -> real, zx -> real, yx -> real};

Directive Parameters Description
xx, yy, zz,

zy, zx, yx

real Sets voigt components.

7.15.2 Usage

This variable style describes a voigt. Voigts always consist of six components, which can
be given in real numbers. Interpretation can either be real or integer, dependent on the
command in which voigt occurs.

7.15.3 Default

Unless otherwise stated, the default is given by

voigt = {xx -> 0, yy -> 0, zz -> 0, zy -> 0, zx -> 0, yx -> 0};

368

Index

B
boltzmann . 207
bond . 157
born . 212
build . 86

C
cancel . 90
carve . 91
cavity . 160
CFF . 220
CHARMM . 236
Chemistry File . 38
chemistry options . 15
chemistry.esh . 38
clusters . 93
Clusters . 6
coarse . 247
colloid . 263
Configurational Moves . 7
constants . 179
coulomb . 271
crystal . 97
cut . 99

D
deform . 100
deform move . 184
delete . 101
displace . 185
Distribution content . 1
Distributions . 7
DPD . 275
duplicate . 102

E
endbridge . 186
Environment File . 35
environment options . 12
environment.esh . 35
export . 103
Extensions . 10

F
field . 106
Field File . 48
field.define . 48
flag . 111
focus . 181
focus command . 113
force . 114
Force Fields . 3
Forces . 7
former . 115

G
Gauss . 284
General Introduction . 1
get . 116
gr . 165
GROMACS . 293
Groups . 6
groups . 117
gyration . 170

I
insight . 121
interaction . 172
Introduction . 1

L
lammps . 123
Lists . 3

M
MARTINI . 302
Measurements . 7
memory . 126
Methodology . 3
Mie . 310
migrate . 188
Molecular Interactions . 7
Molecular Representation . 6
moves . 127, 182

O
opls . 319

Index 369

P
Parameter File . 53
parameters.csv . 53
pdb . 128
Port . 194
profiles . 195
Program Structure . 6
put . 131

R
rebridge . 189
References File . 52
references.csv . 52
region . 196
remove . 133
rename . 132
reptate . 190
reset . 135
restart . 136
retype . 137
rotate . 191
run . 139

S
sample . 140
Sampling Tools . 156
Scripting Commands . 85
sdk . 328
Setup Usage . 9
setup.esh . 35
shell . 141
simulation . 143
Simulation Setup . 8
Sites . 6
sites . 142

SMILES . 197
spline . 337
splines . 199
split . 145
standard . 341
surface . 192
System Flags . 180, 201
Systems . 7
systems . 202

T
table . 350
table format . 350
temper . 193
terminate . 146
timing . 147
traject . 148
translate . 150
trappe . 356
types . 151, 204
Types . 7

U
units . 364

V
Variable Descriptions . 177
variables . 153
vector . 366
voigt . 367

X
xyz . 154

	1 Introduction
	General Introduction
	Distribution Content

	2 Methodology
	Lists
	Force Fields

	3 Program Structure
	Molecular Representation
	Sites
	Groups
	Clusters

	Molecular Interactions
	Types
	Forces

	Systems
	Configurational Moves
	Measurements

	4 Simulation Setup
	General
	Setup Usage
	Extensions
	Enviroment Options
	Chemistry Options
	File Formats
	Environment File
	Chemistry File
	General
	Shorthand
	Groups
	Clusters
	Polymers
	DPD Additions

	Field File
	General
	Define

	References File
	Parameters File

	Examples
	References
	Chemistry Mode
	Bulk Mixture
	Force Fields
	Record
	Polymers
	Multiphase Systems
	Surfaces

	Environment Mode
	User-Defined Force Fields
	Shear

	Help Output

	5 Scripting Commands
	Build
	Syntax
	Usage
	Default
	Examples

	Cancel
	Syntax
	Usage
	Default

	Carve
	Syntax
	Usage
	Default
	Examples

	Clusters
	Syntax
	Usage
	Default
	Examples

	Crystal
	Syntax
	Usage
	Default
	Examples

	Cut
	Syntax
	Usage
	Default
	Examples

	Deform
	Syntax
	Usage
	Default
	Examples

	Delete
	Syntax
	Usage
	Default

	Duplicate
	Syntax
	Usage

	Export
	Syntax
	Usage
	Default
	Examples
	Data Interpretation

	Field
	Syntax
	Usage
	Formats
	Default

	Flag
	Syntax
	Usage
	Default

	Focus (Command)
	Syntax
	Usage
	Default

	Force
	Syntax
	Usage
	Default

	Former
	Syntax
	Usage
	Default

	Get
	Syntax
	Usage
	Default

	Groups
	Syntax
	Usage
	Default
	Examples

	Insight
	Syntax
	Usage
	Default
	References

	Lammps
	Syntax
	Usage
	Default
	Examples
	References

	Memory
	Syntax
	Usage
	Default
	Examples

	Moves
	Syntax
	Usage
	Default

	PDB
	Syntax
	Usage
	Default
	References

	Put
	Syntax
	Usage
	Default

	Rename
	Syntax
	Usage
	Default
	Examples

	Remove
	Syntax
	Usage
	Default
	Examples

	Reset
	Syntax
	Usage
	Default

	Restart
	Syntax
	Usage
	Default

	Retype
	Syntax
	Usage
	Default
	Examples

	Run
	Syntax
	Usage
	Default

	Sample
	Syntax
	Usage
	Default
	References

	Shell
	Syntax
	Usage
	Default

	Sites
	Syntax
	Usage
	Default
	Examples

	Simulation
	Syntax
	Usage
	Examples

	Split
	Syntax
	Usage
	Default

	Terminate
	Syntax
	Usage
	Default

	Timing
	Syntax
	Usage
	Default

	Traject
	Syntax
	Usage
	Default
	Examples

	Translate
	Syntax
	Usage
	Default
	Examples

	Types
	Syntax
	Usage
	Default

	Variables
	Syntax
	Usage
	Examples

	XYZ
	Syntax
	Usage
	Default
	References

	6 Sampling Tools
	Bond
	Syntax
	Usage
	Default
	Example

	Cavity
	Syntax
	Usage
	Default
	Example
	References

	Gr
	Syntax
	Usage
	Default
	Pair Correlation Functions
	Definition
	Relations Involving g(r)
	Structure Factor
	Compressibility Equation
	Potential of Mean Force
	Energy Equation
	Pressure Equation of State
	Thermodynamic Properties

	References

	Gyration
	Syntax
	Usage
	Default
	Theory
	References

	Interaction
	Syntax
	Usage
	Default

	Profiles
	Examples

	7 Variable Descriptions
	Constants
	Syntax
	Usage
	Default

	System Flags
	Syntax
	Default

	Focus
	Syntax
	Usage
	Default

	Moves
	Syntax
	Usage
	Default
	References
	Deform Move
	Syntax
	Usage
	Default

	Displace
	Syntax
	Usage
	Default

	Endbridge
	Syntax
	Usage
	Default

	Migrate
	Syntax
	Usage
	Default

	Rebridge
	Syntax
	Usage
	Default

	Reptate
	Syntax
	Usage
	Default

	Rotate
	Syntax
	Usage
	Default

	Surface
	Syntax
	Usage
	Default

	Temper
	Syntax
	Usage
	Default

	Port
	Syntax
	Default

	Profiles
	Syntax
	Usage
	Default

	Region
	Syntax
	Usage
	Default

	SMILES
	Syntax
	Usage
	Examples

	Splines
	Introduction^1
	Linear Spline
	Cubic Spline
	References

	System Flags
	Syntax
	Default

	Systems
	Syntax
	Usage
	Default

	Types
	Syntax
	Usage
	Default
	Boltzmann
	Syntax
	Example
	References
	Pair
	Bond
	Angle

	Born
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Improper

	CFF
	Syntax
	Examples
	References
	Pair
	Bond
	Angle
	Bond-Bond
	Bond-Angle
	Torsion
	End-Bond-Torsion
	Middle-Bond-Torsion
	Bond-Bond-13
	Angle-Torsion
	Angle-Angle-Torsion
	Improper

	CHARMM
	Syntax
	Examples
	References
	Pair
	Bond
	Angle
	Urey
	Torsion
	Pair14
	Improper

	Coarse
	Syntax
	Examples
	References
	LJ
	Repulsive
	Sphere
	Colloid
	DPD
	Charge
	FENE
	Angle

	Colloid
	Syntax
	Example
	References
	Pair
	Charge
	Bond
	Angle

	Coulomb
	Syntax
	Examples
	References
	Pair
	Charge

	DPD
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Improper

	Gauss
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Improper

	GROMACS
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Pair14
	Improper

	MARTINI
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Improper

	Mie
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Improper

	OPLS
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Pair14
	Improper

	SDK
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Pair14
	Improper

	Spline
	Syntax
	Bond
	Angle
	Torsion
	Pair
	Example
	References

	Standard
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Improper

	Table
	Syntax
	Table Syntax
	Example
	Pair
	Bond
	Angle
	Torsion

	TraPPE
	Syntax
	Example
	References
	Pair
	Bond
	Angle
	Torsion
	Improper

	Units
	Syntax
	Usage
	Default

	Vector
	Syntax
	Usage
	Default

	Voigt
	Syntax
	Usage
	Default

	Index

