Object for dealing with vertical simultaneities in a fast way w/o Chord’s overhead.
A collection of information about elements that are sounding at a given offset or just finished at that offset or are continuing from before, etc..
Create a timespan-stream from a score:
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
Find the verticality at offset 6.5, or beat 2.5 of measure 2 (there’s a one beat pickup)
>>> verticality = tree.getVerticalityAt(6.5)
>>> verticality
<Verticality 6.5 {E3 D4 G#4 B4}>
The representation of a verticality gives the pitches from lowest to highest (in sounding notes).
A verticality knows its offset, but because elements might end at different times, it doesn’t know its endTime
>>> verticality.offset
6.5
>>> verticality.endTime
Traceback (most recent call last):
AttributeError: 'Verticality' object has no attribute 'endTime'
However, we can find when the next verticality starts by looking at the nextVerticality
>>> nv = verticality.nextVerticality
>>> nv
<Verticality 7.0 {A2 C#4 E4 A4}>
>>> nv.offset
7.0
Or more simply:
>>> verticality.nextStartOffset
7.0
(There is also a previousVerticality, but not a previousStartOffset)
What we just demonstrated is actually very powerful: a Verticality keeps a record of exactly where it is in the timespanTree – scores can be recreated with this information.
Getting back to the task at hand, we can find all the elementTimespans (and from there the elements) that start at exactly 6.5. There’s one, it’s a passing tone D in the tenor and it lastes from offset 6.5 to offset 7.0, with respect to the beginning of the score, not to the beginning of the measure. That is to say, it’s an eighth note
>>> verticality.startTimespans
(<ElementTimespan (6.5 to 7.0) <music21.note.Note D>>,)
And we can get all the elementTimespans that were already sounding at the moment (that is to say, the non-passing tones):
>>> verticality.overlapTimespans
(<ElementTimespan (6.0 to 7.0) <music21.note.Note B>>,
<ElementTimespan (6.0 to 7.0) <music21.note.Note G#>>,
<ElementTimespan (6.0 to 7.0) <music21.note.Note E>>)
And we can get all the things that stop right at this moment. It’s the E in the tenor preceding the passing tone D:
>>> verticality.stopTimespans
(<ElementTimespan (6.0 to 6.5) <music21.note.Note E>>,)
Verticality read-only properties
Gets the bass timespan in this verticality.
This is CURRENTLY the lowest PART not the lowest note necessarily. TODO: Fix this!
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> verticality
<Verticality 1.0 {F#3 C#4 F#4 A4}>
>>> verticality.bassTimespan
<ElementTimespan (1.0 to 2.0) <music21.note.Note F#>>
Gets the beat strength of a verticality.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> verticality.beatStrength
1.0
Note that it will return None if there are no startTimespans at this point:
>>> verticality = tree.getVerticalityAt(1.25)
>>> verticality
<Verticality 1.25 {F#3 C#4 F#4 A4}>
>>> verticality.startTimespans
()
>>> verticality.beatStrength is None
True
Is true when the pitch set of a verticality is consonant.
TODO: remove, and use toChord.isConsonant() instead.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticalities = list(tree.iterateVerticalities())
>>> for verticality in verticalities[:10]:
... print("%r %r" % (verticality, verticality.isConsonant))
...
<Verticality 0.0 {A3 E4 C#5}> True
<Verticality 0.5 {G#3 B3 E4 B4}> True
<Verticality 1.0 {F#3 C#4 F#4 A4}> True
<Verticality 2.0 {G#3 B3 E4 B4}> True
<Verticality 3.0 {A3 E4 C#5}> True
<Verticality 4.0 {G#3 B3 E4 E5}> True
<Verticality 5.0 {A3 E4 C#5}> True
<Verticality 5.5 {C#3 E4 A4 C#5}> True
<Verticality 6.0 {E3 E4 G#4 B4}> True
<Verticality 6.5 {E3 D4 G#4 B4}> False
Gets the measure number of the verticality’s starting elements.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(7.0)
>>> verticality.measureNumber
2
Gets the next start-offset in the verticality’s offset-tree.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> verticality.nextStartOffset
2.0
If a verticality has no tree attached, then it cannot be
Gets the next verticality after a verticality.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> print(verticality)
<Verticality 1.0 {F#3 C#4 F#4 A4}>
>>> nextVerticality = verticality.nextVerticality
>>> print(nextVerticality)
<Verticality 2.0 {G#3 B3 E4 B4}>
Verticality objects created by an offset-tree hold a reference back to that offset-tree. This means that they determine their next or previous verticality dynamically based on the state of the offset-tree only when asked. Because of this, it is safe to mutate the offset-tree by inserting or removing timespans while iterating over it.
>>> tree.remove(nextVerticality.startTimespans)
>>> verticality.nextVerticality
<Verticality 3.0 {A3 E4 C#5}>
Gets the pitch-class set of all elements in a verticality.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> for pitchClass in sorted(verticality.pitchClassSet):
... pitchClass
...
<music21.pitch.Pitch C#>
<music21.pitch.Pitch F#>
<music21.pitch.Pitch A>
Gets the pitch set of all elements in a verticality.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> for pitch in sorted(verticality.pitchSet):
... pitch
...
<music21.pitch.Pitch F#3>
<music21.pitch.Pitch C#4>
<music21.pitch.Pitch F#4>
<music21.pitch.Pitch A4>
Gets the previous verticality before a verticality.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> print(verticality)
<Verticality 1.0 {F#3 C#4 F#4 A4}>
>>> previousVerticality = verticality.previousVerticality
>>> print(previousVerticality)
<Verticality 0.5 {G#3 B3 E4 B4}>
Continue it:
>>> v = tree.getVerticalityAt(1.0)
>>> while v is not None:
... print(v)
... v = v.previousVerticality
<Verticality 1.0 {F#3 C#4 F#4 A4}>
<Verticality 0.5 {G#3 B3 E4 B4}>
<Verticality 0.0 {A3 E4 C#5}>
Verticality objects created by an offset-tree hold a reference back to that offset-tree. This means that they determine their next or previous verticality dynamically based on the state of the offset-tree only when asked. Because of this, it is safe to mutate the offset-tree by inserting or removing timespans while iterating over it.
>>> tree.remove(previousVerticality.startTimespans)
>>> verticality.previousVerticality
<Verticality 0.0 {A3 E4 C#5}>
Verticality methods
>>> c = corpus.parse('luca/gloria').measures(1,8)
>>> tsCol = timespans.streamToTimespanTree(c, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality22 = tsCol.getVerticalityAt(22.0)
>>> from pprint import pprint as pp
>>> for vlq in verticality22.getAllVoiceLeadingQuartets():
... pp(vlq)
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note E>, v1n2=<music21.note.Note F>,
v2n1=<music21.note.Note G>, v2n2=<music21.note.Note C> >
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note E>, v1n2=<music21.note.Note F>,
v2n1=<music21.note.Note A>, v2n2=<music21.note.Note A> >
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note G>, v1n2=<music21.note.Note C>,
v2n1=<music21.note.Note A>, v2n2=<music21.note.Note A> >
>>> for vlq in verticality22.getAllVoiceLeadingQuartets(includeRests = False):
... pp(vlq)
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note E>, v1n2=<music21.note.Note F>,
v2n1=<music21.note.Note A>, v2n2=<music21.note.Note A> >
>>> for vlq in verticality22.getAllVoiceLeadingQuartets(includeOblique=False):
... pp(vlq)
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note E>, v1n2=<music21.note.Note F>,
v2n1=<music21.note.Note G>, v2n2=<music21.note.Note C> >
>>> verticality22.getAllVoiceLeadingQuartets(includeOblique=False, includeRests=False)
[]
Raw output
>>> for vlqRaw in verticality22.getAllVoiceLeadingQuartets(returnObjects=False):
... pp(vlqRaw)
((<ElementTimespan (21.0 to 22.0) <music21.note.Note E>>,
<ElementTimespan (22.0 to 23.0) <music21.note.Note F>>),
(<ElementTimespan (19.5 to 21.0) <music21.note.Note G>>,
<ElementTimespan (22.0 to 22.5) <music21.note.Note C>>))
((<ElementTimespan (21.0 to 22.0) <music21.note.Note E>>,
<ElementTimespan (22.0 to 23.0) <music21.note.Note F>>),
(<ElementTimespan (21.5 to 22.5) <music21.note.Note A>>,
<ElementTimespan (21.5 to 22.5) <music21.note.Note A>>))
((<ElementTimespan (19.5 to 21.0) <music21.note.Note G>>,
<ElementTimespan (22.0 to 22.5) <music21.note.Note C>>),
(<ElementTimespan (21.5 to 22.5) <music21.note.Note A>>,
<ElementTimespan (21.5 to 22.5) <music21.note.Note A>>))
>>> for vlq in verticality22.getAllVoiceLeadingQuartets(partPairNumbers=[(0,1)]):
... pp(vlq)
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note E>, v1n2=<music21.note.Note F>,
v2n1=<music21.note.Note G>, v2n2=<music21.note.Note C> >
>>> for vlq in verticality22.getAllVoiceLeadingQuartets(partPairNumbers=[(0,2),(1,2)]):
... pp(vlq)
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note E>, v1n2=<music21.note.Note F>,
v2n1=<music21.note.Note A>, v2n2=<music21.note.Note A> >
<music21.voiceLeading.VoiceLeadingQuartet
v1n1=<music21.note.Note G>, v1n2=<music21.note.Note C>,
v2n1=<music21.note.Note A>, v2n2=<music21.note.Note A> >
Get a list of two-element tuples that are in the same part [TODO: or containing stream??] and which move here.
>>> c = corpus.parse('luca/gloria').measures(1,8)
>>> tsCol = timespans.streamToTimespanTree(c, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality22 = tsCol.getVerticalityAt(22.0)
>>> for pm in verticality22.getPairedMotion():
... print(pm)
(<ElementTimespan (21.0 to 22.0) <music21.note.Note E>>, <ElementTimespan (22.0 to 23.0) <music21.note.Note F>>)
(<ElementTimespan (19.5 to 21.0) <music21.note.Note G>>, <ElementTimespan (22.0 to 22.5) <music21.note.Note C>>)
(<ElementTimespan (21.5 to 22.5) <music21.note.Note A>>, <ElementTimespan (21.5 to 22.5) <music21.note.Note A>>)
Note that the second one contains a one-beat rest at 21.0-22.0; so includeRests = False will get rid of that:
>>> for pm in verticality22.getPairedMotion(includeRests=False):
... print(pm)
(<ElementTimespan (21.0 to 22.0) <music21.note.Note E>>, <ElementTimespan (22.0 to 23.0) <music21.note.Note F>>)
(<ElementTimespan (21.5 to 22.5) <music21.note.Note A>>, <ElementTimespan (21.5 to 22.5) <music21.note.Note A>>)
Oblique here means a pair that does not move (it could be called noMotion, because there’s no motion here in a two-note pair, but we still call it includeOblique so it’s consistent with getAllVoiceLeadingQuartets).
>>> for pm in verticality22.getPairedMotion(includeOblique=False):
... print(pm)
(<ElementTimespan (21.0 to 22.0) <music21.note.Note E>>, <ElementTimespan (22.0 to 23.0) <music21.note.Note F>>)
(<ElementTimespan (19.5 to 21.0) <music21.note.Note G>>, <ElementTimespan (22.0 to 22.5) <music21.note.Note C>>)
>>> for pm in verticality22.getPairedMotion(includeOblique=False, includeRests=False):
... print(pm)
(<ElementTimespan (21.0 to 22.0) <music21.note.Note E>>, <ElementTimespan (22.0 to 23.0) <music21.note.Note F>>)
Makes a Chord or Rest from this verticality and quarterLength.
>>> score = timespans.makeExampleScore()
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(4.0)
>>> verticality
<Verticality 4.0 {E3 G3}>
>>> el = verticality.makeElement(2.0)
>>> el
<music21.chord.Chord E3 G3>
>>> el.duration.quarterLength
2.0
>>> el.duration.type
'half'
If there is nothing there, then a Rest is created
>>> verticality = tree.getVerticalityAt(400.0)
>>> verticality
<Verticality 400.0 {}>
>>> el = verticality.makeElement(1./3)
>>> el
<music21.note.Rest rest>
>>> el.duration.fullName
'Eighth Triplet (1/3 QL)'
TODO: Consider if this is better to return a Note if only one pitch?
creates a chord object from the verticality
Verticality instance variables
Gets the start offset of a verticality.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> verticality
<Verticality 1.0 {F#3 C#4 F#4 A4}>
>>> verticality.offset
1.0
Gets timespans overlapping the start offset of a verticality.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(0.5)
>>> verticality
<Verticality 0.5 {G#3 B3 E4 B4}>
>>> verticality.overlapTimespans
(<ElementTimespan (0.0 to 1.0) <music21.note.Note E>>,)
Gets the timespans starting at a verticality’s start offset.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> verticality
<Verticality 1.0 {F#3 C#4 F#4 A4}>
>>> for timespan in verticality.startTimespans:
... timespan
...
<ElementTimespan (1.0 to 2.0) <music21.note.Note A>>
<ElementTimespan (1.0 to 2.0) <music21.note.Note F#>>
<ElementTimespan (1.0 to 2.0) <music21.note.Note C#>>
<ElementTimespan (1.0 to 2.0) <music21.note.Note F#>>
Gets the timespans stopping at a verticality’s start offset.
>>> score = corpus.parse('bwv66.6')
>>> tree = timespans.streamToTimespanTree(score, flatten=True, classList=(note.Note, chord.Chord))
>>> verticality = tree.getVerticalityAt(1.0)
>>> verticality
<Verticality 1.0 {F#3 C#4 F#4 A4}>
Note that none of the elements in the stopTimespans are listed in the repr for the Verticality
>>> for timespan in verticality.stopTimespans:
... timespan
...
<ElementTimespan (0.0 to 1.0) <music21.note.Note E>>
<ElementTimespan (0.5 to 1.0) <music21.note.Note B>>
<ElementTimespan (0.5 to 1.0) <music21.note.Note B>>
<ElementTimespan (0.5 to 1.0) <music21.note.Note G#>>
Returns the timespanTree initially set.
A segment of verticalities.
VerticalitySequence methods