
Solutions 3
Jumping Rivers

The fashion MNIST data is similar to the MNIST digits but instead of
images of digits it is made up of images of 10 fashion items. Otherwise
it’s format is similar. Each image consists of a 28 by 28 pixel, single
colour channel image. For the purposes of our example we will treat
each of the 784 pixels as independent inputs. There are 60,000 train-
ing images and 10,000 test images. The jrpytorch package provides a
function for downloading the data (the first time) and preprocessing it
into an appropriate numpy array structure as below

import jrpytorch

X_train,X_test,y_train,y_test,labels = jrpytorch.datasets.load_fashion_mnist('fashiondata',True)

For this example we will consider optimiser performance. For this
purpose it is not necessary to consider testing loss. Whilst test loss
is the better metric of how well our model is doing it is affected by
things like overfitting. Since we want to get a feel for how the different
optimisers work training loss is a better bet since this is what we ask
our optimiser to optimise.

• Create a model similar to that we used in the notes for the MNIST
digits example.

import torch.nn as nn
class mlp(nn.Module):

def __init__(self):
super(mlp,self).__init__()
self.lin1 = nn.Linear(784,20)
self.lin2 = nn.Linear(20,10)

def forward(self,x):
x = torch.relu(self.lin1(x))
return self.lin2(x)

In the notes we were explicit with returning softmax activation on
the final layer as we introduced the topic. However this is not neces-
sary for calculating loss as the torch.nn.CrossEntropyLoss() func-
tion will do that for us. Given that your forward pass of your created
model returns a 1 by 10 (1 observation of 10 class values) for each in-
dividual prediction you can train the model using jrpytorch.train_mnist_example()
function, for example.

import torch



solutions 3 2

model = mlp()
optimiser = torch.optim.SGD(model.parameters(), lr=0.1)
output = jrpytorch.train_mnist_example(model,optimiser,1000,X_train,y_train)

• Try different optimisers and varying the hyperparameters. How do
these affect the model fitting process? Remember to recreate your
model for each run as this stores the weights as internal state.

• Try saving and reloading your model and an optimiser part way
through training


