
Practical 4
Jumping Rivers

A

Predict a person based on accelerometer data from walking

We have accelerometer data on 15 individuals who all walked for a
period of time. Each observation is a set of values from the x,y and
z axis of an accelerometer in 5 seconds sampled at a frequency of
52Hz. One sample is 260 observations. We have between 300-600
observations on each individual

import jrpytorch

walking = jrpytorch.datasets.load_walking()

The following code will produce a visualisation of one sample

import matplotlib.pyplot as plt
import numpy as np

sub = walking[walking['sample'] == 400]
sub.loc[:,'time'] = np.arange(260)
fig, (ax1,ax2,ax3) = plt.subplots(1,3, figsize = (18,10))
sub.plot(x = 'time', y = 'acc_x', ax = ax1)
sub.plot(x = 'time', y = 'acc_y', ax = ax2)
sub.plot(x = 'time', y = 'acc_z', ax = ax3)
plt.show()

At present this data is not in a particularly convenient structure
for training my model. The following code will create the (n,260,3) (n
observations of 260 inputs for 3 channels) input shape and class labels
as seperate array objects

dims = ['acc_x','acc_y','acc_z']
x = np.dstack([walking[[d]].values.reshape(-1,260) for d in dims])
y = walking['person'].values[::260] - 1

Each observation is a sequence of 260 values with 3 channels. This
is the sort of data structure where we would use a convolutional neural
network with 1d convolutions.

Create a model structure that takes in the 260 input features for
each of 3 data channels and returns 15 output features (one for each
person). We will want a set of convolution and pooling layers to begin
with before having some linear layers to get to the final output. The



practical 4 2

convolutions and pooling extract features from the 3 channels of se-
quences, the linear layers then map those features to the final output.

partition your data into training and test sets
pytorch expects a tensor shape of (samples, channels, inputdim) for

convolutional nets. we can transpose the dimensions of our data to
match this

X_train = X_train.transpose((0,2,1))
X_test = X_test.transpose((0,2,1))

Create a data loader to create batches from this data for training
(Hint: torch.utils.data.TensorDataset and torch.utils.data.DataLoader)

Train your model using the training set, if you want to you could
keep track of the loss for the test set too.

For me this gives 95% plus accuracy on classifying a person purely
on the accelerometer data while walking. Pretty neat!

B

Transfer learning

Some images of dogs and cats are available on github https://
github.com/jamieRowen/jrpytorch_data

Download the images and use a pre trained model as a fixed fea-
ture extractor on this data. Try using data augmentation to obtain a
model that does well for predicting objects from the images.

https://github.com/jamieRowen/jrpytorch_data
https://github.com/jamieRowen/jrpytorch_data

	A
	B

